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ABSTRACTWEe present in this contribution the basic ideas of two tygesmosteriorierror esti-
mates for finite volume discretizations of inhomogeneowsaaisotropic pure diffusion prob-
lems. In both cases, our element estimators represent loser bounds for the energy error
and can thus be used as efficient indicators for adaptive mefgilement. Moreover, our es-
timates are fully computable and thus allow us to guaranteedverall discretization error.
Finally, in the second approach, the effectivity index,, itee ratio of the estimated and ac-
tual error, is independent of discontinuities in a scalaffuion tensor. This full robustness is
particularly important for the cases with singular solutg Any cell- or vertex-centered finite
volume scheme is included in our analysis, the estimators bhaclear physical interpretation,
are easily and locally computable, and numerical experitmennfirm their excellent accuracy.

KEYWORDSinhomogeneous and anisotropic diffusion, finite volumehotetharmonic averag-
ing, a posteriorierror estimates, guaranteed upper bound, robustness

1. Introduction

We consider in this paper the problem

—V-(SVp) = f inQ, [1a]
p = g onlp, [1b]
—SVp-n = wu only, [1c]

whereS is (an inhomogeneous and anisotropic) diffusion—disparggnsor,f is a
source term, ang andwu prescribe the Dirichlet and Neumann boundary conditions,
respectively. We suppose thatc R¢, d = 2, 3, is a polygonal (polyhedral) domain,
thatlp NI’y = 0, I'pUly =T := 99, and thatT'p| # 0, where|T'p| is the measure

of the sefl'p. Finally, n stands for the unit normal vector 6f2, outward tof.



One of the firsta posteriorierror estimates for finite volume methods, in the
L'-norm for nonlinear time-dependent convection—diffugiooblems, was given by
Ohlberger DHL 01]. Energy norm estimates for linear elliptic equations ikl
ing local efficiency results were then derived by, e.g., Amhédt al. [ACH 03 or
Nicaise NIC 05]. We present here the basic results WOH 06] and [VOH 0§] that
allow us to tightly control the overall error, including thases with singular solutions
due to inhomogeneities and anisotropies, and to refine tisbeseadaptively and thus
to increase the efficiency of the calculations. We in palicaompare the two ap-
proaches, where the first onedpriori suited for cell-centered finite volume methods
and the second one for vertex-centered finite volume mettwdslso extend the re-
sults of VOH 08] to full diffusion tensors and inhomogeneous Dirichlet dielimann
boundary conditions. For references, complete descnifche results, all proofs,
detailed numerical experiments, and extensions to theemion—diffusion—reaction
case and general polygonal/polyhedral meshes includiegxtimmatching ones for
cell-centered schemes, the reader is referred@H 06] and [VOH 08].

2. Notation, continuous and discrete problems, and some usg inequalities
2.1. Notation and assumptions

Let 7;, denote a conforming simplicial mesh ©f V), its vertices,&, its sides
(edges ifd = 2, faces ifd = 3), and&i*t (£2xY) all interior (exterior) sides. We
will next use& for the sides contained (only entirely) Ty, £x for all sides of
K € Ty, EX for ¢ € £ which share at least a vertex with/a € 7, 7y for
all triangles sharing the verteéX € V;, and7x for all triangles sharing at least a
vertex with X' € 7j,. In addition to7},, in one of our approaches, we shall also con-
sider dual partition®;, of Q; see Figurel for an example. We us@}f’t"N,DfLXt’D
to denote respectively the interior dual volumes and extetual volumes with the
Neumann boundary condition (imposed over the wladlen 0f2) and similarly exte-
rior dual volumes with the Dirichlet boundary conditiaf; , 7;*, F5** then denotes
the sides ofD;,. Finally, we will need a second simplicial mes} of 2, constructed
by dividing eachD € Dj, into a meshSp as indicated in Figur& and then taking
Sh = Upep, Sp- We will use the notatio;, (Gint, Gext) for its sides andj} for
the sides contained iy andGp for the sides oG, contained i D for D € Dy,.
Finally, for o = ok € G, we define the weighted average operafo}., by
{ode = wro(olK)lo + wro(elL)|s, whereas for € G, {p}o = ¢|,. Here
wk,» are weights associated with eakhe S;, ando € £k such thad) < wgi , <1
andwg , +wr, = 1forallo = ok 1, € Gt

We next denote by, -) s the L2-scalar product o8, by || - || s the associated norm
(whenS = , the index is dropped off), by5| the Lebesgue measure®fand byh s
its diameter. NextH; ,(Q2) andH, ,(Q2) are respectively the subspacesdf((2) of
functions with traces vanishing and equalton I'n. We will also need the “broken
Sobolev space’H(7;,) = {p € L*(Q);p|x € H'(K) VK € T,}. In section2.3
and3 (2.4 and4), we will suppose tha$ is a piecewise constant symmetric matrix
on 7, (D) and we will denote by x, Cs i (cs,p, Cs,p) its smallest and biggest
eigenvalues, respectively. For simplicity, J&tg, andu be piecewise polynomials.



Figure 1: Original simplicial mesHf;,, the associated dual megh,, and the fine
simplicial meshS;,

2.2. Continuous problem

We define a bilinear forn by B(p, ) := Y jcer. (SVD, V)i, p, o € H' ()
and the corresponding energy semi-norniilpyf||? := B(p, ¢). Inthis wayB(-, -) and
l| - ||| are well-defined fop, ¢ that are only piecewise regular. The weak formulation
of problem [La—[1c] is then to findp € H;_’D(Q) such that

B(pa 90) = (fa 90) - <ua 90>FN VSO € H(:)LD(Q) [2]

2.3. Cell-centered finite volume schemes

A general cell-centered finite volume scheme for probléaH1c] on the mesh
7T, can be written as: findy, K € 7;,, the approximations tp such that

3 Sko=IfxlK| VKET, [3]

oelk

wherefx := (f,1)/|K| andSk , (functions ofp) are the diffusive fluxes through
the sidesr of an elemenfs. We do not need the specific form of the fluxes; their con-
tinuity, imposingSk o, = —SrL.ox, forallox 1 € E}L“t, is our sole assumption.

2.4. Vertex-centered finite volume schemes

In vertex-centered finite volume schemes, b@thand D;, are used, as we seek
pn € XP C H;D(Q), the space of piecewise linear polynomials®n such that

— (fS}oVpr -n,1)op = (f,1)p VD e D", [4]

We have two basic choices of weights on a side= op r € }‘}ft in the above
formula: wp, = wge, = % which corresponds to the arithmetic averaging, and
SLE g, = —>=2— which corresponds to the harmonic averaging.

w = — 0
Do cs,p+cs B’ cs,p+cs, B



2.5. Poincaré, Friedrichs, and trace inequalities
The three following inequalities play a crucial role in @iposteriorierror esti-
mates. LetD be a polygon or a polyhedron. The Poincaré inequality states
lp —¢plb < Cephp|IVelh Ve € HY(D), 5]

whereyp is the mean value op over D and where the constagt p can for each
convexD be evaluated ak/72. Next, the Friedrichs inequality states that

lell® < Cr.prphI Vel Yy € H*(D) such thatp = 0 on9Q N dD # 0
(6]

in generalCr.p r,, = 1. Finally, for a sides of D, the trace inequality states that
lp—¢ollz < CipohollVelb. [7]

For more details, we refer t&/DH 06, VOH 08] and the references therein.

3. Flux-based postprocessing and estimates

We present in this section the first typesoposteriorierror estimates priori (but
not exclusively) designed for cell-centered finite volurokesmes of sectio.3.

3.1. Guaranteed estimates

Theorem 3.1(Guaranteed estimate for flux-based postprocessing)p be the weak
solution of problenjla-{1c] given by{2] and letp;, € H'(7}) be arbitrary but such
that—SVp, € H(div,Q), —SVp, - n = u,, u, := (u, 1), /|0, forall o € &Y, and
—(V-(SVpn), )k = (f, 1)k forall K € T;,. Let nexts;, € H, () be arbitrary
and let thenonconformity estimatdpe given by

nne,k = |[[Pn = snlll ks
theresidual estimatadoy
R = mi|lf+ V- (SVp)|k,

wherem?. := Cph? /cs i, With Cp = 1 /72 the constant from the Poincaré inequal-
ity [5], and theNeumann boundary estimatoy

Vh
vk =04~ Y7 Cukolue —ulo,
VS K cEEKNEN

whereC} k., is the constant from the trace inequalf]. Then

1/2 1/2
|||p—zahms{zn§c,K} +{z<nR,K+npNyK>2} |

KeTy, KeTy,




3.2. Construction ofp;, and s;, for cell-centered finite volume schemes

A choice forpy, is a locally constructed second-order polynomial whosenabr
fluxes across the sides of eakhare given by- Sk , and whose mean ovéf or value
in a pointxy is given bypx. Forsy, € HglyD(Q), the basis is the so-called Oswald
interpolateZos of py, given in Lagrangian nodes by the average of the valugg of
and adjusted so thﬁglj (pr) = g onT'p. For more details, we refer t&¢/OH 06].

3.3. Local efficiency

Theorem 3.2(Local efficiency for flux-based postprocessinggt the assumptions of
TheorenB.1be verified, lep, ands;, be constructed as described in sect®g, and
let 7;, be shape-regular, i.eminger, |K|/h% > k7 for a positive constantr. Put
¢s, T = mingery, cs . Then, there holds

Cs,x . . - N
s+, i < O[22 ((lp =l mHllo— Pl ) + 1Zos ()~ Z52 )l
s 4K

where the constarit’ depends only on the space dimensipon the shape regularity
parameters, and on the polynomial degrdeof f and where

llp = Bulll% e = esmie D o IlIp = Bl olol 13-

ocEnt

4. Potential-based postprocessing and estimates

We present here the second typeagbosteriorierror estimatesa priori (but not
exclusively) designed for vertex-centered finite volumeesoes of sectiol.4.

4.1. Guaranteed estimates

Theorem 4.1(Guaranteed estimate for potential-based postprocgsdiegp be the
weak solution of problerfilg-{1c] given by[2] and letp;, € H;,D(Q) be arbitrary.

Let nextt;, € H(div, ) be arbitrary but such that;, - n = u, forall o € g}j and
(V-tn,1)p = (f,1)p forall D € D™ V. Define thadiffusive flux estimatoby

NDF,D = ||S%Vph+siéth”D D € Dy,
theresidual estimatadoy

R,D ‘= mDH.f_v'thHD DGDh,

wherem?, := Cp ph%,/cs,p WhenD € DZ“’N andm?, := Cr,p rph%/cs,p When
D e D,‘j’“’D, with Cp p the constant from the Poincaré inequali®] and Cr p
that from the Friedrichs inequality6], and theNeumann boundary estimatoy

I,
Nry,p =0+ Z fea eV Ci.x,,0l|te — tllo,
ceGpngy S Ko




whereK, € S, is such thatr € £x and whereCt _ » is the constant from the trace
inequality[7] on K,. Then

1/2
llp = palll < { > (r.p + 10F,D +77FN,D)2} -

DeDy,

4.2. Construction oft;, for vertex-centered finite volume schemes

We definet, in the Raviart—-Thomas space Sp by t, - n, = —{SVps - n, }o
forallo € G, \ G}, wherepy, is the solution of anS}., is the averaging used id],

4.3. Local efficiency

Theorem 4.2(Local efficiency for potential-based postprocessingt the assump-
tions of Theorerd.1be verified, let{ S} ., be the harmonic averaging, and lgt be
the solution of[4]. Let nextt;, be constructed as described in sect@ and let7;,
be shape-regular, i.emin g, | K|/h$ > x7 for some positive constart-. Then

Cs.E
nor,p +1r,p < C  max :
E;END#0 \| cs.p

)

llp = prlllze, »

where the constart’ depends only on the space dimensipon the shape regularity
parameterx, on the polynomial degreleof f, and onCp p or Cr p 1y, -

REMARK. — Note that Theorem.2 states that wheSB is scalar and piecewise con-
stant onD;, and using the harmonic averaging, the potential-basgdsteriorierror
estimate is robust, i.e., the effectivity index is indepemicbfS.

5. Numerical experiments

We consider here problemd@l-[1c] with Q@ = (—1,1) x (—1,1) andf = 0, we
assume the is constant and equal t¢ /d in the four axis quadrants, and we consider
two casess; = s3 = 5, 85 = s4 = 1 ands; = s3 = 100, so = s4 = 1, respectively.
An analytical solution, exhibiting a singularity at thegiri, can be found here.

We have tested schemes of secttbBalong with estimates of sectighand, for
square but possibly nonmatching mestgsand7;, constructed consequently using
the square centers, schemes of secBighalong with estimates of sectigh In the
first case and for the adaptive mode, each triangle wherestireaged error is greater
than50% of the maximum of the estimators is refined idtsub-triangles and then the
mesh is completed by a particular procedure so that it stay®oming and uniformly
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Figure 2: Estimated (left) and actual (right) error disfitibn, case 1, flux-based post-
processing and estimates
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Figure 3: Estimated and actual energy error against the auoflelements for case 1
(left) and case 2 (right), flux-based postprocessing arichatds

strictly Delaunay. In the second case, a square cell of tiginat dual mesh is refined
into 9 identical subsquares if the estimated energy error is gréaan25% of the
maximum of the estimators. We give in Figuiand4 a comparison of the estimated
and actual error distributions. We can see that for bothgyppestimates, the predicted
distribution is excellent and in particular the singubai& well recognized, thanks to
the local efficiency. Next in Figureésand5 we report the estimated and actual energy
error; these plots confirm in particular the guaranteed uppend. In particular, for
the estimates of sectid@) the effectivity index for uniform mesh refinement is about
1.55in the first case andl7 in the second. These estimates are thus not robust; refining
the mesh adaptively, however, the effectivity index getieqolose to the optimal
value of one. In contrast, full robustness is observed fomedges of sectiod, where
the effectivity index for uniform mesh refinement is consfyanlose to2; its further
improvementis possible using local minimization proposed studied inYOH 08].
Finally, it can clearly be seen from Figurdsind5 that the adaptive mesh refinement
leads to much more efficient simulations.
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Figure 4: Estimated (left) and actual (right) error disitibn, case 2, potential-based
postprocessing and estimates
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Figure 5: Estimated and actual energy error against the auoftdual volumes for
case 1 (left) and case 2 (right), potential-based postgeing and estimates
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