An A Posteriori Error Estimator for a Finite
Volume Discretization of the Two-phase Flow
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Abstract We derive a posteriori error estimates for a multi-pointténrolume dis-
cretization of the two-phase Darcy problem. The proposédasors yield a fully
computable upper bound for the selected error measure.Stimeate also allows to
distinguish, estimate separately, and compare the lipatgoh and algebraic errors
and the time and space discretization errors. This enaiblgmrticular, to design
a discretization algorithm so that all the sources of ermer properly balanced.
Namely, the linear and nonlinear solvers can be stopped @s & the algebraic
and linearization errors drop to the level at which they doaféect to the overall
error. This can lead to significant computational savingesperforming an exces-
sive number of unnecessary iterations can be avoided. &igithe errors in space
and in time can be equilibrated by time step and local meshtavits.

Key words: Finite volumes, a posteriori error estimates, darcy mofdly com-
putable upperbound, twophase flow.
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1 The two-phase flow model

Let Q c RY, d > 1, denote a bounded connected polygonal domain arigd eD.
Let w denote the wetting phase (e.g., water) and o the notinggthase (e.g., oil),
and let there be given sourcés fy € L?((0,tr);L%(Q)) and a (constant) porosity
@ € (0,1]. We consider the two-phase flow (see, e.g]):[Find U := {P, S, Sy},
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with P the pressure an§,, p € {o,w}, the saturations, such that

(9%) +0- (oP.SH)Us(PS) = fo I Q x (O.tF),
G (@Sy) + 0 (v (P, Sw)uw(P,Sw)) = fw in Q x (0,tg), Q)
S+Sw=1  inQx(0t).

For p € {o,w}, vp denotes here the mobility of the phaselefined as the ratio
of the relative permeability to the viscosity. Ih)( u, anduy, are such that

Up(P.Sp) := —KOP+Pp(Sp)), forpe {o,w},inQ x(0,tF), 2

whereP; p(Sp) is the capillary pressure aril denotes a piecewise constant, uni-
formly elliptic tensor-valued field corresponding to thesalute permeability. To
find some example of the physics laws (capillarity presspise mobility) or of
the absolute permeability seg |

Problem () is complemented by the initial conditions:

S(-,0) =% and P(-,0)=P°% inQ, 3)
as well as by no-flow boundary conditions:
Up(P,Sp) -ng =0, in 0Q x (0,tF). (4)

The purpose of this paper is to propose fully computable depiosi error es-
timates for the discretization oflf—(4) by cell-centered finite volume methods in
space and the backward Euler scheme in time. In particugamsider the multi-
point finite volume method proposed if)[ Using a dual error norm is motivated
by, e.g., B]. Developing the ideas of] 4, 5, 9], we in particular separate the esti-
mate into contributions representing tigace discretization errotime discretiza-
tion error, linearization error, andalgebraic error. Then, at each time step, the lin-
earization algorithm and the iterative algebraic solver lba stopped as soon as the
corresponding errors no longer affect the total error, grace and the time errors
can be equilibrated.

2 Discretization by the finite volume method

2.1 Notations

Let.7 = {T} denotes a partition a@ into simplices or rectangular parallelepipeds
(the extension to general polygonal meshes is possiblégimtroduction of simpli-
cial submeshes). For rectangular parallelepipeds, whdugssume tha& is diag-
onal to performH (div; Q)-conforming reconstructions. For every elem&nt .7,
we denote byT| its measure and Hyr its diameter. LetZ = {0} be the set of faces
of the mesh and, forall € .7, set%y := {0 € .% | 0 C T }. The time discretiza-
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tion is defined by a strictly increasing sequence of disctietes {t"}o<n<n such
thatt® = 0 andtN = tr. For 1< n < N, we define the time interva, := (t"~1,t"]
and the time step” :=t" —t""1,

2.2 The finite volume scheme

The discrete problem reads: For alkin < N, all T € .7, and allp € {o,w}, find
Ut :=={P,S 1,5} 1} such that

|T|(S;T_ ) Z Pn 1 7p( Fpro— for =0, (5)

EFT

wherefl+ = (f7,1)r andf] = & [ttnn 1 fp(t) dt. We setP? := (P9, 1)1 /|T|, QT =
($,1)1/|T|, and |mposé‘c‘,T +9),7 =1forall 0<n<N. FurthermoreF[; ; =
Fo1.0({U},}#,) is a multi-point approximation of the flux of the phapéeavmg

T € 7 through the facer € 7 that depends on the unknowns associated to the
elements of the face stencify; ¢ .. The numerical flux is assumed to be conser-
vative, i.e., for all internal faces C 9T1NdTy, there hold$=]'y. ; = —F¢ ;. The
upwind cellT; (o) is equal toTy if F”T 0=>0,t0T; other\lee For boundary faces
oCoiTnNoQ, FET o = 0to honor the no-flow boundary conditiofi)( and we can
leaveT; (o) undefined.

For aII 0<n<NandT € .7, the unknownS}, ; is eliminated using the lo-
cal volume conservation equati® + + S}, = 1. We introduce the reduced set
of unknownsU" := {P", S}, whereP" = {Pr}1e7 andS) = {1 }7e7. With a
little abuse of notation, for a functio&(Sy), we write £ (S) to meané (1- S).

As a consequencey(S) andP.w(S) are equal tovy(1— ), Pew(1—S) and
uw(P,1— %) respectively. Equatiorbf becomes, forall Kn< N, all T € .7, and
all pe {o,w}

DB+ (T") =0, with, (6)

| T : = -~ u
DB,T(Un) = (p%(_l)J(g,T_ﬁ,TlH‘ Z Vp P{‘a(i)’g&,m ))FpTo p,Ta (7)

ageFT

wherej = 1 if p=w and 0 otherwise.

2.3 Linearization

Problem 6) is a system of nonlinear algebraic equations that can lvedculsing the
Newton algorithm. For a flxed Zn<N,letU" %be given (typlcaIIyU U l)

For 1< k, a new estimat&)”™ “is computed from the preV|ou$ kL by solvmg the
following system of linear algebraic equations: Forak .7 and allp € {o,w},
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oDh
>

Tley 0UT/

k-1 —nk—1
L (O U ) = —Dpr @), ®)

whereUQ’k = {P”*k,ng-kr} denotes the approximate solutionsTirat then-th time
step andk-th Newton iteration. We suppose tha) (s solved using an iterative

linear solver. For a fixed K n < N andk > 1, let U™ be given (typically,
nkO nk 1

U ). Then, at a given steip> 1, we have, forall € 7 andp € {o,w},
aD nki —nk—1 n k-1 n.k,i
3 ot T (O - U ) + 05 (U = REY 9)
whereRY! is the algebraic residual, whileT*' = (P& K1) denotes the ap-

proxmate solution at the-th time stepk-th Newton iteration, andth linear solver
iteration.

3 A posteriori error estimate

3.1 Space-time approximate solutions

Let, forO<n<Nandpe€ {o,w}, S}, be the piecewise constant function such that
SphT = SpT forall T € 7. We mtroduce the space-time functi6pp; continuous
and piecewise affine in time, and such tBg. (t") S" hfor0<n<N.Inorderto
give a meaning to the gradient operator appeann@)rWe need to postprocess the
approximate cell pressur¢®t'}tc > and capillary pressure$, r }res, Pop1 i=
Pe.p(Syt), p€{o,w}. Asin [6, 5, 9], we introduce an elementW|se postprocessing
of {PT}TEy and{P,t}te7, 1< n <N, yielding piecewise quadratic functions

Pn and P“ph (P0 is given by a projection of the initial pressuR®). As for the

saturationsB,; and PC phr are the space- -time functions, continuous and piecewise

affine in time, and such thﬁ’g3 he(t") = Pn andP; phr(t") = PC”p n» respectively.

3.2 Error measure

SetX := L?((0,tr);HY(Q)). For ¢ € X, let ||¢[% := /¥ ||0¢|/?dt and||-|| denotes
the L?>-norm onQ. We suppose that the solutidR, S, Sy) of the problem {)—(4)
has the necessary regularity to permit the following weaknfdation characteriza-
tion: For all¢ € X, and allp € {o,w},

[ (09,9 - (PSP ). 08) g~ (Fo 9o} k=0 (10
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The aim of the following measure is to evaluate the residfidhe approximate
solution and the nonconformity of the approximate presguee, the facts that

(Pm,S) hts Swhr) dO not satisfy 10) and thatB,, ¢ X in general). Note that i, hr
coincide withSy, p € {o,w}, andP; with P, the error measure equals zero:

111(Sp = Spne, P =Pl
= sup /tF {<5t(€03p) —6(PSpne), 9)

$eX, [9]lx=170

— (Vp(P.Sp)up(P.Sp) — Vp(Phr, Sphr)Up(Phr, Sp.nr), 09) }dt (11)

1

+ inf {/ [[Vo(Par, Spnr)Up(Phr, Spine) — Vip(8, Spnr)Up(8, e )| dt} :

3.3 A posteriori error estimate

We let RTN(T) := [Po(T)]4 + Po(T)x and RTN(T) := [Po(T)]% 4 [Po(T)]9x, on
simplices and on rectangular parallelepipeds respegtiegld we introduce the
Raviart-Thomas—Nédélec space
RTN(7) := {vh € H(div,Q)[vh € RTN(T), VT € 7}.

Following [4, 5, 9, 2], in order to obtain an estimate o), we introduce for 1<
n< N andp € {o,w} the flux reconstructionf,, € RTN(.7) such that for 1<
n<N,TeZ,T'e &, (TNT =o0r71), andpe{o w},

<e?),h ’ nT |0T,T/ ) 1>GT,T’ = Vp(P-PF;(l )’ngr*( ))Fp T,0° (12)

The following local conservation property is obtained by @reen theorem fron®j
and (L2):

(fp — &(¢Spnr) — 0-8p, 1)1 =0. (13)

Let us now define theesidual estimators)g 1 ,, the diffusive flux estimators
Npk 1.p» @nd thenonconformity estimatorgyc 1 , as

Mrp 1= el fp— A(@Spne) — -8R
nBF,T,p(t) = Heg,h_ Vp(lﬂnraSp,hr)up(ﬁnrasp,hr)(t) T (14)
n“C,T,p(t) = HVD(F}hraSp,hr)up(lf%r,Sp,hr)(t)_vp(éhr,Sp,hr)up(éhrvsp,hr)(t)u-r-

Heredy; € X is continuous and piecewise affine in time and suchdhgt") = g,
with & 1= Fay( P”) for all 0 < n < N; #,y is an averaging operator as i, p, 9.

Theorem 1 (Guaranteed a posteriori error estimate)Let pe {o,w}. Then
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1

11(So — Spe,P— Fi) |||<{z/ S MRz e o(t) dt}
InTE

< [ n 2 :
+ {nzl f 3 (O dt}

Proof. The proof is straightforward using the definition of the emeeasure 11)
and following the techniques ob]. The second term inl{) clearly issues from
the second term in the right hand-side aflY. We thus only have to prove that
the first term is an upper bound on the first term in the rightdhside of (1).
Letd € X, [|9[lx =1, andp € {o,w}. Setwp := vp(P, Sp)up(P, Sp) andwppr =
V(Par, Sphe)Up(Par; Sphe)- Then using the characterization of the weak solutid),(

(15)

/OIF{<‘9I(§0SP) - at((PSp,hr), ¢)— (Wp —Wphrs O¢)
:/(:F{(fp—at((l’sp,hr),tﬁ)—i—(wp,hr,Dqs)}dt

Let now 1< n < N be given. Adding and subtractir(@?,’h, O¢), using the Green
theorem, the local conservativity property3], the Poincaré inequality, and the
Cauchy—Schwarz inequality, we obtain

(fp, )— (& (fPSphr) ¢)+ (Wpnr, U9)

= p (psp,hr ph7¢)+(thr_ phaDd’)
Z(fp—at((Psp,hr) ph7¢ o)+ (Wphr — 6 p,haD‘p)
Tezy(rllg,T,p'i‘nDF,T,p( NO¢|r,

IN

wherelTy denotes th&?-orthogonal projection onto piecewise constantsriThe
assertion follows by the Cauchy—Schwarz inequality anglx = 1. t

3.4 Identification of different components of the error

Let 1<n<N,Te.7, andp € {o,w}. In Section2.2, we define the nonlinear
system 6) and we solve it in SectioB.3 using an iterative solver for the Newton
algorithm. Let assume we are at théh time stepk-th Newton step andth lin-
earization step. We introduce the following notations:

nki . |T| ki k-1 =) nkio._ nk-1 aik-1 \pEnki

The linear system9) is then equivalent to the following sum of diagonal termd an
face fluxes:
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aAn k 1 aBn k 1 kel )
Lo Z] Y 2Ty ph @) = RIKL (16)
aUT ceEFT TIESy 0UT/ :

Let us now define a linearization fllﬁg’t{i € RTN(7) and algebraic solver flux
r';’,';;i € RTN(.7) such tha19"k' = 6?,';,' + r”k' and such that

n.k;i
—nk,i . p.T.0 K,i Kii
(Opn N7 o5 Dop .:T/Zyﬁand(ﬂ ron-Dr=-Rpr. (17
T

nk|

Note thatep h" is fully specmed v can be constructed as ifi][ This gives

g}(thr) u- er[])l;lv r=(DO- rglﬁi7l)T7 pe {o,w}. (18)

We can now define the same estimators ad#) énd we have:

MRT.p+ MBF 1.p(0) + NG Tp(0) < Mt () + et 0) + M7 (V) + Mg

with

ntrr]nlep Z:HVp lsﬁTl’églhr Pfi‘(rlaéglhr Vp Prr]1k|7gglr<1|) p(lsrr]]’kl,g;ﬁl)’
”Snnlep() nrne'?'ernEé'Tp(t) 19)
0= v B S B )~ B8

Naigr o =I5 .

3.5 Adaptive algorithm

To solve the nonlinear systeri)( let us introduce the following algorithm, for<
n<N.

1) Choose initial saturatlorS; 0 and pressureB™ according to 8). Typically, we
putSH0 = -1 andP™0 = P2, Setk = 1.
2) Set up the linear systerB)(

(a) Choose some initial saturatidBSko and pressur@™0. Typically, we let
k0 _ k=1 gngdpnk0 — pnk-1 geti — 1.

(b) Perform a step of a chosen iterative method for the smiuif (8), starting
from S3%1—1 andP"ki-1, This gives approximatiorg8s®' andPmki,

(c) Postprocess locally the pressuRS<.

(d) Constructthe fluer;:E" € RTN(7), p € {o,w}, according to Sectio8.4.
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(e) Forpe {o,w}, from the algebraic residual vecth:f‘,},’k*i construct the fluxes

r&‘f{' € RTN(7), as described in Sectidh4.

(f) We evaluate all the indicatord @)and define their global versions by their
Hilbertian sums. The convergence criterion for the linedver is:

’72{;; < Valg(ngﬁlkﬁj + ntrr]nl,(rl) + ’7|l|1nk;|))a pe {o,wj}. (20)

Here, 0< yag < 1 is a user-given weight, typically close to 1. Criteri@t)
expresses that there is no need to continue with the algedwhier iterations
if the overall error is dominated by the other component0) is reached,
setSk .= okl andPk ;= PMki |f not, i :=i+ 1 and go back to step 2(b).

3) The convergence criterion for the nonlinear solver is:

N < vin (N335 + nms). Pe {o,w}. (21)

Here 0< yin < 1 is a user-given weight, typically close to 1. Criteria2il)

expresses that there is no need to continue with the liret@iziterations if the
overall error is dominated by the other components. If dote (21) is reached,
finish. If not,k := k+ 1 and go back to step 1.

Additionally, for all 1< n < N, the space and time estimatoyggp and n{}n)p
should be made of similar size.
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