Publications in peer-reviewed proceedings
Martin Vohralík
1. Ali Hassan, S., Japhet, C., Kern, M., and Vohralík, M. Space-time domain decomposition methods and a posteriori error estimates for the heat equation. In Proceedings of VIe Colloque EDP-Normandie - Caen 2017 (2018), C. Dogbe, Ed., Fédération Normandie Mathématiques, pp. 65–87. Preprint .
2. Ern, A., and Vohralík, M. Adaptive inexact Newton methods with a posteriori stopping criteria. In Proceedings of the International Conference Presentation of Mathematics ’12 (Technical University of Liberec, Czech Republic, 2012), V. Finěk, Ed., ACC Journal XVIII 4/2012, pp. 68–74.
3. Di Pietro, D. A., Vohralík, M., and Widmer, C. An a posteriori error estimator for a finite volume discretization of the two-phase flow. In Finite Volumes for Complex Applications VI (Berlin, Heidelberg, 2011), J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds., Springer-Verlag, pp. 341–349. Book version, preprint .
4. Ern, A., and Vohralík, M. A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes. In Finite Volumes for Complex Applications VI (Berlin, Heidelberg, 2011), J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds., Springer-Verlag, pp. 821–837. Book version, preprint .
5. Cheddadi, I., Fučík, R., Prieto, M. I., and Vohralík, M. Computable a posteriori error estimates in the finite element method based on its local conservativity: improvements using local minimization. In CEMRACS 2007, vol. 24 of ESAIM Proc. EDP Sci., Les Ulis, 2008, pp. 77–96. Journal version, preprint .
6. Vohralík, M. Two types of guaranteed (and robust) a posteriori estimates for finite volume methods. In Finite Volumes for Complex Applications V, R. Eymard and J.-M. Hérard, Eds. ISTE, London, London, UK and Hoboken, USA, 2008, pp. 649–656. Book version, preprint .
7. Vohralík, M. A posteriori error estimates for finite volume and mixed finite element discretizations of convection-diffusion-reaction equations. In Paris-Sud Working Group on Modelling and Scientific Computing 2006–2007, vol. 18 of ESAIM Proc. EDP Sci., Les Ulis, 2007, pp. 57–69. Journal version, preprint .
8. Vohralík, M. Equivalence between lowest-order mixed finite element and multi-point finite volume methods. Derivation, properties, and numerical experiments. In Proceedings of ALGORITMY 2005. Slovak University of Technology, Bratislava, Slovakia, 2005, pp. 103–112.
9. Eymard, R., Hilhorst, D., and Vohralík, M. Combined nonconforming/mixed-hybrid finite element–finite volume scheme for degenerate parabolic problems. In Numerical mathematics and advanced applications. Springer, Berlin, 2004, pp. 288–297.
10. Maryška, J., Severýn, O., and Vohralík, M. Mixed-hybrid FEM discrete fracture network model of the fracture flow. In Numerical mathematics and advanced applications. Springer Italia, Milan, 2003, pp. 155–164.
11. Vohralík, M., Maryška, J., and Severýn, O. Mixed-hybrid discrete fracture network model. In Current trends in scientific computing (Xi’an, 2002), vol. 329 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2003, pp. 325–332.
12. Maryška, J., Severýn, O., and Vohralík, M. Mixed-hybrid FEM discrete fracture network model of the fracture flow. In Computational science—ICCS 2002, Part III (Amsterdam), vol. 2331 of Lecture Notes in Comput. Sci. Springer, Berlin, 2002, pp. 794–803.