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ABSTRACT.We present in this contribution the basic ideas of two types of a posteriorierror esti-
mates for finite volume discretizations of inhomogeneous and anisotropic pure diffusion prob-
lems. In both cases, our element estimators represent locallower bounds for the energy error
and can thus be used as efficient indicators for adaptive meshrefinement. Moreover, our es-
timates are fully computable and thus allow us to guarantee the overall discretization error.
Finally, in the second approach, the effectivity index, i.e., the ratio of the estimated and ac-
tual error, is independent of discontinuities in a scalar diffusion tensor. This full robustness is
particularly important for the cases with singular solutions. Any cell- or vertex-centered finite
volume scheme is included in our analysis, the estimators have a clear physical interpretation,
are easily and locally computable, and numerical experiments confirm their excellent accuracy.

KEYWORDS:inhomogeneous and anisotropic diffusion, finite volume method, harmonic averag-
ing, a posteriorierror estimates, guaranteed upper bound, robustness

1. Introduction

We consider in this paper the problem

−∇ · (S∇p) = f in Ω, [1a]

p = g on ΓD, [1b]

−S∇p · n = u on ΓN, [1c]

whereS is (an inhomogeneous and anisotropic) diffusion–dispersion tensor,f is a
source term, andg andu prescribe the Dirichlet and Neumann boundary conditions,
respectively. We suppose thatΩ ⊂ R

d, d = 2, 3, is a polygonal (polyhedral) domain,
thatΓD∩ΓN = ∅, ΓD∪ΓN = Γ := ∂Ω, and that|ΓD| 6= 0, where|ΓD| is the measure
of the setΓD. Finally,n stands for the unit normal vector of∂Ω, outward toΩ.



One of the firsta posteriori error estimates for finite volume methods, in the
L1-norm for nonlinear time-dependent convection–diffusionproblems, was given by
Ohlberger [OHL 01]. Energy norm estimates for linear elliptic equations includ-
ing local efficiency results were then derived by, e.g., Achdou et al. [ACH 03] or
Nicaise [NIC 05]. We present here the basic results of [VOH 06] and [VOH 08] that
allow us to tightly control the overall error, including thecases with singular solutions
due to inhomogeneities and anisotropies, and to refine the meshes adaptively and thus
to increase the efficiency of the calculations. We in particular compare the two ap-
proaches, where the first one isa priori suited for cell-centered finite volume methods
and the second one for vertex-centered finite volume methods. We also extend the re-
sults of [VOH 08] to full diffusion tensors and inhomogeneous Dirichlet andNeumann
boundary conditions. For references, complete description of the results, all proofs,
detailed numerical experiments, and extensions to the convection–diffusion–reaction
case and general polygonal/polyhedral meshes including the nonmatching ones for
cell-centered schemes, the reader is referred to [VOH 06] and [VOH 08].

2. Notation, continuous and discrete problems, and some useful inequalities

2.1. Notation and assumptions

Let Th denote a conforming simplicial mesh ofΩ, Vh its vertices,Eh its sides
(edges ifd = 2, faces ifd = 3), andE int

h (Eext
h ) all interior (exterior) sides. We

will next useEN
h for the sides contained (only entirely) inΓN, EK for all sides of

K ∈ Th, E int
K for σ ∈ E int

h which share at least a vertex with aK ∈ Th, TV for
all triangles sharing the vertexV ∈ Vh, andTK for all triangles sharing at least a
vertex withK ∈ Th. In addition toTh, in one of our approaches, we shall also con-
sider dual partitionsDh of Ω; see Figure1 for an example. We useDint, N

h ,Dext, D
h

to denote respectively the interior dual volumes and exterior dual volumes with the
Neumann boundary condition (imposed over the whole∂D ∩ ∂Ω) and similarly exte-
rior dual volumes with the Dirichlet boundary condition;Fh,F int

h ,Fext
h then denotes

the sides ofDh. Finally, we will need a second simplicial meshSh of Ω, constructed
by dividing eachD ∈ Dh into a meshSD as indicated in Figure1 and then taking
Sh =

⋃

D∈Dh
SD. We will use the notationGh (Gint

h , Gext
h ) for its sides andGN

h for
the sides contained inΓN andGD for the sides ofGh contained in∂D for D ∈ Dh.
Finally, for σ = σK,L ∈ Gint

h , we define the weighted average operator{{·}}ω by
{{ϕ}}ω := ωK,σ(ϕ|K)|σ + ωL,σ(ϕ|L)|σ, whereas forσ ∈ Gext

h , {{ϕ}}ω := ϕ|σ. Here
ωK,σ are weights associated with eachK ∈ Sh andσ ∈ EK such that0 ≤ ωK,σ ≤ 1
andωK,σ + ωL,σ = 1 for all σ = σK,L ∈ Gint

h .

We next denote by(·, ·)S theL2-scalar product onS, by‖ ·‖S the associated norm
(whenS = Ω, the index is dropped off), by|S| the Lebesgue measure ofS, and byhS

its diameter. Next,H1
0,D(Ω) andH1

g,D(Ω) are respectively the subspaces ofH1(Ω) of
functions with traces vanishing and equal tog on ΓD. We will also need the “broken
Sobolev space”,H1(Th) := {ϕ ∈ L2(Ω); ϕ|K ∈ H1(K) ∀K ∈ Th}. In sections2.3
and3 (2.4 and4), we will suppose thatS is a piecewise constant symmetric matrix
on Th (Dh) and we will denote bycS,K , CS,K (cS,D, CS,D) its smallest and biggest
eigenvalues, respectively. For simplicity, letf , g, andu be piecewise polynomials.
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Figure 1: Original simplicial meshTh, the associated dual meshDh, and the fine
simplicial meshSh

2.2. Continuous problem

We define a bilinear formB byB(p, ϕ) :=
∑

K∈Th
(S∇p,∇ϕ)K , p, ϕ ∈ H1(Th)

and the corresponding energy semi-norm by|||ϕ|||2 := B(ϕ, ϕ). In this wayB(·, ·) and
||| · ||| are well-defined forp, ϕ that are only piecewise regular. The weak formulation
of problem [1a]–[1c] is then to findp ∈ H1

g,D(Ω) such that

B(p, ϕ) = (f, ϕ) − 〈u, ϕ〉ΓN
∀ϕ ∈ H1

0,D(Ω). [2]

2.3. Cell-centered finite volume schemes

A general cell-centered finite volume scheme for problem [1a]–[1c] on the mesh
Th can be written as: findpK , K ∈ Th, the approximations top such that

∑

σ∈EK

SK,σ = fK |K| ∀K ∈ Th, [3]

wherefK := (f, 1)/|K| andSK,σ (functions ofpK) are the diffusive fluxes through
the sidesσ of an elementK. We do not need the specific form of the fluxes; their con-
tinuity, imposingSK,σK,L

= −SL,σK,L
for all σK,L ∈ E int

h , is our sole assumption.

2.4. Vertex-centered finite volume schemes

In vertex-centered finite volume schemes, bothTh andDh are used, as we seek
ph ∈ XD

h ⊂ H1
g,D(Ω), the space of piecewise linear polynomials onTh, such that

− 〈{{S}}ω∇ph · n, 1〉∂D = (f, 1)D ∀D ∈ Dint, N
h . [4]

We have two basic choices of weights on a sideσ = σD,E ∈ F int
h in the above

formula: ωD,σ = ωE,σ = 1
2
, which corresponds to the arithmetic averaging, and

ωD,σ =
cS,E

cS,D+cS,E
, ωE,σ =

cS,D

cS,D+cS,E
, which corresponds to the harmonic averaging.



2.5. Poincaré, Friedrichs, and trace inequalities

The three following inequalities play a crucial role in oura posteriorierror esti-
mates. LetD be a polygon or a polyhedron. The Poincaré inequality statesthat

‖ϕ − ϕD‖2
D ≤ CP,Dh2

D‖∇ϕ‖2
D ∀ϕ ∈ H1(D), [5]

whereϕD is the mean value ofϕ overD and where the constantCP,D can for each
convexD be evaluated as1/π2. Next, the Friedrichs inequality states that

‖ϕ‖2
D ≤ CF,D,ΓD

h2
D‖∇ϕ‖2

D ∀ϕ ∈ H1(D) such thatϕ = 0 on∂Ω ∩ ∂D 6= ∅;
[6]

in general,CF,D,ΓD
= 1. Finally, for a sideσ of D, the trace inequality states that

‖ϕ − ϕσ‖2
σ ≤ Ct,D,σhD‖∇ϕ‖2

D. [7]

For more details, we refer to [VOH 06, VOH 08] and the references therein.

3. Flux-based postprocessing and estimates

We present in this section the first type ofa posteriorierror estimates,a priori (but
not exclusively) designed for cell-centered finite volume schemes of section2.3.

3.1. Guaranteed estimates

Theorem 3.1(Guaranteed estimate for flux-based postprocessing). Letp be the weak
solution of problem[1a]–[1c] given by[2] and letp̃h ∈ H1(Th) be arbitrary but such
that−S∇p̃h ∈ H(div, Ω), −S∇p̃h · n = uσ, uσ := 〈u, 1〉σ/|σ|, for all σ ∈ EN

h , and
−(∇ · (S∇p̃h), 1)K = (f, 1)K for all K ∈ Th. Let nextsh ∈ H1

g,D(Ω) be arbitrary
and let thenonconformity estimatorbe given by

ηNC,K := |||p̃h − sh|||K ,

theresidual estimatorby

ηR,K := mK‖f + ∇ · (S∇p̃h)‖K ,

wherem2
K := CPh2

K/cS,K , with CP = 1/π2 the constant from the Poincaré inequal-
ity [5], and theNeumann boundary estimatorby

ηΓN,K := 0 +

√
hK√
cS,K

∑

σ∈EK∩EN

h

√

Ct,K,σ‖uσ − u‖σ,

whereCt,K,σ is the constant from the trace inequality[7]. Then

|||p − p̃h||| ≤
{

∑

K∈Th

η2
NC,K

}1/2

+

{

∑

K∈Th

(ηR,K + ηΓN,K)2

}1/2

.



3.2. Construction ofp̃h andsh for cell-centered finite volume schemes

A choice for p̃h is a locally constructed second-order polynomial whose normal
fluxes across the sides of eachK are given by−SK,σ and whose mean overK or value
in a pointxK is given bypK . For sh ∈ H1

g,D(Ω), the basis is the so-called Oswald
interpolateIOs of p̃h, given in Lagrangian nodes by the average of the values ofp̃h,
and adjusted so thatIΓD

Os (p̃h) = g onΓD. For more details, we refer to [VOH 06].

3.3. Local efficiency

Theorem 3.2(Local efficiency for flux-based postprocessing). Let the assumptions of
Theorem3.1be verified, let̃ph andsh be constructed as described in section3.2, and
let Th be shape-regular, i.e.,minK∈Th

|K|/hd
K ≥ κT for a positive constantκT . Put

cS,TK
:= minL∈TK

cS,L. Then, there holds

ηR,K+ηNC,K ≤C

√

CS,K

cS,TK

(

|||p−p̃h|||TK
+|||p−p̃h|||#,E int

K

)

+|||IOs(p̃h)−IΓD

Os (p̃h)|||K ,

where the constantC depends only on the space dimensiond, on the shape regularity
parameterκT , and on the polynomial degreek of f and where

|||p − p̃h|||2#,E int

K

:= cS,TK

∑

σ∈E int

K

h−1
σ ‖〈[[p − p̃h]], 1〉σ|σ|−1‖2

σ.

4. Potential-based postprocessing and estimates

We present here the second type ofa posteriorierror estimates,a priori (but not
exclusively) designed for vertex-centered finite volume schemes of section2.4.

4.1. Guaranteed estimates

Theorem 4.1(Guaranteed estimate for potential-based postprocessing). Let p be the
weak solution of problem[1a]–[1c] given by[2] and letph ∈ H1

g,D(Ω) be arbitrary.
Let nextth ∈ H(div, Ω) be arbitrary but such thatth · n = uσ for all σ ∈ GN

h and
(∇ · th, 1)D = (f, 1)D for all D ∈ Dint, N

h . Define thediffusive flux estimatorby

ηDF,D := ‖S 1

2∇ph + S
− 1

2 th‖D D ∈ Dh,

theresidual estimatorby

ηR,D := mD‖f −∇ · th‖D D ∈ Dh,

wherem2
D := CP,Dh2

D/cS,D whenD ∈ Dint, N
h andm2

D := CF,D,ΓD
h2

D/cS,D when
D ∈ Dext, D

h , with CP,D the constant from the Poincaré inequality[5] andCF,D,ΓD

that from the Friedrichs inequality[6], and theNeumann boundary estimatorby

ηΓN,D := 0 +
∑

σ∈GD∩GN

h

√

hKσ√
cS,Kσ

√

Ct,Kσ,σ‖uσ − u‖σ,



whereKσ ∈ Sh is such thatσ ∈ EK and whereCt,Kσ,σ is the constant from the trace
inequality[7] onKσ. Then

|||p − ph||| ≤
{

∑

D∈Dh

(ηR,D + ηDF,D + ηΓN,D)2

}1/2

.

4.2. Construction ofth for vertex-centered finite volume schemes

We defineth in the Raviart–Thomas space onSh by th · nσ = −{{S∇ph · nσ}}ω

for all σ ∈ Gh \GN
h , whereph is the solution of and{{S}}ω is the averaging used in [4].

4.3. Local efficiency

Theorem 4.2(Local efficiency for potential-based postprocessing). Let the assump-
tions of Theorem4.1be verified, let{{S}}ω be the harmonic averaging, and letph be
the solution of[4]. Let nextth be constructed as described in section4.2and letTh

be shape-regular, i.e.,minK∈Th
|K|/hd

K ≥ κT for some positive constantκT . Then

ηDF,D + ηR,D ≤ C max
E;E∩D 6=∅

√

CS,E

cS,E
|||p − ph|||TVD

,

where the constantC depends only on the space dimensiond, on the shape regularity
parameterκT , on the polynomial degreek of f , and onCP,D or CF,D,ΓD

.

REMARK. — Note that Theorem4.2 states that whenS is scalar and piecewise con-
stant onDh and using the harmonic averaging, the potential-baseda posteriorierror
estimate is robust, i.e., the effectivity index is independent ofS.

5. Numerical experiments

We consider here problem [1a]–[1c] with Ω = (−1, 1) × (−1, 1) andf = 0, we
assume thatS is constant and equal tosi Id in the four axis quadrants, and we consider
two cases,s1 = s3 = 5, s2 = s4 = 1 ands1 = s3 = 100, s2 = s4 = 1, respectively.
An analytical solution, exhibiting a singularity at the origin, can be found here.

We have tested schemes of section2.3 along with estimates of section3 and, for
square but possibly nonmatching meshesDh andTh constructed consequently using
the square centers, schemes of section2.4 along with estimates of section4. In the
first case and for the adaptive mode, each triangle where the estimated error is greater
than50% of the maximum of the estimators is refined into4 sub-triangles and then the
mesh is completed by a particular procedure so that it stays conforming and uniformly



0.005

0.01

0.015

0.02

0.025

0.03

0.035

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.005

0.01

0.015

0.02

0.025

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Estimated (left) and actual (right) error distribution, case 1, flux-based post-
processing and estimates
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Figure 3: Estimated and actual energy error against the number of elements for case 1
(left) and case 2 (right), flux-based postprocessing and estimates

strictly Delaunay. In the second case, a square cell of the original dual mesh is refined
into 9 identical subsquares if the estimated energy error is greater than25% of the
maximum of the estimators. We give in Figures2 and4 a comparison of the estimated
and actual error distributions. We can see that for both types of estimates, the predicted
distribution is excellent and in particular the singularity is well recognized, thanks to
the local efficiency. Next in Figures3 and5 we report the estimated and actual energy
error; these plots confirm in particular the guaranteed upper bound. In particular, for
the estimates of section3, the effectivity index for uniform mesh refinement is about
1.55 in the first case and3.7 in the second. These estimates are thus not robust; refining
the mesh adaptively, however, the effectivity index gets quite close to the optimal
value of one. In contrast, full robustness is observed for estimates of section4, where
the effectivity index for uniform mesh refinement is constantly close to2; its further
improvement is possible using local minimization proposedand studied in [VOH 08].
Finally, it can clearly be seen from Figures3 and5 that the adaptive mesh refinement
leads to much more efficient simulations.



Figure 4: Estimated (left) and actual (right) error distribution, case 2, potential-based
postprocessing and estimates
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Figure 5: Estimated and actual energy error against the number of dual volumes for
case 1 (left) and case 2 (right), potential-based postprocessing and estimates
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