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Abstract We derive a posteriori error estimates for a multi-point finite volume dis-
cretization of the two-phase Darcy problem. The proposed estimators yield a fully
computable upper bound for the selected error measure. The estimate also allows to
distinguish, estimate separately, and compare the linearization and algebraic errors
and the time and space discretization errors. This enables,in particular, to design
a discretization algorithm so that all the sources of error are properly balanced.
Namely, the linear and nonlinear solvers can be stopped as soon as the algebraic
and linearization errors drop to the level at which they do not affect to the overall
error. This can lead to significant computational savings, since performing an exces-
sive number of unnecessary iterations can be avoided. Similarly, the errors in space
and in time can be equilibrated by time step and local mesh adaptivity.

Key words: Finite volumes, a posteriori error estimates, darcy model,fully com-
putable upperbound, twophase flow.
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1 The two-phase flow model

Let Ω ⊂ R
d, d ≥ 1, denote a bounded connected polygonal domain and lettF > 0.

Let w denote the wetting phase (e.g., water) and o the non-wetting phase (e.g., oil),
and let there be given sourcesfo, fw ∈ L2((0,tF);L2(Ω)) and a (constant) porosity
φ ∈ (0,1]. We consider the two-phase flow (see, e.g., [3]): Find U := {P,So,Sw},
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with P the pressure andSp, p∈ {o,w}, the saturations, such that

∂t(φSo)+ ∇ · (νo(P,So)uo(P,So)) = fo in Ω × (0,tF),

∂t(φSw)+ ∇ · (νw(P,Sw)uw(P,Sw)) = fw in Ω × (0,tF),

So +Sw = 1 in Ω × (0,tF).

(1)

For p∈ {o,w}, νp denotes here the mobility of the phasep defined as the ratio
of the relative permeability to the viscosity. In (1), uo anduw are such that

up(P,Sp) := −K∇(P+Pc,p(Sp)) , for p∈ {o,w}, in Ω × (0,tF), (2)

wherePc,p(Sp) is the capillary pressure andK denotes a piecewise constant, uni-
formly elliptic tensor-valued field corresponding to the absolute permeability. To
find some example of the physics laws (capillarity pressure,phase mobility) or of
the absolute permeability see [7].

Problem (1) is complemented by the initial conditions:

So(·,0) = S0
o and P(·,0) = P0, in Ω , (3)

as well as by no-flow boundary conditions:

up(P,Sp) ·nΩ = 0, in ∂Ω × (0,tF). (4)

The purpose of this paper is to propose fully computable a posteriori error es-
timates for the discretization of (1)–(4) by cell-centered finite volume methods in
space and the backward Euler scheme in time. In particular, we consider the multi-
point finite volume method proposed in [1]. Using a dual error norm is motivated
by, e.g., [8]. Developing the ideas of [6, 4, 5, 9], we in particular separate the esti-
mate into contributions representing thespace discretization error, time discretiza-
tion error, linearization error, andalgebraic error. Then, at each time step, the lin-
earization algorithm and the iterative algebraic solver can be stopped as soon as the
corresponding errors no longer affect the total error, and space and the time errors
can be equilibrated.

2 Discretization by the finite volume method

2.1 Notations

Let T = {T} denotes a partition ofΩ into simplices or rectangular parallelepipeds
(the extension to general polygonal meshes is possible via the introduction of simpli-
cial submeshes). For rectangular parallelepipeds, we further assume thatK is diag-
onal to performH(div;Ω)-conforming reconstructions. For every elementT ∈ T ,
we denote by|T| its measure and byhT its diameter. LetF = {σ} be the set of faces
of the mesh and, for allT ∈ T , setFT := {σ ∈ F | σ ⊂ ∂T}. The time discretiza-
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tion is defined by a strictly increasing sequence of discretetimes{tn}0≤n≤N such
that t0 = 0 andtN = tF. For 1≤ n ≤ N, we define the time intervalIn := (tn−1,tn]
and the time stepτn := tn− tn−1.

2.2 The finite volume scheme

The discrete problem reads: For all 1≤ n≤ N, all T ∈ T , and allp∈ {o,w}, find
Un

T := {Pn
T ,Sn

o,T ,Sn
w,T} such that

φ
|T|
τn

(

Sn
p,T −Sn−1

p,T

)

+ ∑
σ∈FT

νp(P
n−1
T⋆

p (σ),S
n−1
p,T⋆

p (σ))F
n
p,T,σ − f n

p,T = 0, (5)

where f n
p,T = ( f n

p,1)T and f n
p = 1

τn

∫ tn

tn−1 fp(t)dt. We setP0
T := (P0,1)T /|T|, S0

o,T :=

(S0
o,1)T/|T|, and imposeSn

o,T + Sn
w,T = 1 for all 0≤ n≤ N. Furthermore,Fn

p,T,σ =
Fp,T,σ ({Un

T ′}Sσ ) is a multi-point approximation of the flux of the phasep leaving
T ∈ T through the faceσ ∈ FT that depends on the unknowns associated to the
elements of the face stencilSσ ⊂ T . The numerical flux is assumed to be conser-
vative, i.e., for all internal facesσ ⊂ ∂T1∩∂T2, there holdsFn

p,T1,σ = −Fn
p,T2,σ . The

upwind cellT⋆
p (σ) is equal toT1 if Fn

p,T1,σ ≥ 0, toT2 otherwise. For boundary faces
σ ⊂ ∂T ∩∂Ω , Fn

p,T,σ = 0 to honor the no-flow boundary condition (4), and we can
leaveT⋆

p (σ) undefined.
For all 0≤ n ≤ N and T ∈ T , the unknownSn

w,T is eliminated using the lo-
cal volume conservation equationSn

o,T + Sn
w,T = 1. We introduce the reduced set

of unknownsU
n

:= {Pn,Sn
o}, wherePn = {Pn

T}T∈T andSn
o = {Sn

o,T}T∈T . With a
little abuse of notation, for a functionξ (Sw), we write ξ (So) to meanξ (1−So).
As a consequence,νw(So) andPc,w(So) are equal toνw(1−So), Pc,w(1−So) and
uw(P,1−So) respectively. Equation (5) becomes, for all 1≤ n≤ N, all T ∈ T , and
all p∈ {o,w}

Dn
p,T(U

n
) = 0, with, (6)

Dn
p,T(U

n
) := φ

|T|
τn (−1) j(Sn

o,T −Sn−1
o,T )+ ∑

σ∈FT

νp(P
n−1
T⋆

p (σ),S
n−1
o,T⋆

p (σ))F
n
p,T,σ − f n

p,T , (7)

where j = 1 if p = w and 0 otherwise.

2.3 Linearization

Problem (6) is a system of nonlinear algebraic equations that can be solved using the

Newton algorithm. For a fixed 1≤ n≤ N, letU
n,0

be given (typically,U
n,0

= U
n−1

).

For 1≤ k, a new estimateU
n,k

is computed from the previousU
n,k−1

by solving the
following system of linear algebraic equations: For allT ∈ T and allp∈ {o,w},
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∑
T ′∈T

∂Dn
p,T

∂UT ′

(

U
n,k
T ′ −U

n,k−1
T ′

)

= −Dn
p,T(U

n,k−1
), (8)

whereU
n,k
T = {Pn,k

T ,Sn,k
o,T} denotes the approximate solutions inT at then-th time

step andk-th Newton iteration. We suppose that (8) is solved using an iterative

linear solver. For a fixed 1≤ n ≤ N and k ≥ 1, let U
n,k,0

be given (typically,

U
n,k,0

= U
n,k−1

). Then, at a given stepi ≥ 1, we have, for allT ∈T andp∈ {o,w},

∑
T ′∈T

∂Dn
p,T

∂UT ′

(

U
n,k,i
T ′ −U

n,k−1
T ′

)

+Dn
p,T(U

n,k−1
) = Rn,k,i

p,T , (9)

whereRn,k,i
p,T is the algebraic residual, whileU

n,k,i
T = {Pn,k,i

T ,Sn,k,i
o,T } denotes the ap-

proximate solution at then-th time step,k-th Newton iteration, andi-th linear solver
iteration.

3 A posteriori error estimate

3.1 Space-time approximate solutions

Let, for 0≤ n≤ N andp∈ {o,w}, Sn
p,h be the piecewise constant function such that

Sp,h|T = Sp,T for all T ∈ T . We introduce the space-time functionSp,hτ continuous
and piecewise affine in time, and such thatSp,hτ(tn) = Sn

p,h for 0≤ n≤N. In order to
give a meaning to the gradient operator appearing in (2), we need to postprocess the
approximate cell pressures{Pn

T}T∈T and capillary pressures{Pn
c,p,T}T∈T , Pn

c,p,T :=
Pc,p(Sn

p,T), p∈ {o,w}. As in [6, 5, 9], we introduce an elementwise postprocessing
of {Pn

T}T∈T and{Pn
c,p,T}T∈T , 1≤ n ≤ N, yielding piecewise quadratic functions

P̃n
h and P̃n

c,p,h (P̃0
h is given by a projection of the initial pressureP0). As for the

saturations,̃Phτ andP̃c,p,hτ are the space-time functions, continuous and piecewise
affine in time, and such that̃Pp,hτ(tn) := P̃n

h andP̃c,p,hτ(tn) := P̃n
c,p,h, respectively.

3.2 Error measure

SetX := L2((0,tF);H1(Ω)). For ϕ ∈ X, let ‖ϕ‖2
X :=

∫ tF
0 ‖∇ϕ‖2dt and‖·‖ denotes

theL2-norm onΩ . We suppose that the solution(P,So,Sw) of the problem (1)–(4)
has the necessary regularity to permit the following weak formulation characteriza-
tion: For allϕ ∈ X, and allp∈ {o,w},

∫ tF

0

{

〈∂t(φSp),ϕ〉− (νp(P,Sp)up(P,Sp),∇ϕ)Ω − ( fp,ϕ)Ω
}

dt = 0. (10)
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The aim of the following measure is to evaluate the residual of the approximate
solution and the nonconformity of the approximate pressure(i.e., the facts that
(P̃hτ ,So,hτ ,Sw,hτ) do not satisfy (10) and thatP̃hτ /∈ X in general). Note that ifSp,hτ
coincide withSp, p∈ {o,w}, andP̃hτ with P, the error measure equals zero:

|||(Sp−Sp,hτ,P− P̃hτ)|||

:= sup
ϕ∈X,‖ϕ‖X=1

∫ tF

0

{

〈∂t (φSp)− ∂t(φSp,hτ),ϕ〉

−
(

νp(P,Sp)up(P,Sp)−νp(P̃hτ ,Sp,hτ)up(P̃hτ ,Sp,hτ),∇ϕ
)

}

dt

+ inf
δ∈X

{

∫ tF

0

∥

∥νp(P̃hτ ,Sp,hτ)up(P̃hτ ,Sp,hτ)−νp(δ ,Sp,hτ)up(δ ,Sp,hτ)
∥

∥

2
dt

}
1
2

.

(11)

3.3 A posteriori error estimate

We let RTN(T) := [P0(T)]d + P0(T)x and RTN(T) := [P0(T)]d +[P0(T)]dx, on
simplices and on rectangular parallelepipeds respectively, and we introduce the
Raviart–Thomas–Nédélec space

RTN(T ) := {vh ∈ H(div,Ω) |vh|T ∈ RTN(T), ∀T ∈ T }.

Following [4, 5, 9, 2], in order to obtain an estimate on (11), we introduce for 1≤
n ≤ N and p ∈ {o,w} the flux reconstructionsθθθn

p,h ∈ RTN(T ) such that for 1≤
n≤ N, T ∈ T , T ′ ∈ TT , (T ∩T ′ = σT,T ′ ), andp∈ {o,w},

〈θθθn
p,h ·nT |σT,T′

,1〉σT,T′
:= νp(P

n−1
T⋆

p (σ)
,Sn−1

o,T⋆
p (σ)

)Fn
p,T,σ . (12)

The following local conservation property is obtained by the Green theorem from (6)
and (12):

( f n
p − ∂t(φSp,hτ)−∇·θθθ n

p,h,1)T = 0. (13)

Let us now define theresidual estimatorsηn
R,T,p, the diffusive flux estimators

ηn
DF,T,p, and thenonconformity estimatorsηn

NC,T,p as

ηn
R,T,p :=

hT

π
‖ fp− ∂t(φSp,hτ)−∇·θθθ n

p,h‖T ,

ηn
DF,T,p(t) :=

∥

∥θθθ n
p,h−νp(P̃hτ ,Sp,hτ)up(P̃hτ ,Sp,hτ)(t)

∥

∥

T
, (14)

ηn
NC,T,p(t) :=

∥

∥νp(P̃hτ ,Sp,hτ)up(P̃hτ ,Sp,hτ)(t)−νp(δhτ ,Sp,hτ)up(δhτ ,Sp,hτ)(t)
∥

∥

T .

Hereδhτ ∈ X is continuous and piecewise affine in time and such thatδhτ(tn) = δ n
h ,

with δ n
h := Iav(P̃n

h ) for all 0≤ n≤ N; Iav is an averaging operator as in [6, 5, 9].

Theorem 1 (Guaranteed a posteriori error estimate).Let p∈ {o,w}. Then
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|||(Sp−Sp,hτ ,P− P̃hτ)||| ≤

{

N

∑
n=1

∫

In
∑

T∈T

(ηn
R,T,p + ηn

DF,T,p(t))
2 dt

} 1
2

+

{

N

∑
n=1

∫

In
∑

T∈T

(ηn
NC,T,p(t))

2dt

} 1
2

.

(15)

Proof. The proof is straightforward using the definition of the error measure (11)
and following the techniques of [5]. The second term in (15) clearly issues from
the second term in the right hand-side of (11). We thus only have to prove that
the first term is an upper bound on the first term in the right hand-side of (11).
Let ϕ ∈ X, ‖ϕ‖X = 1, andp ∈ {o,w}. Setwp := νp(P,Sp)up(P,Sp) andwp,hτ :=
ν(P̃hτ ,Sp,hτ)up(P̃hτ ,Sp,hτ). Then using the characterization of the weak solution (10),

∫ tF

0
{〈∂t(φSp)− ∂t(φSp,hτ),ϕ〉− (wp−wp,hτ ,∇ϕ)}dt

=

∫ tF

0
{( fp− ∂t(φSp,hτ),ϕ)+ (wp,hτ ,∇ϕ)}dt.

Let now 1≤ n≤ N be given. Adding and subtracting(θθθ n
p,h,∇ϕ), using the Green

theorem, the local conservativity property (13), the Poincaré inequality, and the
Cauchy–Schwarz inequality, we obtain

( fp,ϕ)− (∂t(φSp,hτ),ϕ)+ (wp,hτ ,∇ϕ)

= ( fp− ∂t(φSp,hτ)−∇·θθθ n
p,h,ϕ)+ (wp,hτ −θθθ n

p,h,∇ϕ)

= ( fp− ∂t(φSp,hτ)−∇·θθθ n
p,h,ϕ −Π0ϕ)+ (wp,hτ −θθθ n

p,h,∇ϕ)

≤ ∑
T∈T

(ηn
R,T,p + ηn

DF,T,p(t))‖∇ϕ‖T ,

whereΠ0 denotes theL2-orthogonal projection onto piecewise constants onT . The
assertion follows by the Cauchy–Schwarz inequality and by‖ϕ‖X = 1. ⊓⊔

3.4 Identification of different components of the error

Let 1≤ n ≤ N, T ∈ T , and p ∈ {o,w}. In Section2.2, we define the nonlinear
system (6) and we solve it in Section2.3 using an iterative solver for the Newton
algorithm. Let assume we are at then-th time step,k-th Newton step andi-th lin-
earization step. We introduce the following notations:

An,k,i
p,T := φ

|T|
τn

[

(Sn,k,i
p,T −Sn,k−1

p,T )−Sn−1
p,T

]

, Bn,k,i
p,T,σ := νp(P

n,k−1
T⋆

p (σ)
,Sn,k−1

p,T⋆
p (σ)

)Fn,k,i
p,T,σ .

The linear system (9) is then equivalent to the following sum of diagonal terms and
face fluxes:
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∂An,k,i
p,T

∂UT
+ ∑

σ∈FT

∑
T ′∈Sσ

∂Bn,k,i
p,T,σ

∂UT ′
+Dn

p,T(U
n,k−1

) = Rn,k,i
p,T . (16)

Let us now define a linearization fluxθθθ n,k,i
p,h ∈ RTN(T ) and algebraic solver flux

rn,k,i
p,h ∈ RTN(T ) such thatθθθ n,k,i

p,h := θθθ n,k,i
p,h + rn,k,i

p,h and such that

〈θθθ n,k,i
p,h ·nT |σT,T′

,1〉σT,T′
:= ∑

T ′∈TT

∂Bn,k,i
p,T,σ

∂UT ′
and(∇ · rn,k,i

p,h ,1)T = −Rn,k,i
p,T . (17)

Note thatθθθ n,k,i
p,h is fully specified;rn,k,i

p,h can be constructed as in [6]. This gives

( f n
p − ∂t(φSk,i

p,hτ)−∇ ·θθθn,k,i
p,h ,1)T = (∇ · rn,k,i

p,h ,1)T , p∈ {o,w}. (18)

We can now define the same estimators as in (14) and we have:

ηn,k,i
R,T,p + ηn,k,i

DF,T,p(t)+ ηn,k,i
NC,T,p(t) ≤ ηn,k,i

tm,T,p(t)+ ηn,k,i
sp,T,p(t)+ ηn,k,i

lin,T,p(t)+ ηn,k,i
alg,T,p,

with

ηn,k,i
tm,T,p(t):=

∥

∥

∥
νp(P̃

k,i
hτ ,Sk,i

p,hτ)up(P̃
k,i
hτ ,Sk,i

p,hτ)(t)−νp(P̃
n,k,i
h ,Sn,k,i

p,h )up(P̃
n,k,i
h ,Sn,k,i

p,h )
∥

∥

∥

T
,

ηn,k,i
sp,T,p(t) :=ηn,k,i

R,T,p + ηn,k,i
NC,T,p(t), (19)

ηn,k,i
lin,T,p(t):=

∥

∥

∥
νp(P̃

n,k,i
h ,Sn,k,i

p,h )up(P̃
n,k,i
h ,Sn,k,i

p,h )−θθθn,k,i
p,h

∥

∥

∥

T
,

ηn,k,i
alg,T,p:=‖rn,k,i

p ‖T .

3.5 Adaptive algorithm

To solve the nonlinear system (6), let us introduce the following algorithm, for 1≤
n≤ N.

1) Choose initial saturationsSn,0
o and pressuresPn,0 according to (3). Typically, we

putSn,0
o = Sn−1

o andPn,0 = Pn−1. Setk = 1.
2) Set up the linear system (8).

(a) Choose some initial saturationSn,k,0
o and pressurePn,k,0. Typically, we let

Sn,k,0
o = Sn,k−1

o andPn,k,0 = Pn,k−1. Seti = 1.
(b) Perform a step of a chosen iterative method for the solution of (8), starting

from Sn,k,i−1
o andPn,k,i−1. This gives approximationsSn,k,i

o andPn,k,i .
(c) Postprocess locally the pressuresPn,k,i .

(d) Construct the fluxesθθθ n,k,i
p,h ∈ RTN(T ), p∈ {o,w}, according to Section3.4.
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(e) Forp∈ {o,w}, from the algebraic residual vectorsRn,k,i
p construct the fluxes

rn,k,i
p,h ∈ RTN(T ), as described in Section3.4.

(f) We evaluate all the indicators (19)and define their global versions by their
Hilbertian sums. The convergence criterion for the linear solver is:

ηn,k,i
alg,p ≤ γalg(ηn,k,i

sp,p + ηn,k,i
tm,p + ηn,k,i

lin,p), p∈ {o,w}. (20)

Here, 0< γalg ≤ 1 is a user-given weight, typically close to 1. Criterion (20)
expresses that there is no need to continue with the algebraic solver iterations
if the overall error is dominated by the other components. If(20) is reached,
setSn,k

o := Sn,k,i
o andPn,k := Pn,k,i . If not, i := i +1 and go back to step 2(b).

3) The convergence criterion for the nonlinear solver is:

ηn,k,i
lin,p ≤ γlin(ηn,k,i

sp,p + ηn,k,i
tm,p), p∈ {o,w}. (21)

Here 0< γlin ≤ 1 is a user-given weight, typically close to 1. Criterion (21)
expresses that there is no need to continue with the linearization iterations if the
overall error is dominated by the other components. If criterion (21) is reached,
finish. If not,k := k+1 and go back to step 1.

Additionally, for all 1≤ n ≤ N, the space and time estimatorsηn
sp,p andηn

tm,p
should be made of similar size.
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