Internet measurements: topology discovery and dynamics

Renata Teixeira
MUSE Team
Inria Paris-Rocquencourt
Why measure the Internet topology?

- **Network operators**
 - Assist in network management, fault diagnosis

- **Distributed services and applications**
 - Select the best paths to use

- **Researchers**
 - Properties of Internet structure, dynamics
 - Economics of the Internet
Internet = interconnection of Autonomous Systems (AS)

- Distinct regions of administrative control
- Routers/links managed by a single “institution”
- Service provider, company, university, etc.
Hierarchical routing

Inter-AS routing
(Border Gateway Protocol)
determines AS path and egress point

Intra-AS routing
(Interior Gateway Protocol)
Most common: OSPF, IS-IS
determines path from ingress to egress
Outline

- Router-level topologies
 - Common network designs
 - Measuring with access to routers: OSPF/IS-IS monitors
 - Measuring without access to routers: Traceroute

- AS-level topology
 - Business relationships between ASes
 - BGP: Internet’s inter-domain routing
 - Inferring AS topology from BGP and traceroute
Router topology

- Node: router
- Edge: link
Hub-and-spoke topology

- Single hub node
 - Common in enterprise networks
 - Main location and satellite sites
 - Simple design and trivial routing

- Problems
 - Single point of failure
 - Bandwidth limitations
 - High delay between sites
 - Costs to backhaul to hub
Simple alternatives to hub-and-spoke

- Dual hub-and-spoke
 - Higher reliability
 - Higher cost
 - Good building block

- Levels of hierarchy
 - Reduce backhaul cost
 - Aggregate the bandwidth
 - Shorter site-to-site delay
Backbone networks

- Multiple Points-of-Presence (PoPs)
- Lots of communication between PoPs
- Accommodate traffic demands and limit delay
Points-of-Presence (PoPs)

- **Inter-PoP links**
 - Long distances
 - High bandwidth

- **Intra-PoP links**
 - Short cables between racks or floors
 - Aggregated bandwidth

- **Links to other networks**
 - Wide range of media and bandwidth
Measuring router topology

- With access to routers
 - Topology of one network
 - Routing monitors (OSPF or IS-IS)

- No access to routers
 - Multi-AS topology or from end-hosts
 - Monitors issue active probes: traceroute
Router topology from routing messages

- Routing protocols flood state of each link
 - Periodically refresh link state
 - Report any changes: link down, up, cost change

- Monitor listens to link-state messages
 - Acts as a regular router
 - AT&T’s OSPFmon or Sprint’s PyRT for IS-IS

- Combining link states gives the topology
 - Easy to maintain, messages report any changes
Inferring a path without access to routers: traceroute

Actual path

- TTL exceeded from A.1
- TTL exceeded from B.1
- TTL = 1
- TTL = 2

Inferred path
A traceroute path can be incomplete

- Load balancing is widely used
 - Traceroute only probes one path

- Sometimes traceroute has no answer (stars)
 - ICMP rate limiting
 - Anonymous routers

- Tunnelling (e.g., MPLS) may hide routers
 - Routers inside the tunnel may not decrement TTL
Traceroute under load balancing

Actual path

Inferred path

Missing nodes and links

False link
Errors happen even under per-flow load balancing

- **Traceroute uses the destination port as identifier**
 - Needs to match probe to response
 - Response only has the header of the issued probe
Paris traceroute

- Solves the problem with per-flow load balancing
 - Probes to a destination belong to same flow
- Changes the location of the probe identifier
 - Use the UDP checksum
Traceroute measures the forward path

- Paths can be asymmetric
 - Load balancing
 - Hot-potato routing
Reverse traceroute

- IP options work on forward and reverse path
 - Record Route (RR) option: 9 hops
- Leverage multiple monitors
 - Get baseline paths
 - Assume destination-based routing
- Spoofing to select best monitor
 - Spoofer sends spoofed probe with source address of the monitor
Inferred nodes = interfaces, not routers

Coverage depends on monitors and targets
- Misses links and routers
- Some links and routers appear multiple times
Alias resolution: Map interfaces to routers

- Direct probing
 - Probe an interface, may receive response from another
 - Responses from the same router will have close IP identifiers and same TTL

- Record-route IP option
 - Records up to nine IP addresses of routers in the path

- CAIDA’s MIDAR tool
 - Large scale alias resolution

Inferred topology:

- m1
- m2
- A.1
- B.3
- C.1
- C.2
- D.1
- t1
- t2

 same router
Large-scale topology: coverage

- Few monitors, lots of destinations
 - Deploying monitors is hard
 - Can probe any destination connected to the Internet

Example: CAIDA’s Ark

- Monitors: 94
- Destinations: All routed /24 IPv4 prefixes (9.5 million)
- Optimization: Group of monitors split destination list
 - Measures full destination list in 2/3 days
Increasing the number of monitors

- **Peer-to-peer monitoring software**
 - E.g.: Dimes (~400); EdgeScope (~900K)
 - Advantage: Easy deployment
 - Problem: little control

- **Low cost monitors**
 - E.g.: Ark’s Raspberry Pi monitor, RIPE Atlas
 - Advantage: more control
 - Problem: Need more user engagement
Inferring topology of one AS

- **Rocketfuel topologies**
 - Only one traceroute that enter in one ingress and leave via the same egress
 - Alias resolution with IPID
 - DNS names to map routers to PoPs

- **Topology errors**
 - Missed links: lack of vantage points, incomplete traceroutes
 - Added links: incorrect alias resolution, adding reverse links
Measuring topology dynamics

- Probing a large topology takes time
 - E.g., probing 1200 targets from PlanetLab nodes takes 5 minutes on average (using 30 threads)
 - Probing more targets covers more links
 - But, getting a topology snapshot takes longer

- Snapshot may be inaccurate
 - Paths may change during snapshot

- Hard to get up-to-date topology
 - To know that a path changed, need to re-probe
Faster topology snapshots with tree assumption

- Probing redundancy
 - Intra-monitor
 - Inter-monitor

- Doubletree
 - Assume tree structure
 - Combines backward and forward probing to eliminate redundancy

- Topology errors
 - Load balancing and traffic engineering violate tree assumption
Tracking large number of paths with multi-path detection

- Observation: Internet paths are mostly stable
 - Repeatedly probing paths waste probes
- Dtrack: Probe according to path stability
 - Change detection: lightweight probing for speed
 - Allocates more probes to unstable paths
 - Path remapping: accuracy with Paris traceroute
 - Local remapping
Summary: Router-level topologies

- With access to routers
 - Topology of one AS
 - Observe routing messages

- Without access to routers
 - Traceroute + alias resolution
 - Challenges
 - Incomplete traceroutes
 - Cover all routers and links in Internet
 - Probe fast enough to observe fine-grained dynamics
Outline

- Router-level topologies
 - Common network designs
 - Measuring with access to routers: OSPF/IS-IS monitors
 - Measuring without access to routers: Traceroute

- AS-level topology
 - Business relationships between ASes
 - BGP: Internet’s inter-domain routing
 - Inferring AS topology from BGP
AS topology

- Node: AS
- Edge: relationship between ASes
Hierarchy of ASes

- Large, tier-1 provider with a nationwide backbone
 - At the “core” of the Internet, don’t have providers
- Medium-sized regional provider with smaller backbone
- Small network run by a single company or university
Connections between networks

- DT
- FT
- BT
- Wanadoo
- IXP
- broadband access
- commercial customer
- gateway router
- access router
- Internet exchange point
Customer-provider relationship

- Customer needs to be reachable from everyone
 - Provider exports routes learned from customer to everyone
- Customer does not want to provide transit service
 - Customer does not export from one provider to another

Inria is customer of DT
Wanadoo is a customer of FT and BT

traffic to/from Inria

transit traffic is not allowed
Peer-peer relationship

- Peers exchange traffic between customers
 - AS exports only customer routes to a peer
 - AS exports a peer’s routes only to its customers

FT and BT are peers
FT and DT are peers

FT doesn’t provide transit for its peers

Wanadoo

Inria

BT

DT

customers exchange traffic
Border Gateway Protocol (BGP)

- Inter-domain routing protocol for the Internet
 - Prefix-based path-vector protocol
 - Policy-based routing based on AS Paths
 - Evolved during the past 20 years
BGP route

- Destination prefix (e.g., 128.112.0.0/16)
- Route attributes, including
 - AS path (e.g., “2 1”)
 - Next-hop IP address (e.g., 12.127.0.121)
Passive BGP measurements

- Passive measurements: public BGP data
 - RouteViews, RIPE RIS
AS topology from BGP data

- Example: AS path = 3 2 1
 - Nodes: 1, 2, 3
 - Edges: (1,2), (2,3)
Problem: Each router’s view is unique

Myth: The BGP updates from a single router accurately represent the AS.

The measurement system needs to capture the BGP routing changes from all border routers.

No change
Problem: Route aggregation hides information

Myth: BGP data from a router accurately represents changes on that router.

The measurement system needs to know all routes the router knows.

No change
Using traceroutes to improve AS topologies

- IP to AS mapping
 - Internet registries: Whois
 - Origin AS of BGP prefix

1. 169.229.62.1 AS25
2. 169.229.59.225 AS25
3. 128.32.255.169 AS25
4. 128.32.0.249 AS25
5. 128.32.0.66 AS11423
6. 209.247.159.109 AS3356
7. * AS3356
8. 64.159.1.46 AS3356
9. 209.247.9.170 AS3356
10. 66.185.138.33 AS1668
11. * AS1668
12. 66.185.136.17 AS1668
13. 64.236.16.52 AS5662

Berkeley
Calren
Level3
AOL
CNN
Challenges of Inter-AS Mapping

- Mapping traceroute hops to ASes is hard
 - Need an accurate registry of IP address ownership
 - Whois data are notoriously out of date

- Collecting diverse interdomain data is hard
 - Especially hard to see peer-peer edges
Inferring AS Relationships

- **Key idea**
 - The business relationships determine the routing policies
 - The routing policies determine the paths that are chosen
 - So, look at the chosen paths and infer the policies

- **Example: AS path “1 7018 88” implies**
 - AS 7018 allows AS 1 to reach AS 88
 - Each “triple” tells something about transit service

- **Collect and analyze AS path data**
 - Identify which ASes can transit through the other
 - … and which other ASes they are able to reach this way
Paths you should never see ("Invalid")

Customer-provider

Peer-peer

two peer edges

transit through a customer
Challenges of relationship inference

- Incomplete measurement data
 - Hard to get a complete view of the AS graph
 - Especially hard to see peer-peer edges low in hierarchy

- Real relationships are sometime more complex
 - Peer is one part of the world, customer in another
 - Other kinds of relationships (e.g., backup and sibling)
 - Special relationships for certain destination prefixes

- EdgeScope: more complete AS topologies
 - Traceroutes from Bittorrent clients + sophisticated heuristics
Summary: AS-level topologies

- **Sources of AS paths**
 - Public BGP repositories
 - Traceroutes + IP-AS mapping

- **Challenges**
 - Can’t always model one AS as a node
 - Hard to observe links closer to the edge
REFERENCES
Router-level topology from inside

- **IS-IS monitoring**

- **OSPF monitoring**

- **Commercial products**
 - Packet Design: http://www.packetdesign.com/
Traceroute

- Original traceroute tool

- Tracing accurate paths under load-balancing
 - D. Veitch, B. Augustin, R. Teixeira, and T. Friedman, "Failure Control in Multipath Route Tracing", in Proc. of IEEE Infocom, April 2009.

- Reverse traceroute
Router-level topology with traceroute

- Use of record route to obtain more accurate topologies

- Large-scale alias resolution
Optimizing router-level topology discovery

- Reducing overhead to trace topology of a network and alias resolution with direct probing

- Reducing overhead to take a topology snapshot

- Tracking topology changes
Macroscopic topology measurement systems

- CAIDA’s Ark
 - http://www.caida.org/projects/ark/

- Dimes
 - http://www.netdimes.org

- iPlane
 - http://iplane.cs.washington.edu/

- Northwestern’s EdgeScope
BGP monitors

- **RouteViews**
 - http://www.routeviews.org/

- **RIPE-RIS**

- **Cyclops: Aggregates data from multiple monitors**
 - http://cyclops.cs.ucla.edu/
AS-level topologies

- Obtaining AS paths from traceroutes

- More complete AS-level topology

- More accurate model of the AS topology
AS relationship inference

AS-level topologies: Be aware
