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Résumé en français

D’une scène idéale, issue du monde physique, jusqu’à sa représentation sur nos écrans d’ordinateurs,
de nombreuses étapes sont susceptibles de dégrader les images. Le processus d’acquisition, la transmis-
sion ou le stockage d’une image peuvent tous dégrader l’information originale, de sorte que les méthodes
de restauration ou de simplification d’images sont devenues cruciales dans de nombreuses applications,
que ce soit en diagnostic médical, imagerie satellitaire, en visioconférence ou dans les appareils photos
de la vie quotidienne.

Pendant le processus d’acquisition, les capteurs CCD (Charge-Coupled-Devices) sont soumis au
bruit de grenaille, qui est dû à la nature discrète de la quantité mesurée (c’est-à-dire le nombre de pho-
tons reçus), et qui suivent une loi de Poisson. L’effet du bruit de grenaille est d’autant plus important que
le nombre de photons est faible, de sorte que les scènes insuffisamment éclairées apparaissent souvent
bruitées. Le bruit thermique est aussi responsable de la dégration des images : en fonction de la tem-
pérature du capteur l’agitation thermique des électrons induit un courant qui s’ajoute au signal original.
Mentionnons aussi les altérations dues à l’optique : certains objets sont parfois hors de focus, ou bien des
aberrations chomatiques peuvent apparaître. Un objet en mouvement sera flou si le temps de pose est trop
long. Pendant le processus de transmission, les images peuvent être dégradées par la perte de paquets,
qui entraîne des valeurs des pixels incorrectes. Cela est particulièrement courant en imagerie satellitaire.
Pour réduire le coût de stockage des images, des algorithmes de compression avec pertes sont employés,
ce qui supprime des informations, induisant un "bruit de compression" d’autant plus important que le
taux de compression est élevé.

Par conséquent, les images sont en général trop dégradées pour être montrées directement à un hu-
main ou envoyées à un algorithme d’analyse d’images : il faut les filtrer. La communauté du traitement
d’images a travaillé pendant plusieurs dizaines d’années sur des algorithmes permettant soit de restaurer
les images de la façon la plus fidèle possible, soit de simplifier les images tout en conservant l’infor-
mation la plus pertinente pour l’analyse automatique. La première méthode proposée consistait en un
filtrage linéaire de l’image. Sous quelques hypothèses supplémentaires comme l’invariance par transla-
tion, cela revient à appliquer une convolution à l’image (voir par exemple [Guichard et al., 2004]). Le
problème de la convolution est qu’il a tendance à rendre flous les contours qui existent dans les images.
Pour lisser les images sans rendre les bords flous, les chercheurs et les ingénieurs ont proposé un large
panel de méthodes qui correspondent toutes à un certain a priori sur les images.

Décrivons brièvement quelques grandes familles de modèles :

Equations aux Dérivées Partielles (EDP). Le filtrage linéaire peut être interprété asymptotique-
ment comme un pas de l’équation de la chaleur, qui diffuse l’information de manière anisotrope. L’idée
proposée par Malik et Perona [Perona and Malik, 1990] est de diffuser l’information en fonction du
contenu local de l’image, à travers des équations de la forme :

∂u

∂t
= div (g(|∇u|)∇u) , (1)

où par exemple g : R+ → R, s 7→ 1
1+λ2s2 .

Dans les régions homogènes, la diffusion se comporte comme une équation de la chaleur à deux
dimensions habituelle, mais près des contours (où |∇u| est grand), la diffusion se comporte comme une
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équation de la chaleur inverse dans la direction du gradient, et une équation de la chaleur dans la direction
orthogonale au gradient. De nombreuses autres EDP ont été proposées, que ce soit pour le débruitage ou
l’analyse de formes. Par exemple, le mouvement par courbure moyenne introduit en traitement d’images
par [Kimia et al., 1995], est régi par l’équation :

∂u

∂t
= |∇u|div

(
∇u
|∇u|

)
. (2)

Il s’agit d’une diffusion pure dans la direction orthogonale au gradient. Mentionnons aussi la diffusion
proposée par Sochen, Kimmel et Maladi [Sochen et al., 1998] en lien avec les surfaces minimales :

∂u

∂t
= div

(
∇u√

1 + |∇u|2

)
. (3)

Il y a tant d’EDP paraboliques qui ont été proposées pour la restauration d’images qu’il est très facile de
s’y perdre. En adoptant une approche axiomatique, Alvarez et al. [Alvarez et al., 1993] ont prouvé que
les EDP invariantes par changement de contraste et isotropes (propriétés qui sont naturelles en traitement
d’images) sont de la forme (voir aussi [Chen et al., 1991]) :

∂u

∂t
= F (div

(
∇u
|∇u|

)
, t)|∇u|. (4)

Si l’on exige de plus l’invariance affine, cette famille se réduit à une unique équation appelée mouvement
par courbure affine (see [Guichard et al., 2004]).

Les équations aux dérivées partielles en traitement d’images sont naturellement liées à la théorie
de l’espace échelle (scale-space) [Witkin, 1983, Koenderink, 1984], qui associe une image à une fa-
mille d’images de plus en plus lisses. Alvarez et al. [Alvarez et al., 1993] ont montré que tout espace
échelle causal correspond à une EDP. Le lecteur pourra se reporter aux références [Weickert, 1998,
Guichard et al., 2004] pour plus de détails.

Morphologie Mathématique. La morphologie mathématique est une théorie d’analyse d’image dé-
veloppée par Matheron et Serra dans les années 1960, alors que Serra était chargé de faire un inventaire
détaillé du gisement de fer en Lorraine (l’intéressante histoire de la naissance de la morphologie ma-
thématique est racontée dans [Matheron and Serra, 2002]). Le point central de cette théorie est l’inva-
riance par changement de contraste, et une conséquence notable de cette propriété est que les opérateurs
morphologiques peuvent être considérés de manière équivalente comme agissant sur des fonctions (des
images) ou sur des ensembles (leurs ensembles de niveau). Par exemple, deux des opérateurs morpholo-
giques les plus connus sont respectivement l’érosion et la dilatation :

∀X ⊂ R2, ErX =
{
x ∈ R2, B(x, r) ⊂ X

}
, DrX =

{
y ∈ R2,∃x ∈ E, y ∈ B(x, r)

}
, (5)

où r > 0 et B(x, r) est la boule euclidienne fermée de rayon r. Ces opérateurs sur les ensembles sont
associés aux opérateurs sur les fonctions :

∀u ∈ RR2
, ∀x ∈ R2, Eru(x) = inf

y∈B(0,r)
u(x+ r), Dru(x) = sup

y∈B(0,r)
u(x+ r). (6)

En fait, il est équivalent d’appliquer chaque opérateur fonctionnel à une fonction f ou d’appliquer
l’opérateur correspondant sur les ensembles de niveau supérieurs de f , Ft = {x ∈ R2, f(x) ≥ t}, pour
obtenir les ensembles Ut avec t ∈ R, puis de reconstruire u par la formule :

∀x ∈ R2, u(x) = sup{t ∈ R, x ∈ Ut}. (7)
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A partir des dilatations et des érosions, deux autres opérations élémentaires sont construites : les ouver-
tures (définies comme Dr ◦Er) et les fermetures (définies comme Er ◦Dr). Les opérateurs d’ensembles
correspondants peuvent être écrits comme :

∀X ⊂ R2, OrX =
⋃
{B(x, r), B(x, r) ⊂ X}, FrX =

(⋃
{B(x, r), B(x, r) ⊂ XC}

)C
, (8)

où XC = R2 \X .
Des références utiles sur la morphologie mathématiques sont par exemple le livre de Mathe-

ron [Matheron, 1975] et ceux de Serra [Serra, 1982, Serra, 1988]. A partir des axiomes établis par
Serra et Matheron, et des opérations élémentaires comme les érosions, dilatations, ouvertures et fer-
metures, la morphologie mathématique s’est considérablement développée pour devenir une théorie
bien établie, qui fournit des algorithmes de débruitage d’images [Cheng and Venetsanopoulos, 1992,
Vincent, 1993], de segmentation [Beucher and Lantuéjoul, 1979, Bouraoui et al., 2008], d’analyse de
texture [Vanrell and Vitria, 1993, Hanbury and Serra, 2002], etc.

Méthodes variationnelles. Une autre approche du traitement d’images consiste à chercher une
image qui minimise une certaine énergie. Typiquement, si on observe une image bruitée f , l’image
reconstruite est solution du problème :

min
u
G(u) + F (u, f), (9)

Le terme G(u) est le terme de régularisation, c’est-à-dire qu’il force les minimiseurs à être assez régu-
liers, tandis que le terme de fidélité F (u, f) force le minimiseur à être cohérent avec l’observation f .
Un exemple classique de problème variationnel en traitement d’images est celui de Rudin-Osher-Fatemi
(ROF) [Rudin et al., 1992] :

min
u

∫
R2

|∇u(x)|dx+ λ

∫
R2

|f(x)− u(x)|2dx (10)

Ici, le terme de régularisation est la variation totale, qui a l’avantage de lisser les images sans rendre
les bords flous. Le terme de fidélité quadratique est typique lorsqu’on travaille avec du bruit additif
gaussien. Ce modèle est une amélioration du modèle de Tikhonov [Tikhonov and Arsenin, 1977] plus
ancien où

∫
R2 |∇u(x)|2dx remplace

∫
R2 |∇u(x)|dx. L’énergie de Tikhonov a le défaut d’imposer aux

minimiseurs d’être dans l’espace de Sobolev H1. Contrairement aux fonctions à variations bornées (qui
forment l’espace BV(R2) dans lequel sont les solutions du problème ROF), les fonctions de l’espace
H1 ne peuvent pas avoir de discontinuités le long d’hypersurfaces, ce qui empêche de travailler avec
des images de type cartoon, composées de régions lisses délimités par des bords nets. En fait, beau-
coup d’autres choix de termes de régularisation ont été proposés : fonction de Huber, variation totale
régularisée (ce qui revient à mesurer la surface du graphe de u), ou diverses normes Lp du gradient.
Ces fonctionnelles sont convexes, ce qui les rend plus faciles à étudier et à minimiser que les fonc-
tionnelles non-convexes générales. Pourtant, l’intérêt pour les termes de régularisation non convexes est
croissant. Dans [Bar et al., 2006a, Bar et al., 2006b, Cai et al., 2008], la fonctionnelle de Mumford-Shah
[Mumford and Shah, 1989], bien que conçue à l’origine pour la segmentation, est utilisée à des fins de
restauration et fournit des résultats meilleurs que la variation totale. Dans [Nikolova, 2005], Nikolova
étudie le comportement de termes de régularisation non-convexes : elle montre que les petites disconti-
nuités sont réduites, tandis que les grandes sont accrues. De nombreuses fonctions non-convexes ont été
proposées, mais leur minimisation reste un problème ouvert.

Les modèles variationnels sont particulièrement intéressants puisqu’ils fournissent un cadre simple
pour résoudre des problèmes inverses mal posés tels que la déconvolution ou la super-résolution. Par
exemple, une adaptation naturelle du modèle de Rudin-Osher-Fatemi à la déconvolution est :

min
u

∫
R2

|∇u(x)|dx+ λ

∫
R2

|f(x)− h ? u(x)|2dx (11)

où la convolution avec h modélise le flou.
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Champs de Markov et estimation Maximum a Posteriori. Dans un cadre discret, une manière
de modéliser les dépendances entre les valeurs des pixels est d’interpréter une image comme un champ
de Markov, comme cela est proposé dans l’article fondateur [Geman and Geman, 1984]. Dans ce cadre,
la probabilité d’observer une valeur à un pixel x conditionnellement aux valeurs de tous les autres pixels
dépend uniquement des valeurs dans un voisinage de x. Le théorème d’Hammersley-Clifford indique
que la probabilité jointe d’observer une image u peut s’écrire comme P (u) = 1

Z exp(−
∑

c∈C Ec(u)),
où Ec est appelée énergie de clique.

Pour le débruitage avec bruit additif blanc gaussien, on observe f et on cherche une version restaurée
u. La formule de Bayes donne :

P (u|f) =
P (u)P (f |u)

P (f)
(12)

où P (u) = 1
Z exp(−

∑
c∈C Ec(u)) est l’a priori sur les images (par exemple un a priori de régularité

1
Z exp(−

∑
i,j(|ui+1,j − ui,j |+ |ui,j+1 − ui,j |)), et P (f |u) est la probabilité de f conditionnellement à

u (par exemple 1
Z′ exp

(
−‖f−u‖2

2σ2

)
).

En prenant le logarithme de cette expression, on voit que logP (u|f) est la somme d’une énergie de
clique et d’un terme de fidélité. L’estimation Maximum A Posteriori (MAP) de u consiste à trouver un
maximiseur de logP (u|f). De manière équivalente, on cherche un minimiseur de− logP (u|f), quantité
qui est la somme d’un terme de fidélité et d’un terme de régularisation : les problèmes variationnels
peuvent souvent être vus comme des estimations Maximum A Posteriori et vice-versa.

Un intérêt notable de la littérature sur les champs de Markov est sa multitude de connexions avec la
physique statistique. En particulier, le modèle d’Ising, qui provient de l’étude du ferromagnétisme et de
l’antiferromagnétisme, a été importé en traitement d’images dans sa version ferromagnétique :

E(u) = −
∑

(s,t)/s∼t

−βusut −
∑

s

us (13)

avec β > 0, et u une image binaire. Cette énergie implique que les images les plus probables ont peu
de sauts. Ce modèle est lié au modèle TVL1 étudié dans cette thèse dans la mesure où ils coincident
sur les images binaires d’ensembles convexes (voir le Chapitre 3 de cette thèse). On renvoie le lecteur à
[Maruani et al., 1995] pour une étude de ses propriétés.

Mentionnons que l’estimation Maximum A Posteriori n’est pas nécessairement le moyen le plus
raisonnable d’aborder un problème de débruitage. Dans [Louchet and Moisan, 2008, Louchet, 2008],
Louchet et Moisan plaident en faveur de l’estimation aux moindres carrés (Least-Square Error, LSE),
plutôt que du Maximum a Posteriori (qui revient au modèle ROF). L’idée est de trouver u qui mini-
mise Eu′|f‖u − u′‖2. Cela mène à une somme d’images u′ pondérées en fonction de leur probabilité
P (u′|f). L’intérêt de cet estimateur est que ses propriétés sont bien meilleures que celles de l’estimateur
MAP (voir [Louchet, 2008]) : en particulier, il ne souffre pas de l’effet de staircasing (voir par exemple
[Nikolova, 2000, Nikolova, 2004b] pour une étude de l’effet de staircasing).

Aussi, cette estimation LSE permet de dresser un parallèle entre le débruitage par variation to-
tale avec LSE, et les Moyennes Non Locales [Buades et al., 2005]. Cela est lié à l’interprétation des
NL-Means comme agrégation d’estimateurs par Salmon and Le Pennec [Salmon and Le Pennec, 2009a,
Salmon and Le Pennec, 2009b]. Il est intéressant de noter que, dans un autre contexte, celui de la seconde
partie de cette thèse (en particulier les chapitres 9 et 10) nous observons aussi qu’une somme pondérée
d’estimateurs est parfois meilleure qu’un minimiseur particulier.

Filtres à voisinage et méthodes à base de patchs. Plutôt que de faire la moyenne des pixels en
fonction de leur proximité spatiale, certains auteurs ont proposé d’utiliser la proximité entre leurs valeurs.
C’est essentiellement le principe du filtre de Yaroslavky [Yaroslavsky, 1985] :

Y NFh,ρu(x) =
1

C(x)

∑
y∈B(x,ρ)

e−
|u(x)−u(y)|

h2 u(y). (14)
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où C(x) est une constante de normalisation , et B(x, ρ) est une fenêtre de rayon ρ centrée autour de
x. Cette idée est aussi au cœur des filtres sigma [Lee, 1983] et SUSAN [Smith and Brady, 1997]. Avec
le filtre bilatéral [Tomasi and Manduchi, 1998], on utilise à la fois la valeur des pixels et leur position
pour calculer les poids. Tandis qu’avec ces méthodes les pixels comparés appartiennent à une fenêtre
fixe ou à une boule centrée autour du pixel à estimer, certains auteurs ont proposé de choisir de ma-
nière adaptative l’ensemble des pixels avec lesquels calculer cette moyenne [Polzehl and Spokoiny, 2000,
Polzehl and Spokoiny, 2003] [Lepski, 1990].

Inspirés par les filtres à voisinage et par le travail d’Efros et Leung [Efros and Leung, 1999] en syn-
thèse de texture, Buades, Coll et Morel [Buades et al., 2005] ont proposé de comparer de petits voisinages
autour de chaque pixel appelés patchs, plutôt que les valeurs des pixels. Le filtre "Non-Local Means" a
constitué une percée en matière de débruitage d’images, et depuis cinq ou six ans la majorité des algo-
rithmes de débruitage proposés s’appuie sur la notion de patch. L’algorithme BM3D [Dabov et al., 2007],
qui se classe aujourd’hui parmi les meilleures méthodes de débruitage en est un exemple.

Ondelettes et parcimonie. Un autre a priori sur les images est de supposer qu’elles
ont une représentation parcimonieuse dans une certaine base ou trame. Donoho et Johnstone
[Donoho and Johnstone, 1994] ont montré qu’un seuillage dur est asymptotiquement optimal au sens
minimax dans la classe des estimateurs diagonaux, et que le risque associé est d’autant plus faible
que la représentation de l’image est parcimonieuse. De manière informelle, la parcimonie implique
que le signal est concentré sur quelques grands coefficients, tandis que le bruit est uniformément ré-
parti sur les différentes composantes. Ainsi, un simple seuillage permet de supprimer la plupart du
bruit sans beaucoup dégrader le signal. Les méthodes à base d’ondelettes sont typiques de cette ap-
proche : puisque les coefficients d’ondelettes encodent les variations de l’image plutôt que chaque va-
leur absolue, les images régulières par morceaux ont une représentation creuse dans des bases d’on-
delettes. Pourtant, les bases d’ondelettes n’exploitent pas la géométrie des images, et notamment le
fait que les grands coefficients sont répartis le long de courbes régulières. Des trames plus com-
plexes ont été proposées pour tirer parti de cette propriété : les curvelettes [Starck et al., 2002], ban-
delettes [Le Pennec and Mallat, 2005, Mallat and Peyré, 2007] or contourlettes [Do and Vetterli, 2005]
entre autres.

Plutôt que de considérer un dictionnaire fixé à l’avance, certaines méthodes consistent à apprendre
un dictionnaire adapté à une base d’images. Etant donné un dictionnaire surcomplet, la matching pur-
suit [Mallat and Zhang, 1993, Bergeaud and Mallat, 1995] permet de trouver une sélection d’atomes qui
mènent à une représentation aussi parcimonieuse que possible d’une famille de signaux. L’analyse en
composantes principales (PCA) permet de trouver une base qui concentre sur les premiers vecteurs la
plupart de l’énergie de la plupart des signaux d’une certaine famille. Ces outils, et la parcimonie en gé-
néral ont produit de nombreux algorithmes puissants de débruitage. En particulier, l’adaptation de ces
idées aux patchs dans les images dans [Aharon et al., 2006] et sa variante utilisant la parcimonie structu-
rée [Mairal et al., 2009] atteint l’état de l’art en matière de débruitage.

La frontière entre toutes ces familles de modèles n’est pas aussi nette qu’il n’y paraît, et de nombreux
algorithmes ont un équivalent dans une autre catégorie. Par exemple :

– L’équivalence asymptotique entre opérateurs morphologiques et EDP est établie dans [Lax, 1965]
pour les érosions et les dilatations, et plus généralement dans [Alvarez et al., 1993] (voir
[Guichard et al., 2004] pour un exposé complet de la théorie).

– Les modèles variationnels mènent souvent à des EDP puisque leur minimisation est liée au flot de
leur gradient : par exemple, Andreu et al. [Andreu et al., 2001b] ont étudié le flot de la variation
totale en lien avec le problème ROF.

– La limite continue du modèle de segmentation bayésien [Geman and Geman, 1984] mène à la
fonctionnelle de Mumford-Shah[Mumford and Shah, 1989] (voir [Chambolle, 2000]).

– Steidl et al. ont montré qu’en dimension 1, le débruitage par variation totale et le seuillage par
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ondelettes sont équivalents [Steidl et al., 2004].
– Le filtrage bilatéral est asymptotiquement équivalent à une étape de l’équation de Malik et Perona

(voir [Durand and Dorsey, 2002, Buades et al., 2005]).

Aspects Morphologiques du modèle TVL1

La première partie de cette thèse explore une passerelle similaire entre un problème variationnel
et la morphologie mathématique. Elle est dédiée à l’étude du modèle TVL1 qui consiste, étant donnée
f ∈ L1(R2), à résoudre :

min
u∈BV(R2)

∫
|Du|+ λ

∫
R2

|f(x)− u(x)|dx. (15)

Ce modèle a été introduit par Alliney pour les signaux à 1 dimension [Alliney, 1992, Alliney, 1996,
Alliney, 1997] : l’auteur montre que dans ce cas, un filtre médian récursif permet de calculer son mini-
miseur. L’intérêt de ce modèle pour le traitement des images a été mis en évidence par Nikolova dans
[Nikolova, 2002] : elle montre que le terme de fidélité non régulier permet une meilleure détection et une
meilleure suppression des valeurs aberrantes que des termes de fidélité réguliers. En conséquence, ce mo-
dèle est particulièrement bien adapté à la suppression du bruit impulsionnel, et l’article [Nikolova, 2004a]
en donne des illustrations numériques frappantes.

Dans [Chan and Esedoglu, 2005] le modèle est étudié dans un cadre continu. Chan et Esedoglu
pointent le fait que malgré des similarités frappantes avec le modèle ROF, le modèle TVL1 a des pro-
priétés bien spécifiques. Par exemple, suivant [Strong et al., 1996, Meyer, 2001] ils calculent la solution
du problème quand la donnée est une fonction f caractéristique d’un disque : f = 1B(0,R). La solution
est :

u =


1B(0,R) si λ ≥ 2

R ,

c1B(0,R), ∀c ∈ [0, 1] et λ = 2
R ,

0 autrement.
(16)

En d’autres termes, il n’y a pas de perte de contraste contrairement à ROF (voir [Meyer, 2001]), et
certains objets disparaissent soudainement en fonction de leur échelle. A la suite de [Chambolle, 2004a,
Alter et al., 2005a], où le modèle ROF est relié à une famille de problèmes géométriques, Chan et Ese-
doglu remarquent que l’énergie du modèle TVL1 peut être écrite comme la somme d’énergies sur les
ensembles de niveau :

E(u) =
∫ +∞

−∞
Per {x, u(x) > µ}+ λ|{x, u(x) > µ}∆{x, f(x) > µ}|dµ, (17)

où Per X désigne le périmère de X ⊂ R2, |X| sa mesure de Lebesgue deux-dimensionnelle, et
X∆Y = (X \ Y ) ∪ (Y \ X). Cette formule est d’une importance particulière, puisqu’elle confère
au modèle la propriété d’invariance par changement de contraste. La même observation a été faite si-
multanément par Darbon dans [Darbon, 2005], où le lien avec la morphologie mathématique est mis
en évidence pour la première fois. Cela permet aussi à Darbon et Sigelle de proposer un algorithme de
graph-cut qui a fourni pendant de nombreuses années le moyen le plus rapide pour résoudre le problème
TVL1 [Darbon and Sigelle, 2006] (jusqu’au travail de Pock et al. [Pock et al., 2008] qui ont adapté l’al-
gorithme [Aujol et al., 2006] aux GPUs). Mentionnons aussi le travail de Yin et al. [Yin et al., 2007b]
qui ont étudié la monotonie du problème sur les ensembles de niveau ainsi que l’invariance par chan-
gement de contraste. Dans la littérature, le modèle TVL1 ou ses variantes a été appliqué à des pro-
blèmes très divers : suppression du bruit impulsionnel [Nikolova, 2004a, Koko and Jehan-Besson, 2010,
Liu et al., 2010], segmentation [Chan et al., 2006, Bresson et al., 2007], détection de motifs en image-
rie biomédicale [Cunha et al., 2007], registration 3D MRI [Chen et al., 2005], décomposition cartoon-
texture [Aujol et al., 2006, Yin et al., 2007a, Haddad, 2007], calcul du flux optique dans les vidéos
[Wedel et al., 2008a, Wedel et al., 2008b], analyse de formes [Vixie et al., 2010]. . .
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Notre contribution est d’étudier le problème géométrique dans les détails, de manière à donner
plus d’informations sur les solutions de TVL1. Après avoir précisé l’équivalence avec le problème
géométrique, nous caractérisons les ensembles qui disparaissent soudainement de la même façon que
le disque (16). En appliquant des résultats de la théorie géométrique de la mesure [Ambrosio, 1997,
Ambrosio and Paolini, 1998], nous montrons que la frontière de la solution est régulière et que sa cour-
bure est égale à −λ à l’intérieur de la donnée F et +λ à l’extérieur (quand cette frontière coïncide avec
celle de F , la courbure est bornée en valeur absolue par λ). Puis nous observons que lorsque la donnée
est un ensemble C convexe, le problème se simplifie en :

min
X⊂C

Per X − λ|X| (18)

Nous en déduisons que les solutions de TVL1 sont données par une ouverture de rayon 1
λ , suivie d’un

seuillage sur le rapport périmètre / aire. Plus précisement, si l’on écrit C1/λ = O1/λC (où Or est définie
dans (8)), on montre que :

– si
Per C1/λ

|C1/λ|
< λ, la solution est C1/λ,

– si
Per C1/λ

|C1/λ|
> λ, la solution est ∅,

– si
Per C1/λ

|C1/λ|
= λ, C1/λ et ∅ sont solutions.

Insistons sur le fait que ce résultat s’appuie pour une large mesure sur les travaux d’Alter, Caselles,
Chambolle [Alter et al., 2005a, Alter et al., 2005b] et plus généralement sur ceux de Bellettini, Novaga,
Paolini [Bellettini et al., 2001, Bellettini et al., 2002, Bellettini et al., 2005a]. En quelques mots, l’étude
des ensembles calibrables, i.e. des ensembles qui évoluent à vitesse constante par le flux de la variation
totale, montre que les ensembles calibrables sont solutions du problème variationnel suivant :

min
X⊂C

Per X − λC |X| with λC =
Per C
|C|

. (19)

En observant que les ensembles de niveau Ft de la solution du problème ROF :

min
u∈BV(R2)

∫
|Du|+ λ

2

∫
R2

(u(x)− 1C(x))2dx (20)

sont solutions de la famille de problèmes géométriques :

min
X⊂C

Per X − λ(1− t)|X|, (21)

Alter et al. étudient la dépendance en λ de cette famille de problèmes, par des arguments d’approxima-
tion, ils caractérisent la courbure des ensembles C qui sont invariants par (18). Nous avons utilisé cette
caractérisation en lien avec la caractérisation des ouvertures dans le plan par la courbure pour obtenir le
résultat, mais nous aurions pu utiliser le champ de vecteurs construit dans [Alter et al., 2005b] pour le flot
de la variation totale comme "calibration" (voir le chapitre 2). L’étude du flot de la variation totale fournit
aussi les solutions exactes du problème ROF pour des données de la forme 1C (voir [Alter et al., 2005b]),
et des ouvertures sont aussi impliquées (d’une manière plus compliquée).

Dans le cas de TVL1, la classe de fonctions pour lesquelles on obtient des solutions exactes est lé-
gèrement plus grande (fonctions quasi-convexes au lieu d’indicatrices d’ensembles convexes) que pour
ROF, mais surtout, le lien avec les ouvertures est clair. Cela vient compléter l’observation de Darbon
[Darbon, 2005] que TVL1 est un opérateur morphologique. Mentionnons aussi que le résultat sur TVL1
et les ouvertures peut être vu comme un cas particulier de l’étude générale, mais difficile, des problèmes
TV + Lp mené par Allard ([Allard, 2008], voir aussi [Allard, 2007] and [Allard, 2009]), bien que nous
l’ayons obtenu de manière indépendante. Pour l’illustrer numériquement, nous avons construit un algo-
rithme s’appuyant sur des ouvertures et la Transformée Rapide en Ensembles de Niveaux (FLST, Fast
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Level-Set Transform, [Monasse and Guichard, 2000]), qui donne la solution exacte dans les cas simples,
et une solution approchée autrement, en un temps de calcul très compétitif (voir le Chapitre 4).

Une autre contribution de cette thèse est d’interpréter la comportement de TVL1 dans le problème de
décomposition cartoon-texture à la lumière de la morphologie mathématique. On commence par com-
parer les décompositions fournies par TVL1 avec celles du modèle TV+G, le premier modèle de dé-
composition cartoon-texture proposé [Meyer, 2001]. On sait depuis [Haddad, 2007, Yin et al., 2007a]
que TVL1 se comporte bien pour la décomposition cartoon-texture. Nous observons qu’avec le modèle
TV+G, les traces des contours apparaissent dans la partie texture, ainsi qu’une sorte de halo, ce qui nous
conduit à étudier ce modèle plus en détail.

Une idée couramment répandue à propos des normes favorisant les oscillations est que si une image
est composée d’une partie cartoon, disons l’indicatrice d’un ensemble régulier, et d’une partie oscillante,
disons une sinusoïde, le modèle sera capable de la décomposer puisque la variation totale des indicatrices
d’ensembles réguliers (resp. sinusoïdes) est faible (resp. forte) et que la norme G d’une sinusoïde (resp.
indicatrices d’ensembles réguliers) est faible (resp. forte). Pourtant, il n’est pas trivial que la décompo-
sition soit parfaite, et à notre connaisance, aucun exemple explicite de décomposition parfaite n’a été
donné jusqu’à présent. En utilisant le cadre à symétrie radiale introduit dans [Haddad, 2007] et la carac-
térisation du sous-différentiel de la norme G établie au Chapitre 1, nous prouvons que l’indicatrice d’un
disque plus une sinusoïde (légèrement perturbée) est parfaitement décomposée par le modèle TV+G. La
bonne nouvelle est donc que le modèle fait ce qu’il est supposé faire, au moins sur un exemple. Toute-
fois, un examen approfondi de cet exemple montre qu’il est nécessaire que la texture ne s’annule pas au
voisinage de la frontière du disque.

Nous expliquons pourquoi les traces des bords et des halos peuvent parfois apparaître dans des
images plus générales. Dans le cas de l’indicatrice d’un convexe, et avec quelques hypothèses techniques
supplémentaires sur la partie texture, nous montrons qu’une décomposition où la partie texture s’annule
au voisinage des bords ne peut pas être solution du modèle TV+G. Par conséquent, il nous semble que
l’apparition des bords dans la partie texture est une propriété intrinsèque des décompositions TV+G.

Après avoir étudié les propriétés des décompositions TV+G, nous retournons au modèle TVL1. Nous
exhibons un exemple similaire de décomposition parfaite d’une indicatrice et d’une sinusoïde. Les limites
mises en évidence pour le modèle TV+G n’apparaissent pas avec le modèle TVL1 : les parties cartoon et
textures peuvent être totalement indépendantes. Enfin, pour expliquer le bon comportement du modèle
dans les décompositions cartoon-texture nous les relions aux granulométries utilisées en morphologie
mathématique : tandis que le modèle TV+G s’appuie sur la notion de fréquence, le modèle TVL1 travaille
avec la notion d’échelle.

Puisque l’étude du "problème stationnaire" a donné un peu d’intuition sur l’effet du paramètre de
fidélité λ, nous étudions un modèle où λ varie spatialement, comme dans [Gilboa et al., 2006] pour
le modèl ROF. Régler ce paramètre localement permet de préserver les régions texturées comme dans
[Gilboa et al., 2006] ou de supprimer le bruit impulsionnel comme dans [Koko and Jehan-Besson, 2010]
sans modifier les pixels qui n’ont pas été affectés par le bruit. Nous examinons d’abord le modèle d’un
point de vue théorique : nous montrons que le modèle se comporte comme on s’y attend de manière
intuitive. Le problème fonctionnel est équivalent à une famille de problèmes géométriques, la valeur de
λ contrôle la courbure de la solution, et en choisissant λ assez grand dans certaines régions, il est possible
de préserver des formes très irrégulières, même avec des coins.

Ensuite, nous illustrons l’utilisation du modèle TVL1 adapatif dans le contexte de la suppres-
sion du bruit impulsionnel. La plupart des méthodes de suppression du bruit impulsionnel sont di-
visées en deux étapes [Chen and Wu, 2001a, Pok et al., 2003, Crnojevic et al., 2004, Chan et al., 2004,
Dong et al., 2007] : une phase de détection et une phase de débruitage. On rappelle le principe
de quelques détecteurs de bruit, notamment le Adaptive Center-Weighted median Filter (ACWMF)
[Chen and Wu, 2001a], le Rank Ordered Absolute differences (ROAD) [Garnett et al., 2005] et le Rank
Ordered Logarithmic Differences (ROLD) [Dong et al., 2007] avant de montrer le résultat du débruitage
utilisant TVL1 adaptatif.

La performance est comparable aux méthodes de l’état de l’art telles que [Chan et al., 2004] mais pas
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véritablement meilleure. Pourtant, un avantage de ce cadre est sa simplicité. En fait la principale difficulté
de la suppression du bruit impulsionnel est la détection du bruit. Une fois cette étape proprement réalisée,
la plupart des méthodes de débruitage donnent des résultats similaires.

La fin de cette première partie est dédiée à la justification des observations empiriques du Chaptitre 4,
c’est-à-dire que les solutions de TVL1 quand la variation totale est calculée en utilisant la norme `1 (plu-
tôt que `2) du gradient (par exemple dans les méthodes de type graph-cut) est donnée par une ouverture où
les boules sont remplacées par des carrés. En fait, on montre que pour toute anisotropie cristaline, la so-
lution est donnée par une ouverture avec la forme de Wulff suivie d’un test sur le rapport périmètre / aire.
Ce résultat est une conséquence directe des travaux de Belletini et al. [Bellettini et al., 2001].

Méthodes Non-Locales pour la restauration d’Images

La seconde partie de cette thèse est consacrée au filtre Non-Local Means [Buades et al., 2005] à partir
duquel ont émergé quelques unes des méthodes de débruitage les plus performantes. On suppose que l’on
veut retrouver l’image f qui a été contaminée par du bruit additif blanc Gaussien :

u(x) = f(x) + ε(x) où ε(x) ∼ N (0, σ2) i.i.d. (22)

Une méthode simple pour retrouver f(x) est de faire la moyenne de N observations indépendantes et
identiquement distribuées (i.i.d.) du pixel bruité {ui(x), i = 1 . . . N}. Ainsi on obtient un estimateur
sans biais de f(x) de variance :

Var

(
f(x)− 1

N

N∑
i=1

ui(x)

)
=
σ2

N
. (23)

En pratique, une seule réalisation de u(x) est observée. Une solution courante est de considérer que
l’image ne varie pas beaucoup dans un voisinage de x (au moins dans une direction) de manière à faire la
moyenne des intensités dans ce voisinage. Cela revient grosso modo à ce que font la plupart des méthodes
présentées ci-dessus. La limite de cette approche est claire : on considère en général de petits voisinages
de sorte que les valeurs f(y) ne varient pas beaucoup, et la réduction de variance qui en résulte est donc
limitée.

La belle idée de Buades et al. est de tirer parti des auto-similarités à travers toute l’image : en
calculant la moyenne de motifs qui se répètent, on peut réduire de manière drastique la variance du
bruit sans rendre flous les détails. Ces similarités peuvent apparaître à grande distance, d’où le terme
"non-local" pour qualifier le problème. En fait, un ingrédient crucial de cette méthode est la comparaison
d’un voisinage de x avec celui de y plutôt que de comparer simplement leurs intensités.

Ces voisinages, habituellement carrés, sont appelés des patchs, et ont rapidement été
adoptés par la communauté du traitement d’images depuis le travail d’Efros et Leung
en synthèse de textures [Efros and Leung, 1999]. Depuis la percée des Non-Local Means
(ou du filtre UINTA [Awate and Whitaker, 2006] proposé simultanément), de nombreuses va-
riantes ont été proposées : certains auteurs donnent une interprétation variationnelle au
filtre [Brox and Cremers, 2007, Kindermann et al., 2005, Buades et al., 2006, Gilboa and Osher, 2007,
Gilboa and Osher, 2008, Azzabou et al., 2007c], ce qui les amène à itérer l’algorithme. D’autres auteurs
se sont intéressés à la notion de patch, et ont interprété l’algorithme comme une diffusion dans l’espace
des patchs [Szlam, 2006, Tschumperlé and Brun, 2009, Peyré, 2008, Peyré, 2009, Singer et al., 2009] :
le débruitage d’image revient à l’équation de la chaleur ! Puisque l’algorithme Non-Local Means ori-
ginal est très coûteux en temps de calcul, en obtenir une version rapide est un problème difficile.
Une approximation des Non-Local Means peut être rapidement calculée en utilisant des techniques de
préselection [Mahmoudi and Sapiro, 2005, Bilcu and Vehvilainen, 2008], ou un arbre d’agrégats pour
calculer les patchs similaires [Brox et al., 2008], ou un sous-échantillonnage des distances de patch
[Pang et al., 2009]. Des calculs rapides et exacts ont été proposés à partir de la Transformée de Fou-
rier Rapide [Wang et al., 2006], ou des tables de sommes cumulées [Darbon et al., 2008].
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Précisons les notations. La sortie du filtre est :

NLu(x) =

∑
y∈Ω e

− ‖U(x)−U(y)‖2

2h2 u(y)∑
y′∈Ω e

− ‖U(x)−U(y′)‖2
2h2

. (24)

où Ω est l’image entière (souvent remplacée par une fenêtre de recherche autour de x), U(x) désigne les
valeurs des pixels dans un patch carré de taille s×s autour de x, et la distance est la distance euclidienne
normalisée :

‖U(x)− U(y)‖2 =
1
s2

∑
|j|≤ s−1

2

(u(x+ j)− u(y + j))2.

Le paramètre h > 0 est un paramètre de largeur de bande qui détermine l’importance relative des pixels
dans la moyenne, en fonction de leur similarité.

Au fur et à mesure que diverses améliorations des Non-Local Means ont été proposées, les limi-
tations du filtre ont été progressivement comprises par la communauté : la sélection des patchs n’est
pas optimale, et Mahmoudi et Sapiro [Mahmoudi and Sapiro, 2005] ont proposé d’ajouter une informa-
tion sur le gradient dans la sélection des pixels. Une autre façon de rendre la sélection des patchs plus
pertinente est d’utiliser une analyse en composantes principales comme le proposent Azzabou et al.
[Azzabou et al., 2007a] ou Tasdizen [Tasdizen, 2009] (en particulier si l’intensité du bruit est très forte).
L’influence de la fenêtre de recherche sur la qualité du résultat est mise en évidence par Kervrann et Bou-
langer [Kervrann and Boulanger, 2006] qui choisissent localement sa taille en fonction d’un compromis
biais-variance. Le choix de la fonction exponentielle pour les poids est remis en question par Goossens et
al. dans [Goossens et al., 2008], et l’importance trop grande donnée au pixel x dans sa propre estimation
est discutée dans [Salmon, 2010b]. De plus, les Non-Local Means échouent quand il n’y a pas de patch
similaire et certains auteurs ont proposé des astuces pour résoudre ce problème [Gilboa and Osher, 2007,
Brox and Cremers, 2007, Brox et al., 2008, Louchet and Moisan, 2010, Salmon and Strozecki, 2010a].

Toutes ces bribes d’informations sont plutôt dispersées dans la littérature, et nous proposons dans le
Chapitre 8 une "visite guidée" des Non-Local Means qui met en évidence certaines de ces propriétés. Le
principe de cette visite est d’étudier des modèles très simples pour donner de l’intuition au lecteur qui ne
serait pas familier avec les Non-Local Means. En particulier, nous illustrons le fait que :

– une grande taille de patch tend à rendre flous les objets,
– les grands patchs sont plus robustes au bruit,
– il y a une perte de contraste qui dépend de la répétition de chaque motif,
– moins les détails sont contrastés, plus ils sont dégradés, et cette relation est fortement non linéaire,
– même les images périodiques sont dégradées,
– la fenêtre de recherche a un impact sur la qualité visuelle du résultat,
– un poids à support compact plutôt qu’exponentiel permet de réduire le biais.

Si l’on décompose l’erreur du filtre en la somme d’un terme de biais et de variance, le biais est relié à
une forme de régularité que nous essayons de caractériser dans l’espace des patchs.

Toutes ces considérations plaident en faveur d’un choix local des paramètres, puisque la régularité
mise en évidence est fortement dépendante de la position de l’image.

Nous construisons d’abord un oracle qui est un Non Local Means avec des poids uniformes (similaire
à la version des Non-Local Means de [Brox and Cremers, 2007], à la différence que le nombre de pixels
est choisi à partir de l’image sans bruit) : il montre le comportement idéal d’un filtre à choix local de h.
Etonnament, la distinction entre textures et régions lisses n’est pas le critère prépondérant de la décision
de cet oracle.

En effet, le critère le plus important est si un pixel appartient ou non à un patch qui intersecte un
bord. Les patchs qui sont les plus proches des bords, ou les détails très contrastés, ont habituellement
peu de copies similaires , de sorte que les moyennes non locales laissent un halo de bruit. L’oracle force
un paramètre h élevé le long des bords pour réduire ce halo, et un algorithme réel devrait en faire de
même. Nous construisons donc un alorithme pratique en nous appuyant sur l’estimateur sans biais du
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risque (SURE)[Stein, 1981], proposé pour la première fois dans le contexte des Non Local Means par
[Van De Ville and Kocher, 2009]. Puisque cet estimateur du risque n’est pas robuste lorsqu’on l’utilise
ponctuellement, nous proposons de régulariser le risque par une moyenne locale, et ensuite de garder
la valeur du paramètre h qui minimise cet estimation régularisée. Un algorithme pratique est donné,
qui nécessite un temps de calcul modéré, et de nombreuses expériences sont montrées. Cette procédure
permet de réduire le halo près des bords et de mieux préserver les détails faiblement contrastés qu’avec les
Non-Local Means. Pourtant, la décision est un peu brutale, et quand l’estimation du risque est mauvaise,
de petites taches de bruit peuvent rester, comme avec les Non Local Means classiques. Inspiré par le
travail de [Salmon and Le Pennec, 2009b], nous utilisons une agrégation à poids exponentiels (EWA)
pour créer une combinaison convexe locale des filtres avec différentes valeurs de h en fonction de leur
risque estimé. Cette procédure préserve bien mieux les textures que la méthode précédente, ne souffre
pas du problème de halo et ne laisse pas de tache de bruit. Les images produites semblent légèrement plus
bruitées, mais sont plus agréables. Le PSNR est légèrement inférieur à celui de la méthode précédente,
mais le résultat visuel est convaincant.

Une autre variante des Non-Local Means est proposée dans le dernier chapitre, qui est le fruit d’une
collaboration avec Joseph Salmon et Charles Deledalle. Le but de cet algorithme est de supprimer l’effet
de patch rare, c’est-à-dire le halo de bruit qui entoure les bords contrastés ou les détails. L’idée pro-
vient du travail de Salmon et Strozecki [Salmon and Strozecki, 2010b], où il est proposé de translater les
patchs de manière à obtenir des copies similaires près des bords. Ici, nous poussons l’idée plus loin en
remplaçant les patchs décentrés par des formes arbitraires. L’idée est d’utiliser des formes qui peuvent
s’introduire dans les régions les plus étroites de manière à trouver un maximum de pixels similaires.
Nous proposons un algorithme s’appuyant sur la Transformée de Fourier Rapide pour calculer le résultat
des Non-Local Means avec une forme arbitraire, indépendamment de la taille de la forme.

En utilisant un dictionnaire de formes fixé à l’avance, nous obtenons autant d’estimateurs que le
nombre de formes. Comme dans le chapitre précédent, le fait de ne garder que l’estimateur qui mi-
nimise l’estimée du risque est trop brutal, c’est pourquoi nous agrégeons les résultats en utilisant la
pondération basée sur la variance [Salmon and Strozecki, 2010b] ou l’agrégation à poids exponentiels
[Leung and Barron, 2006]. L’algorithme résultant est rapide, et produit de très belles images.
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Description des chapitres

Partie I : Morphological Aspects of the TVL1 Model

Chapter 1 : Notations and Preliminaries. Le but de ce chapitre est de rappeler quelques pro-
priétés élémentaires des fonctions à variations bornées, ainsi qu’une formule de Green étendue, due à
[Anzellotti, 1983] qui joue un rôle crucial dans cette thèse. Le sous-différentiel d’une fonction convexe
s.c.i. positivement homogène est caractérisé, ce qui servira dans l’étude des modèles TVL1 et TV+G.
Enfin, une brève introduction au problème de Cheeger et aux ensembles calibrables est donnée.

Chapter 2 : How to study the TVL1 problem? Ce chapitre résume différentes approches du modèle
TVL1 proposées dans la littérature : caractérisation utilisant la norme G dans [Kindermann et al., 2006],
le problème dual dans [Haddad, 2007], la flat norm dans [Morgan and Vixie, 2007], et une méthode inspi-
rée des calibrations de la théorie géométrique de la mesure exposée dans ce chapitre. Nous montrons que
toutes ces méthodes peuvent être interprétées comme les équation d’Euler-Lagrance pour la fonctionnelle
TVL1. La "méthode des calibrations" exposée ici est liée aux travaux d’Alter, Bellettini, Caselles, Cham-
bolle, Novaga et Paolini. Elle consiste à utiliser le champ de vecteur construit dans [Alter et al., 2005b]
pour le flot de la variation totale pour montrer qu’une fonction est optimale pour TVL1. Une fois que le
champ de vecteur est construit, la preuve est élémentaire.

Chapter 3 : The TVL1 model: a geometric point of view. Le problème TVL1 peut être étudié en
utilisant le principe de Cavalieri, en décomposant une image en ses ensembles de niveau. D’un problème
fonctionnel, nous sommes amenés à étudier une famille de problèmes géométriques. Nous proposons une
preuve dans le cadre continu de cette équivalence remarquée pour TVL1 dans [Chan and Esedoglu, 2005,
Darbon, 2005]. Cette équivalence rend le modèle TVL1 invariant par changement de contraste. En fait,
comme cela est remarqué dans [Darbon, 2005], TVL1 est un opérateur morphologique.

Plutôt que d’étudier le problème fonctionnel, nous nous intéressons au problème géométrique. A
l’aide d’arguments très simples, nous montrons que les ensembles qui disparaissent soudainement, comme
le disque [Chan and Esedoglu, 2005], sont nécessairement Cheeger en eux-mêmes, et si l’ensemble est
convexe, cette condition est suffisante. De plus, les ensembles calibrables généraux disparaissent soudai-
nement.

L’approche géométrique est d’autant plus intéressante qu’elle permet d’utiliser des théorèmes puis-
sants de la théorie géométrique de la mesure. Les lignes de niveau sont lisses et leur courbure est
bornée par λ. Dans le cas d’un ensemble donné convexe, l’énergie se reformule en remarquant que
la solution sera nécessairement à l’intérieur de l’ensemble. En nous appuyant sur les résultats de
[Andreu-Vaillo et al., 2002, Alter et al., 2005a] pour le flot de la variation totale et la caractérisation des
ensembles convexes calibrables, nous montrons que la solution du problème géométrique est donnée par
une ouverture de rayon 1/λ, et un test sur le rapport périmètre / aire.

Cela nous conduit à discuter le lien entre la morphologie mathématique et le problème TVL1. Dans
le cas non-convexe, seule une borne sur les solutions est obtenue, mais des "candidats raisonnables" pour
la solution de TVL1 sont proposés à partir de filtres alternés séquentiels. La validité d’un tel choix est
examinée empiriquement dans le Chapitre 4.

Chapter 4 : Algorithms and numerical experiments. Le but de ce chapitre est d’appuyer les
conclusions théoriques du Chapitre 3 à l’aide d’expériences numériques. Nous rappelons d’abord
quelques algorithmes pour résoudre le problème TVL1. Puis, nous en proposons deux nouveaux. Le
premier est naïf et lent : il consiste à appliquer un filtre alterné séquentiel puis de seuiller les com-
posantes connexes de chaque ensemble de niveau. Le second consiste à appliquer la même tâche en
utilisant l’arbre des formes fourni par la transformée en ensembles de niveau rapide (Fast Level Set
Transform, FLST) [Monasse and Guichard, 2000]. Cela fournit un algorithme rapide, comparable à
[Darbon and Sigelle, 2006]. Les expériences numériques sur des images binaires et naturelles montrent
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que les algorithmes proposés produisent des résultats qui sont très proches des véritables solutions de
TVL1 (fournies par descente de gradient par exemple).

Pour comparer notre méthode avec une minimisation exacte de TVL1 qui satisfait la formule de
la coaire, nous utilisons l’algorithme de Darbon-Sigelle [Darbon and Sigelle, 2006]. Cet algorithme est
basé sur un schéma anisotrope pour la variation totale. Une propriété remarquable est que si l’on remplace
dans notre algorithme les ouvertures avec des boules par des ouvertures avec des carrés (et le calcul du
périmètre associé), nous obtenons aussi des résultats qui sont très proches du modèle TVL1 avec variation
totale anisotrope ! Cela suggère que la propriété est encore vraie pour les périmètres anisotropes, ce que
nous étudions dans le Chapitre 7.

Chapter 5 : Cartoon, Textures and Granulometries. Le lien avec la morphologie mathématique
mis en évidence dans les Chapitres 3 et 4 pour le modèle TVL1 nous permet d’interpréter son com-
portement dans le problème de décomposition cartoon-texture. D’abord, nous rappelons le principe
de telles décompositions, et nous montrons des expériences numériques comparant les résultats four-
nis par TVL1 avec ceux fournis par TV+G, le premier modèle de décomposition cartoon-texture pro-
posé [Meyer, 2001]. Avec le modèle TV+G, nous observons que des traces des contours apparaissent
dans la partie texture, ainsi qu’une sorte de halo, ce qui nous amène à étudier ce problème en détail.

En utilisant le cadre radialement symétrique de [Haddad, 2007] et la caractérisation du sous-différentiel
de la normeG établie dans le Chapitre 1, nous montrons qu’une fonction indicatrice d’un disque plus une
sinusoïde (légèrement perturbée) est parfaitement décomposée par le modèle TV+G. Au passage, nous
remarquons dans cet exemple que la texture ne peut pas s’annuler au voisinage de la frontière du disque.
Nous expliquons pourquoi des traces des contours et du halo peuvent apparaître dans des images plus gé-
nérales. Nous montrons que dans le cas de l’indicatrice d’un convexe et avec des hypothèses techniques
supplémentaires sur la partie texture, une décomposition où la partie texture s’annule au voisinage des
contours ne peut pas être solution du modèle TV+G.

Après avoir étudié les propriétés du modèle TV+G, nous revenons au modèle TVL1. A l’aide de
l’équation d’Euler-Lagrange, nous montrons un exemple similaire de décomposition parfaite d’une indi-
catrice et d’un sinus. Nous constatons que les limitations du modèle TV+G ne s’appliquent pas à TVL1.
Enfin, pour expliquer le bon comportement de ce modèle pour la décomposition cartoon-texture, nous le
relions aux granulométries utilisées en morphologie mathématique : tandis que le modèle TV+G s’appuie
sur la notion de fréquence, le modèle TVL1 travaille avec la notion d’échelle.

Chapter 6 : Spatially adaptive TVL1. A partir de l’étude du problème "stationnaire" des chapitres
précédents, nous avons compris l’effet du paramètre de fidélité λ. Dans ce chapitre, nous utilisons cette
intuition pour régler localement la valeur de λ en fonction de l’image, comme dans [Gilboa et al., 2006],
ou pour supprimer le bruit impulsionnel comme dans [Koko and Jehan-Besson, 2010]. La première par-
tie de ce chapitre est dédiée à l’étude théorique du modèle TVL1 où λ varie localement. Elle montre
essentiellement que le modèle se comporte comme on s’y attend intuitivement : il est équivalent à une
famille de problèmes géométriques, la valeur de λ contrôle la courbure de la solution et en choisissant
λ assez grand dans certaines régions, il est possible de préserver des formes très irrégulières, présentant
par exemple des coins.

La seconde partie illustre l’utilisation du modèle TVL1 adaptatif dans le contexte de la suppression
du bruit impulsionnel. La plupart des méthodes pour supprimer le bruit impulsionnel procèdent en deux
étapes : une phase de détection et une phase de suppression. Nous rappelons le principe de quelques
détecteurs, avant de montrer le résultat du débruitage en utilisant TVL1 adaptatif. Les résultats sont
comparables aux méthodes les plus efficaces telles que [Chan et al., 2004] mais pas significativement
meilleurs.

Chapter 7 : Extension to the anisotropic case. Le but de ce court chapitre est d’expliquer l’ob-
servation empirique du Chapitre 4 concernant la variation totale anisotrope, par exemple quand

∫
|Du|2

est remplacée par
∫
|Du|1. En d’autres termes, nous montrons que la solution du problème géométrique
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pour un ensemble convexe est donnée par une ouverture avec un carré (au lieu d’un disque), suivie d’un
seuillage sur le rapport périmètre (anisotrope)/aire. Cela provient essentiellement d’un résultat sur les
facettes calibrables de [Bellettini et al., 2001].

Le chapitre commence avec la définition de la variation totale anisotrope. Quelques propriétés stan-
dard sont rappelées. Puis, nous montrons que tous les arguments du Chapitre 3 s’appliquent encore, et
que la solution de TVL1 avec périmètre anisotrope est donnée par une ouverture par la forme de Wulff,
suivie d’un seuillage. Le résultat vaut pour les variations totales cristallines.
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Partie II : Non-local Methods for Image Restoration

Chapter 8 : Introduction to the Non Local Means. Ce chapitre est une introduction au filtre Non-
Local Means [Buades et al., 2005]. Après une revue rapide de l’histoire du filtre et des filtres similaires,
nous proposons au lecteur une "visite guidée" des moyennes non locales. Pour donner plus d’intuition
sur le filtre, nous décrivons les effets de chaque paramètre avec l’aide de trois exemples jouets dans
lesquels nous donnons une expression analytique de la sortie du filtre. Nous illustrons l’apparition du
biais, même sur des signaux périodiques, en fonction de la taille de patch et de la fenêtre de recherche,
ou du noyau utilisé dans les poids. Ces exemples donnent des illustrations concrètes des diverses obser-
vations empiriques faites dans la littérature, et les expressions analytiques les rendent indépendants du
cadre expérimental (paramètres de l’algorithme, réalisations du bruit...). En particulier nous montrons
que l’utilisation de poids à support compact réduit l’influence de la fenêtre de recherche.

Pour étudier l’apparition du biais dans les Non-Local Means et la notion de régularité as-
sociée, nous faisons une brève excursion dans l’espace des patchs, inspirée par [Peyré, 2009,
Tschumperlé and Brun, 2009, Singer et al., 2009]. Nous ne supposons pas que les images reposent sur
une variété dans l’espace des patchs, mais nous insistons sur l’importance d’un moment de la distribu-
tion des patchs. Ce point de vue élémentaire est utilisé pour expliquer le comportement du filtre quand la
fenêtre de recherche ou la taille de patch varient.

Pour résumer, ce chapitre expose les défauts et les limites des Non-Local Means. Il montre aussi que
dans la plupart des cas, un choix judicieux des paramètres comme la largeur de bande h ou la taille de
patch permet de limiter l’artefact.

Chapter 9 : Spatially adaptive choice of the bandwidth h. On s’attache à concevoir un filtre
Non-Local Means doté d’un choix local de largeur de bande, pour réduire les artefacts mis en évidence
dans le Chapitre 8. D’abord, nous construisons un oracle basé sur un compromis biais-variance qui
nous indique le comportement idéal d’un tel filtre. En fait, la distinction entre textures et régions lisses
n’est pas primordiale dans la décision de l’oracle. En effet, les variations les plus importantes dépendent
surtout de la présence ou non d’un contour dans le patch. Les patchs qui intersectent des contours ou qui
comportent des détails très contrastés ont en général peu de copies similaires, de sorte que les Non-Local
Means y laissent un halo de bruit. L’oracle force une grande largeur de bande h dans ces zones, et un
algorithme pratique devrait en faire de même.

Puis nous construisons un tel algorithme pratique, en nous appuyant sur l’estimation sans biais du
risque (SURE)[Stein, 1981], proposée pour la première fois dans le contexte des Non-Local Means dans
[Van De Ville and Kocher, 2009]. Puisque cet estimateur du risque n’est pas robuste quand il est utilisé de
manière ponctuelle, nous proposons de régulariser le risque par une moyenne locale, et ensuite de garder
la valeur de h qui minimise cette estimation régularisée. Un algorithme pratique est donné pour réaliser
ces opérations en un temps raisonnable, et de nombreuses expériences sont montrées. La procédure per-
met de réduire le halo près des bords, et elle préserve les détails peu contrastés bien mieux que les Non-
Local Means classiques. Pourtant, la décision est un peu brutale, et quand l’estimation du risque échoue,
de petites taches de bruit sont laissées par l’algorithme. Inspiré par [Salmon and Le Pennec, 2009b], nous
utilisons une agrégation à poids exponentiels (EWA) pour calculer une combinaison convexe des filtres
associés à différentes largeurs de bande en fonction de leur risque estimé. Cette procédure préserve bien
mieux les textures que la méthode précédente, ne souffre pas du halo de bruit, et ne laisse pas de tache
de bruit. Les images produites sont un peu plus bruitées, mais leur aspect est plus agréable, malgré un
PSNR un peu en dessous de la méthode précédente.

Chapter 10 : From patches to shapes: NLM-SAP. Ce chapitre relate un travail réalisé en commun
avec Charles Deledalle et Joseph Salmon. Il s’agit d’une tentative de réduire le halo de bruit dans les Non-
Local Means. L’idée prend sa source dans le travail de Salmon et Strozecki [Salmon and Strozecki, 2010b],
où il est proposé de translater les patchs pour trouver des copies similaires près des contours. Dans ce
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chapitre, nous poussons ce concept plus loin en remplaçant les patchs translatés par des formes arbi-
traires. L’intérêt est d’utiliser des formes qui sont adaptées à la géométrie locale et qui peuvent s’insérer
dans les régions étroites. Nous proposons un algorithme basé sur la Transformée de Fourier Rapide pour
calculer le résultat des Non-Local Means avec une forme arbitraire, indépendamment de la taille de la
forme.

La question est ensuite de choisir la forme à chaque pixel. Nous utilisons un dictionnaire de
formes fixés à l’avance, et à chaque pixel nous devons donc décider comment combiner nos estima-
teurs. Comme dans le chapitre précédent, ne garder que l’estimateur ayant le risque estimé le plus
faible est trop brutal, donc nous agrégeons les résultats en utilisant la pondération basée sur la variance
[Salmon and Strozecki, 2010b] ou l’agrégation à poids exponentiels [Leung and Barron, 2006]. L’algo-
rithme qui en résulte est rapide, et fournit une très bonne qualité visuelle, même si en terme de PSNR, il
se classe un peu derrière [Dabov et al., 2007, Goossens et al., 2008].
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Publications

Le contenu des Chapitres 3, 4 et une partie du Chapitre 6 a été publié dans le SIAM Journal on
Multiscale Modelling and Simulation (MMS) [Duval et al., 2009]. Il a été présenté à la SIAM Confe-
rence on Imaging Sciences 2010. Une petite portion (une page) du Chapitre 5 est extraite d’un article
publié dans le Journal of Mathematical Imaging and Vision (JMIV) [Duval et al., 2010]. Un article in-
cluant approximativement les Chapitres 8 et 9 a été accepté par le SIAM Journal of Imaging Science
(SIIMS) [Duval et al., 2011]. Le contenu du Chapitre 10 est l’objet d’un article écrit en commun avec
Charles Deledalle et Joseph Salmon qui a été accepté au Journal of Mathematical Imaging and Vision
(JMIV)[Deledalle et al., 2011]. Il a été présenté à la Conference on Scale-Space and Variational Methods
(SSVM) 2011.
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Introduction

From an ideal perfect scene occurring in the physical world to its display on our computer screens or other
imaging devices, many steps induce alterations of images. The acquisition process, the transmission or
the storage of an image may all degrade the original information, so that efficient methods to restore or
simplify images have become crucial in many applications, whether medical diagnosis, satellite imaging,
videoconference or even every-day life digital cameras.

During the acquisition process, the Charge-Coupled-Devices (CCD) sensors are subject to the shot
noise, which is due to the discrete nature of the measured quantity (the number of incoming photons),
and which follows a Poisson distribution. The effect of the shot noise is all the stronger as the number
of photons is small, so that scenes with insufficient lighting often appear noisy. The thermal noise is also
responsible for degraded images: depending on the temperature of the captor, the thermal agitation of
the electrons induces a current that adds to the original signal. Let us also mention degradations induced
by the optics: some objects may be out-of-focus or chromatic aberrations may appear. A fast moving
object may be blurred if the shutter speed is too slow. During the transmission process, images may
be degraded by the loss of several packets, leading to wrong pixel values. This is especially common
in satellite imaging. To reduce the storage cost of images, lossy compression algorithms are employed,
which removes some of the information, inducing a "compression noise" which is all the more visible as
the compression rate is high.

As a consequence, images are usually too degraded to be directly shown to a human or to be sent to an
image analysis algorithm: they have to be filtered. The image processing community has been working
for decades on designing algorithms either to restore images as faithfully as possible, or to simplify
images while keeping the most relevant information for automatic analysis. The first proposed method
consists in linearly filtering the image. With additional assumptions such as translation invariance this
amounts to applying a convolution to the image (see for instance [Guichard et al., 2004]). The problem
with convolution is that it tends to blur the sharp edges that exist in most natural images. To smooth
images without blurring edges, researchers and engineers have proposed a wide variety of methods which
all correspond to a certain a priori on images. Let us briefly describe a few families of models:

Partial Differential Equations (PDE). The linear filtering can be interpreted asymptotically as one
step of the heat equation, which diffuses information in an isotropic way. The idea proposed by Per-
ona and Malik [Perona and Malik, 1990] is to diffuse information depending on the local content of the
image, using equations of the form:

∂u

∂t
= div (g(|∇u|)∇u) , (25)

where e.g. g : R+ → R, s 7→ 1
1+λ2s2 . In homogeneous regions, the diffusion behaves like a regular two-

dimensional heat equation, but near edges (where |∇u| is large), the diffusion is a reverse heat equation in
the direction of the gradient, and a heat equation in the orthogonal direction. As a consequence the edges
are enhanced and the other regions are smoothed. Many other PDEs have been proposed, whether for
denoising or analyzing shapes. For instance, the mean curvature motion, introduced in image processing
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in [Kimia et al., 1995], is governed by the equation:

∂u

∂t
= |∇u|div

(
∇u
|∇u|

)
. (26)

It is a pure diffusion in the direction orthogonal to the gradient. Let us also mention the diffusion
proposed by Sochen, Kimmel and Maladi [Sochen et al., 1998] in connection with minimal surfaces:

∂u

∂t
= div

(
∇u√

1 + |∇u|2

)
. (27)

So many parabolic PDEs have been proposed for image restoration that one might easily get lost. Us-
ing an axiomatic approach, Alvarez et al. [Alvarez et al., 1993] have proved that the PDEs which have
the contrast invariance property and isotropic invariance (which are quite relevant properties for image
processing) are of the form (see also [Chen et al., 1991]):

∂u

∂t
= F (div

(
∇u
|∇u|

)
, t)|∇u|. (28)

Adding the requirement of affine invariance allows to single out a specific equation called affine curvature
motion (see [Guichard et al., 2004]).

Partial Differential Equations in image processing are naturally linked to the theory of scale-space
[Witkin, 1983, Koenderink, 1984], which associates an image with a family of gradually smoothed im-
ages. Alvarez et al. [Alvarez et al., 1993] have shown that every causal scale-space corresponds to a PDE.
Depending on authors (see for instance [Babaud et al., 1986, Olver et al., 1994, Weickert, 1996]), vari-
ous sets of axioms for scale-spaces are imposed. We refer the reader to the monographs [Weickert, 1998,
Guichard et al., 2004] for more details.

Mathematical morphology. Mathematical morphology is a theory of image analysis developed by
Matheron and Serra in the 1960s, while Serra was in charge of making a detailed inventory of the
iron deposit in Lorraine (the interesting story of the birth of mathematical morphology is related in
[Matheron and Serra, 2002]). Its main focus is the contrast-invariance in image processing, and the con-
sequence is that morphological operators can be equivalently seen as operators on functions (images) or
on sets (their level-sets). For instance, some of the most famous morphological operators are respectively
the erosion and dilation:

∀X ⊂ R2, ErX =
{
x ∈ R2, B(x, r) ⊂ X

}
, DrX =

{
y ∈ R2,∃x ∈ E, y ∈ B(x, r)

}
, (29)

where r > 0 andB(x, r) is the Euclidean closed ball with radius r. These operators on sets are associated
with functional operators:

∀u ∈ RR2
, ∀x ∈ R2, Eru(x) = inf

y∈B(0,r)
u(x+ r), Dru(x) = sup

y∈B(0,r)
u(x+ r). (30)

As a matter of fact, it is equivalent to apply each functional operator to a function f or to apply the
corresponding set operator on the upper level-sets of f , Ft = {x ∈ R2, f(x) ≥ t}, to obtain sets Ut for
t ∈ R and then reconstruct u by the formula:

∀x ∈ R2, u(x) = sup{t ∈ R, x ∈ Ut}. (31)

From dilations and erosions, two other basic operators are constructed: openings (defined as Dr ◦ Er)
and closings (defined as Er ◦Dr). The corresponding set operators may be written as:

∀X ⊂ R2, OrX =
⋃
{B(x, r), B(x, r) ⊂ X}, FrX =

(⋃
{B(x, r), B(x, r) ⊂ XC}

)C
,

(32)
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where XC = R2 \X .
Useful references about mathematical morphology are the book by Matheron [Matheron, 1975] and

those by Serra [Serra, 1982, Serra, 1988]. From the fundamental axioms established by Matheron and
Serra, and the basic operations such as erosions, dilations, openings and closings, mathematical mor-
phology has grown into a well-established theory from which derive algorithms for image denois-
ing [Cheng and Venetsanopoulos, 1992, Vincent, 1993], segmentation [Beucher and Lantuéjoul, 1979,
Bouraoui et al., 2008], texture analysis [Vanrell and Vitria, 1993, Hanbury and Serra, 2002], etc.

Variational methods. Another approach to image processing is to find an image which minimizes
a certain energy. Typically, if one observes a noisy image f , the restored image is the solution of the
problem:

min
u
G(u) + F (u, f), (33)

The term G(u) is the regularization term, i.e. it forces the minimizers to be smooth enough, whereas
the fidelity term, F (u, f), forces the minimizers to be coherent with the observation f . A canon-
ical example of variational problem in image processing is the Rudin-Osher-Fatemi (ROF) problem
[Rudin et al., 1992]:

min
u

∫
R2

|∇u(x)|dx+ λ

∫
R2

|f(x)− u(x)|2dx (34)

Here, the regularization term is the total variation, which has the advantage of smoothing images without
blurring edges. The quadratic fidelity term is typical when working with additive Gaussian noise. This
model is an improvement of the older Tikhonov regularization problem [Tikhonov and Arsenin, 1977]
where

∫
R2 |∇u(x)|2dx replaces

∫
R2 |∇u(x)|dx. The Tikhonov energy has the drawback that its minimiz-

ers belong to the Sobolev space H1. Contrary to the functions with bounded variations (which form the
space BV(R2) in which the solutions of the ROF problem lie), functions in the spaceH1 cannot have dis-
continuities along hypersurfaces, which prevents from working with cartoon-like images, composed of
smooth regions delimited with sharp edges. In fact, many other choices of regularization terms have been
proposed : the Huber function, the regularized total variation, which amounts to measuring the surface of
the graph of u, or various Lp norms of the gradient. Those functionals are convex, so that they are easier
to study and to minimize than general non-convex functionals. Yet, there is a growing interest in non-
convex regularization terms. In [Bar et al., 2006a, Bar et al., 2006b, Cai et al., 2008], the Mumford-Shah
functional [Mumford and Shah, 1989], although it was originally designed to perform segmentation, is
used in restoration problems with better results than with total variation. In [Nikolova, 2005], Nikolova
investigates the behavior of non-convex regularization terms: she shows that small discontinuities are
shrunk, and large discontinuities are amplified. A large panel of non-convex functions has been pro-
posed, but the fast minimization of corresponding functionals is still an open problem.

Variational problems are especially interesting since they provide a simple framework to solve ill-
posed inverse problems like deconvolution or super-resolution. For instance, the natural adaptation of
the Rudin-Osher-Fatemi model to deconvolution is:

min
u

∫
R2

|∇u(x)|dx+ λ

∫
R2

|f(x)− h ? u(x)|2dx (35)

where the convolution with h models the blur operator.

Markov Random fields and Maximum a Posteriori Estimation. In a discrete setting, a way to
model the dependencies between the pixel values is to interpret an image as a Markov random field, as
proposed in the seminal paper [Geman and Geman, 1984]. The probability of observing one value at
pixel x conditionally to the values of all other pixels actually only depends on the values in a neighbor-
hood of x. Hammersley-Clifford’s theorem states that the joint probability of observing an image u can
be written as P (u) = 1

Z exp(−
∑

c∈C Ec(u)), where Ec is called a clique energy.
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For the denoising problem with additive Gaussian white noise, we observe f and we look for the
restored version u. The Bayes formula gives:

P (u|f) =
P (u)P (f |u)

P (f)
(36)

where P (u) = 1
Z exp(−

∑
c∈C Ec(u)) is the prior on images (for instance the smoothness prior

1
Z exp(−

∑
i,j(|ui+1,j − ui,j |+ |ui,j+1 − ui,j |)) and P (f |u) is the conditional probability of f given u

(for instance 1
Z′ exp

(
−‖f−u‖2

2σ2

)
). Taking the logarithm of this expression we see that logP (u|f) is the

sum of a clique energy and a fidelity term. The Maximum A Posteriori (MAP) estimation of u consists
in finding a maximizer of logP (u|f). Equivalently one looks for a minimizer of − logP (u|f) which is
the sum of a "fidelity term" and a "smoothing term": variational problems can be seen as Maximum A
Posteriori estimation problems and vice-versa.

The literature on Markov Random Fields in image processing has the notable interest of its connec-
tions with statistical physics. In particular, Ising’s model, which originated from the study of ferromag-
netism and antiferromagnetism, was imported to image processing in its ferromagnetic version:

E(u) = −
∑

(s,t)/s∼t

−βusut −
∑

s

us (37)

with β > 0, and u is a binary image. This energy implies that the images with most probability have
few jumps. This model is related to the TVL1 model studied in this thesis inasmuch as they coincide on
binary images of convex sets (see Chapter 3 of this thesis). We refer the reader to [Maruani et al., 1995]
for a study of its properties.

Let us mention that the Maximum A Posteriori estimation is not necessarily the most reasonable way
to tackle a denoising problem. In [Louchet and Moisan, 2008, Louchet, 2008], Louchet and Moisan ad-
vocate for the total variation with Least-Square Error (LSE) estimation instead of the Maximum a Poste-
riori (which amounts to the ROF model). The idea is to find uwhich minimizes Eu′|f‖u−u′‖2. This leads
to a weighted sum of images u′ depending on their probability P (u′|f). The point with this estimator is
that its properties are much better than those of the MAP estimator (see [Louchet, 2008]): in particular it
does not suffer from the staircasing effect (see for instance [Nikolova, 2000, Nikolova, 2004b] for a study
of the staircasing effect). Also, this LSE estimation allows to draw a parallel between the total variation
with LSE denoising and the Non-Local Means [Buades et al., 2005]. This is related to the interpretation
of NL-Means as the aggregation of estimators by Salmon and Le Pennec [Salmon and Le Pennec, 2009a,
Salmon and Le Pennec, 2009b]. Interestingly enough, in a different context, in the second part of this
thesis (especially Chapters 9 and 10) we also observe that a weighted sum of estimators is sometimes
better than one particular minimizer.

Neighborhood filters and patch-based methods. Instead of averaging pixels depending on their
spatial proximity, several authors have proposed to use the proximity between their values. This is in
essence the principle of the Yaroslavsky filter [Yaroslavsky, 1985]:

Y NFh,ρu(x) =
1

C(x)

∑
y∈B(x,ρ)

e−
|u(x)−u(y)|

h2 u(y). (38)

where C(x) is a normalization constant, and B(x, ρ) is a window with radius ρ centered around x. This
idea is also at the core of the sigma filter [Lee, 1983] and the SUSAN filter [Smith and Brady, 1997].
With the bilateral filter [Tomasi and Manduchi, 1998], both the pixel values and the pixel positions are
used to design the weights. Whereas in these methods the compared pixels always belong to a fixed
window or ball around the pixel to denoise, some authors have proposed to choose adaptively the set
of pixels with which to compute the average [Polzehl and Spokoiny, 2000, Polzehl and Spokoiny, 2003].
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The idea is to rely on a bias/variance tradeoff and to use the monotony of the variance as the set of pixels
increases according to Lepski’s method [Lepski, 1990].

Inspired by neighborhood filters and by the work of Efros and Leung [Efros and Leung, 1999] in
texture synthesis, Buades, Coll and Morel [Buades et al., 2005] have proposed to compare small neigh-
borhoods around pixels called patches, rather than the pixel values only. This "Non-Local Means" filter
led to a breakthrough in image processing, and for half a decade the majority of the proposed denois-
ing algorithms have relied on the notion of patch. The BM3D algorithm [Dabov et al., 2007], which
currently ranks among the best denoising methods, is one of them.

Wavelet and sparse methods. Another a priori on images is that they have a sparse representation
in a well-chosen basis or frame. Donoho and Johnstone [Donoho and Johnstone, 1994] have shown that
hard thresholding is asymptotically optimal in the minimax sense in the class of diagonal estimators,
and that the associated risk is all the smaller as the image representation is sparse. Informally, sparsity
implies that the signal is concentrated on a few large coefficients, whereas the white noise is uniformly
spread on the different components. Thus, a simple thresholding allows one to remove most of the
noise without degrading much the signal. Wavelet-based methods are typical of this approach: since
wavelet coefficients encode the variations of the image instead of each absolute value, piecewise smooth
images have a sparse representation in wavelet bases. Yet, wavelet bases do not take advantage of the
geometry of images: the large coefficients are spread along edges but this structure is not exploited
by wavelet decompositions. More sophisticated frames have been proposed to take advantage of this
property: curvelets [Starck et al., 2002], bandlets [Le Pennec and Mallat, 2005, Mallat and Peyré, 2007]
or contourlets [Do and Vetterli, 2005] among others.

Rather than considering a fixed dictionary, several methods consist in learning an adapted dictio-
nary on a database. Given an overcomplete dictionary, the Matching pursuit [Mallat and Zhang, 1993,
Bergeaud and Mallat, 1995] algorithm allows to find a selection of atoms which yields a representation
as sparse as possible of a family of signals. The Principal Component Analysis (PCA) allows to find a
basis which concentrates most of the energy of most signals in a database on the first vectors of this basis.
These tools and sparsity in general have helped produce many powerful denoising algorithms. In partic-
ular, the adaptation of these ideas to the use of patches in images in [Aharon et al., 2006] and its variant
using structured sparsity [Mairal et al., 2009] lead to state-of-the art performance in image denoising.

The boundary between these families of models is not as sharp as it may seem, and many algorithms
have an equivalent in another category. For instance:

• The asymptotic equivalence between morphological operators and PDEs is established in
[Lax, 1965] for erosions and dilations, and more generally in [Alvarez et al., 1993] (see
[Guichard et al., 2004] for a thorough exposition of the theory).

• Variational models often lead to PDEs, as their minimization is related to the flow of their gradient:
for instance, Andreu et al. [Andreu et al., 2001b] have studied the total variation flow in connection
with the ROF problem.

• The continuous limit of the Bayesian segmentation model [Geman and Geman, 1984] leads to the
Mumford-Shah functional [Mumford and Shah, 1989] (see [Chambolle, 2000]).

• Steidl et al. have proved that in dimension 1, the total variation denoising and wavelet shrinkage
are equivalent [Steidl et al., 2004].

• The bilateral filter is asymptotically equivalent to one step of the Perona Malik equation (see
[Durand and Dorsey, 2002, Buades et al., 2005]).
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Morphological Aspects of the TVL1 model

The first part of this thesis explores a similar connection between a variational problem and mathematical
morphology. It is devoted to the study of the TVL1 model, which consists, given f ∈ L1(R2), in solving:

min
u∈BV(R2)

∫
|Du|+ λ

∫
R2

|f(x)− u(x)|dx. (39)

This model was introduced by Alliney for one-dimensional signals [Alliney, 1992, Alliney, 1996,
Alliney, 1997]: the author proves that in this case, a recursive median filter allows to compute its mini-
mizers. The interest of the model for image processing is pointed out by Nikolova in [Nikolova, 2002]:
she shows that the non-smooth data fidelity term provides a better detection and removal of outliers than
smooth fidelity terms. As a result, the model is particularly well suited to remove impulse noise, and the
paper [Nikolova, 2004a] gives striking numerical illustrations of this fact.

In [Chan and Esedoglu, 2005] the model is studied in a continuous framework. Chan and Esedoglu
point out that although the similarity between ROF and TVL1 is striking, the model has its own interest-
ing properties. For instance, in the spirit of [Strong et al., 1996, Meyer, 2001] they compute the solution
of the problem when the input function f is the characteristic function of a disc: f = 1B(0,R). The
solution is:

u =


1B(0,R) if λ ≥ 2

R ,

c1B(0,R), ∀c ∈ [0, 1] and λ = 2
R ,

0 otherwise.
(40)

In other words, there is no loss of contrast contrary to ROF (see [Meyer, 2001]), and some objects
vanish suddenly depending on their scale. Following [Chambolle, 2004a, Alter et al., 2005a], where the
ROF model is connected to a family of geometric problems, Chan and Esedoglu notice that the energy
of the TVL1 model can be written as the sum of energies on level sets:

E(u) =
∫ +∞

−∞
Per {x, u(x) > µ}+ λ|{x, u(x) > µ}∆{x, f(x) > µ}|dµ, (41)

where Per X refers to the perimeter ofX ⊂ R2, |X| refers to its Lebesgue two-dimensional measure, and
X∆Y = (X \ Y )∪ (Y \X). This formula is of particular importance, since it confers on the model the
contrast invariance property. The same observation is made simultaneously by Darbon in [Darbon, 2005],
where a connection to mathematical morphology is drawn for the first time. It also allows Darbon and
Sigelle to propose a graph-cut based algorithm which has provided for many years the highest speed
to solve the TVL1 problem [Darbon and Sigelle, 2006] (until the work of Pock et al. [Pock et al., 2008]
who adapted the algorithm [Aujol et al., 2006] to GPUs). Let us also mention the work of Yin et al.
[Yin et al., 2007b] who have studied the monotonicity of the problem on level-sets as well as the contrast
invariance. In the literature, the TVL1 model or its variants have been applied to various problems:
impulse noise removal [Nikolova, 2004a, Koko and Jehan-Besson, 2010, Liu et al., 2010], segmentation
[Chan et al., 2006, Bresson et al., 2007] feature detection in biomedical imaging[Cunha et al., 2007], 3D
MRI registration [Chen et al., 2005], cDNA microarray data filtering [Yin et al., 2005], cartoon-texture
decomposition [Aujol et al., 2006, Yin et al., 2007a, Haddad, 2007], computation of the optical flow in
videos [Wedel et al., 2008a, Wedel et al., 2008b], shape analysis [Vixie et al., 2010]. . .

Our contribution is to study the geometric problem in depth so as to give more information on the
solutions of TVL1. After making the equivalence with the geometric problem precise, we characterize
the sets that suddenly vanish in the same way as the disc (40). Applying results from geometric measure
theory, [Ambrosio, 1997, Ambrosio and Paolini, 1998], we show that the boundary of the solution is
smooth and that its curvature is equal to −λ in the interior of the data F and +λ in its exterior (when it
coincides with the boundary of F , the curvature should be bounded by λ). Then we observe that when
the input set C is convex, the problem can be simplified as:

min
X⊂C

Per X − λ|X| (42)
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We deduce that the solutions of TVL1 are given by an opening of radius 1
λ , followed by a thresholding

on the ratio perimeter/area. More precisely, if we write C1/λ = O1/λC (where Or is defined in (32)),
we prove that:

• if
Per C1/λ

|C1/λ|
< λ, the solution is C1/λ,

• if
Per C1/λ

|C1/λ|
> λ, the solution is ∅,

• if
Per C1/λ

|C1/λ|
= λ, both C1/λ and ∅ are solutions.

Let us emphasize that this result relies to a large extent on the work of Alter, Caselles,
Chambolle [Alter et al., 2005a, Alter et al., 2005b] and more generally Bellettini, Novaga, Paolini
[Bellettini et al., 2001, Bellettini et al., 2002, Bellettini et al., 2005a]. In a few words, the study of cali-
brable sets, i.e. sets that evolve at constant speed by the total variation flow, shows that convex calibrable
sets are solutions of the following variational problem:

min
X⊂C

Per X − λC |X| with λC =
Per C
|C|

. (43)

Observing that the level sets Ft of the solution of the ROF problem:

min
u∈BV(R2)

∫
|Du|+ λ

2

∫
R2

(u(x)− 1C(x))2dx (44)

are solutions of the family of geometric problems:

min
X⊂C

Per X − λ(1− t)|X|, (45)

Alter et al. study the dependence on λ of this family of problems, and by approximation arguments,
they characterize by their curvature the sets C that are invariant by problem (42). We have used this
characterization in connection with a characterization by their curvature of openings in the plane to get
the result, but we could also have used the vector-field constructed in [Alter et al., 2005b] for the total
variation flow as a "calibration" (see chapter 2). As a by-product of the study of the total variation
flow, exact solutions of the ROF problem for data of the form 1C are given in[Alter et al., 2005b], and
openings are also involved (in a more complicated way).

In the case of TVL1, the class of functions for which the exact solutions are obtained is slightly
larger (quasi-convex functions instead of indicator functions of convex sets) than with ROF, but more
importantly, the link with openings is straightforward. This gives some insight on the observation of
Darbon [Darbon, 2005] that TVL1 is a morphological operator. Let us also mention that the result on
TVL1 and openings can be seen as a particular case of the general but difficult study of the TV + Lp

problems by Allard ([Allard, 2008], see also [Allard, 2007] and [Allard, 2009]), although we obtained it
independently. To illustrate it numerically, we have built an algorithm based on openings and the Fast
Level-Set Transform [Monasse and Guichard, 2000], which gives the exact solution in simple cases and
an approximate solution of TVL1 otherwise in a very competitive computing time (see Chapter 4).

Another contribution of this thesis is to interpret the behavior of the TVL1 model for the cartoon-
texture decomposition problem in light of mathematical morphology. We begin by comparing the decom-
positions provided by TVL1 with those provided by the TV+G model, the first proposed cartoon-texture
decomposition model [Meyer, 2001]. The fact that the TVL1 model performs well at this task has been
known since [Haddad, 2007, Yin et al., 2007a]. With the TV+G model, we notice that traces of edges
appear in the texture part, plus some sort of halo, which brings us to study this problem more in depth.

A common idea when dealing with norms that favor oscillations is that if an image is composed of
a cartoon part, say the indicator function of a smooth set, and an oscillating part, say a sine function,
the model will be able to decompose it since the total variation of smooth sets (resp. sine) is low (resp.
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high) and the G-norm of a sine (resp. smooth set) is low (resp. high). Yet, it is not trivial that the
decomposition will be perfect, and to our knowledge, no explicit example of a perfect decomposition has
ever been given. Using the radially symmetric framework of [Haddad, 2007] and the characterization
of the subdifferential of the G-norm established in Chapter 1, we prove that the indicator function of a
disc plus a (slightly perturbed) sine is perfectly decomposed by the TV+G model. The good news is, the
model does indeed what it is supposed to do, at least on one example. However, a careful examination
of the example shows the necessity that the texture does not vanish in the neighborhood of the boundary
of the disc. We explain why traces of edges and a halo may appear in more general images. In the case
of the indicator function of a convex set and with additional technical hypotheses on the texture part, we
show that a decomposition where the texture part vanishes in a neighborhood of the edges cannot be a
solution of the TV+G model. As a consequence, we believe that the apparition of edges in the texture
part is an intrinsic property of TV+G decompositions.

Having studied the properties of TV+G decompositions, we then turn again to the TVL1 model. We
show a similar example of a perfect decomposition of an indicator function and a sine. The limitations
exhibited for the TV+G model do not hold with the TVL1 model: the cartoon part and the texture part
may be totally independent. Eventually, to explain the good behavior of the model in cartoon-texture
decomposition, we relate it to the granulometries used in mathematical morphology: whereas the TV-G
model relies on the notion of frequency, the TVL1 model works with the notion of scale.

As the study of the "stationary problem" has given some intuition on the effect on the fidelity pa-
rameter λ, we study a model where λ varies spatially, as in [Gilboa et al., 2006] for the ROF model.
Tuning locally this parameter allows to preserve textured areas as in [Gilboa et al., 2006] or to remove
impulse noise as in [Koko and Jehan-Besson, 2010] without modifying the pixels that are not affected
by the noise. We first examine the model from a theoretical point of view: we essentially show that
the model behaves as one would intuitively expect. The variational problem is equivalent to a fam-
ily of geometric problems, the value of λ controls the curvature of the solution, and by choosing λ
large enough in some regions, it is possible to preserve very irregular shapes, even those with cor-
ners. Then, we illustrate the use of the adaptive TVL1 model in the context of impulse noise removal.
Most methods to remove impulse noise are divided in two steps [Chen and Wu, 2001a, Pok et al., 2003,
Crnojevic et al., 2004, Chan et al., 2004, Dong et al., 2007]: a detection phase and a denoising phase.
We recall the principle of a few noise detectors, namely the Adaptive Center-Weighted median Filter
(ACWMF) [Chen and Wu, 2001a], Rank Ordered Absolute differences (ROAD) [Garnett et al., 2005]
and Rank Ordered Logarithmic Differences (ROLD) [Dong et al., 2007] before showing the result of
the denoising using adaptive TVL1. The performance is comparable to state-of-the-art methods like
[Chan et al., 2004] but not clearly better. Yet, one advantage of the framework is its simplicity. In fact,
most of the difficulty of the impulse noise removal comes from the noise detection. Once this step is
done properly most denoising methods provide similar results.

The end of this first part is devoted to the justification of the empirical observations of Chapter 4,
namely that the solution of TVL1 when the total variation is computed using the `1 norm (instead of `2)
of the gradient (e.g. in graph-cut based methods) is given by an opening where balls are replaced with
squares. In fact, we show that for a given crystalline anisotropy, the solution is given by an opening with
the Wulff shape followed by a test on the ratio perimeter/area. This result is a direct consequence of the
work of Belletini et al. [Bellettini et al., 2001].

Non Local Methods for Image Restoration

The second part of this thesis is devoted to the Non-Local Means filter [Buades et al., 2005] from which
originate some of the best denoising methods. We assume that we want to recover the image f which has
been contaminated by additive Gaussian white noise:

u(x) = f(x) + ε(x) where ε(x) ∼ N (0, σ2) i.i.d. (46)
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A simple method to recover f(x) is to average N independent identically distributed (i.i.d.) observations
of the noisy pixel {ui(x), i = 1 . . . N}. Thus one gets an unbiased estimate of f(x) with variance:

Var

(
f(x)− 1

N

N∑
i=1

ui(x)

)
=
σ2

N
. (47)

In practice, only one realization of u(x) is observed. A common solution is to assume that the image
does not vary much in a neighborhood of x (at least in one direction) so as to average the intensity values
in this neighborhood. This is roughly what most of the methods exposed above do. The limitation of
this method is clear: one usually considers only small neighborhoods so that the values f(y) do not vary
much, and the resulting reduction of variance is therefore limited.

The beautiful idea of Buades et al. is to take advantage of self-similarities all across the image:
when averaging patterns that are repeated in the image, one may reduce drastically the variance of the
noise without blurring the details. These similarities may appear at large distances, hence the term
"non-local" to qualify the algorithm. In fact, a crucial ingredient for this method is the comparison of a
neighborhood of x with the one of y instead of simply comparing their intensity value. These neighbor-
hoods, usually square, are called patches, and they have quickly been adopted by the image processing
community since the work of Efros and Leung in texture synthesis [Efros and Leung, 1999]. From the
breakthrough of the Non-Local Means (or the simultaneous UINTA filter [Awate and Whitaker, 2006]),
many variants or studies have been proposed: some authors give a variational interpretation of the
filter [Brox and Cremers, 2007, Kindermann et al., 2005, Buades et al., 2006, Gilboa and Osher, 2007,
Gilboa and Osher, 2008, Azzabou et al., 2007c], which leads them to iterate the algorithm. Other au-
thors have focussed on the notion of patch, and they interpret the algorithm as diffusion in the patch
space [Szlam, 2006, Tschumperlé and Brun, 2009, Peyré, 2008, Peyré, 2009, Singer et al., 2009]: im-
age denoising comes back to the heat equation! As the original Non-Local Means filter is compu-
tationally expensive, its fast computation is a challenging problem. An approximation of the Non-
Local Means can be quickly computed using preselection techniques [Mahmoudi and Sapiro, 2005,
Bilcu and Vehvilainen, 2008], or a cluster tree to compute similar patches [Brox et al., 2008], or a spatial
subsampling of the patch distances [Pang et al., 2009]. Fast and exact computations are proposed using
the Fast Fourier Transform [Wang et al., 2006], or summed area tables [Darbon et al., 2008].

Let us fix the notations. The output of the filter is:

NLu(x) =

∑
y∈Ω e

− ‖U(x)−U(y)‖2

2h2 u(y)∑
y′∈Ω e

− ‖U(x)−U(y′)‖2
2h2

. (48)

where Ω is the whole image (often replaced by a search window around x), U(x) denotes the pixel values
in a square patch of size s× s around x, and the distance is the normalized Euclidean distance:

‖U(x)− U(y)‖2 =
1
s2

∑
|j|≤ s−1

2

(u(x+ j)− u(y + j))2.

The parameter h > 0 is a bandwidth parameter which determines the relative importance of pixels in the
mean, depending on their similarity.

As various improvements of the Non-Local Means have been proposed, the limitations of the fil-
ter have progressively been understood by the community: the selection of patches is not optimal,
and Mahmoudi and Sapiro [Mahmoudi and Sapiro, 2005] have proposed to add gradient information
in the selection of the pixels. Another way to make the selection of patches more relevant is to use
a principal component analysis as proposed by Azzabou et al. [Azzabou et al., 2007a] or Tasdizen
[Tasdizen, 2009] (especially if the noise intensity is strong). The influence of the search window on
the quality of the result is highlighted by Kervrann and Boulanger in [Kervrann and Boulanger, 2006]
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where they choose locally its size depending on a bias-variance trade-off. The choice of the ex-
ponential function for the weights is questioned by Goossens et al. in [Goossens et al., 2008], and
the too large importance given to the pixel x in its own estimation is discussed in [Salmon, 2010b].
Moreover, the Non-Local Means fail when there are no similar patches and several authors have pro-
posed tricks to solve this problem [Gilboa and Osher, 2007, Brox and Cremers, 2007, Brox et al., 2008,
Louchet and Moisan, 2010, Salmon and Strozecki, 2010a].

All these pieces of information are rather scattered in the literature, and we propose in Chapter 8
a "guided tour" of the Non-Local Means which highlights some of these properties. The principle of
this tour is to study very simple models to give some intuition to the reader who is not familiar with the
Non-Local Means. In particular we illustrate that:

• A large patch size tends to blur objects,

• Large patches are more robust to noise,

• There is a loss of contrast depending on the occurrence of each pattern,

• The less contrasted the details, the more they are degraded, and this relation is highly non linear,

• Even periodic images are altered,

• The search window has an impact on the visual quality of the result,

• A weight with compact support instead of exponential allows to reduce the bias.

If one decomposes the error of the filter as the sum of a bias and variance term, the bias term is connected
to some regularity of images that we try to characterize in the patch space.

All those considerations advocate for a local choice of the parameters, since the exhibited regular-
ity is highly dependent on the position in the image. We first build an oracle which is a Non-Local
Means with uniform weights (similar to the one in [Brox and Cremers, 2007] except that the number of
pixels is chosen using the noise-free image): it shows the ideal behavior of a filter with local choice
of the bandwidth h. Surprisingly, the distinction between textures and smooth areas is not the promi-
nent criterion in the behavior of the oracle. Indeed, the most important variation depends on whether
the pixel belongs to a patch that intersects an edge or not. Patches that are close to edges or details
with high contrast usually have few similar copies, so that the Non-Local Means leave them with a
noisy halo. The oracle forces a large bandwidth to reduce this halo, and so should a practical algo-
rithm with local choice of the bandwidth. Then we build such a practical algorithm, relying on Stein’s
Unbiased Risk Estimate (SURE)[Stein, 1981], first proposed in the context of the Non-Local Means in
[Van De Ville and Kocher, 2009]. Since this estimator of the risk is not robust when used pixel-wise,
we propose to regularize the risk by a local average, and then to keep the value of the bandwidth that
minimizes the regularized estimate. A practical algorithm is given to perform this in reasonable time,
and many experiments are shown. The procedure allows to reduce the halo near edges, and it preserves
details with little contrast much better than the regular Non-Local Means. Yet, the decision is a bit brutal,
and when the estimation of the risk is flawed, little spots of noise may be left, like with the global Non-
Local Means. Inspired by the work [Salmon and Le Pennec, 2009b], we use an Exponentially Weighted
Aggregation (EWA) to make a local convex combination of the filters with various bandwidth in function
of their estimated risk. This procedure preserves textures much better than the previous method, does
not suffer from the noisy halo and does not leave any spot of noise. The produced images look slightly
noisier, but more pleasant. The PSNR is a little below the one of the previous method, but the visual
result is worth it.

Another variant of the Non-Local Means is proposed in the last chapter, which is the outcome of a
collaboration with Joseph Salmon and Charles Deledalle. The purpose of this algorithm is to remove
the rare patch artifact, namely a noise halo which appears along contrasted edges or details. The idea
stems from the work of Salmon and Strozecki [Salmon and Strozecki, 2010b], where it is proposed to
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shift patches in order to find similar copies near edges. Here, we push this idea further by replacing
shifted patches with arbitrary shapes. The idea is to use shapes that can fit in narrow regions so as to find
a maximal number of similar pixels. We propose an algorithm based on the Fast-Fourier Transform to
compute the result of the Non-Local Means with an arbitrary patch shape, regardless of the size of the
shape.

Using a fixed dictionary of shapes, we obtain as many different estimators as the number of shapes.
As in the previous chapter, keeping only the estimator with the smallest estimate of the risk is too brutal,
so we aggregate the results using the Weighted Average based on Variance [Salmon and Strozecki, 2010b]
or the Exponentially Weighted Aggregation [Leung and Barron, 2006]. The resulting algorithm is fast,
and it provides very neat images.
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Chapter description

Part I: Morphological Aspects of the TVL1 Model

Chapter 1: Notations and Preliminaries. The aim of this chapter is to recall the basic properties of
functions of bounded variations, together with an extension of Green’s formula due to [Anzellotti, 1983]
which plays a crucial role in this thesis. The subdifferential of convex l.s.c. positive homogeneous func-
tions is characterized, which will be useful in the study of the TVL1 and the TV+G models. Eventually
a short introduction to the Cheeger problem and calibrable sets is given.

Chapter 2: How to study the TVL1 problem? This chapter summarizes the different approaches
used in the literature: the characterization using the G-norm in [Kindermann et al., 2006], the dual prob-
lem in [Haddad, 2007], the flat norm in [Morgan and Vixie, 2007], and a method inspired from cali-
brations of geometric measure theory exposed in this chapter. We show that all these methods can be
interpreted as the Euler-Lagrange equation for the TVL1 functional. The "method of calibrations" ex-
plained here is in fact related to the work of Alter, Bellettini, Caselles, Chambolle, Novaga and Paolini. It
consists in using the vectorfield constructed in [Alter et al., 2005b] for the Total Variation Flow to show
that a function is optimal for TVL1. Once the vectorfield is built, the proof is straightforward.

Chapter 3: The TVL1 model: a geometric point of view. The TVL1 problem may be studied
using Cavalieri’s principle, by decomposing an image into its level sets. From a functional problem, we
are led to study a family of geometric problems. We propose a proof in the continuous framework of this
equivalence noticed for TVL1 in [Chan and Esedoglu, 2005, Darbon, 2005]. This equivalence makes the
TVL1 model a contrast invariant filter. In fact, as noted in [Darbon, 2005], TVL1 is a morphological
operator.

Instead of studying the functional problem, we focus on the geometric problem. Using very simple
arguments, we show that the sets that suddenly vanish, like the disc [Chan and Esedoglu, 2005], are
necessarily Cheeger in themselves, and if the set is convex, this condition is sufficient. Moreover, general
calibrable sets suddenly vanish.

The geometric approach is all the more fruitful as it allows to use powerful theorems from geometric
measure theory. The level lines are smooth and their curvature is bounded by λ. In case the input set is
convex, the energy can be reformulated by noticing that the solution will necessarily be inside the input
set. Relying on the results in [Andreu-Vaillo et al., 2002, Alter et al., 2005a] for the total variation flow
and the characterization of convex calibrable sets, we prove that the solution of the geometric problem is
given by an opening of radius 1/λ, and a test on the ratio perimeter/area.

This leads us to discuss the link between mathematical morphology and the TVL1 problem. In the
non-convex case, only a bound on the solutions is obtained, but "reasonable candidates" for the solution
of TVL1 are proposed using Alternate Sequential Filters. The opportunity of such a choice is validated
empirically in Chapter 4.

Chapter 4: Algorithms and numerical experiments. The aim of this chapter is to support the
theoretical conclusions of Chapter 3 with numerical experiments. We first recall several classical methods
to solve the TVL1 problem. Then, we propose two algorithms to solve the TVL1 problem. The first one
is naive and slow: it consists in decomposing an image in performing an alternate sequential filter and
then threshold the connected components of each level set. The second one consists in performing the
same tasks using the tree of shapes and the Fast Level Set Transform [Monasse and Guichard, 2000].
This leads to a fast algorithm, comparable to [Darbon and Sigelle, 2006]. The numerical experiments on
binary and natural images show that the proposed algorithms provide results that are very close to the
real solutions of TVL1 (provided by gradient descent for instance).

To compare our method with an exact minimization of TVL1 which satisfies the coarea formula, we
use the Darbon-Sigelle algorithm [Darbon and Sigelle, 2006]. This algorithm is based on an anisotropic
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scheme for the total variation. A remarkable property is that if we replace in our algorithm openings
with balls with openings with squares (and the associated computation of the perimeter), we also obtain
results that are very close to the TVL1 model with anisotropic total variation! This suggests that the
property is still true for anisotropic perimeters, which will be investigated in Chapter 7.

Chapter 5: Cartoon, Textures and Granulometries. The connection with mathematical morphol-
ogy drawn in Chapters 3 and 4 for the TVL1 model allows us to interpret its behavior in the cartoon-
texture decomposition problem. First, we recall the principle of such decompositions, and we show
numerical experiments comparing the results using TVL1 with those provided by the TV+G model, the
first proposed cartoon-texture decomposition model [Meyer, 2001]. With the TV+G model, we notice
that traces of edges appear in the texture part, plus some sort of halo, which brings us to study this
problem in detail.

Using the radially symmetric framework of [Haddad, 2007] and the characterization of the subdif-
ferential of the G-norm established in Chapter 1, we prove that the indicator function of a disc plus a
(slightly perturbed) sine is perfectly decomposed by the TV+G model. Incidentally, we notice that in
this example the texture cannot vanish in the neighborhood of the boundary of the disc. We explain why
traces of edges and a halo may appear in more general images. In the case of the indicator function of
a convex set and with additional technical hypotheses on the texture part, we show that a decomposition
where the texture part vanishes in a neighborhood of the edges cannot be a solution of the TV+G model.

Having studied the properties of the TV+G model, we then turn again to the TVL1 model. Using the
Euler-Lagrange equation, we show a similar example of a perfect decomposition of an indicator function
and a sine. We observe that the limitations exhibited for the TV+G model do not hold with the TVL1
model. Eventually, to explain the good behavior of the model for cartoon-texture decomposition, we
relate it to the granulometries used in mathematical morphology: whereas the TV-G model relies on the
notion of frequency, the TVL1 model works with the notion of scale.

Chapter 6: Spatially adaptive TVL1. From the study of the "stationary" problem in the previous
chapters, we have understood the main effects of the fidelity parameter λ. In this chapter we use this
insight to locally tune the value of λ in function of the image as in [Gilboa et al., 2006], or to remove
impulse noise as in [Koko and Jehan-Besson, 2010]. The first part of the chapter is devoted to the theo-
retical study of the TVL1 model where λ varies locally. It essentially shows that the model behaves as
one would expect intuitively: it is equivalent to a family of geometric problems, the value of λ controls
the curvature of the solution, and by choosing λ large enough in some regions, it is possible to preserve
very irregular shapes, even those with corners.

The second part illustrates the use of the adaptive TVL1 model in the context of impulse noise re-
moval. Most methods to remove impulse noise are divided in two steps: a detection phase and a denoising
phase. We recall the principle of a few noise detectors before showing the result of the denoising using
the adaptive TVL1. The results are comparable to the most efficient methods like [Chan et al., 2004] but
not clearly better.

Chapter 7: Extension to the anisotropic case. The aim of this short chapter is to explain the em-
pirical observations of Chapter 4 regarding the anisotropic total variation, e.g. when

∫
|Du|2 is replaced

with
∫
|Du|1. In other words, we show that the solution of the geometric problem for a convex set is

given by an opening with a square (instead of a disc), followed by a thresholding on the ratio (anisotropic)
perimeter/area. This follows essentially from a result on calibrable facets in [Bellettini et al., 2001].

The chapter begins with the definition of the anisotropic total variation. Some standard properties
are recalled. Then, we show that all the arguments of Chapter 3 still apply, and that the solution of
TVL1 with an anisotropic total variation is given by an opening with the Wulff shape, followed by a
thresholding. The result holds for any crystalline total variation.
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Part II: Non-local Methods for Image Restoration

Chapter 8: Introduction to the Non Local Means. This chapter is an introduction to the Non-
Local Means filter [Buades et al., 2005]. After a brief review of its history and of related filters, we
propose the reader a "guided tour" of the Non-Local Means. To give more insight on the filter, we
describe the effect of each parameter with the help of three toy examples for which we give a closed-
form expression for the output of the filter. We illustrate the apparition of bias, even on periodic signals,
depending on the patch size and on the search window, or the kernel of the weights. These examples
give concrete illustrations of various empirical observations made in the literature, and the closed-form
expressions make them independent of the experimental setting (parameters of the algorithm, realization
of the noise...). In particular, we show that the use of weights with compact support reduces the influence
of the search window.

To study the apparition of bias with the Non-Local Means and the associated notion of regularity,
we make a brief excursion in the patch space, inspired by [Peyré, 2009, Tschumperlé and Brun, 2009,
Singer et al., 2009]. We do not assume that images lie on a manifold in the patch space, but we emphasize
the importance of a weighted moment of the distribution of patches. This basic point of view is used to
explain the behavior of the filter when the search window or the patch size vary.

To sum up, this chapter exposes the drawbacks and limitations of the Non-Local Means. It also
shows that in most cases, an adequate choice of a parameter like the bandwidth or the patch size allows
to limit the impact of the artifact.

Chapter 9: Spatially adaptive choice of the bandwidth h. We focus on designing a Non-Local
Means filter with a local choice of the bandwidth, in order to circumvent the artifacts exhibited in Chap-
ter 8. First, we build an oracle based on the bias variance trade-off which tells us the ideal behavior of
such a filter. In fact, the distinction between textures and smooth areas is not the prominent criterion in
the behavior of the oracle. Indeed, the most important variation depends on whether the pixel belongs
to a patch that intersects an edge or not. Patches that are close to edges or details with high contrast
usually have few similar copies, so that the Non-Local Means leave them with a noisy halo. The oracle
forces a large bandwidth to reduce this halo, and so should a practical algorithm with local choice of the
bandwidth.

Then we build such a practical algorithm, relying on Stein’s Unbiased Risk Es-
timate (SURE)[Stein, 1981], first proposed in the context of the Non-Local Means in
[Van De Ville and Kocher, 2009]. Since this estimator of the risk is not robust when used pixel-
wise, we propose to regularize the risk by a local average, and then to keep the value of the bandwidth
that minimizes the regularized estimate. A practical algorithm is given to perform this in reasonable
time, and many experiments are shown. The procedure allows to reduce the halo near edges, and it
preserves details with little contrast much better than the regular Non-Local Means. Yet, the decision is
a bit brutal, and when the estimation of the risk is sometimes flawed, little spots of noise may be left,
like with the global Non-Local Means. Inspired from the work [Salmon and Le Pennec, 2009b], we use
an Exponentially Weighted Aggregation (EWA) to make a local convex combination of the filters with
various bandwidth in function of their estimated risk. This procedure preserves the textures much better
than the previous method, does not suffer from the noisy halo, and does not leave any spot of noise. The
produced images look slightly noisier, but more pleasant, despite the fact that the PSNR is a little below
the one of the previous method.

Chapter 10: From patches to shapes: NLM-SAP. This chapter relates a joint work with Charles
Deledalle and Joseph Salmon. It is an attempt to reduce the noisy halo in the Non-Local Means. The
idea stems from the work of Salmon and Strozecki [Salmon and Strozecki, 2010b], where it is proposed
to shift patches in order to find similar copies near edges. In this chapter, we push this idea further
by replacing shifted patches with arbitrary shapes. The point is to use shapes that are adapted to the
local geometry and that can fit in narrow regions. We provide an algorithm based on the Fast-Fourier
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Transform to compute the result of the Non-Local Means with an arbitrary patch shape, regardless of the
size of the shape.

The question is then how to choose the shape at each pixel. We use a fixed dictionary of shapes,
and at each pixel we must therefore decide what to do with the different estimators. As in the previous
chapter, keeping only the estimator with the smallest SURE is too brutal, so we aggregate the results using
the Weighted Average based on Variance [Salmon and Strozecki, 2010b] or the Exponentially Weighted
Aggregation [Leung and Barron, 2006]. The resulting algorithm is fast, and it provides a good visual
quality, even though in terms of PSNR it falls behind [Dabov et al., 2007, Goossens et al., 2008].
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Publications

The material covered by Chapters 3, 4 and a part of Chapter 6 has been published in the SIAM Jour-
nal on Multiscale Modelling and Simulation (MMS) [Duval et al., 2009]. It was presented at the SIAM
Conference on Imaging Sciences 2010. A tiny part (one page) of Chapter 5 is extracted from a paper pub-
lished in the Journal of Mathematical Imaging and Vision (JMIV) [Duval et al., 2010]. A paper including
approximately Chapters 8 and 9 has been accepted by the SIAM Journal of Imaging Science (SIIMS)
[Duval et al., 2011]. The material contained in Chapter 10 is the subject of a paper jointly written with
Charles Deledalle and Joseph Salmon which has been accepted by the Journal of Mathematical Imaging
and Vision (JMIV) [Deledalle et al., 2011]. It will be presented at the Conference on Scale-Space and
Variational Methods (SSVM) 2011.
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Chapter 1

Notations and Preliminaries

1.1 Functions of bounded variation and the Gauss-Green formula

1.1.1 Functions of bounded variation

In this section, we recall some definitions and properties about functions of bounded variation. All con-
sidered functions will be defined on the plane and we shall denote by L1 the space of integrable functions
on R2. For more details on functions with bounded variation, we refer the reader to [Ambrosio et al., 2000]
or [Ambrosio, 1997].

Definition 1.1.1. A function u ∈ L1 is said to be of bounded variation if its distributional gradient is a
vector valued Radon measure with finite total variation. The total variation ofDu on an open set Ω ⊂ R2

is equal to:

|Du|(Ω) = sup
{∫

R2

udiv ϕ/ ϕ ∈ C1
c (Ω,R2),∀x ∈ Ω, |ϕ(x)| ≤ 1

}
(1.1)

(where for a vector |v| = (v1, v2) ∈ R2, we set |v|2 = v2
1 + v2

2). When Ω = R2, this quantity is called
the total variation of u, and will be denoted by

∫
|Du| (or sometimes J(u)).

The total variation of a Borel set B ⊂ R2 is defined as inf{|Du|(A), A open , B ⊂ A}. The total
variation is lower semi-continuous with respect to L1 convergence.

If u = 1E is the characteristic function of a measurable set E ⊂ R2 and has bounded variation, we
say that E is a set of finite perimeter, and we write Per E = |D1E |(R2), or Per (E,Ω) = |D1E |(Ω).
Observe that Per (E,Ω) = Per (R2 \ E,Ω).

The coarea formula below provides a link between the total variation of a function and the perimeter
of its level sets.

Theorem 1.1.2 (Coarea Formula). Let u ∈ BV . Then for any open set Ω ⊂ R2:

|Du|(Ω) =
∫ +∞

−∞
Per ({x ∈ Ω, u(x) > t},Ω) dt. (1.2)

For u ∈ L1(Ω), if the right member of the equation is finite, then u ∈ BV (Ω) and the last equality holds.

If E is a set of finite perimeter, its reduced boundary ∂∗E is defined as the set of all x ∈ Spt D1E

such that the limit ν(x) := limr→0+−D1E(B(x,r))
|D1E |(B(x,r) exists with |ν(x)| = 1. The vector ν(x) is called a

generalized exterior normal of E at x ∈ ∂∗E. The reduced boundary is H1 countably rectifiable with
finite one-dimensional Hausdorff measureH1, and |D1E | coincides with the restriction ofH1 to ∂∗E.

The following property is crucial when studying monotonicity properties of minimization problems
with the total variation:
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Proposition 1.1.3 (Submodularity of the perimeter). Let E,F ⊂ R2 be measurable sets, and Ω ⊂ R2

be an open set. Then:

Per (E ∩ F,Ω) + Per (E ∪ F,Ω) ≤ Per (E,Ω) + Per (F,Ω) . (1.3)

In this thesis, we only consider the case where the dimension of the ambient space isN = 2. We thus
have: BV (Ω) ⊂ L2(Ω) (with continuous embedding). This is ensured by the isoperimetric inequality,
which is also fundamental for the Cheeger problem.

Proposition 1.1.4 (Isoperimetric inequality). Let f ∈ BV(R2). Then f ∈ L2 and:

‖f‖2 ≤
1

2
√
π

∫
|Df |. (1.4)

If E is a set of finite perimeter, then either E or R2 \ E has finite Lebesgue measure and:

min
(√
|E|,

√
|R2 \ E|

)
≤ 1

2
√
π

Per E. (1.5)

There is equality if and only if E or R2 \ E is a disc.

1.1.2 Precise representative of a Lebesgue-measurable set

If E ⊂ R2 is a Lebesgue measurable set, and x ∈ R2, the upper and lower densities of E at x are
respectively defined by:

D(x,E) := lim sup
r→0

|B(x, r) ∩ E|
|B(x, r)|

, D(x,E) := lim inf
r→0

|B(x, r) ∩ E|
|B(x, r)|

.

If both quantities are equal, the common value D(x,E) will be called the density of E at x. Lebesgue’s
density theorem states that the density of any measurable set is 1 at almost every point of this set. As a
consequence, the set of points x for which D(x,E) = 1 (which does not depend of the chosen represen-
tative E) is itself a representative of E. In this thesis, the precise representative we choose for E is the
set of points x ∈ R2 where E has density 1.

It is clear that ifE′ is in the Lebesgue class of equivalence ofE, then ∂E ⊂ ∂E′. Therefore the topo-
logical boundary of E is the smallest (in the inclusion sense) topological boundary of the representatives
of E. This definition is coherent with the notion of boundary used in [Ambrosio, 1994].

Notice that we always have ∂∗E ⊂ ∂E, but in general the inclusion is strict (see [Ambrosio, 1994]
for a counterexample).

1.1.3 An extension of Green’s formula

In this thesis, the integration by parts formulae play a crucial role, so that we need a version of the
Green theorem with as few assumptions as possible on the smoothness of the considered functions
and vectorfields. Following the framework of [Andreu-Vaillo et al., 2002], we rely on the results of
[Anzellotti, 1983].

Let Ω ⊂ R2 be an open subset, and for p ∈ [1,+∞],

Xp(Ω) := {z ∈ L∞(Ω,R2), div z ∈ Lp(Ω)}. (1.6)

If z ∈ Xp(Ω) and w ∈ Lq(Ω) ∩ BV(Ω) with p−1 + q−1 = 1, we define the functional (z,Dw) :
C∞c (Ω)→ R by the formula:

〈(z,Dw), ϕ〉 := −
∫

Ω
wϕdiv zdx−

∫
Ω
wz · ∇ϕdx. (1.7)
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In fact, (z,Dw) is a Radon measure in Ω, and for all Borel set B ⊂ Ω:∣∣∣∣∫
B

(z,Dw)
∣∣∣∣ ≤ ∫

B
|(z,Dw)| ≤ ‖z‖∞

∫
B
|Dw|. (1.8)

Moreover, if w ∈ Lq(Ω) ∩W 1,1,
∫
Ω(z,Dw) =

∫
Ω z · ∇wdx.

The following theorem is proved in [Anzellotti, 1983]:

Theorem 1.1.5. Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary. Let u ∈ BV(Ω)∩Lq(Ω) and
z ∈ Xp(Ω). Then there exists a function [z · νΩ] ∈ L∞(∂Ω) such that ‖[z · νΩ]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω,R2),
and ∫

Ω
udiv zdx+

∫
Ω
(z,Du) =

∫
∂Ω

[z · νΩ]udH1.

When Ω = R2, we have the following formula [Anzellotti, 1983], for z ∈ Xp(R2) andw ∈ Lq(R2)∩
BV(R2): ∫

R2

wdiv zdx+
∫

R2

(z,Dw) = 0. (1.9)

1.2 Subdifferential of a convex function

In this section, V is a normed space and V ∗ is its topological dual space. We recall here some basic facts
of convex analysis. We refer the reader to [Ekeland and Temam, 1999] for more details. The goal of this
section is to characterize the subdifferential of the total variation as in [Andreu-Vaillo et al., 2002].

1.2.1 Convex functions and the Legendre-Fenchel transform

Definition 1.2.1. Let F : V → R, we say that:

• F is convex if for all t ∈ [0, 1], F (tu + (1 − t)v) ≤ tF (u) + (1 − t)F (v), whenever the right
hand-side is defined.

• F is proper convex if it is convex and F nowhere takes the value −∞ and is not identically equal
to +∞.

• F ∈ Γ(V ) if F is the pointwise supremum of continuous affine functions.

In fact, the functions in Γ(V ) are almost the convex lower semi-continuous functions:

Proposition 1.2.2. The following properties are equivalent:

(i) F ∈ Γ(V ).

(ii) F is convex lower semi-continuous (l.s.c.) and if F takes the value −∞ then F is identically equal
to −∞.

In the study of subdifferentials, the Legendre-Fenchel transform will be helpful.

Definition 1.2.3 (Legendre-Fenchel transform). Let F : V → R. The conjugate function of F is
F ∗ : V ∗ → R defined by:

∀p ∈ V ∗, F ∗(p) = sup
u∈V
{〈u, p〉 − F (u)}. (1.10)

A straightforward consequence of that definition is that F ∗ ∈ Γ(V ∗) (it is therefore convex l.s.c.)
and the following inequality, called Fenchel’s inequality, holds:

〈u, p〉 ≤ F (u) + F ∗(p), (1.11)

for all u ∈ V,∀p ∈ V ∗ such that the right hand-side is defined.
An interesting property is that functions of Γ(V ) may be written as their biconjugate:

Proposition 1.2.4. If F ∈ Γ(V ), then F = F ∗∗.
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1.2.2 Subdifferential of a convex l.s.c. function

Definition 1.2.5 (Subdifferential of F ). Let u ∈ V and p ∈ V ∗. We say that p ∈ ∂F (u) if F (u) is finite
and:

∀v ∈ V, F (v) ≥ F (u) + 〈p, v − u〉. (1.12)

Notice that the subdifferential of a convex function is a (possibly empty) closed convex set.
The interest of the subdifferential in variational problems comes from Fermat’s rule (or Euler-

Lagrange equation):
F (u) = min

v∈V
F (v) if and only if 0 ∈ ∂F (u). (1.13)

As F will often be the sum of two functionals, it is useful to know the subdifferential of a sum:

Proposition 1.2.6. Let G,H : V 7→ R ∪ +∞ be two convex, l.s.c., proper functions. If dom G ∩
int dom H 6= ∅, then:

∂(G+H) = ∂G+ ∂H. (1.14)

Moreover, the link between the subdifferential and the Legendre-Fenchel transform is described in
the next proposition:

Proposition 1.2.7. Let F : V → R, and u ∈ V . Then p ∈ ∂F (u) if and only if 〈u, p〉 = F (u) +F ∗(p).

The above condition being symmetric in u and p, we see that, for F ∈ Γ(V ), p ∈ ∂F (u) if and only
if u ∈ ∂F ∗(p).

1.2.3 Convex positively homogeneous functions

Let us consider a set A ⊂ V ∗. Its support function, SA : V → R∪{+∞}, u 7→ supp∈A〈u, p〉 is convex,
l.s.c and positively homogeneous, i.e.:

∀u ∈ V,∀t > 0, SA(tu) = tSA(u). (1.15)

Notice that A and its closed convex hull coA have the same support function.
Conversely, any function F ∈ Γ(V ) which is positively homogeneous can be written as the support

function of some closed convex setA ⊂ V ∗. Indeed, let us defineA = {p ∈ V ∗, ∀u ∈ V, 〈p, u〉 ≤ F (u)}
and observe that:

F ∗(p) = sup
u∈V

sup
t>0

(〈p, tu〉 − F (tu)) (1.16)

= sup
u∈V

sup
t>0

t (〈p, u〉 − F (u)) by homogeneity, (1.17)

= χA(p), with χA(p) =
{

0 if p ∈ A,
+∞ otherwise.

(1.18)

χA is called the indicator function of A. Since F = F ∗∗, we see that F is the support function of A.
The duality between indicator functions and support functions allows to compute the subdifferential

of a convex l.s.c. positively homogeneous function. Indeed, by Proposition 1.2.7, p ∈ ∂F (u) if and only
if 〈u, p〉 = F (u) + F ∗(p). Let A ⊂ V ∗ be a closed convex set such that F is the support function of A,
then F ∗ = χA. As a result,

p ∈ ∂F if and only if p ∈ A and 〈u, p〉 = F (u). (1.19)
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1.2.4 Applications

1.2.4.1 Subdifferential of the L1-norm

Let V = L1, so that V ∗ = L∞. Since the L1 norm can be written as:

∀u ∈ L1, ‖u‖1 = sup{
∫

R2

u(x)p(x)dx, p ∈ L∞, ‖p‖∞ ≤ 1}, (1.20)

we see that it is the support function of the set A := {p ∈ L∞, ‖p‖∞ ≤ 1} ⊂ V ∗ which is obviously
closed and convex. As a consequence, if F = ‖ · ‖1,

p ∈ ∂F (u) if and only if p ∈ L∞, ‖p‖∞ ≤ 1 and
∫

R2

p(x)u(x)dx =
∫

R2

|u(x)|dx. (1.21)

Roughly speaking, the subdifferential of the L1-norm at u is the sign of u.

1.2.4.2 Subdifferential of the total variation

Let V = L1, so that V ∗ = L∞. The total variation may be written as:

∀u ∈ L1,

∫
|Du| = sup{

∫
R2

u(x)div z(x), z ∈ X∞, ‖z‖∞ ≤ 1}, (1.22)

where X∞ = {z ∈ L∞(R2,R2), div z ∈ L∞}. As a consequence, the total variation is the support
function of A := {div z, z ∈ X∞, ‖z‖∞ ≤ 1} ⊂ L∞.

The fact that A is convex is clear. To see that A is closed, consider a sequence of elements pn =
div zn ∈ A that converges to p ∈ L∞. Since {z ∈ L∞, ‖z‖∞ ≤ 1} is compact for the weak-* topology,
we can extract a subsequence zn′ which weakly-* converges to some z ∈ L∞ with ‖z‖∞ ≤ 1. Then in
the distribution sense div z = p, so that p ∈ A.

As a result, if F : u 7→
∫
|Du|:

p ∈ ∂F (u) if and only if p ∈ L∞, ∃z ∈ L∞, ‖z‖∞ ≤ 1, p = div z and
∫

R2

div z(x)u(x)dx =
∫
|Du|.

(1.23)
The last equality may be rewritten:

∫
R2(z,Du) =

∫
|Du|. This means that z is orthogonal to the

level lines of u.

1.2.4.3 Subdifferential of the G-norm

Let V = L2, so that V ∗ = L2. The G-norm can be defined as :

‖u‖G = sup{
∫

R2

v(x)u(x)dx, v ∈ BV(R2),
∫
|Dv| ≤ 1}. (1.24)

It is therefore the support function of A := {v ∈ BV(R2),
∫
|Dv| ≤ 1} ⊂ V ∗, and A is closed and

convex. As a consequence, if F = ‖ · ‖G,

p ∈ ∂F (u) if and only if p ∈ BV(R2),
∫
|Dp| ≤ 1 and

∫
R2

p(x)u(x)dx = ‖u‖G. (1.25)

1.3 Calibrable sets and the Cheeger problem
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1.3.1 Calibrable sets and the total variation flow

Calibrable sets appear naturally in the study of the total variation flow:

∂u

∂t
= div

(
Du

|Du|

)
, in (0,+∞)× Ω (1.26)

u(t, x) = 0 on (0,+∞)× ∂Ω (1.27)

u(0, x) = u0(x) for x ∈ Ω (1.28)

where Ω is a bounded open set with Lipschitz boundary, u0 ∈ L1(Ω). In [Andreu et al., 2001a],
Andreu et al. show existence and uniqueness of solutions in the weak sense for this equation. In
[Andreu et al., 2002], it is proved that there exists a finite extinction time T (u0), and that the rescaled
functions u(t)

T (u0)−t converge along subsequences to a solution of the eigenvalue problem:{
−div

(
Du
|Du|

)
= u

u = 0 on ∂Ω
. (1.29)

This eigenvalue problem was studied by Belletini et al. [Bellettini et al., 2005b]. To avoid boundary
conditions they studied this problem in the plane:

− div
(
Du

|Du|

)
= u, u ∈ L1

loc(R2). (1.30)

In the case where u is the characteristic function of a set E ⊂ R2, E is said to be calibrable. Calibrable
sets are the sets that evolve at constant speed by the total variation flow. More precisely, such sets satisfy
the condition λE1E ∈ ∂J(1E) for some λE ∈ R, where ∂J is the subdifferential of the total variation.

Definition 1.3.1. Let E ⊂ R2 be a bounded set with finite perimeter. We say that E is calibrable if there
exists a vector field ξ ∈ X∞ with ‖ξ‖∞ ≤ 1 such that −div ξ = λE1E in D′(R2) for some λE , and
(ξ,D1E) = |D1E | as measures in R2.

In that case, λE is uniquely determined by λE = Per E
|E| where |E| denotes the two-dimensional

(Lebesgue) area. In the rest of this thesis, we shall use this notation to refer to Per E
|E| whether E ⊂ R2 is

calibrable or not.
Calibrable sets were characterized in [Bellettini et al., 2002] using the following two propositions:

Proposition 1.3.2 ([Bellettini et al., 2002]). Let F ⊂ R2 be a calibrable set. Then:

(i) Per F
|F | ≤

Per U
|U∩F | for all U ⊂ R2.

(ii) Each connected component of F is convex.

Proposition 1.3.3. Let C ⊂ R2 be a bounded convex set with finite perimeter. The following assertions
are equivalent:

(i) C is calibrable,

(ii) C is a solution of the problem:

min
X⊂C

Per X − λC |X|
(

where λC =
Per C
|C|

)
. (1.31)



1.3. CALIBRABLE SETS AND THE CHEEGER PROBLEM 51

A very interesting property of convex calibrable sets is the following characteriza-
tion, proved in [Giusti, 1978, Theorem A.1], [Alter et al., 2005a], [Bellettini et al., 2002],
[Kawohl and Lachand-Robert, 2006]. Let us recall that if E is of class C1,1, the curvature of ∂E
is definedH1 almost everywhere. It will be denoted by κ.

Proposition 1.3.4. Let C be a bounded convex set. Then C is calibrable if and only if the following two
conditions hold:

• ∂C is of class C1,1

• ess supx∈∂C |κ(x)| ≤ Per C
|C| .

Example: Using the above characterization, Kawohl and Lachand-Robert
[Kawohl and Lachand-Robert, 2006] proved that an ellipse with eccentricity lower than ē ≈ 0.7192 is
calibrable.

We refer the reader to the monograph [Andreu-Vaillo et al., 2002] for a self-contained study of the
total variation flow and calibrable sets in the plane.

1.3.2 The Cheeger problem

A related topic is the Cheeger problem. Given a nonempty open bounded set Ω ⊂ R2, find:

hΩ := inf
X⊂Ω

Per X
|X|

, (1.32)

where we only consider sets X with positive Lebesgue measure. The existence of a minimizer follows
from the direct method of the calculus of variations. Any minimizerX of this problem is called a Cheeger
set of Ω.

The Cheeger constant was introduced in [Cheeger, 1970], where it was shown that for a general
bounded open set Ω ⊂ R2 with Lipschitz boundary, the Cheeger constant gives a lower bound on the
first eigenvalue of the Laplacian:

hΩ ≥
(
µ2(Ω)

2

)2

, (1.33)

where µ2(Ω) = min
0 6=v∈W 1,2

0 (Ω)

R
Ω |∇v|2dxR
Ω |v|2dx

. A similar inequality was proved in [Lefton and Wei, 1997]

where the exponent 2 is replaced with p ∈ (1,+∞), and µp(Ω) = min
0 6=v∈W 1,p

0 (Ω)

R
Ω |∇v|pdxR
Ω |v|pdx

.
If Ω itself is a minimizer of (1.32), we say that Ω is Cheeger in itself. For instance, a disc Ω =

B(0, R) is Cheeger in itself. This is a consequence of the isoperimetric inequality (1.5):

∀X ⊂ Ω,
Per X
|X|

≥
2
√
π
√
|X|

|X|
≥ 2
√
π√
|Ω|

=
2
R

=
Per Ω
|Ω|

.

Notice that Ω is Cheeger in itself if and only if it is solution of the problem: minX⊂Ω Per X−hΩ|X|.
As a consequence, by Proposition 1.3.2, a calibrable set is Cheeger in itself, and the converse is true
when the set is convex (by Proposition 1.3.3).

Whereas the existence of a Cheeger set is straightforward, its uniqueness is a difficult problem. In
general the Cheeger set of Ω is not unique (see [Kawohl and Lachand-Robert, 2006]), but it is unique if
Ω is a convex body, i.e. a bounded convex set which contains the origin in its interior (the result was
proved in dimension N [Caselles et al., 2007b] for a C2 uniformly convex set, and in the general case in
[Alter and Caselles, 2009]):

Theorem 1.3.5 ([Caselles et al., 2007b], [Alter and Caselles, 2009]). Let C be a non-trivial convex body
(i.e. a nonempty compact convex subset of R2). Then there is a unique Cheeger set inside C. This set is
convex and of class C1,1.
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This Cheeger set is given explicitly by the following theorem (see [Alter et al., 2005b] and
[Kawohl and Lachand-Robert, 2006]):

Theorem 1.3.6. Let C be a non-trivial convex body, then there exists a unique value t = t∗ > 0 such
that the Cheeger set of C is given by an opening with radius t∗. This value t∗ is the unique value of t
such that the area of the eroded set of C with radius t is equal to πt2.

Whereas the proof in [Kawohl and Lachand-Robert, 2006] relies on calculations on polygons and a
passage to the limit, the one in [Alter et al., 2005b] relies on argument linked with image processing: if
f = 1C , the level sets (Ut)t∈[0,1] of the solution of the ROF problem:

min
u∈BV(R2)

∫
|Du|+ µ

2

∫
R2

(u− f)2, (1.34)

minimize the following geometric problems: Per U − µ(1− t)|U | for U ⊂ C. As a consequence the set
{x, u(x) ≥ ‖u‖∞} is the Cheeger set of C.

Let us mention that the Cheeger problem has also been studied with weights on the total vari-
ation or on the area: in that case the uniqueness of the Cheeger set may not hold, but Buttazzo
et al. [Buttazzo et al., 2007] have shown the existence of a unique maximal Cheeger set, (see also
[Carlier and Comte, 2007], and [Carlier et al., 2009] where numerical experiments are carried out).
Moreover, the results of this section have been extended to the anisotropic case: Moll has studied
the well-posedness of the anisotropic total variation flow [Moll, 2005], and the characterization of cal-
ibrable sets with respect to anisotropic norms is given in [Bellettini et al., 2001] in dimension 2 and in
[Caselles et al., 2008] for dimension N ≥ 2. In [Kawohl and Novaga, 2008], Kawohl and Novaga show
the existence and uniqueness of the Cheeger set of a convex set. In dimension 2 the Cheeger set inside
a convex set is given by an opening ([Bellettini et al., 2001, Kawohl and Novaga, 2008]). Applications
of the anisotropic Cheeger problem to segmentation (with the geodesic active contours) and colorization
can be found in [Caselles et al., 2009]. Eventually, a variant of the Cheeger problem in infinite dimension
with Gauss measure is studied in [Caselles et al., 2010].



Chapter 2

How to study the TVL1 problem?

Since the introduction of the TVL1 model in signal processing by Alliney [Alliney, 1992, Alliney, 1997]
and in image processing by Nikolova [Nikolova, 2002, Nikolova, 2004a], many different tools have been
used to study its solutions: introduction of the dual problem in [Haddad, 2007], optimality conditions
regarding the G-norm of the sign of u− f [Haddad, 2007, Kindermann et al., 2006], maximizing forms
in [Morgan and Vixie, 2007] . . .

The aim of this chapter is to give an overview of some of these methods and to show that they es-
sentially amount to the Euler-Lagrange equation for the TVL1 functional. Although this thesis (and
Chapter 3 in particular) emphasizes the geometrical aspects of the TVL1 problem, it is actually also con-
nected to the Euler Lagrange equation via the results of [Bellettini et al., 2002, Bellettini et al., 2005b,
Alter et al., 2005a] which are related to the theory of calibrations.

2.1 Introduction

The TVL1 problem consists, given f ∈ L1, in finding a minimizer of the energy:∫
|Du|+ λ

∫
R2

|f(x)− u(x)|dx. (2.1)

This model was introduced by Alliney for one-dimensional signals [Alliney, 1992, Alliney, 1996,
Alliney, 1997]. It was Nikolova who introduced it in image processing in [Nikolova, 2002]: study-
ing the detection and removal of outliers in variational methods, she shows that non-smooth data fi-
delity terms behave better than smooth ones. Consequently, she notices that the TVL1 model is well
adapted to the removal of impulse noise, which she illustrates in [Nikolova, 2004a] with striking nu-
merical results. Since then, many authors have studied the TVL1 model, each focussing on a partic-
ular aspect. Chan and Esedoglu [Chan and Esedoglu, 2005] study the evolution of the energy as the
fidelity parameter increases. Yin et al. [Yin et al., 2007b] study the monotonicity of the geometric
problem, in view of the geometric equivalence, whereas Morgan and Vixie [Morgan and Vixie, 2007]
insist on the link with geometric measure theory by drawing a connection with the flat norm (see
[Federer, H., 1969]). In [Vixie and Esedoglu, 2007], Vixie and Esedoglu give geometric bounds on the
solutions of TVL1. Allard also employs tools from geometric measure theory to study all the TV + Lp

problems p ≥ 1: in [Allard, 2007] he studies the smoothness of the boundary of the level sets of the
solution, in [Allard, 2008] he studies the problem where the input is the characteristic function of con-
vex set. Notice that he states in a more general setting similar results as those of Chapter 3, but that
we obtained these results independently, relying essentially on the work of Alter, Caselles, Chambolle
[Alter et al., 2005a, Alter et al., 2005b]. In [Allard, 2009], he gives particular examples of solutions.

Haddad also investigated the problem: he characterizes radial solutions, and he also studies the dual
problem of (2.1) in [Haddad, 2007]. Kindermann et al. [Kindermann et al., 2006] have characterized the
optimality of a function using the G-norm introduced in [Meyer, 2001].
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Let us also mention the many applications of the model: impulse noise removal [Nikolova, 2004a,
Koko and Jehan-Besson, 2010, Liu et al., 2010], segmentation [Chan et al., 2006, Bresson et al., 2007]
feature detection in biomedical imaging[Cunha et al., 2007], 3D MRI registration [Chen et al., 2005],
cDNA microarray data filtering [Yin et al., 2005], or cartoon-texture decomposition [Aujol et al., 2006,
Yin et al., 2007a, Haddad, 2007], computation of the optical flow in videos [Wedel et al., 2008a,
Wedel et al., 2008b], or shape analysis [Vixie et al., 2010].

All these authors have used various techniques. Yet, we illustrate in this chapter that such methods
essentially amount to the Euler-Lagrange equation.

2.2 Euler Lagrange equation

A classical way to characterize the minimizers u of a convex energy E is to apply Fermat’s rule, i.e. write
0 ∈ ∂E(u). In the calculus of variations, this leads to the Euler-Lagrange equation which often gives
precious information about the solution of a variational problem. In the case of TVL1, since both terms
of the functional are non-smooth, the formal equation:

− div
(
Du

|Du|

)
+ λ sign (u− f) = 0 (2.2)

should be properly written using the subdifferentials of the total variation and the L1 norm. Applying the
framework of [Andreu-Vaillo et al., 2002] (see Section 1.2), we see that a function u ∈ L1 is solution if
and only if there exists a vectorfield z ∈ L∞(R2,R2) such that div z ∈ L∞(R2), a function p ∈ L∞(R2)
such that:

|z| ≤ 1 a.e.,
∫
|Du| =

∫
R2

udiv z, (2.3)

|p| ≤ 1 a.e.,
∫

R2

|u− f | =
∫

R2

(u− f)p, (2.4)

and div z + λp = 0. (2.5)

The condition on the right hand-side of Equation (2.3) may be rewritten
∫
|Du| = −

∫
(z,Du), or simply

−(z,Du) = |Du|, |Du|-a.e., which essentially means that z is orthogonal to the level lines of u.

Thus, in the case where u is the characteristic function of a set U ⊂ R2, z must coincide with the
outer unit normal of U ,H1 a.e. in ∂∗U .

2.3 The dual problem

In [Haddad, 2007], A. Haddad derived the dual problem of TVL1. From the primal problem:

inf
u∈BV (R2)

∫
|Du|+λ

∫
R2

|f −u| = inf
u∈BV (R2)

supn
ϕ ∈ X∞, p ∈ L∞,
|ϕ| ≤ 1, |p| ≤ 1

o
∫

R2

udiv ϕ+λ

∫
R2

(f −u)p, (2.6)
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one defines the dual problem as:

sup8<: ϕ∈X∞,p∈L∞,

|ϕ|≤1,|p|≤1

inf
u∈BV (R2)

∫
R2

udiv ϕ+ λ

∫
R2

(f − u)p = sup8<: ϕ∈X∞,p∈L∞,

|ϕ|≤1,|p|≤1

inf
u∈BV (R2)

∫
R2

u(div ϕ− λp) +
∫

R2

fp

= sup8>><>>:
ϕ∈X∞,p∈L∞,

|ϕ|≤1,|p|≤1

div ϕ−λp=0

inf
u∈BV (R2)

λ

∫
R2

fp

= sup8<: ϕ∈X∞,

|ϕ|≤1,|div ϕ|≤λ

∫
R2

fdiv ϕ (2.7)

Using a minimax theorem, Haddad shows that the two problems have the same values. Moreover,
the equality in the minimax inequality implies that their solutions are related by the following condition:∫

R2

udiv ϕ =
∫
|Dϕ| and λ

∫
R2

|f − u| =
∫

(f − u)div ϕ (2.8)

In other words, at least formally:

− div
(
Du

|Du|

)
= div ϕ = λ sign (f − u) (2.9)

(which is nothing but the Euler-Lagrange equation (2.2)).

2.4 The flat norm

Although the origin of the TVL1 model in signal processing is usually attributed to the work of
Alliney [Alliney, 1992, Alliney, 1997], it appears in earlier works under different forms, notably in
Geometric Measure Theory. Not to mention the link with the Prescribed Mean Curvature problem
[Ambrosio, 1997] (which will be discussed in Chapter 3), a correspondence between the geometric
problem (3.26) and the Flat Norm (see [Federer, H., 1969, 4.1.12]) was established by Morgan and
Vixie in [Morgan and Vixie, 2007]. We will need some basic concepts of the theory of currents (see
[Federer, H., 1969] for more details).

Let Dm be the space of C∞ differential forms of degree m with compact support, endowed with
the topology defined in [Federer, H., 1969, 4.1.1]. Its dual space, Dm, is the space of m-dimensional
currents. The mass norm is defined on Dm by:

∀T ∈ Dm, M(T ) = sup{T (φ), φ ∈ Dm and ‖φ‖ ≤ 1}. (2.10)

Now, given a current T ∈ Dm, one defines its flat norm as:

F(T ) := inf
S∈Dm+1

M(T − ∂S) +M(S). (2.11)

The flat norm induces a topology on the space Dm of m-dimensional currents that is stronger
than the weak topology but weaker than the mass norm topology. It is generally acknowledged
to give a good indication of when surfaces are geometrically close to one another, contrary to the
mass norm (see [Morgan, 2009]). Recently, Glaunï¿1

2s [Glaunès, 2005, Vaillant and Glaunes, 2005,
Glaunès and Joshi, 2006] proposed to use the flat norm in image processing to compute distances be-
tween shapes.
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The remark of Morgan and Vixie in [Morgan and Vixie, 2007] is the following: given a set F ⊂ R2,
the infimum of the geometric energy EG(U) over all U ⊂ R2 can be written as the flat norm of its
boundary:

inf
U⊂R2

Per U + |U∆F | = F(∂F ) (2.12)

This link with Geometric Measure Theory is interesting for two reasons. First, it provides a theo-
retical framework for the denoising of objects that are "thinner" than with TVL1. Indeed, the theory of
functions with bounded variations is adapted to deal with codimension 1 surfaces. The theory of currents
has no such restriction on the dimensionality: one may consider the denoising of curves in the plane, or
surfaces in the Euclidean space. Second, one may apply the dual formula derived in [Federer, H., 1969,
4.1.12]:

F(T ) = sup {T (φ), φ ∈ Dm, ‖φ‖ ≤ 1, ‖dφ‖ ≤ 1} , (2.13)

to obtain directly the dual problem of TVL1. To be more precise, Morgan and Vixie propose a scaled
version of the Flat Norm corresponding to the geometric problem with parameter λ, and they show that:

Fλ(T ) := inf
S∈Dm+1

M(T − ∂S) + λM(S) = sup {T (φ), φ ∈ Dm, ‖φ‖ ≤ 1, ‖dφ‖ ≤ λ} . (2.14)

Using the correspondence between vectorfields and differential forms of degree N − 1 in RN , let us
observe that this may be rewritten as:

inf
U⊂R2

Per U + λ|U∆F | = Fλ(∂F ) = sup
{∫

F
div ϕ, ϕ ∈ C∞c (R2,R2), |ϕ| ≤ 1, |div ϕ| ≤ λ

}
,

(2.15)
which is precisely the dual problem (2.7).

The formulation (2.14) leads Morgan and Vixie to study several examples with the help of maximiz-
ing forms on [Morgan and Vixie, 2007].

2.5 Calibrations

Calibrations are a tool used in geometry to prove that a surface minimizes area in its homological class.
Whereas the more common (indirect) way to prove that a surface is area minimizing usually consists in:

• establishing the existence of a minimizer,

• stating necessary conditions on the minimizer (curvature, symmetry, optimal junctions angles. . . ),

• comparing the few candidates of the remaining "short list",

the calibration method is more direct. Given a hypersurface1 with boundary S ⊂ RN , the idea is to build
a vectorfield z such that:

• |z(x)| ≤ 1 for all x ∈ RN ,

• z · ν = 1 for all x ∈ S, where ν is the positive unit normal,

• div z = 0 in RN .

1The method is not restricted to hypersurfaces, but we only mention this case for simplicity.
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Then, for any other hypersurface S′ ⊂ RN such that ∂S′ = ∂S, by Stokes’ theorem:

HN−1(S′) ≥
∫

S′
z · νdHN−1 =

∫
S
z · νdHN−1 = HN−1(S). (2.16)

Therefore, given a calibration, it is straightforward to show that a hypersurface minimizes area. The
most difficult part is generally to build the calibration. In the example below, we use the minimal surface
equation to build the calibration, and such a construction is always feasible when the surface is the graph
of a function defined on a convex domain D.

The history of calibrations is summarized in [Morgan, 2009]. The first uses of calibrations can be
found implicitly in the work of Wirtinger concerning complex analytic varieties (1936), and explicitly in
the work of de Rham concerning complex analytic subvarieties (1957), then Federer (1967) who proves
that the holomorphic submanifolds of a Kï¿1

2hler manifold are area minimizing. The term calibration
comes from the founding paper of Harvey and Lawson [Harvey and Lawson, 1982]. Since then, the
use of calibrations has spread and many extensions have been proposed. Let us mention in particular
the paired calibrations by Lawlor and Morgan [Morgan and Lawlor, 1994] and Brakke [Brakke, 1991],
which allows to deal with the interface of more than two immiscible fluids, and which have strong
connections with the segmentation problem [Chambolle et al., 2008]. Also, Lawlor recently proposed
a generalization of calibrations called metacalibrations which allows to deal with volume constraints,
boundary constraints or length constraints [Lawlor, 2010]. An important work in connection with image
processing is the contribution of Alberti et al. [Alberti et al., 2003] to the study of the Mumford-Shah
functional and other non-convex functionals: by considering the subgraph of the solution, they adapt
the calibration method to free discontinuity problems so that short and easy minimality results can be
derived. The idea is at the core of a state-of-the-art algorithm by Pock et al. [Pock et al., 2010] that
minimizes energies that are the sum of a convex regularization term and a non-convex fidelity term.

Below are given two examples. The first one illustrates calibrations as a traditional tool to prove
that a surface is area minimizing. The second one comes back to the topic of the TVL1: it gives the
solution of the TVL1 problem for the characteristic function of a disc, using an argument "in the spirit
of calibrations".

Example: Catenoids are locally area minimizing surfaces In R3, the catenoid is defined by the
equation:

cosh z =
√
x2 + y2, or z = f±(x, y) with: (2.17)

f+(x, y) = log(
√
x2 + y2 +

√
x2 + y2 − 1) for z ≥ 0,

f−(x, y) = log(
√
x2 + y2 −

√
x2 + y2 − 1) for z > 0.

As an illustration of calibrations, let us show that the part of catenoid

S := {(x, y, f+(x, y)), (x, y) ∈ D} where D =
{

(x, y) ∈ R2, 1 ≤
√
x2 + y2 ≤ R

}
,

is area minimizing among the graphs of smooth functions g : D → R, with boundary condition g(x, y) =
0 for

√
x2 + y2 = 1, g(x, y) = log(R+

√
R2 − 1) for

√
x2 + y2 = R.

Straightforward calculations show that:

∂f+

∂x
=

x√
x2 + y2

√
x2 + y2 − 1

,
∂f+

∂y
=

y√
x2 + y2

√
x2 + y2 − 1

,

and
√

1 + |∇f+|2 =

√
x2 + y2√

x2 + y2 − 1
,

so that 0 = div

(
1√

1 + |∇f+|2
∇f+

)
.
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The last equation is the minimal surface equation: it means that the surface has a vanishing mean curva-
ture. It may also be interpreted as the fact that the vectorfield

p :
D × R −→ R3

(x, y, z) 7−→ 1√
1+|∇f |2

(
−∇f+

1

)
(2.18)

is a calibration for the catenoid. For any admissible surface S′ which is the graph of a function g, if we
define S′ = {(x, y, z) ∈ D × R, 0 ≤ z ≤ g(x, y)}:∫

∂S′
p · νdH2 =

∫
S′

div p = 0 =
∫

S
div p =

∫
∂S
p · νdH2. (2.19)

Decomposing the integration domain ∂S′ = S′ ∪ (D × {0}) ∪
(
S1(0, R)× [0, log(R+

√
R2 − 1)]

)
,

and noticing thatH2(S′) ≥
∫
S′ p · νdH

2 with equality for S′ = S, we get:

H2(S′) ≥ H2(S). (2.20)

S is therefore area minimizing.

Figure 2.1 – The catenoids are the only smooth minimal surfaces of revolution in R3.

Example: The characteristic function of a disc. In [Chan and Esedoglu, 2005], Chan and Ese-
doglu show that if the input function is f = 1B(0,R) the output of TVL1 is given by:

u(x) =


1B(0,R)(x) if λ > 2

R ,

c1B(0,R)(x) with c ∈ [0, 1], if λ = 2
R ,

0 if 0 < λ < 2
R .

(2.21)

To obtain this result, one may use symmetry arguments to see that the solution is radial and reduce
the problem to the study of a function of one variable. The general solutions of TVL1 for radial input
functions are given in [Haddad, 2007].

Here we give a proof that is in the spirit of calibrations and which is directly inspired from
[Bellettini et al., 2001, Theorem 5.2]. It is also close to the argument given by Meyer in the study of
the ROF model when the input is a characteristic function of a disk [Meyer, 2001], and it is a construc-
tive example of the (general) argument given in [Chan and Esedoglu, 2005, Theorem 5.6] to show that
the characteristic function of a C2 domain is preserved by TVL1 for λ large enough. In fact it is a quite
standard technique in the study of geometric problems [Bellettini et al., 2001, Alter et al., 2005a].

Consider the vectorfield z(x) = α(r)er, where:

α(r) =
{

R
r for r > R
r
R for 0 ≤ r ≤ R. (2.22)
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We see that |z(x)| ≤ 1 for all x ∈ R2 and z · ν = 1 on ∂B(0, R), where ν is the outer unit normal of
the disk. Moreover,

div z(x) =
1
r

∂ (rα(r))
∂r

=
{

0 for r > R
2
R for 0 ≤ r < R

. (2.23)

The conclusion follows from a simple integration by parts:

• For λ ≥ 2
R :

E(u)− E(1B(0,R)) =
∫
|Du|+ λ

∫
R2

|u− 1B(0,r)| −
∫
|D1B(0,R)|

≥
∫

R2

udiv z + λ

∫
B(0,R)

|u− 1|+ λ

∫
R2\B(0,R)

|u| − 2πR

≥
∫

B(0,R)

(
2
R

(u− 1) + λ|u− 1|
)

︸ ︷︷ ︸
≥0

+λ
∫

R2\B(0,R)
|u| ≥ 0.

• For λ ≤ 2
R :

E(u)− E(0) =
∫
|Du|+ λ

∫
R2

|u− 1B(0,r)| − λπR2

≥
∫

R2

udiv z + λ

∫
B(0,R)

(|u− 1| − 1) + λ

∫
R2\B(0,R)

|u|

≥
∫

B(0,R)

[
2
R
u+ λ(|u− 1| − 1)

]
+ λ

∫
R2\B(0,R)

|u|

≥
∫

B(0,R)

(
2
R
− λ
)
u︸ ︷︷ ︸

≥0

+λ ((u− 1) + |u− 1|)︸ ︷︷ ︸
≥0

+λ
∫

R2\B(0,R)
|u| ≥ 0.

(here we have assumed that u ≥ 0, which does not reduce generality since E(max(u, 0)) ≤ E(u)
for all u ∈ BV(R2)). The equality case implies u = 1B(0,R) for λ > 2

R , u = 0 for λ < 2
R .

• For λ = 2
R : we already have that 0 and 1B(0,R) are solutions, and by convexity so are c1B(0,R) for

c ∈ (0, 1). Now if u is a solution, the equality in the above inequality implies that u|R2\B(0,R) = 0
and 0 ≤ u ≤ 1 in B(0, R). Moreover we must have

∫
|Du| =

∫
B(0,R)

(Du, z). Since |z(x)| < 1
for |x| < R, |Du|(B(0, R)) = 0 so that u is constant on B(0, R).

Figure 2.2 – The "calibration" z constructed for the disc (Eq. (2.22)).

This proof might look a bit tedious, because we have not use any thresholding argument to ensure
that the solution is a characteristic function (although we could have done so). One should remember
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that in [Chan and Esedoglu, 2005] and [Haddad, 2007], simplification arguments like radial symmetry
or the search for a solution of the form c1B(0,R)) are invoked, which make their proof more elegant.

Yet, the main advantage of this proof is that it can be immediately generalized to calibrable sets
(except that more solutions may exist for λ = Per F

|F | ), and a slight adaptation allows to give a direct
proof of Theorem 3.3.9 which states that the result of TVL1 is given by an opening: it consists in
considering the vector field built in [Alter et al., 2005b] for the total variation flow, which satisfies:

|z(x)| ≤ 1, z · ν = 1 on ∂Cr (2.24)

div z(x) =


0 for x ∈ R2 \ C,

1
r(x) for x ∈ C \ C1/λ∗ ,

λ∗ for x ∈ C1/λ∗ .

(2.25)

where λ∗ is defined in Proposition 3.3.7, Cr is the opening of C with radius r, ν is its outer unit normal,
and r(x) = sup{r > 0, x ∈ Cr}.

In our case, this method directly inspired from [Bellettini et al., 2001, Theorem 5.2] is also another
way of writing the Euler Lagrange equation.



Chapter 3

The TVL1 model: a geometric point of
view

The aim of this chapter is to study the TVL1 model in a continuous framework. Given f ∈ L1, we are
interested in finding u in BV(R2) which solves the following minimization problem:

inf
u∈BV(R2)

{∫
R2

|Du|+ λ

∫
R2

|f − u|
}

(3.1)

The philosophy we have adopted in this chapter is to rely as much as possible on basic geometric
arguments, to make the exposition as clear as possible (in fact, despite their simplicity, some of the results
we use rely on the profound works [Bellettini et al., 2002, Bellettini et al., 2005b, Alter et al., 2005a]).

The organization of the chapter is the following. First, following [Chan and Esedoglu, 2005,
Darbon, 2005], we show the connection between the TVL1 problem and a family of geometric prob-
lems which make the model contrast invariant. Then we study this geometric problem in detail: we
relate the sudden disparition of sets with the Cheeger problem, and we show that the solutions of the
geometric problem are smooth. In the case of convex sets, we give a simplified version of the energy,
and we prove that the exact solution is given by an opening. The end of the chapter is devoted to the link
between the TVL1 model and mathematical morphology.

3.1 The geometric equivalence theorem and its consequences

3.1.1 The geometric equivalence

Because of the coarea formula (1.2), many problems involving the total variation can be reformulated
as a geometric problem on the level sets of the function. In [Chambolle, 2004a], Chambolle proposes
an algorithm for the mean curvature flow using the Rudin-Osher-Fatemi problem associated with the
signed distance to a set. He shows that this algorithm is equivalent at each step to the flat curvature flow
algorithm by Almgren et al. [Almgren et al., 1993], by observing that the zero-level set of the solution
of ROF is a minimizer of a geometric problem. In [Alter et al., 2005a], a similar observation is used to
relate the solutions of the Rudin-Osher-Fatemi problem with the indicator function of a convex set C
with the family of geometric problems:

min
X⊂C

Per X − λ|X|. (3.2)

Relying on this equivalence, the authors study the dependence of the solutions on the parameter λ to
eventually characterize the calibrable sets of RN . We will use some of their results in Section 3.3.1. Let
us also mention that the same principle is used in [Caselles et al., 2007a] to study the discontinuity set
of the solutions of the Rudin-Osher-Fatemi problem, and that this method can be extended to variational
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problems of the form: ∫
|Du|+

∫
R2

G(x, u(x))dx, (3.3)

where G is measurable in the first variable and C1 convex in the second variable, as explained in
[Chambolle et al., 2009].

In this section, after presenting a few basic facts about the TVL1 functional, we state a similar
geometric equivalence for the TVL1 problem.

For f ∈ L1, we want to solve:

inf
u∈BV(R2)

E(u) :=
∫
|Du|+ λ

∫
R2

|f(x)− u(x)|dx. (3.4)

The following result is well-known: it is a standard application of the direct method of calculus of
variations. We refer the reader to ([Yin et al., 2007b], [Chan and Esedoglu, 2005]) or to Chapter 6 for a
proof in the more general case of adaptive TVL1.

Proposition 3.1.1. There exists at least one solution to the Problem (3.4). Let us define:

T : L1 → P(L1) (3.5)

the operator which maps f to the set of solutions Tf = {u ∈ L1, u is solution of (3.4)}. The set Tf is
a convex closed set in L1.

Let us notice that, since the functional is not strictly convex, many solutions may exist (see Sec-
tion 2.5 for the example of the disc). This is the reason why we need to define T as a set-valued map.

Inspired by the geometric equivalences used in [Chambolle, 2004a, Alter et al., 2005a], Chan and
Esedoglu noticed in [Chan and Esedoglu, 2005] that, using the coarea formula, the energy E(u) could be
reformulated as a sum of energies over the level sets of u:

E(u) =
∫ +∞

−∞
Per {x, u(x) > µ}+ λ|{x, u(x) > µ}∆|{x, f(x) > µ}|dµ. (3.6)

In view of this formula, one may consider the family of geometric problems, given a function f ∈ L1:

inf
U⊂R2

Per U + λ|U∆Fµ| (Pµ) (3.7)

where µ ∈ R and Fµ = {x, f(x) > µ}.
Existence of solutions for each of these problems is standard, since it can be proved by the direct

method of the calculus of variations. Here again, we can define a multivalued map T that maps Fµ

to the set of solution sets T Fµ for Problem (Pµ). Actually, in [Chan and Esedoglu, 2005], the authors
show that if the data is the characteristic function of a set (f = 1F ), then every level set of a solution
u of (3.4) is a solution of the geometric problem associated to F . In [Yin et al., 2007b], it was pointed
out that stacking solutions of the geometric problem led to a solution of (3.4). The following theorem
states the equivalence between the family of geometric problems on level sets and the functional TVL1
problem. Let us observe that this result is implicitly assumed in order to establish several properties
in [Darbon, 2005, Yin et al., 2007b], such as the contrast invariance of the TVL1 model. A proof of this
result in the discrete case is given in [Darbon and Sigelle, 2006]. We propose the following formulation
and proof for the continuous case. It follows roughly the same scheme as the one in [Chambolle, 2004a],
namely:

• Observe that the geometric problem is monotone, so that its solutions are nested.

• Build a function with the solutions of the geometric problem, and compare it with the minimizer
of the functional problem.
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Theorem 3.1.2 (Geometric equivalence). Let f ∈ L1.The following assertions are equivalent:

(i) u is solution of (3.4).

(ii) Almost every level set Uµ of u is a solution of (3.7).

We shall need the following monotonicity result. We state it in a similar way as Yin et al.
[Yin et al., 2007b], but let us mention that it was also established in terms of Gibbs energy by Dar-
bon and Sigelle [Darbon and Sigelle, 2006] in order to derive their graph-cut algorithm. For a proof of
this result, we refer the reader to ([Yin et al., 2007b, Theorem 3.1], [Darbon and Sigelle, 2006, Lemma
1]). In Chapter 6, we will generalize this monotonicity result to the adaptive TVL1.

Theorem 3.1.3 (Pseudo-monotonicity of the geometric problem). Let S1 ⊂ S2 ⊂ R2, and Ui, i = 1, 2
be a solution the geometric problem associated to Si. Then:

• U∧ = U1 ∩ U2 is a solution associated to S1,

• U∨ = U1 ∪ U2 is a solution associated to S2.

Remark 3.1.4. Notice that it is equivalent to consider a function f : R2 → R or to consider a family of
sets (Uµ)µ∈R that have the nesting property:

Uµ ⊂
⋂
ν<µ

Uν (3.8)

This fact is at the core of the following proof.

Proof of Theorem 3.1.2. Since the implication (ii) ⇒ (i) is clear by the coarea formula, we only focus
on proving (i)⇒ (ii).

Let us endow the collection of Borel subsets of R2 with the topology induced by the pseudo-metric
d(A,B) = min(1, |A∆B|). Notice that the mapping t 7→ Ft is non-increasing for the inclusion, there-
fore it is continuous everywhere but on a countable set of points (which is contained in the union of {0}
and the discontinuity sets of the real-valued monotone functions t 7→ |Ft| for t > 0 and t 7→ |FC

t | for
t < 0). We shall denote this set J . Now, let us consider a countable dense set D ⊂ R (for instance
D = Q).
First step: We are going to construct by induction a family (Uq)q∈D. To this end, let (qn)n∈N be an
enumeration of D. We choose an optimal set Uq0 for problem (Pq0). Let us assume that we have chosen
Uqj (j = 0 . . . n) satisfying the nesting property, and let us consider qn+1. Three cases are possible. If
there exists m, p ≤ n such that qm < qn+1 < qp (we can assume that qm (resp. qp) is the largest (resp.
smallest) such element), then let us consider U ⊂ R2 solution of (Pqn+1), and set:

Uqn+1 = (U ∩ Uqm) ∪ Uqp (3.9)

By induction hypothesis Uqp ⊂ Uqn+1 ⊂ Uqm , and therefore the family (Uqj )j=0...n+1) satisfies the
nesting property. Theorem 3.1.3 ensures that Uqn+1 is solution of (Pqn+1).

The other two cases (∀j ≤ n, qj < qn+1 or ∀j ≤ n, qj > qn+1) can be dealt with similarly (take
U ∩ Uqm or U ∪ Uqp).

Therefore we have built a countable family of optimal sets satisfying the nesting property.
Second step: Now let us define the family (U∗t )t∈R by:

U∗t =
⋂

q<t,q∈D

Uq. (3.10)

This family has the nesting property; let us show that it is a solution of problem (Pt) for almost every
t ∈ R.
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Let t ∈ R \ J , and (tn) an increasing sequence in D converging to t.
For all V ⊂ R2, Per V + λ|V∆Ftn | ≥ Per Utn + λ|Utn∆Ftn |. We take the lower-limit as n→ +∞

and get:
Per V + λ|V∆Ft| ≥ Per U∗t + λ|U∗t ∆Ft| (3.11)

where we used the continuity of s 7→ Fs at t, and the lower semicontinuity of the perimeter. Eventually,
the elements of the family (U∗t )t∈R are solutions of (Pt), except maybe for t ∈ J .
Conclusion: We can then build a function u∗ by the formula:

u(x) = sup{t ∈ R, x ∈ U∗t }. (3.12)

Let then v be a solution of problem (3.4), and let us call Vt its level sets. By the coarea formula, it is
clear that u is a solution too, thus:∫ +∞

−∞
Per Vt + λ|Vt∆Ft|dt =

∫ +∞

−∞
Per U∗t + λ|U∗t ∆Ft|dt. (3.13)

with the inequality for almost every t:

Per Vt + λ|Vt∆Ft| ≥ Per U∗t + λ|U∗t ∆Ft|. (3.14)

We deduce that there is actually equality for almost every t.

In the rest of this section, we will state a few properties of the TVL1 model that are desirable
when processing images. Some of them (Propositions 3.1.7, 3.1.9, 3.1.10,3.1.11) are well-known
([Darbon, 2005], [Yin et al., 2007b]).

3.1.2 Maximum principle and monotonicity

Proposition 3.1.5 (Maximum principle). Let M,m ∈ R and assume m ≤ f ≤ M almost everywhere.
Then:

∀u ∈ Tf, m ≤ u ≤M almost everywhere. (3.15)

Proof. Let us assume by contradiction that u ∈ Tf with u(x) > M on a set with non-zero Lebesgue
measure. Then the truncated function uM = min(u,M) has energy strictly lower than u. Indeed:∫
|DuM |+λ

∫
R2

|f −uM | =
∫ M

−∞
Per {x, u(x) > µ}+λ|{x, u(x) > µ}∆{x, f(x) > µ}|dµ (3.16)

whereas:

∫
|Du|+ λ

∫
R2

|f − u| =
∫ M

−∞
Per {x, u(x) > µ}+ λ|{x, u(x) > µ}∆{x, f(x) > µ}|dµ

+
∫ +∞

M
Per {x, u(x) > µ}dµ︸ ︷︷ ︸

≥0

+
∫ +∞

M
λ|{x, u(x) > µ}|dµ︸ ︷︷ ︸

=λ
R

R2 (u(x)−M)+dx>0

(3.17)

which contradicts the fact that u is a minimizer.

Because of the non-uniqueness of the solution, we have to precise the notion of monotonicity we will
be using.

Definition 3.1.6. We say that an operatorA : L1 7→ P(L1) is pseudo-monotone if, given f, g ∈ L1 with
f ≤ g a.e., we have:

∀u1 ∈ Af, ∀u2 ∈ Ag, max(u1, u2) ∈ Ag and min(u1, u2) ∈ Af (3.18)
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A straightforward consequence of Theorems 3.1.2 and 3.1.3 is the following result:

Proposition 3.1.7 (Pseudo-monotonicity). T is pseudo-monotone.

Yet, it can be handful to define the notion of "largest" and "smallest " solutions in order to take
advantage of the classical notion of monotonicity.

Definition 3.1.8. Let us define the operators T+ and T− : L1 → L1 by:

T−f = arg min
{∫

R2

u, u ∈ Tf
}

(3.19)

T+f = arg max
{∫

R2

u, u ∈ Tf
}

(3.20)

Each operator defines a unique function, and is monotone. Moreover, this function is a solution of (3.4).

Proof that T±f are well defined. Let us denote by K the minimal value of the energy (3.4). We shall
prove the result for T− (the result for T+ will follow since T+f = −T−(−f)).

The infimum of {
∫
R2 u, u ∈ Tf} is finite since:

∀u ∈ Tf,
∫

R2

(u− f) ≥ −
(∫
|Du|+ λ

∫
R2

|f(x)− u(x)|dx
)

= −K. (3.21)

Now let un be a minimizing sequence. By Proposition 3.1.7, we can always assume,by replacing un+1

by min(un+1, un), that the sequence un(x) is non-increasing for almost every x ∈ R2.
Let u∗(x) be the pointwise limit of un(x). By Beppo-Levi’s theorem (monotone convergence) we

have that un converges to u∗ in L1, and we have:∫
R2

u∗ = inf
{∫

R2

u, u ∈ Tf
}
. (3.22)

Since the set of solutions of (3.4) is closed in L1, u∗ is a solution.
Now, we need to prove that u∗ does not depend on the choice of the sequence un. Let vn be an-

other minimizing sequence, then the associated limit v∗ is a solution of (3.4). By Proposition 3.1.7,
min(u∗, v∗) is a solution too, and its integral is lower than those of u∗ and v∗. This is only possible if
u(x) = v(x) almost everywhere.

Eventually, monotonicity is a consequence of Proposition 3.1.7.

Let us notice that T−f actually defines the lowest solution, and T+f the greatest. Problem (3.4) has
a unique solution if and only if T−f = T+f .

In a similar way, we can define the notion of largest and smallest solution to the geometric problem,
and denote them by T +, T −.

3.1.3 Commutation with constants and affine invariance

In this subsection and only in this subsection, we shall consider data functions f ∈ L1 + C, that is,
sums of integrable functions and constants. Indeed, it is straightforward to extend the problem to such
functions since the total variation is not affected by the addition of constants. The proofs of the next two
propositions are elementary and omitted for brevity.

Proposition 3.1.9. The operator T commutes with the addition of constants:

∀f ∈ L1,∀C ∈ R, T (f + C) = T (f) + C, (3.23)

and is self-dual:
∀f ∈ L1, T (−f) = −T (f). (3.24)

Proposition 3.1.10. The operator T commutes with translations and rotations:

∀f ∈ L1,∀R ∈ SO2, T (f ◦R) = T (f) ◦R (3.25)
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3.1.4 Contrast Invariance

As observed in [Darbon, 2005, Yin et al., 2007b], the following result is a direct consequence of the
geometric equivalence Theorem 3.1.2. This is probably the most remarkable property of the TVL1
model.

Proposition 3.1.11 (Contrast invariance). Let g : R→ R a Lipschitz homomorphism. Then: T (g ◦ f) =
g(Tf).

Proof. It is a straightforward consequence of Theorem 3.1.2. g being a homomorphism, the level sets
of g ◦ f (resp. g ◦ u where u ∈ Tf ) are the same as the level sets of f (resp. u). Since g is Lipschitz,
g ◦ u ∈ BV(R2), and g has the Lusin (N) property, i.e. g maps every negligible set to a negligible set.
Therefore since almost every level set of u ∈ Tf is a solution of problem (3.7), almost every level set of
g ◦ u is a solution of the geometric problem associated to g ◦ f .

Notice that one usually uses contrast invariance of a functional operator to derive the existence of a
level set formulation [Guichard et al., 2004]. Interestingly enough, in the case of TVL1 we had to take
the converse way.

3.2 The geometric problem

As it was shown in the last section, the study of the TVL1 problem amounts to solving the following
geometric problem:

inf
U⊂R2

EG(U) := Per U + λ|U∆F | (3.26)

where F ⊂ R2 is a measurable set. In fact, F and U stand for a given level set of respectively the
data and the solution. As it is equivalent to consider F and U on the one hand, or R2 \ F and R2 \ U
on the other hand, we may always assume that F has finite Lebesgue measure. Indeed, we may take
F = Ft = {x, f(x) ≥ t} for t > 0, and F = R2 \ {x, f(x) ≥ t} for t < 0.

This section is devoted to the study of problem (3.26). We begin with a series of simple calculations
that show the link between the sudden disappearance of shapes and the Cheeger problem before giving
more elaborate results about the regularity of the solutions.

3.2.1 Suddenly vanishing sets

An interesting property of the TVL1 model is the fact that some sets suddenly vanish. For instance,
in Section 2.5, we have seen that the model preserves characteristic functions of discs with radius R if
λ > 2/R; below this value, the solution is the null function. In this subsection we focus on sets which
have the same property. Those sets are necessarily Cheeger in themselves.

Proposition 3.2.1. Let F ⊂ R2 be a non empty set (not necessarily convex). Let us assume that F has
the thresholding property, i.e. there is some critical value λ̃ > 0 such that:

• F is a solution of the geometric problem (3.26) for λ > λ̃.

• ∅ is a solution of the geometric problem (3.26) for 0 < λ < λ̃.

Then F is Cheeger in itself, and λ̃ = λF := Per F
|F | .

Proof. Let us first notice that ∅ and F are solutions of the geometric problem for λ = λ̃ (consider a
monotone sequence (λn)n∈N converging to λ̃ and pass to the limit in the inequality). Therefore, both
sets have the same energy: Per ∅+ λ̃|F | = Per F − 0, and we deduce that λ̃ = Per F

|F | = λF .
Then, considering only sets U that are included in F , we notice that F is a non empty solution of the

problem: infU⊂F Per U − λF |U |, which means that F is Cheeger in itself.
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The converse is true in the convex case (in which case Cheeger in itself is equivalent to calibrable),
but in general, not every Cheeger set in itself has the thresholding property. Here is a sufficient condition
though:

Proposition 3.2.2. Let F ⊂ R2 be a calibrable set. Then F has the thresholding property. More
precisely:

• F is the unique solution of the geometric problem (3.26) for λ > λF

• Both ∅ and F are solutions for λ = λF

• ∅ is the unique solution for λ < λF

where λF := Per F
|F | .

Notice that, when λ = λ̃, other solutions than F and ∅ may exist. For instance, consider the union
of two discs (F = D1 ∪ D2) with same radius R. Provided they are far enough from each other, they
behave independently (see Section 3.3.4) and for λ = 2/R the solutions are ∅, D1, D2 and D1 ∪D2.

Proof. Let us recall that, for all V with finite perimeter, Per F
|F | ≤

Per V
|V ∩F | .

• For λ < λF , we have:

EG(V ) = Per V − λ|V ∩ F |+ λ|V ∪ F |
= Per V − λF |V ∩ F |︸ ︷︷ ︸

≥0

+(λF − λ)︸ ︷︷ ︸
>0

|V ∩ F |+ λ|V ∪ F |

≥ λ|F | = E(∅)

and this inequality is strict if |V ∩ F | 6= 0. But, if |V ∩ F | = 0, then this quantity is strictly
minimized when |V | = 0.

• For λ = λF , let us write:

EG(V ) = Per V − Per F
|F |
|V ∩ F |︸ ︷︷ ︸

≥0

+
Per F
|F |
|V ∪ F |

≥ Per F
|F ∪ V |
|F |

≥ Per F = EG(F ).

Therefore F is a solution.

Moreover ∅ is a solution (passing to the limit with a sequence λn ↗ λF ).

• For λ > λF = Per F
|F | :

EG(V ) = Per V + λF |V∆F |︸ ︷︷ ︸
≥Per F

+(λ− λF )|V∆F |

≥ Per F + (λ− λF )︸ ︷︷ ︸
>0

|V∆F |

≥ EG(F )

and this inequality is strict if V 6= F .
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Figure 3.1 – The property Cheeger in itself imposes regularity "from the inside" (an upper bound on the
curvature) whereas the property of being invariant by TVL1 requires regularity from "both sides" (the
curvature is lower and upper-bounded). Therefore some Cheeger sets do not have the suddenly vanishing
property. From left to right: a set with corners, its Cheeger set, the solution of TVL1 with same curvature.

As a conclusion, every calibrable set suddenly vanishes by TVL1, and every suddenly vanishing set
is Cheeger in itself. The converse implications are false. In [Yin et al., 2007b], it is shown that an
annulus with large enough inner radius suddenly vanishes. It is connected and not convex, therefore
it is not calibrable. Moreover, since suddenly vanishing sets are solutions of TVL1, they are generally
smoother than Cheeger sets in themselves (see Figure 3.1).

Example 3.2.3 (Stack of calibrable sets). The above sudden disappearance properties allow to exhibit
simple examples of solutions of TVL1. For instance one may rederive the computations of [Haddad, 2007]
when the input is a radial function f(x) = f̃(r) with the additional assumption that f is non-increasing.
In that case the level sets are discs, which are known to be calibrable. The use of convex calibrable sets
allows slight variations of this case as we illustrate here using ellipses.

In [Kawohl and Lachand-Robert, 2006], Kawohl and Lachand-Robert prove that an ellipse with ec-
centricity lower than ē ≈ 0.7192 is calibrable. Equivalently, the ratio α = a

b must satisfy α ≤ α ≈ 1.635
(where a is the half large axis, b the half small one). Using Ramanujan’s approximation for the perimeter
Per C ≈ π

(
3(a+ b)−

√
(3a+ b)(a+ 3b)

)
, the condition of Proposition 3.2.2 amounts to:

a &
1
λ

(
3(α+ 1)−

√
(3α+ 1)(α+ 3)

)
. (3.27)

The ratio α = a
b being fixed in [1, α], this means that the scale of the ellipse has to be large enough to be

preserved by TVL1.
Now, considering the input function:

f : (x, y) 7→ e−(x2

a2 + y2

b2
) (3.28)

where a and b are chosen such that α = a
b ∈ [1, α], these geometric considerations allow to give an

exact solution of TVL1. The level sets of f for t ∈ (0, 1) are the following ellipses:

{(x, y) ∈ R2, f(x, y) ≥ t} =
{

(x, y) ∈ R2,
x2

(− log t)a2
+

y2

(− log t)b2
≤ 1
}

(3.29)

Level sets such that:

t ≤ exp
(
− 1

(λa)2
(
3(α+ 1)−

√
(3α+ 1)(α+ 3)

)2
)

(3.30)

are preserved, the other vanish. The function f was thresholded. This example is illustrated in Figure 3.2.
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Figure 3.2 – Graph of the analytic example 3.2.3 (left: original input, right: predicted solution). When
the input is a stack of calibrable sets, TVL1 simply thresholds the function depending on the ratio perime-
ter/area of the level sets.

3.2.2 Smoothness of the boundary

The study of the regularity of the solutions of problem (3.7) is made easier by the following remark:

Remark 3.2.4. As noticed by Alliney [Alliney, 1996], if u is a solution of the TVL1 problem associated
to f , then u is a solution to the TVL1 problem associated to itself, since:∫

|Dv|+ λ

∫
|u− v| ≥

∫
|Dv|+ λ

∫
(|f − v| − |f − u|) ≥

∫
|Du|. (3.31)

In other words, TVL1 is idempotent. As a consequence, it is sufficient to study the sets that are
invariant by TVL1 in order to describe all the sets that are solutions of the geometric problem for some
data.

Proposition 3.2.5. Let F ⊂ R2, and U ⊂ R2 be a solution of the TVL1 problem associated to F . Then
∂U coincides with the reduced boundary ∂∗U of U and it is a C1,1 hypersurface.

Proof. We rely on results from [Ambrosio, 1997, Ambrosio and Paolini, 1998] (see also
[Andreu-Vaillo et al., 2002, Theorem 2.25]). Let us notice that U is a strong λ-minimizer
([Ambrosio, 1997], Definition 4.7.3) in R2, that is:

Per (U,Ω) ≤ Per (U ′,Ω) + λ|U∆U ′| (3.32)

for every open set Ω and every U ′ with locally finite perimeter such that U∆U ′ ⊂⊂ Ω.
Indeed, let Ω and U ′ be such sets: then |D1U |(R2 \Ω) = |D1U ′ |(R2 \Ω). By the above remark, U

is a solution of TVL1 associated to U . Hence (3.32).
The result stems from Theorems 4.7.1 and 4.7.4 in [Ambrosio, 1997].

The next proposition shows that at points where the boundary of the solution associated to F does
not coincide with the boundary of F , the curvature is equal to ±λ.

Proposition 3.2.6. Let F ⊂ R2, U ⊂ R2 a solution of the geometric problem (3.26) associated to F ,
x ∈ ∂U , κ(x) the curvature of ∂U at x, and V a neighborhood of x.

• If V ∩ F = ∅ then κ(x) = λ

• If V ∩ F = V then κ(x) = −λ.

Notice that, if no such V can be found, then ∂F and ∂U coincide at x. The idea is that, restricted to
V , the geometric problem is equivalent to the famous mean curvature problem [Ambrosio, 1997].

Proof. Without loss of generality, and up to a rotation of the axes, we can assume that V = D× I where
D ⊂ R and I ⊂ R are bounded open intervals and V ∩U is the hypograph of a C1,1 function φ : D → I .
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The geometric energy classically reformulates in case (i):

EG(U) = C +
∫

D

√
1 + |∇φ(x)|2dx+ λ

∫
D
φ(x)dx (3.33)

and in case (ii):

EG(U) = C +
∫

D

√
1 + |∇φ(x)|2dx+ λ

∫
D

(sup I − φ(x))dx (3.34)

where C is the energy outside V .
This is the prescribed mean curvature problem and the result follows by ([Ambrosio, 1997], Theorem

1.1.3). For the convenience of the reader, we recall the proof, working with case (i). We consider a small
perturbation of φ: (φ+ εϕ) where ϕ ∈ C1

c (D). Then the energy becomes:∫
D

√
1 + |∇φ(x) + ε∇ϕ|2dx+ λ

∫
D

(φ+ εϕ(x))dx (3.35)

and since it is minimal in ε = 0, its derivative vanishes:

∀ϕ ∈ C1
c (D),

∫
D

〈∇φ,∇ϕ〉√
1 + |∇φ|2

+ λ = 0, (3.36)

which means:

div

(
∇φ√

1 + |∇φ|2

)
= λ. (3.37)

The left term is exactly κ(x).

Remark Using similar techniques one can prove that in fact:

ess sup
x∈∂U

|κ(x)| ≤ λ. (3.38)

3.3 The geometric problem for a convex set

This section deals with the simplifications that appear in the geometric problem when the input is a
convex set.

3.3.1 Reformulation of the energy for a convex set

To begin with, let us point out that if F is convex, the energy can be simplified.

Proposition 3.3.1. Let us assume that F ⊂ R2 is convex. Then, the geometric problem (3.26) associated
to F reformulates:

inf
U⊂F

Per U − λ|U |. (3.39)

Proof. The idea is to remark that every solution U of the geometric problem (3.26) is contained in F
(modulo a Lebesgue negligible set).

Indeed, let U ⊂ R2. By contradiction, if |U \F | > 0, let us prove that the geometric energy EG(U ∩
F ) is strictly lower than EG(U). Since F is convex1: Per (U ∩F ) ≤ Per U (see [Ambrosio, 1994]). We
add λ|F \ U | on both sides, and we get:

1A similar argument ensures that even in the non convex case, solutions of TVL1 are contained in the closed convex hull of
F .
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Per (U ∩ F ) + λ|F \ U | < Per U + λ(|F \ U |+ |U \ F |) since |U \ F | > 0. (3.40)

Which precisely means EG(U ∩ F ) < EG(U), and contradicts the fact that U is a solution. Thus, the
geometric energy reformulates:

Per U + λ|U∆F | = Per U + λ(|U |+ |F | − 2|U ∩ F |
= Per U − λ|U |+ λ|F |.

The last term is constant. It has no influence on the choice of the solution.

Let us also recall a monotonicity result regarding the fidelity parameter λ. The following proposition
can be found in ([Alter et al., 2005a], Lemma 4) or [Barozzi et al., 1987]:

Proposition 3.3.2 (Monotonicity with λ). Let 0 < λ < µ and Uλ, Uµ be solutions of Problem (3.39)
with fidelity parameter λ (resp. µ) . Then Uλ ⊂ Uµ.

In the convex case, calibrable is equivalent to Cheeger in itself. Therefore we can state the following
proposition (uniqueness is provided by Theorem 1.3.5).

Proposition 3.3.3 (Suddenly vanishing convex sets). Let F ⊂ R2 be a convex set. Then F has the
thresholding property if and only if it is calibrable. Moreover, when λ = λF , {∅, F} is exactly the set of
solutions.

3.3.2 Convex sets that are invariant by TVL1

In view of Propositions 3.2.6 and 3.3.1, it is very easy to see that, given any convex set that is invariant
by TVL1, both its curvature and its ratio perimeter/area are less than λ. A very interesting property
is that the converse is true, as proved in [Alter et al., 2005a]. Indeed, Problem (3.39) was studied in
[Alter et al., 2005a] in dimension N , in order to characterize convex calibrable sets. We shall rely on
some of their results (notably the next theorem), but our working in dimension 2 makes some simplifica-
tions that allow to draw a parallel between the TVL1 model and mathematical morphology.

Theorem 3.3.4 ([Alter et al., 2005a], Theorem 9). Let C be a convex C1,1 bounded set of R2 and, as
before, λC = Per C/|C|. Let Λ = ess supx∈∂C |κ(x)|. Then C is a solution of the geometric problem
(3.39) associated to C (with fidelity parameter λ) if and only if max(λC ,Λ) ≤ λ.

In view of Remark 3.2.4, let us notice that this theorem describes all convex solutions of the TVL1
problem: a convex set C is solution of TVL1 for some F if and only if max(λC ,Λ) ≤ λ. Notice that
this criterion combines both a local and a global term.

3.3.3 Characterization of solutions for a convex data

In this subsection, we explain how one can obtain the exact solution of the geometric problem using
openings and a simple thresholding procedure. By the geometric equivalence Theorem 3.1.2, this gives
the exact solution of the TVL1 problem in case the data f is convex or quasi-convex (i.e. its level sets
are convex).

Definition 3.3.5. Let C ⊂ R2. Let us define the erosion and the opening with radius r > 0 of C by:

Cr := C 	B(0, r) := {x ∈ C, B(x, r) ⊂ C}, (3.41)

Cr := Cr ⊕B(0, r) =
⋃

B(x,r)⊂C

B(x, r). (3.42)
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Figure 3.3 – Left: the opening Cr of a set C with radius r is the union of all the balls of radius r that
are contained in C. Right: General profile of the function λ 7→ |C1/λ| for the erosion of a convex set C.
The value λ∗, at the intersection with the graph of the function π/λ2, is such that the opening C1/λ∗ of
C is the unique Cheeger set of C.

The following result can be found in [Andreu-Vaillo et al., 2002], and is a consequence of Lemma
9.2 in [Bellettini et al., 2001].

Lemma 3.3.6 ([Andreu-Vaillo et al., 2002] Lemma 4.27). Let C ⊂ R2 be an open convex bounded set.
The following assertions are equivalent:

• There exists some ρ > 0 such that C = Cρ.

• ∂C is of class C1,1, and supp∈∂C ess|κ∂C(p)| ≤ 1
ρ .

Next proposition describes the evolution of the ratio perimeter/area when performing openings.

Proposition 3.3.7 ([Alter et al., 2005b], [Kawohl and Lachand-Robert, 2006]). The mapping λ 7→ |C
1
λ |

is continuous, increasing on R∗
+, vanishes in a neighborhood of 0 and tends to |C| in +∞. Moreover:

Per C1/λ

|C1/λ|
< λ if and only if |C1/λ| < π

λ2 . Eventually, there exists a unique λ∗ such that
Per C1/λ∗

|C1/λ∗ |
= λ∗

(which is equivalent to |C1/λ∗ | = π
λ∗2 ).

Notice that the value λ∗ is precisely the one for which the opening C1/λ∗ is the Cheeger set of a
convex body C (see Section 1.3).

Proof. For the continuity of the mapping, we refer the reader to [Alter et al., 2005b]. We only show here
why the term π

λ∗2 appears. By Steiner’s formulas:

∀r > 0,Per (Cr ⊕B(0, r)) = Per Cr + 2πr (3.43)

|Cr ⊕B(0, r)| = |Cr|+ rPer Cr + πr2. (3.44)

Therefore:

Per (Cr ⊕B(0, r))
|Cr ⊕B(0, r)|

>
1
r
⇔ rPer Cr + 2πr2 > |Cr|+ rPer Cr + πr2. (3.45)

Lemma 3.3.8. Let C ⊂ R2 be a convex set, and λ > 0. The largest convex C1,1 open set included in C
whose curvature is lower than λ is C1/λ.

Proof. • Let C̃ be an open C1,1 convex set contained in C with curvature lower than λ. Then, by
Lemma 3.3.6, C̃1/λ = C̃.

But, by monotonicity of the opening: C̃1/λ ⊂ C1/λ. Thus: C̃ ⊂ C1/λ.
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• It is clear that C1/λ is convex (since if C contains two balls it contains their convex hull) and it is
open. By Lemma 3.3.6, C1/λ is C1,1 and its curvature is lower than λ.

We are now in a position to state the main result of this section, giving the solutions of the binary
TVL1 problem in the convex case by means of operators from mathematical morphology.

Theorem 3.3.9 (Solutions of the convex problem). Let C be a bounded, convex set, and λ∗ defined by
Proposition (3.3.7) (i.e. such that |C1/λ∗ | = π

λ∗2 )

• For λ > λ∗, the set C1/λ is the unique solution of the geometric problem (3.39).

• For λ = λ∗, the set of solutions is exactly {C1/λ∗ , ∅}, and C1/λ∗ is the Cheeger set of C.

• For λ < λ∗ the unique solution of Problem (3.39) is ∅.

Proof. For λ > λ∗, let us define C∗ = T +C (see Definition 3.1.8). Then C∗ is C1,1 (Proposition 3.2.5)
and its curvature is lower than λ (Proposition 3.3.4).

C1/λ is the largest convex C1,1 open set contained in C with curvature lower than λ (see Lemma
3.3.8), so that int C∗ ⊂ C1/λ ⊂ C, and as a result:

T +( int C∗) ⊂ T +C1/λ ⊂ T +C∗. (3.46)

But the extreme terms are equal to C∗ (because we can identify int C∗ and C∗, since the C1,1 boundary
has null measure), therefore modulo a Lebesgue negligible set , T +C1/λ = C∗.

Eventually, C1/λ is invariant by TVL1 (since
Per C1/λ

|C1/λ|
≤ λ and |κ| ≤ λ), hence:

C1/λ = T +C1/λ = C∗ (3.47)

and C1/λ is solution of the geometric problem.
We still have to prove uniqueness. Let U ⊂ C be a solution associated with the value λ. Let λn

(resp. µn) be an increasing (resp. decreasing) sequence with limit λ. The sets C1/λn
are solutions of

(3.39) associated to λn, thus, by monotonicity in λ (Proposition (3.3.2)):⋃
n

C1/λn
⊂ U ⊂

⋂
n

C1/µn
. (3.48)

Both extreme terms are equal to C1/λ. Hence uniqueness.
For λ = λ∗, we compare the energy to the Cheeger problem. If |U | > 0:

Per U − λ∗|U | = |U |
(

Per U
|U |

− λ∗
)
> 0 (3.49)

except if U = C1/λ∗ , in which case the energy is equal to 0, as well as the energy of ∅.
For λ < λ∗:

Per U − λ|U | = Per U − λ∗|U |+ (λ∗ − λ)|U |
> 0 except if U = ∅.

From Theorem 3.3.9, we can deduce the solution of TVL1 on convex sets by a simple opening
followed by a thresholding (see Corollary 3.4.3). At this point we can look back at the thresholding
property of convex calibrable sets (Proposition 3.3.3). These sets suddenly disappear because when



74 CHAPTER 3. THE TVL1 MODEL: A GEOMETRIC POINT OF VIEW

λ > λ∗ they are invariant to an opening with radius 1/λ (since, by characterization of convex calibrable
sets, |κ(x)| ≤ Per C

|C| = λ∗).
In the general convex case, the last shape we see when decreasing λ is the Cheeger set of C. One

should relate this with the Rudin-Osher-Fatemi model and the following result of [Alter et al., 2005a],
[Caselles et al., 2008] which is the key to the study of Cheeger sets in dimension N . Given a data
f = 1C , denote by u the unique solution of this problem, then the set {x, u(x) ≥ ‖u‖∞} is the Cheeger
set of C. The similarity between the two problems stems from the fact that in the convex case, the ROF
model behaves like a "stack of geometric problems": the level sets (Ut)t∈[0,1] minimize the quantity
Per U − λ(1− t)|U |.

This explains why Theorem 3.3.4, which was proved in the study of Cheeger sets, turned out to be
so helpful to the study of the TVL1 problem.

3.3.4 Separated convex components

We are now in a position to deal with the case of several convex connected components, provided they
are far enough from one another.

Proposition 3.3.10. Let C(1), . . . , C(m) ⊂ R2, be non empty connected bounded sets such that C̄(i) ∩
C̄(j) = ∅ for i 6= j, and F =

⋃m
i=1C(i). Assume the sets C(i) have the following property:

(C) ∀U ⊃ F,Per (U) ≥
m∑

i=1

Per (C(i)). (3.50)

Let us define a partition of every set U ⊂ R2 by U =
⋃m

i=0 Ui with U0 ⊂ FC and Ui ⊂ C(i). Then, the
geometric problem (3.26) can be split into independent problems:

∀i = 1, . . . ,m, min
Ui

Per Ui + λ|C(i) \ Ui| (3.51)

Condition (C) intuitively means that the components C(i) are far enough one from another. It also
implies that the C(i)’s are convex. We can therefore apply results from the last subsection to characterize
the solution in this case.

Proof. Notice that by submodularity:

Per (U ∪
m⋃

i=1

C(i)) + Per (U ∩
m⋃

i=1

C(i)) ≤ Per U + Per (
m⋃

i=1

C(i))︸ ︷︷ ︸
=

Pm
i=1 Per C(i)

(3.52)

(since the distance between the Ci is strictly positive). But Per (U ∪
⋃m

i=1C(i)) ≥
∑m

i=1 Per C(i) by
condition (C). Thus, the inequality can hold only if: Per (U ∩

⋃m
i=1C(i)) ≤ Per U . Moreover:

|(U ∩
m⋃

i=1

C(i))∆F | =
m∑

i=1

|C(i) \ Ui| ≤ |U0|+
m∑

i=1

|C(i) \ Ui| ≤ |U∆F |. (3.53)

We can infer that EG(U ∩
⋃m

i=1C(i)) ≤ EG(U). The geometric problem (3.26) amounts then to:
min

∑m
i=1(Per Ui + λ|C(i) \Ui|). These problems are independent because Ui ⊂ C(i) and the C(i)’s are

distant from one another.

Notice that Condition (C), which is here only a sufficient condition, is very similar to conditions that
appear naturally when studying calibrable sets (see [Bellettini et al., 2002], Theorem 6).
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Remark 3.3.11. Although Condition (C) may not be optimal, notice that a condition on the distance
between connected components appears necessary. This is easy to check in the particular case of two
discs of radius r. Assume the distance between their centers is d ≥ 2r, then their convex hull has
lower energy than the two discs when 2r ≤ d ≤ πr

2

(
1 + 1

1+λr

)
. One can choose such d as soon as

λ < 1
r

(
2π−4
4−π

)
≈ 2.6

r . For λ ∈
(

2
r ,

1
r

(
2π−4
4−π

))
, the independent evolution predicts that the solution is

two discs, which is contradicted by the fact that the convex hull has a lower energy.

3.4 Mathematical morphology almost everywhere...

As noticed in [Darbon, 2005] and discussed in Section 3.1, the minimization of the TVL1 model yields a
morphological operator. In this Section we analyze further the link between the model and the openings
introduced in Proposition 3.3.9.

In the convex case, we have seen that TVL1 is equivalent to an opening followed by a thresholding.
When the connected components are non convex or too close to one another, things get more complicated
and one may wonder if a simple morphological operator can describe or approximate the TVL1 model.
K. R. Vixie and S. Esedoglu prove in [Vixie and Esedoglu, 2007] the following result by geometric ar-
guments:

Proposition 3.4.1 ([Vixie and Esedoglu, 2007]). Let F ⊂ R2 be a bounded measurable set, and U be a
solution of the corresponding geometric problem (3.26). Assume that a ball B(x, 2

λ) lies completely in
F . Then, U ∪ B(x, 2

λ) is a solution of the geometric problem (3.26). Moreover, if B(x′, 2
λ) ⊂ F c, then

(B(x′, 2
λ) ∪ U c)c is a solution too.

This result is all the more interesting as it gives the following geometrical bounds on some solution
of TVL1:

⋃
x:B(x, 2

λ
)⊂F

B(x,
2
λ

) ⊂ U ⊂

 ⋃
x:B(x, 2

λ
)⊂F C

B(x,
2
λ

)


C

. (3.54)

Writing T for the TVL1 operator, O2/λ and F2/λ respectively for the opening and closing operators
with radius 2

λ , one can formally write:

O2/λ ⊂ T ⊂ F2/λ. (3.55)

This result is somehow optimal since a ball with radius r < 2
λ vanishes by TVL1. Therefore, it is

hopeless to try to get a finer inequality by opening with balls with a smaller radius. Nevertheless, the
result is coarse in the sense that it implies a curvature of ±λ

2 in regions where the boundary of U is
distinct from the boundary of F , and not ±λ as predicted by Proposition 3.2.6.

In fact, we can generalize Proposition 3.4.1 and give a simple proof of it by noticing that it is a
consequence of the monotonicity Theorem 3.1.3 (since balls of radius 2

λ are invariant by TVL1). In the
framework of the present paper, one sees that Proposition 3.4.1 is true when replacing B(x, 2

λ) by any
set that is invariant by TVL1. As a consequence, one can replace balls in Equation 3.55 by any set that
is invariant by TVL1. In order to have better approximations of the TVL1 solutions, we can therefore
consider a larger family of structuring elements than just discs.

For instance one may consider ellipses, or any convex calibrable set satisfying the hypothesis of
Theorem 3.2.2, and try to refine the previous inequality. In theory, we are guaranteed that, taking a large
enough family, one could describe exactly operators T + or T −: this is indeed a consequence of a famous
theorem by Matheron [Matheron, 1975] that we now recall.
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Theorem 3.4.2 (Matheron). Let T : P(R2) → P(R2) be a translation invariant standard monotone
operator. Let us consider B = {B ⊂ R2/0 ∈ T B}. Then:

T X = {x ∈ R2, x+B ⊂ X for some B ∈ B}. (3.56)

Unfortunately, the family B of structuring elements given by this theorem is far too large for a practi-
cal use. Indeed any solution of TVL1, up to a translation, is a structuring element! One may thus wonder
if a reasonable family could lead to useful approximations of TVL1, yielding curvature values close to
λ. However, the choice of a simple approximating family of structuring elements appears to depend on
the considered set.

On the other hand, in the convex case, an immediate corollary to Theorem 3.3.9 yields an alternative
expression of TVL1 using operators from mathematical morphology. Indeed,

Corollary 3.4.3. LetC be a bounded, convex set, and λ > 0. LetC1/λ be the opening ofC with radius 1
λ .

Then:

• If
Per C1/λ

|C1/λ|
< λ, the solution is C1/λ.

• If
Per C1/λ

|C1/λ|
> λ, the solution is ∅.

• If
Per C1/λ

|C1/λ|
= λ, both C1/λ and ∅ are solutions.

In short, TVL1 amounts to a thresholding following an opening. The condition over the ratio perime-
ter/area appearing in this result essentially means that the energy of the set after the opening is less
than the energy of the empty set. Let us mention that a similar thresholding operation has already
been proposed in a completely different context, in the framework of morphological connected filters,
see [Salembier et al., 1998].

In the non-convex case, Corollary 3.4.3 is non longer true, but one may wonder how to extend the
corresponding morphological operator. In Chapter 4, we push the discussion further relying on empirical
considerations: a numerical scheme is proposed to approximate TVL1, and we illustrate it by various
experiments on both synthetic and natural images.

Before proceeding to the next chapter, let us give a brief motivation for this algorithm. Of course, the
approach that would apply openings to non-convex sets is not satisfactory, because it would obviously
induce errors in locally concave parts. In order to overcome this difficulty, we consider the operators
given by an opening followed by a closing or vice versa (F1/λO1/λ or O1/λF1/λ) with the idea that in
regions where the shape is locally convex or concave, Theorem 3.3.9 applies and these operators would
behave correspondingly. Notice also that both operators provide curvature ±λ and also satisfy the same
inequality as TVL1, Formula (3.55), namely:

O2/λ ⊂ O1/λF1/λ ⊂ F2/λ and O2/λ ⊂ F1/λO1/λ ⊂ F2/λ. (3.57)

After applying operator F1/λO1/λ (orO1/λF1/λ), we consider every connected component Ui of the
result, and we test if its energy is lower than the energy of the empty set i.e.:

Per Ui + λ (|Ui| − 2|Ui ∩ F |) ≤ 0. (3.58)

We remove the connected components accordingly.
One may object that the above procedure is not self-dual, contrary to TVL1. It is true, but the two

points should be noted:

• When the solution of TVL1 is not unique, a choice must be made which is not necessarily self-dual.
For instance, one may consider T + or T − which are not self-dual.
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• In mathematical morphology, the lack of self-duality of the opening followed by a closing is often
resolved by using an alternating sequential filter [Soille, 2003]. This filter consists, given a small
value r0, in performing alternatively opening and closing of radius nr0 until nr0 ≥ 1/λ. When
r0 is small enough, the operator is much more symmetric than a single opening-closing step, and
starting with either an opening or a closing makes little difference. Empirically we have found
that we obtain results that are closer to the exact solution. Therefore we use this procedure in the
following.
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Chapter 4

Algorithms and numerical experiments

In this chapter, we support the previous theoretical study with numerical experiments. First, we recall
several classical ways to solve the TVL1 problem. Then, we propose two algorithms based on morpho-
logical openings to approximate these solutions. Both are isotropic, and the second one is especially
fast. Let us emphasize that we do not claim to perform an exact minimization of the TVL1 functional in
the discrete case, as is done in [Darbon and Sigelle, 2006]. Our purpose here is to illustrate the fact that
the TVL1 minimization behaves (exactly in many cases, and at least not very differently in general) like
simple morphological operators such as openings or closings.

4.1 Classical ways to numerically solve the TVL1 problem

4.1.1 Gradient descent

In [Chan and Esedoglu, 2005], the method employed to numerically solve the TVL1 model is the most
straightforward. The authors employ the following gradient descent scheme:

un+1
i,j − un

i,j

δt
= D−

x

 D+
x u

n
i,j√

ε+ (D+
x un

i,j)2 + (D+
y un

i,j)2


+D−

x

 D+
y u

n
i,j√

ε+ (D+
x un

i,j)2 + (D+
y un

i,j)2

+ λ
un

i,j − fi,j√
δ + (un

i,j − fi,j)2
,

where ε > 0 and δ > 0 are small constants. The operatorsD+ andD− refer to the forward and backward
differences.

Despite its simplicity, this scheme has many drawbacks. First, since the total variation and the L1

norm are not smooth, one has to regularize them, hence the constants ε and δ. Second, the convergence
of this scheme is very slow, especially with binary images. Indeed, in flat regions the gradient is zero. As
a consequence, for pixels in a flat region to evolve, one has to wait for the propagation of the evolution
of the edges. Last, the underlying energy does not satisfy the coarea formula, so that new gray levels are
created, even at convergence. As a result, the solutions obtained when the input images are binary input
look blurred.

4.1.2 Alternate minimization schemes

4.1.2.1 Aujol et al.

In the case of the Rudin-Osher-Fatemi problem, Chambolle has proposed a duality based algorithm
[Chambolle, 2004b] that has widely and quickly been adopted by the image processing community.
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Its main advantages are that it is simple to implement, its convergence is theoretically proved, and it
converges faster than the gradient descent.

In [Aujol et al., 2006], Aujol et al. propose an algorithm to solve the TVL1 problem that relies on
alternating Chambolle’s algorithm and a shrinkage. It consists in solving alternatively the two following
problems:

• v being fixed,

inf
u

(
J(u) +

1
2α
‖f − u− v‖22

)
, (4.1)

• u being fixed:

inf
v

1
2α
‖f − u− v‖22 + λ‖v‖1. (4.2)

Here, J and ‖ · ‖1 refer respectively to the discrete total variation and discrete L1 norm:

J(u) =
∑

1≤i,j≤N

√
(∇xu)2i,j + (∇yu)2i,j , ‖u‖1 =

∑
1≤i,j≤N

|ui,j |

The discrete gradient is given by:

(∇xu)i,j =
{
ui+1,j − ui,j if 1 ≤ i ≤ N − 1
0 if i = N

, (∇yu)i,j =
{
ui,j+1 − ui,j if 1 ≤ j ≤ N − 1
0 if j = N

.

(4.3)
The solution of the first problem is obtained using Chambolle’s algorithm, whereas the solution of

the second one is given by a shrinkage of the pixel values. The authors show that the solutions (un, vn)
converge to the solutions of the problem:

inf
u,v

(
J(u) +

1
2α
‖f − u− v‖22 + λ‖v‖1

)
. (4.4)

Now, for α→ 0+, they state that u(α) converges to a solution of the TVL1 problem:

inf
u

(J(u) + λ‖u‖1) . (4.5)

This scheme is a bit difficult to use since in practice one has to choose a value α, and the obtained
solution is actually a solution of (4.4). Nevertheless, Pock et al. [Pock et al., 2008] have proposed a
GPU-based implementation of this algorithm which is faster than graph-cut techniques (which, as far as
we know, are difficult to adapt to GPU programming).

4.1.2.2 Chambolle-Pock

Very recently, Chambolle and Pock [Chambolle and Pock, 2011] proposed an algorithm which, as far as
we know, achieves the current best convergence speed for problem (4.5).

To solve a problem of the form:
min
u∈X

F (Au) +G(u), (4.6)

where X,Y are a Euclidean spaces, F : Y → [0,+∞) and G : X → [0,+∞) are proper, convex, l.s.c.
functions, and A : X → Y is a linear map, the authors write it as a primal-dual problem:

min
u∈X

max
y∈Y
〈y,Au〉 − F ∗(y) +G(u). (4.7)

(4.8)
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They propose to solve it by alternate minimizations:
yn+1 = (I + σ∂F ∗)−1(yn + σAun)
un+1 = (I + τ∂G)−1(un − τA∗yn+1)
un+1 = 2un+1 − un.

(4.9)

This is an alternate minimization scheme since (I + τ∂F )−1(y) = arg minx

(
1
2‖x− y‖

2 + F (x)
)
.

In the particular case of the TVL1 algorithm, we haveX = RN×N , Y = X×X ,A = ∇, F = ‖·‖1,
and G = ‖ · −f‖1. The scheme amounts to:

yn+1 = yn+σ∇un

max(1,|yn+σ∇un|)
un+1 = f + STτλ(un + τ × (div (yn+1))− f)
un+1 = 2un+1 − un,

(4.10)

where STλτ is the soft-thresholding operator: STλτ (x) =


x− λτ if x > λτ
x+ λτ if x < λτ
0 otherwise

.

The advantages of this scheme are that there is a proof of convergence, and that it is very fast (see
[Chambolle and Pock, 2011] for a comparison).

4.1.3 Second-Order Cone programming

In [Yin et al., 2007a], Yin et al. use a second order cone programming method to minimize the TVL1
energy. They write the problem as:

min
s,t,u,∇xu,∇yu

∑
1≤i,j≤N

ti,j + λs

s.t. (∇xu)i,j = ui+1,j − ui,j ∀1 ≤ i, j ≤ N,
(∇yu)i,j = ui,j+1 − ui,j ∀1 ≤ i, j ≤ N,∑
1≤i,j≤N

(fi,j − ui,j) ≤ s,∑
1≤i,j≤N

(ui,j − fi,j) ≤ s,

(ti,j , (∇xu)i,j , (∇yu)i,j)) ∈ K, ∀1 ≤ i, j ≤ N,

where K = {(a, b, c) ∈ R3, a ≥
√
b2 + c2}.

This formulation allows the authors to use a commercial solver to obtain the solutions of TVL1. We
will not focus on this approach in this thesis.

4.1.4 The Darbon-Sigelle algorithm

The computer vision community has been using graph-cuts to solve minimization problems for
decades [Greig et al., 1989, Hochbaum, 2001, Boykov and Kolmogorov, 2004, Chambolle, 2005]. In
[Darbon and Sigelle, 2006], Darbon and Sigelle have proposed an very efficient way to solve the TVL1
problem1. The energy they minimize is of the form:

E(u) :=

(
N−1∑
k=0

N∑
l=0

|uk+1,l − uk,l|+
N∑

k=0

N−1∑
l=0

|uk,l+1 − uk,l|

)
+

∑
1≤k,l≤N

|uk,l − fk,l|. (4.11)

1Let us also mention the similar algorithm proposed simultaneously in [Chambolle, 2005] for ROF.
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S

T

Figure 4.1 – The graph associated to the image. The nodes S and T are special. Then encode the fidelity
term.

We mention here the 4-connected total variation scheme but other submodular regularization terms are
also considered, including a more anisotropic 8-connected scheme. The choice of the authors is justified
by the fact that such discrete energies satisfy a coarea formula: let Uj = {(k, l) ∈ J0, NK2, uk,l ≥ j}
and Fj = {(k, l) ∈ J0, NK2, fk,l ≥ j} be the upper level sets of u,

E(u) =
254∑
j=0

Per1 Uj + λ
∑

(k,l)∈J0,NK2

(
1Uj [k, l] + 1Fj [k, l]− 2 · 1Uj [k, l]1Fj [k, l]

) , (4.12)

where Per1 denotes the anisotropic perimeter:

Per1 Uj =
N−1∑
k=0

N∑
l=0

(
1Uj [k, l] + 1Uj [k + 1, l]− 2 · 1Uj [k, l]1Uj [k + 1, l]

)
+

N∑
k=0

N−1∑
l=0

(
1Uj [k, l] + 1Uj [k, l + 1]− 2 · 1Uj [k, l]1Uj [k, l + 1]

)
.

Then each geometric problem can be seen as a cut problem in a graph, and therefore can be solved
using a graph-cut approach [Ford and Fulkerson, 1956]. Let us consider a directed graph where the nodes
are the pixels of the image plus two additional nodes called the source (s) and the sink (t). The pixels are
related by the 4-connectivity of the image, and each pixel is connected to the source and the sink. If a, b
are two nodes of the graph corresponding to pixels, we set C(a, b) = 1. For any pixel a of the image, we
set Cs→a = 0 and Ca→t = λ if a ∈ Fj , and Cs→a = λ and Ca→t = 0 if a /∈ Fj

A cut is a partition (Vs,Vt) of the set of nodes such that s ∈ Vs, t ∈ Vt. Its cost is defined by:

E(Vs,Vt) =
∑

a∈Vs,b∈Vt

Ca→b. (4.13)

Then one can see that E(Vs,Vt) is exactly the geometric energy of Vt \ {t} in Eq.(4.12). As a conse-
quence any minimizer of the minimum cut problem is a minimizer of the geometric problem (4.12) and
conversely.

The theorem by Ford and Fulkerson [Ford and Fulkerson, 1956] ensures that a minimum cut problem
can be solved by computing the maximal flow σ on a graph associated to the image, which can be
done very efficiently. We refer the reader to [Boykov and Kolmogorov, 2004] for more details about
such algorithms, but it is interesting to look at the properties of the constructed flow. In [Strang, 1983,
Strang, 2009], Strang studies the continuous analog of discrete minimum cut problems. Depending
on the source terms on the boundary or inside the domain, he finds geometric problems involving the
perimeter, including the Cheeger problem. Since then, many authors have focussed on the continuous
maximum flow problem [Chambolle and Darbon, 2009, Yuan et al., 2010]. It is interesting to use this
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framework to draw a parallel between the constructed maximal flow and the vectorfield z of the Euler-
Lagrange equation (2.2) for the geometric problem, i.e..

∃z ∈ X∞, |z| ≤ 1 a.e., (D1U , z) = |D1U |, |D1U | a.e. (4.14)

∃p ∈ L∞, |p| ≤ 1 a.e., |U∆F | =
∫

R2

(1U − 1F )p, (4.15)

and div z + λp = 0. (4.16)

The first equation means that z(x) · ν = 1,H1 a.e. on ∂U (where ν is the outer unit normal to ∂U ), and
the second one that p = sign (1U − 1F ). The following correspondence between the maximum flow
problem and the optimality conditions holds:

Maximal flow Euler-Lagrange
Capacity constraint 0 ≤ σa→b ≤ 1 = Ca→b |z(x)| ≤ 1
Saturation of the capacity

σa→b = 1 if a ∈ Vs and b ∈ Vt z(x) · ν = 1 on ∂U
of an edge of the cut

Equilibrium (Kirchhoff)

∑
b∈N (B)(σa→b − σb→a)− σs→a + σa→t = 0

div z + λsign (1U − 1C) = 00 ≤ σs→i ≤ Cs→a = λ1F C
j

0 ≤ σi→t ≤ Ca→t = λ1Fj

4.2 Opening-based algorithms

We now propose two algorithms based on openings to compute approximate solutions of TVL1. The
first one is naive and works on each level set after applying an alternate sequential filter. The second one
takes advantage of the tree of shapes [Monasse and Guichard, 2000] to threshold the level sets in a more
elegant manner.

4.2.1 Naive algorithm

Following the discussion of Section 3.4, the simplest algorithm we propose consists in performing an
opening then a closing(FO), or vice versa (OF), or an alternate sequential filter (ASF). We then thresh-
old the connected components of the level sets. Since in the non convex case the thresholding driven
by Equation (3.58) might not be monotone with respect to the inclusion, in order to avoid visible arti-
facts when applying such a scheme to images, we impose the monotonicity, by removing all connected
components of level sets that are included in a removed component. This algorithm is described in
Figure 4.2.

Observe that the thresholding procedure is self-dual and that the only possible cause of non self-
duality stems from the morphological filter (OF , FO or ASF). This procedure could lead to contrast
inversion in case of connected components with holes. However, we never observed such a behavior
in numerical experiments. Actually, one may show that this phenomenon never happens in the case of
concentric circles (annulus) because of the preliminary morphological filter.

4.2.2 FLST-based algorithm

Connected components of upper level sets have a tree structure, as well as connected components of
lower level sets. Although the previous algorithm can be implemented by imposing monotonicity, it does
not fully benefit from this tree structure, and a more elegant approach can be proposed using the Fast
Level Set Transform (FLST).

Before proceeding, we recall briefly what this transform consists in. In order to merge the trees of
lower and upper level sets, Monasse et al. , [Monasse and Guichard, 2000], introduced the concept of
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Algorithm Level-set TVL1

Inputs: Image f
Parameters: Fidelity parameter λ
Output: Approximate solution u

Perform Alternate Sequential Filter: a := ASF (f)
for all j ∈ {0, . . . , 255} do

Compute the upper level set of a: Aj := {(x, y), a(x, y) ≥ j}
Uj := Aj ;
for all connected component C of Aj do

if the pixels of C were thresholded in Uj0 (j0 < j) or ∆E(C) < 0 then
(Threshold) Uj := Uj \ C.

end if
end for

end for
Reconstruct u from {Uj}0≤j≤255.
for all j ∈ {255, . . . , 0} do

Compute the lower levelset of a: Aj := {(x, y), a(x, y) ≤ j}
Compute the lower levelset of u: U j := {(x, y), a(x, y) ≤ j}
for all connected component C of Aj do

if the pixels of C were thresholded in U j0 (j0 > j) or ∆E(C) < 0 then
(Threshold) U j := U j \ C.

end if
end for

end for
Reconstruct u form its level sets {U j}0≤j≤255.

Figure 4.2 – Naive algorithm for TVL1 using openings and level sets.

shape, and of tree of shapes (see Figure 4.3). A shape is defined as the union of a connected component
of an upper or lower set together with its holes. The holes of a set A are defined as the connected
components of the complementary set of A which do not intersect the boundary of the image. It can
be shown that these shapes have a tree structure, where the parent-children relationship is given by the
inclusion of shapes. This structure results from the fact that two shapes are either disjoint or one is
included in the other. To each shape is associated its type indicating whether it stems from a connected
component of an upper level set (≥ λ) or of a lower level set (≤ λ), as well as the value of the associated
gray level. An important property of this representation is its self-duality, that is, its invariance with
respect to the operation u 7→ −u. This implies in practice that light and dark objects are treated in the
same way. A fast algorithm to compute this tree is proposed in [Monasse and Guichard, 2000].

In order to take advantage of the tree of shapes we first notice that the energy of the TVL1 model can
be written in a FLST-friendly way. In the discrete case, the energy reads:

E(u) =
255∑
l=0

(Per Ul + λ|Ul∆Fl|) (4.17)

where Ul and Fl are the upper level sets of respectively u and f . Incidentally, the length of the boundary
ofUl that coincides with the boundary of the image is not counted in the perimeter Per Ul (which amounts
to assuming the Neumann conditions ∂u

∂n = 0). Now, for a given shape s, define s̃ as the set of its proper
pixels, that is, pixels which belong to s and not to its children. We obviously have either s̃ ⊂ Ul or
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Figure 4.3 – The Fast Level Set Transform on an example. Left: an image composed of different shapes.
Right: the corresponding tree. This illustration was drawn by Gui-Song Xia based on the example given
in [Monasse and Guichard, 2000]

s̃ ⊂ UC
l . One even has:

Ul =
⋃

s̃⊂Ul

s̃ and UC
l =

⋃
s̃⊂UC

l

s̃ (4.18)

Given a gray level l, the perimeter of a shape s contributes to the perimeter Per Ul if and only if l lies
in the interval between the value Vs of s and the value Vp(s) of its parent. Let us denote this interval by
co (Vs, Vp(s)).

Now, define FC
sl =

{
FC

l if s̃ ⊂ Ul

Fl if s̃ ⊂ UC
l

and observe that :

s̃ ∩ FC
sl =

{
{x ∈ s̃/u(x) ≥ l and f(x) < l} if s̃ ⊂ Ul

{x ∈ s̃/u(x) < l and f(x) ≥ l} if s̃ ⊂ UC
l

.

Then, the energy can be written as:

E(u) =
255∑
l=0

∑
s shape

(
Per s · 1l∈co (Vs,Vp(s)) + λ|s̃ ∩ FC

sl |
)

(4.19)

=
∑

s shape

(
255∑
l=0

(Per s · 1l∈co (Vs,Vp(s)) + λ|s̃ ∩ FC
sl |)

)
(4.20)

The energy E(u) is therefore a sum of energies over all the shapes. These energies are not quite indepen-
dent since the value of a parent has an effect on the energy of its children. As a consequence, one cannot
minimize these energies independently. However, one can decrease the global energy by minimizing the
energy of the shapes while visiting the tree from the leaves to the root.

More precisely, the thresholding performed at each gray level in the previous algorithm corresponds
to modifying the gray value associated with a shape. Given each shape s, and assuming its children are
fixed (they have already been visited by the algorithm), we can move the value Vs of the shape towards
the value of its parent by one level, if and only if it decreases the energy (∆E < 0). The variation of
energy is:

∆E = −Per s+ λ|s̃ ∩ FC
s,Vs±1|+

∑
c child of s

with same type

Per c−
∑

c child of s
with opposite type

Per c (4.21)
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Algorithm FLST-based TVL1

Inputs: Image f
Parameters: Fidelity parameter λ
Output: Approximate solution u

Perform Alternate Sequential Filter: a := ASF (f)
Compute the Level Set Transform: T := FLST (a)
for all shape s of the tree T do

Remove the children t of s such that Vt = Vs.
if (∆E < 0) (Equation 4.21) then

Remove s.
end if

end for
Reconstruct u := FLST−1(T ).

Figure 4.4 – An algorithm to compute an approximate solution of TVL1 using openings and the Fast
Level Set Transform. Notice that the tree is visited from the leaves to the root.

where Vs ± 1 is the new gray value to be given to s. Recall that if a shape s is of inferior type, then the
value of its parent is above the value of s, and if s is of superior type, the value of its parent is below.
Therefore the gray value of s is getting closer to the values of the children with opposite type, but is
getting further from the values of the children with same type.

In practice, a quantization step of one is imposed when computing the FLST, so that the difference
between the value of every shape and its parent is±1. Therefore, instead of moving the value Vs towards
the value of the parent, we simply remove the shape s (which amounts to merging s with its parent).
Every time a child c is removed, its proper area (that is, |c̃|) is added to the proper area of its parent s,
and its children become the children of s. Thus, in Equation (4.21), Per c is replaced by the perimeters
of the children of c, with appropriate sign.

Ordering the shapes from the leaves to the root so that each node is visited after all its children have
been handled, we perform the algorithm described in Figure 4.4.

Observe that at the beginning of each iteration (in the for loop) we remove the children that have the
same value as s but have not been removed yet (this may happen when the grand-children of s have the
same value as s and their parent is removed).

Notice that this algorithm is very similar to the one proposed by Dibos and Koepfler in
[Dibos and Koepfler, 2001] in order to simulate the TV flow by using the FLST, and later by Darbon
in [Darbon, 2005] for TVL1. However the difference is that we start with the output of an ASF filter and
compare it to the original image. A first consequence is that the criterion to decide whether or not the gray
level associated with a shape should be modified is different. A second difference is that our approach
is legitimated by our theoretical study. In particular, whereas Dibos and Darbon do not impose any con-
dition on the curvature of the output, we know that the shapes provided by the ASF filter are somehow
"good candidates" to be solutions of TVL1. However, it seems difficult to quantify or bound the error
between the exact solution and the result of this algorithm. Assuming that the ASF filter really gives
the good candidate for the solution, the algorithm we propose, by testing if the energy decreases when
thresholding, follows a greedy approach: it solves successive geometric problems with, at each step, the
constraint that the children are left identical. Although the solution of TVL1 is a global solution of these
constrained problems, this algorithm might lead to a local minimizer.

Both the naive and the FLST-based algorithms give visually very similar results. The second one
is much faster and even competitive with Darbon-Sigelle’s algorithm [Darbon and Sigelle, 2006]: using
square as structuring element it took 1.27s to filter a 512 × 512 image with λ = 1/3, using an Intel
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Core2 Duo E8400, 4Gb of RAM. Notice that in this experiment, half the computation time is due to
the openings and closings (ASF filter). As a comparison, Darbon-Sigelle’s algorithm takes 0.96s using
4-connectivity. Using isotropic schemes (i.e. balls as structuring elements versus 8-connectivity), the
trend is inverted since Darbon-Sigelle’s algorithm takes longer using a more complicated connectivity
(1.71s) whereas the FLST -based scheme is not affected at all (1.27s). However, let us recall again that
we do not perform exact minimization.

4.2.3 Commentary

In this section we discuss the results of the FLST-based algorithm. It should be noted that in order
to compare this algorithm with existing TVL1 algorithms, we should focus on schemes that satisfy the
coarea formula. For instance, when using a gradient descent formulation, numerical instabilities compels
us to regularize the total variation by replacing

√
u2

x + u2
y with

√
ε2 + u2

x + u2
y in the divergence term.

Although ε is assumed to be very small, this implies that the scheme does not satisfy the coarea formula.
As a matter of fact, in the discrete case, even when ε = 0, the coarea formula is not satisfied. As a
consequence, new grey levels appear and characteristic functions of sets are blurred. Therefore, it is not
possible to experimentally check e.g. curvature values because of uncertainty on the boundary of the
smoothed sets (see Figure 4.5).

We therefore compare our results with Darbon-Sigelle’s algorithm [Darbon and Sigelle, 2006] since,
to our knowledge, it is the only algorithm that satisfies the coarea formula. Observe however
that this algorithm is anisotropic. Its authors propose two different schemes: one relying on 4-
connectivity and the other one relying on 8-connectivity, the latter being more isotropic. In case
of 4-connectivity, the scheme is actually consistent with an anisotropic total variation formally de-
fined as:

∫
(|ux| + |uy|) instead of

∫ √
u2

x + u2
y. We refer the reader to Chapter 7 for more details

about anisotropic TVL1. For now, let us mention that this kind of anisotropic, crystalline, total varia-
tion is the framework of intensive research (among which [Bellettini et al., 2001],[Caselles et al., 2008],
[Bellettini et al., 2009]). A didactic introduction to this subject and a study of the anisotropic ROF model
are provided in [Esedoglu and Osher, 2004]. Let us mention that one can define an anisotropic perime-
ter as well as an anisotropic curvature and that similar results as those of Lemma 3.3.6 can be stated
[Bellettini et al., 2001]. In our case the associated Wulff shape is a square. It is not the purpose of this
chapter to explore the links between anisotropic total variation and the results of Section 3.1, but for
now let us observe that our results seem to hold with anisotropic total variation when replacing opening
with balls by opening with squares. This property will be proved in Chapter 7. Therefore, the reader
should keep in mind, while looking at the result with Darbon-Sigelle’s algorithm connectivity 4, that
these correspond to openings relying on squares instead of balls.

Figure 4.5 shows the evolution of simple convex and non-convex shapes. First, notice that results
of rows 2 and 3 (respectively from Darbon-Sigelle’s algorithm and our approach when using square
structuring elements) are remarkably similar (although a few pixels may differ). Observe also that, as it
is well known, the finite difference implementation of the fourth row exhibits blur. Last, we can notice
that results displayed on the last row, using the approach introduced in this paper with balls as structuring
elements, are the only ones being both isotropic and with sharp edges.

Figure 4.6 and 4.7 illustrate the ability of the algorithm to provide isotropic results when using balls
as structuring elements and provides comparisons with Darbon-Sigelle’s algorithm using 8-connectivity
on natural images. Some details may differ but on the whole the results look very similar. Incidentally, let
us notice that using 8-connectivity with Darbon-Sigelle’s algorithm yields, as it is well-known, slightly
anisotropic results, but this anisotropy becomes visible only at very low values of λ (which are unrealistic
when denoising images). The isotropy of the FLST-based algorithm, is a direct consequence of the
isotropy of the structuring element used to perform the openings. In this thesis, we use a straightforward
scheme relying on the euclidean distance. However, implementations relying on more sophisticated
distances could be considered.

Figure 4.8 displays another experiment on a natural image. In practice, the alternating sequential
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Figure 4.5 – From top to bottom. First row: original image. Second row: result obtained with Darbon-
Sigelle’s algorithm (connectivity 4). Third row: result of the FLST based algorithm, i.e. an alternat-
ing sequential filter (alternated opening/closing with increasing radius, the structuring element being a
square of side 2/λ) completed with a thresholding on the shapes. Fourth row: result of the gradient
descent scheme (300 000 iterations, dt = 0.1). Fifth row: result of the FLST-based algorithm with
euclidean balls as structuring elements. All pictures were computed with λ = 1/9, except the first col-
umn (λ = 1/6, the small component is kept, contrary to the second column). Notice the blurry effect
introduced by the the gradient descent.
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Figure 4.6 – Isotropy. The upper row illustrates the behavior the Darbon-Sigelle algorithm using 8-
connectivity on a detail of a Brodatz texture (from left to right: original image, result of the algorithm
with increasing values of λ) Lower row: behavior of the FLST-based filter using euclidean balls followed
by a thresholding. Notice that the anisotropy of Darbon-Sigelle’s scheme is not very visible, even at low
values of λ.

filter is not exactly self-dual since a finite step r0 = 1 has to be chosen. As a consequence, the result in
some specific areas may depend on the order of the ASF.

Figure 4.9 shows the "granulometry property" of the algorithm: details vanish in function of their
scale. Eventually, we compare on Figures 4.10 and 4.11 the scale-spaces of the proposed algorithm and
the TVL1 algorithm. Although slight differences may appear (the Wulff shape is a disc in the first case,
an octagon in the second), the result is remarkably similar.
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Figure 4.7 – Isotropy again. Left: original image. Middle: result of Darbon Sigelle’s algorithm using
8-connectivity (β = 4.6). Using 8-connectivity provides more isotropic results than using 4-connectivity.
However, especially for very low values of λ, it is not as isotropic as the scheme proposed in this paper
when using balls as structuring element, as shown on the right image (λ = 1/11).

Figure 4.8 – Chessboard dilemma. From left to right: original image, results of the FLST based algo-
rithm (λ = 1/3 in the first case the alternating sequential filter starts with an opening, and in the second
one it starts with a closing). The ASF is not exactly self-dual and in some specific cases the result visibly
depends on the chosen order. However, this does not necessarily contradict the TVL1 model since in case
of the chessboard dilemma, the solution of the model is not unique.

Figure 4.9 – Scale space using the FLST-based algorithm. From left to right, top to bottom: original
image, result of the FLST-based algorithm (λ = 1, 1/2, 1/3,1/4, 1/5). Observe how details vanish one
after the other, in function of their size: the shirt, the eyes of the teddy-bear, one wing of the plane...
This illustrates the "improved granulometry" property of the TVL1 model: objects evolve according to
an opening/closing and then vanish depending on a geometric criterion.
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(a) ASF+FLST (b) TVL1 [Darbon and Sigelle, 2006]

Figure 4.10 – Comparison of algorithm 4.4 with discs and [Darbon and Sigelle, 2006] with
8-connectivity. The parameters are respectively λ ∈ {1, 1/2, 1/3, 1/4, 1/5}, and β ∈
{0.28, 0.65, 1.08, 1.45, 1.7}.
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(a) ASF+FLST (b) TVL1 [Darbon and Sigelle, 2006]

Figure 4.11 – Comparison of algorithm 4.4 with discs and [Darbon and Sigelle, 2006] with
8-connectivity. The parameters are respectively λ ∈ {1, 1/2, 1/3, 1/4, 1/5}, and β ∈
{0.28, 0.65, 1.08, 1.45, 1.7}.



Chapter 5

Cartoon, Textures and Granulometries

In this chapter, we compare two cartoon-texture decomposition models introduced in the literature: the
TV-G model and the TVL1 model. We begin with a reminder on the principle of such decompositions
and, for once, we show the visual results before getting into the theoretical details. In particular we
highlight an artifact that appears with the TV-G model, namely the fact that edges appear in the texture
part.

In the second section, we study the TV-G model. A typical motivation of the TV-G model is that indi-
cator functions of smooth sets have a small total variation whereas oscillatory signals like sine functions
have a small G-norm. Yet, to our knowledge, no example was ever given that the TV-G model is able to
separate such signals. We provide here an example where the model gives the expected decomposition
when the input is the indicator function of a disc plus a (slightly perturbed) sine function. The study of
this example leads us to discuss the presence of edges in the texture part. They do not necessarily appear
but it seems that the texture part cannot be empty in a neighborhood of the edges of the cartoon part.

The third Section is devoted to the TVL1 model: we show that it is also able to separate an indicator
function from a sine function, and that it does not suffer from the apparition of edges in the texture part.
Eventually, we explain the good performance of the TVL1 model for cartoon-texture decomposition by
drawing a connection with the granulometries of mathematical morphology.

5.1 Cartoon-Texture decomposition: introduction and visual results

5.1.1 Introduction

The problem of cartoon-texture decomposition originates from the seminal work of Y. Meyer [Meyer, 2001].
In this book, the author proposes to separate a signal into two components by solving a variational prob-
lem of the form:

min
(u,v)∈X1×X2

{F1(u) + λF2(u) / u+ v = f} , (5.1)

where λ > 0 is a tuning parameter, F1, F2 ≥ 0 are functionals and X1, X2 are function spaces such
that X1 = {u, : F1(u) < +∞} and X2 = {v : F2(v) < +∞}. Typically F1 and F2 are norms or
semi-norms. They are chosen so that if u is a cartoon and v is an oscillating function (which is the model
we adopt for textures), F2(u)� F1(u) and F1(v)� F2(v). If this property is satisfied, one expects any
minimizer (u, v) to be a clear separation of f into a cartoon and an oscillating function.

The choice of the total variation for F1 is quite natural, since it penalizes oscillations and does not
penalize much piecewise smooth functions with sharp edges. As a consequence, the image processing
community has mainly focussed on the choice of F2, and consequently on the choice of a function
space to model textures. In [Meyer, 2001], three spaces were originally proposed: E, F and G which
respectively stand for Ḃ−1

∞,∞ (the dual of the Besov space Ḃ1
1,1), the divergence of vector fields inBMO,

and the divergence of functions in L∞. Many more have been proposed by the community, and yet, as
noted in [Buades et al., 2010], no specific function space has really prevailed in the modelling of textures.
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To our knowledge, the first attempt to perform a numerical cartoon-texture decomposition was made
by Vese and Osher [Vese and Osher, 2003], using an approximation of the L∞ norm with the Lp norm
(p ≥ 1) in the definition of the G norm. In [Osher et al., 2003], Osher, Solï¿1

2 and Vese have proposed a
variant of this model for the case p = 2, which corresponds to the space W−1,2. The Osher-Solï¿1

2 -Vese
model is a particular case of TV +H decompositions, whereH is a Hilbert space. Such decompositions
were investigated in [Aujol and Chambolle, 2005, Aujol and Gilboa, 2006]. In the latter work, the tex-
ture term being actually the square of a Hilbert norm, the authors propose a fast algorithm inspired from
the Chambolle algorithm [Chambolle, 2004b]. Negative Sobolev spaces have drawn a lot of attention:
see [Aujol and Chambolle, 2005, Lieu and Vese, 2009, Kim and Vese, 2009]. The space E and general
homogeneous Besov spaces were investigated in [Aujol and Chambolle, 2005, Garnett et al., 2007], and
the space F in [Le and Vese, 2005].

Several works have focussed on the G-space: in [Aujol et al., 2005, Aubert and Aujol, 2005], Au-
jol et al. propose an adaptation of the G-space for functions defined on a bounded open set Ω, and
they give a numerical algorithm that provides a solution of the TV-G problem. Since the G-norm
has no integral expression, even its computation is an issue: different algorithms were proposed in
[Aujol and Chambolle, 2005, Kindermann et al., 2006]. Haddad and Meyer [Haddad, 2007] have inves-
tigated the model further and they have shown that for a certain class of functions, called extremal
functions, the solution of the TV-G problem is not necessarily unique. This class of functions turns out
to be the one independently studied by Belletini et al. in [Bellettini et al., 2002] as the solutions of the
eigenvalue problem:

− div
(
Du

|Du|

)
= u. (5.2)

When the image has been contaminated by noise, it is necessary to split the image into three parts:
cartoon, texture, and noise. In [Aujol and Chambolle, 2005], it is proposed to use the space G to model
textures and the space E for the noise, whereas in [Gilles, 2007], both textures and noise are modelled
by the G space, but the noise is assumed to have the smaller G norm (since it is more oscillating). To
increase the performance, a system of spatially varying weights is added. Recently, Gilles and Meyer
have studied a TV − L2 − G model in [Gilles and Meyer, 2010] in order to perform road detection in
satellite images.

The above bibliography is far from being exhaustive. Let us also mention wavelet or frame-based
decomposition methods like the Morphological Component Analysis [Starck et al., 2005] or the vari-
ational approach of Daubechies and Teschke [Daubechies and Teschke, 2005]. Also, in recent works
[Kindermann et al., 2005, Gilboa and Osher, 2008], the classical functional analysis spaces are replaced
with their non-local analogous inspired from [Buades et al., 2005].

In fact, the problem of the cartoon-texture decomposition should not necessarily be addressed in
the classical setting of functional analysis: the recent work [Buades et al., 2010] shows that a carefully
designed filter may perform as well (if not better) as a variational model. In that paper the authors build
a spatially varying filter depending on the relative reduction rate of a localized total variation (which
measures the local oscillations of the image). It might be a bit disappointing to abandon the idea of
finding a function space that models textures, but to some extent, this is also what we will be doing
here by using the TVL1 model to perform decompositions. Following [Haddad, 2007, Yin et al., 2007a]
we compare the TVL1 and TV-G models. Our contribution is to highlight some visual artifacts and to
explain them on simple models.

5.1.2 Visual results

To compare the decomposition results provided by the TV-G and the TVL1 models, we have used the
algorithms proposed in [Aujol et al., 2005, Aujol et al., 2006]. Let us mention that faster approaches
could be adopted (for instance [Chambolle and Pock, 2011]).

To make this manuscript more cheerful, we have also added experiments performed on color images
using a straightforward extension of the models (see [Duval et al., 2010]). The total variation is defined
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so that: ∫
|Du| =

∫
R2

√
|∇uR(x)|2 + |∇uG(x)|2 + |∇uB(x)|2dx (5.3)

for smooth functions, where uR, uG, uB are the red, green and blue color channels. This choice is better
than a simple channel by channel decomposition (see [Bresson and Chan, 2008]), but more sophisticated
models have been proposed [Sapiro and Ringach, 1996, Sochen et al., 1998, Blomgren and Chan, 1998]:
in particular let us mention the use of a chromaticity-brightness color space for total variation filtering
(see [Chan et al., 2000, Aujol and Kang, 2006]) and the extension of the total variation using Jacobians
(see [Federer, H., 1969]) proposed by Goldluecke and Cremers [Goldluecke and Cremers, 2010].

In all the experiments, we choose the parameters that provide satisfactory visual results, although it
is sometimes difficult to define what the expected cartoon-texture decomposition should be. Figure 5.1
shows four test images for the decomposition (the bottom left one is from the Kodak true color image test
set, the bottom right one was downloaded from www.ipol.im). We begin with Figure 5.2 which deals
with the classical decomposition of the Barbara image. The reader may observe the difference between
the two models, in particular the fact that with the A2BC model, the texture part looks "inflated": all the
relief indicated by the lighting of the scene is taken to the v part so that the woman seems to have plump
cheeks and the floor looks irregular. Moreover, most edges are visible in the texture part. We wish to
emphasize that this is not because of a wrong choice of parameters. In the next Section, we will give
theoretical arguments that justify the apparition of this artifact. For now, let us mention that the TV-G
decompositions of Barbara shown in the literature [Aujol and Gilboa, 2006, Gilles, 2009] share the same
aspect. By comparison, the TVL1 decomposition looks flatter, and the edges are less prominent. Yet, the
details and small patterns have been sent to the v part as expected.

On Figure 5.3 and 5.4, the decompositions provided by the two algorithms are similar: the small
details are sent to the v part whereas the structure is sent to the u part. On the contrary, the decompositions
displayed on Figure 5.5 look rather different. In the v part of the A2BC algorithm, the caps look inflated,
and shadows of their edges are clearly visible. The v part of the TVL1 model looks flatter, and the edges
are far less visible. A detail of this decomposition is given in Figure 5.6.

5.2 The TV-G model

5.2.1 Definition

For consistency with our study of the TVL1 model, we adopt a similar framework to the one in
[Meyer, 2001, Kindermann et al., 2006], i.e. images are defined on the plane. We refer the reader to
[Aubert and Aujol, 2005] for a definition of the G space with functions defined on a bounded open set
Ω ⊂ R2. As in [Kindermann et al., 2006], we regard G as a subspace of L2:

Definition 5.2.1. A function f ∈ L2(R2) belongs to G if and only if there exists a vectorfield g ∈
L∞(R2,R2) such that div g = f . The G-norm is defined as:

‖f‖G := inf
{
‖g‖∞, f = div g, g ∈ L∞(R2,R2)

}
. (5.4)

Notice that this infimum is in fact a minimum, i.e. there exists g ∈ L∞(R2,R2) such that div g = f and
‖g‖∞ = ‖f‖G. In that case we say that g is adapted to v.

The G-norm can be written in a "dual" form :

Proposition 5.2.2 ([Haddad and Meyer, 2007, Kindermann et al., 2006]). Let f ∈ L2(R2). Then:

‖f‖G = sup
u∈BV(R2)\{0}

∫
R2 fu∫
|Du|

. (5.5)
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Figure 5.1 – Test images for the cartoon-texture decomposition.

This expression of the G norm and the isoperimetric inequality lead to the following relation:

Proposition 5.2.3 ([Haddad and Meyer, 2007, Kindermann et al., 2006]). Let f ∈ L2, then f ∈ G and:

‖f‖G ≤
1

2
√
π
‖f‖2 ≤

1
4π

∫
|Df | (5.6)

(with
∫
|Df | = +∞ if f /∈ BV(R2)).

The motivation for the G-norm in decomposition models is that it is small for oscillating functions.
For instance, Y. Meyer [Meyer, 2001] shows that if f ∈ L2 is defined by f(x1, x2) = 1[0,1]2(x1, x2) cos (Nπx1),
then ‖f‖G = 1

N . More generally, the following result holds:

Proposition 5.2.4 ([Haddad and Meyer, 2007], Corollary 3.4). Let Q = [0, 1]2, f ∈ L2 and µ ∈ L∞

such that
∫
Q+k µ(x)dx = 0, for all k ∈ Z2. Then, ‖f(·)µ(N ·)‖G → 0 when N → +∞.

Having observed this behavior on oscillating functions, Y. Meyer proposed to decompose images
using the following decomposition TV-G model in [Meyer, 2001]:

inf
u∈BV(R2)

∫
|Du|+ λ‖f − u‖G, (5.7)

given f ∈ L2. The existence of a solution follows from Propositions (5.2.2) and (5.2.3) and the direct
method of the calculus of variations. An interesting point is the fact that the solution is not necessarily
unique, which was proved by Haddad and Meyer [Haddad and Meyer, 2007] by considering extremal
functions (for instance the indicator of a calibrable set).
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Figure 5.2 – Decomposition of the famous "Barbara" image using A2BC algorithm (top) and TVL1
(bottom).

Figure 5.3 – Cartoon-texture decomposition using A2BC algorithm (upper row) and TVL1 (lower row).
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Figure 5.4 – Cartoon-texture decomposition using the A2BC algorithm (top) and the TVL1 model (bot-
tom).

5.2.2 First properties

In [Kindermann and Osher, 2005], Kindermann et al. give necessary and sufficient conditions on a couple
(u, v) where v = f − u to be a solution of Problem (5.7):

Theorem 5.2.5 ([Kindermann and Osher, 2005] Theorem 3.4). Let f = u+ v be a BV +G decompo-
sition of f ∈ L2. Then the pair (u, v) is optimal if and only if there exists a function p ∈ BV(R2) such
that:

λ

∫
up =

∫
|Du|, (5.8)∫

pv = ‖v‖G, (5.9)∫
|Dp| ≤ 1, (5.10)

‖p‖G ≤
1
λ
. (5.11)

Using the framework of Section 1.2 on the Euler-Lagrange equation, this result can be obtained
straightforwardly under the following equivalent form:
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Figure 5.5 – Cartoon-texture decomposition using the A2BC algorithm (top) and the TVL1 model (bot-
tom). The parameters were chosen as a compromise so that the results are comparable. However, with
the A2BC algorithm, if one wants to send the raised pattern on the left side of the wall to the texture part
(as in the TVL1 model), one has to considerably degrade the clouds.

Figure 5.6 – Detail of the texture parts of Figure 5.5 (left: A2BC, right TVL1). Notice how the edge of
the cap appears in the A2BC model.
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Proposition 5.2.6. The decomposition (u, v) is optimal if and only if:

∃z ∈ X∞, |z| ≤ 1 and
∫
udiv z =

∫
|Du|, (5.12)

∃p ∈ BV(R2),
∫
|Dp| ≤ 1 and

∫
pv = ‖v‖G, (5.13)

such that div z + λp = 0. (5.14)

In [Haddad and Meyer, 2007], Haddad and Meyer study the stability of the decomposition f = u+v
of simple functions using such a model. They also show several interesting properties of decompositions.
In particular:

Lemma 5.2.7 ([Haddad and Meyer, 2007], Lemma 4.1). For 0 < λ < 4π and any f ∈ L2, the optimal
decomposition is unique and it is given by (u, v) = (0, f).

Proof. From the inequality (5.6), we get:

∀u ∈ L2,

∫
|Du|+ λ‖f − u‖G ≥ 4π‖u‖G + λ‖f − u‖G

≥ λ (‖u‖G + ‖f − u‖G)
≥ λ‖f‖G,

with strict inequality when u 6= 0.

Theorem 5.2.8 ([Haddad and Meyer, 2007], Theorem 4.1). Let f = u+ v be an optimal decomposition
of f ∈ L2. Then u = u+0 is an optimal decomposition of u and v = 0+ v is an optimal decomposition
of v.

We have noticed in Remark 3.2.4 that this property also holds for the TVL1 model. In fact, since the
proof relies on the triangle inequality, it holds for any model of the form infu

∫
|Du|+λ‖f−u‖E where

E is a normed space.

5.2.3 A toy example

In [Haddad and Meyer, 2007], it is noted that if the inequality is strict in (5.10), then Eq. (5.9) implies
that v = 0. Hence, let us assume that v 6= 0 and that g is a vectorfield adapted to v, i.e. div g = v and
‖g‖∞ = ‖v‖G. Then (5.9) is equivalent to :

−
∫

(g,Dp) = ‖g‖∞
∫
|Dp|

i.e., 0 =
∫ (

(g,
Dp

|Dp|
) + ‖g‖∞

)
d|Dp|. (5.15)

This means that |Dp|-almost everywhere, |g| must reach its maximum, and g must be pointing in the
opposite direction from Dp.

Before proceeding with the example, let us recall the following remark by Haddad and Meyer :

Theorem 5.2.9 ([Haddad and Meyer, 2007], Theorem 3.2). Consider a radial function f ∈ L2, i.e.
f(x) = f̃(r) with r = |x|2, f̃ ∈ L2(rdr). Then,

‖f‖G =
∥∥∥∥1
r

∫ r

0
f̃(s)sds

∥∥∥∥
∞
. (5.16)
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In fact the radial vectorfield g(x) = g̃(r)er with g̃(r) = 1
r

∫ r
0 f̃(s)sds is adapted to f .

Using this theorem, Haddad [Haddad, 2007] gives a semi-explicit decomposition of the radial func-
tion f̃(r) = e−r. We provide here an explicit example that shows that the superposition of the indicator
of a disc and a perturbed sine is perfectly decomposed by the TV-G model:

Proposition 5.2.10. Let N ∈ N∗ be an odd number. For 4π ≤ λ ≤ 4π
(
(N − 1)(2N + 1

2) + 2N
N+1

)
,

the function f defined by

f̃(r) = 1[0,1](r)− β
(

sin(Nπr)− 1
πN

cos(Nπr)
)
1[1/2,3/2](r), (5.17)

has an optimal decomposition given by:

u(x) = 1B(0,1)(x),

ṽ(r) = −β
(

sin(Nπr)− 1
πN

cos(Nπr)
)
1[1/2,3/2](r).

Figure 5.7 – TV-G decomposition predicted by Proposition 5.2.10: original image f (left), cartoon part
u = 1B(0,1) (middle), texture part v(x) =

(
− sin(Nπr) + 1

πN cos(Nπr)
)
1[1/2,3/2](r) (right).

Proof. The idea is to check that (u, v) satisfy Equations (5.12)-(5.14).
To this end, consider the vectorfield g̃(r) = 1

Nπ cos(Nπr)1[1/2,3/2](r). Notice that g̃(1) = − 1
Nπ =

−‖g‖∞, and g(1
2) = g(3

2) = 0, so that g is continuous at these points. Then set v := div g. We have
ṽ(r) = 1

r
∂(rg(r))

∂r =
(
− sin(Nπr) + 1

Nπ cos(Nπr)
)
1[1/2,3/2](r), and ‖v‖G = ‖g‖∞.

• For λ = 4π. Let us define p =
(
− 2

λ

)
1B(0,1). We clearly have

∫
|Dp| = 4π

λ = 1, and :∫
p(x)v(x)dx = 2π

∫ +∞

0
p̃(r)ṽ(r)rdr (5.18)

= 2π
∫ 1

0

(
−2
λ

)
ṽ(r)rdr (5.19)

= −4π
λ
g(1) = ‖v‖G. (5.20)

Eventually, we define z(x) =
{
rer for r ≤ 1
1
rer otherwise.

. We see that |z| ≤ 1, div z = 2 × 1B(0,1), and∫
udiv z = 2π =

∫
|Du|. Since div z + λp = 0, the pair (u, v) is optimal.
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Figure 5.8 – Construction of the function p and the vectorfield z in Proposition 5.2.10.

• For λ > 4π, the idea is to distribute the mass
∫
|Dp| on the extrema of g. Let k∗ ∈ {0, . . . , bN2 c},

j∗ ∈ {−bN
2 c, . . . , 0}; we build a piecewise constant function p(r) = pk for r ∈ [rk, rk+1), where

rk = 1 + k
N , k ∈ {j∗, . . . , 0, 1, . . . , k∗}.

For r ∈ [0, rj∗), we set p(r) = pj∗−1 := (−1)j∗ 2
λrj∗

, so that z̃(r) = (−1)j∗+1 r
rj∗

. For r ≥ rk∗ ,
we set p(r) = pk∗ = 0.

Now, we choose each pk so that
∫
|Dp| =

∑k∗

k=j∗ |Dp|({rk}) = 1, with the constraint that
|z| ≤ 1. Since |Dp|({rk}) = 2πrk|pk − pk−1| , the condition Dp

|Dp|({rk}) · g(rk) < 0 imposes that
(−1)k+1(pk+1 − pk) ≥ 0.

If z is a continuous vectorfield such that div z = −λpk on [rk, rk+1), then

∀r ∈ [rk, rk+1), z̃(r) =
1
r

(
rkz̃k +

λpk

2
(r2k − r2)

)
. (5.21)

Plugging this expression in the constraint |z| ≤ 1, we eventually observe that we may choose1 :

∀k ∈ {j∗, . . . , 0, . . . , k∗ − 1}, pk = (−1)k 2
λ(rk+1 − rk)

, (5.22)

pk∗−1 = (−1)k∗−1 2η
λ(rk∗+1 − r∗k)

, (5.23)

pj∗−1 = (−1)j∗−1 2
λrj∗

(5.24)

(5.25)

where 0 ≤ η ≤ 1.

The condition
∫
|Dp| = 1 can be reformulated as:

2πrj∗ |pj∗ − pj∗−1|+
k∗−1∑

k=j∗+1

2πrk|pk − pk−1|+ 2πrk∗ |pk∗ − pk∗−1| = 1,

i.e. 4π

N +
1

1 + j∗

N

+ 2N
k∗−1∑

k=j∗+1

(1 +
k

N
) +

(
1 +

k∗

N

)
ηN

 = λ

1Notice that the following expression is somewhat optimal, since for each k ∈ {−k∗+1, . . . , 0, . . . , k∗−1} the constraint
|z| ≤ 1 is active since z̃k = z̃(rk) = (−1)k+1.
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With an appropriate choice of j∗, k∗, η, any value of λ ∈
[
4π, 4π

(
(N − 1)(2N + 1

2) + 2N
N+1

)]
may be reached.

Notice that the above construction shares similarities with the construction of an extremal function
in [Haddad and Meyer, 2007].

More generally, the following result holds:

Proposition 5.2.11. Let g̃ ∈ W 1,∞(R+,R) with g̃(0) = 0. Assume that there are values 0 < rj∗ <
. . . < r0 < . . . < rk∗ with r0 = 1 such that g(rk) = (−1)k+1‖g̃‖∞ for k ∈ {j∗, . . . 0, . . . k∗}. Then,
for:

4π ≤ λ ≤ 4π

rj∗ ( 1
rj∗

+
1

rj∗+1 − rj∗

)
+

k∗−1∑
k=j∗+1

rk

(
1

rk − rk−1
+

1
rk+1 − rk

)
+

rk∗

rk∗ − rk∗−1

 ,

(5.26)
the radial function f defined by f̃(r) = 1[0,1](r) + β 1

r
∂rg̃(r)

∂r has a perfect decomposition (u, v) given
by: {

ũ(r) = 1[0,1](r)
ṽ(r) = β 1

r
∂rg̃(r)

∂r

.

It is well-known that the G-norm favors oscillations, but to our knowledge, little is known about the
influence of the frequency of the original pattern on the actual solution of the TV + G decomposition.
In the above example one may observe that the quicker the oscillations (i.e. in the above example the
higher N or the larger 1

rk−rk−1
), the larger the interval of λ for which the decomposition is perfect. For

λ above this interval, we do not know precisely what happens. It is likely that parts of the oscillations
are sent to the cartoon part u, as it is observed in the numerical experiments of [Yin et al., 2007a] on
one-dimensional signals.

Another interesting point about this toy example is that it shows that the value r0 where the jump of
the cartoon part lies is special. In fact, to build the above example, it is necessary that v should contain
some texture around the jump at r0. The next Section gives more detail about this and explains why the
jumps of an image often appear in the v part using TV-G.

5.2.4 Shadow edges in the texture part

In [Duval et al., 2010], we reported a visual artifact that appears with the TV-G decomposition (see the
visual experiments of Section 5.1.2), namely a sort of halo in the smooth areas and shadow edges in the
texture part (at least more visibly than with the TVL1 model). We gave an elementary explanation to
justify this phenomenon. We believe it is not related to a wrong choice of parameters but rather to an
inherent property of the G-norm, which is the use of ‖.‖∞ to measure the vectorfield.

Let us recall this argument in a one-dimensional setting (for the sake of simplicity). Notice however
that the following argument could be adapted to a radial setting as above. Suppose for instance, that one
wants to decompose a signal f ∈ L1 ∩ L2, i.e. find a pair (u, v) that solves :

min
u+v=f

∫
|Du|+ ‖v‖G (5.27)

where the functions are defined on R. In dimension 1, the divergence operator reduces to the derivation:

‖v‖G = inf
C∈R

sup
t∈R

∣∣∣∣∫ t

−∞
v(s)ds+ C

∣∣∣∣ . (5.28)
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Let V (t) =
∫ t
−∞ v(s)ds, V is continuous bounded (since v ∈ L1(R)) and the optimal C is C =

− sup V +inf V
2 .

Now, consider a step edge, perturbed with some textures as in Figure 5.9 (a); for instance:

f(x) = 1(0,1)(x) + β sin(8pπx)1 1
4
≤|x|≤ 3

4
(5.29)

where β > 0, p ∈ N∗. In that case C = 0 in (5.28). The ideal decomposition one would dream of is
a perfect step u(x) = 1(0,1)(x) on the one hand, and the pure oscillation v(x) = β sin(8pπx)1 1

4
≤|x|≤ 3

4

on the other hand (see Figure 5.9 (b) and (c)). The energy of the cartoon part is simply
∫
|Du| =

u(0+) − u(0−) + u(1−) − u(1+) = 2, whereas the energy of the texture part is given by ‖v‖G =

β
∫ 1

4
+ 1

8p
1
4

sin(8pπt)dt = β
4pπ . Yet, replacing u on [−1

4 ,
1
4 ] with any non-decreasing function u∗ with the

same limits at ±1
4 , say, a ramp x 7→ (1

2 + 1
2ηx)1[−η,η](x) as in Figure 5.9 (d)), one still gets the same

cartoon energy
∫
|Du∗| = 2. As for the texture part, we should notice that one extra oscillation is added

near the discontinuity of the original function f . But, precisely, the G-norm favors oscillations, so that
this change in the texture part will not be penalized. Indeed:

‖v∗‖G = max
(

β

4pπ
,

∫ 0

−η
(
1
2

+
1
2η
t)dt

)
=

1
4pπ

(5.30)

for η small enough (0 ≤ η ≤ min(1
4 ,

β
pπ )).

On the second discontinuity, a similar argument shows that one may also replace the jump with a
ramp without changing the energy.

In a nutshell, we see that given any decomposition with sharp edges, there exists a decomposition
with the same energy where shadows of edges appear in the texture part. So it is not surprising to see
edges appear in the texture part of our experiments. This phenomenon may also explain the kind of
halo that appears in smooth areas: replacing the ramp with a slow gradation, one may alter smooth parts
without changing the energy. This is why in Figure 5.5 the caps in the texture part look so "inflated"
compared to those of TVL1.

Notice that we do not claim that the ideal decomposition (u, v) of the function in (5.29) is indeed a
solution of the TV-G problem. We simply observe that, if it were the case, another optimal decomposition
would have shadow edges: one may object that depending on luck or on the choice of the algorithm, this
artifact may not appear.

The following result suggests that there should always be some texture in the v part around the points
where u has jumps: to explain the apparition of halos we used the example (5.29) for its simplicity, but
in this particular case the proposed ideal decomposition u = 1(0,1), v = f − u cannot be a solution of
the TV-G problem. In such cases, the artifact is bound to appear near edges.

Proposition 5.2.12. Let f ∈ L2(R2) be a radial function, u = 1B(0,1) and v = f − 1B(0,1) such that
v 6= 0. Let ε > 0 and Ω(−ε,ε) = {x ∈ R2, 1− ε < |x| < 1+ ε}. If v|Ω(−ε,ε)

= 0, then the decomposition
(u, v) is not optimal.

Proof. Observe that we may assume that z and p are radial in the Euler-Lagrange equation (5.14). Indeed,
if z = zrer + zθeθ, we replace z with z∗ such that z̃r∗ = 1

2π

∫ 2π
0 z̃r(r, θ)dθ, z∗θ = 0, so that ‖z∗‖∞ ≤

‖z‖∞ ≤ 1, z∗ · er = 1 for r = 1. Since div z = 1
r

∂rzr
∂r + 1

r
∂zθ
∂θ in the distribution sense, this leads to

div z∗ = 1
2π

∫ 2π
0 div zdθ. On the other hand, we replace p with p∗ such that p̃∗(r) = 1

2π

∫ 2π
0 p(r, θ)dθ.

Since
∫
|Dp∗| ≤

∫
|Dp|, we see that z∗ and p∗ satisfy Equations (5.12), (5.13) and (5.14). In the

following, we assume that z and p are radial. As noticed above, we may also assume that g is radial.
If v = div g = 0 in Ω(−ε,ε), then g̃(r) = C

r in Ω(−ε,ε), so that:

sup
x∈Ω(− ε

2 , ε
2
)
|g(x)| < sup

x∈Ω(−ε,ε)

|g(x)| (5.31)
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Figure 5.9 – Decomposition of a 1-dimensional signal. Top: Original signal f . Middle row: ideal
decomposition (left: cartoon part, right texture part). Bottom row: another decomposition. The total
variation of the cartoon part is equal to 1 in both cases, and by (5.28), the G-norm of each texture part
is equal to the maximum area of its "bumps". Therefore both decompositions have the same energy.

and thus
(
( Dp
|Dp| · g) + ‖g‖∞

)
> 0, |Dp|-a.e. in Ω(− ε

2
, ε
2
). By (5.15), we must have |Dp|(Ω(− ε

2
, ε
2
)) = 0,

so that p is constant on Ω(− ε
2
, ε
2
).

Then by (5.14), we see that z̃(r) = −λp
2 r + C′

r in Ω(− ε
2
, ε
2
). Since z̃(1) = 1, we have C ′ = 1 + λp

2 .

Since |z| ≤ 1, we must have z̃′(1) = −λp
2 −

(
1 + λp

2

)
= 0, therefore p = −1

λ . As a consequence,

z̃(r) = 1
2

(
r + 1

r

)
> 1 for r 6= 1. Contradiction.

The rest of this section is devoted to the generalization of Proposition 5.2.12 to characteristic func-
tions of convex sets. Let Ω ⊂ R2 be a C1,1 convex body. For ε > 0, we denote by Ωε = Ω ⊕ εB(0, 1)
the dilation of C with radius ε, and Ω−ε = Ω	 εB(0, 1) := {x ∈ Ω, x+B(0, 1) ⊂ Ω} its erosion. We
also write Ω(−ε,ε) := int (Ωε \ Ω−ε).

Lemma 5.2.13. Let f ∈ L2(R2), u = 1Ω and v = f − 1Ω such that v 6= 0. Assume that the pair (u, v)
is optimal, and let z ∈ X∞, p ∈ BV(R2) be as in the Euler-Lagrange Equation (Proposition 5.2.6). Then
|Dp|(Ω(−ε,ε)) > 0.

Proof. By contradiction, let us assume that |Dp|(Ω(−ε,ε)) = 0, so that p(x) = p0 ∈ R for a.e. x ∈
Ω(−ε,ε). The area and perimeter of the eroded and dilated Ω are given by Steiner’s formula:

∀r > 0,
{
|Ωr| = |Ω|+ rPer Ω + πr2

Per Ω = Per Ω + 2πr
. (5.32)

For
1
r
≥ ess sup

x∈∂Ω
κΩ(x),

{
|Ω| = |Ω−r|+ rPer Ω−r + πr2

Per Ω = Per Ω−r + 2πr
. (5.33)

Let 0 < r < ε.
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• We apply the Gauss-Green theorem2 on int (Ωr \ Ω):∫
∂Ωr

z · νdH1 =
∫

∂Ω
z · νdH1 +

∫
Ωr\Ω

div z

= Per Ω− λp0

(
rPer Ω + πr2

)
Since ‖z‖∞ ≤ 1, we have

∫
∂Ωr

z · νdH1 ≤ H1(∂Ωr) = Per Ω + 2πr, so that −λp ≤ 2π
Per Ω+πr

.

• Similarly, we have: ∫
∂Ω
z · νdH1 =

∫
∂Ω−r

z · νdH1 +
∫

Ω\Ω−r

div z,

i.e. Per Ω =
∫

∂Ω−r

z · νdH1 − λp0

(
rPer Ω− πr2

)
.

Again,
∫
∂Ω−r

z · νdH1 ≤ H1(∂Ω−r) = Per Ω− 2πr, so that −λp0 ≥ 2π
Per Ω−πr

.

Eventually, we see that for r > 0 small enough:

2π
Per Ω− πr

≤ −λp0 ≤
2π

Per Ω + πr
, (5.34)

which is absurd. Therefore we must have |Dp|(Ω(−ε,ε)) > 0.

Proposition 5.2.14. Let Ω ⊂ R2 be a C1,1 convex body, f ∈ L2(R2) \ {1Ω}, u = 1Ω and v = f − 1Ω.
Assume that Spt v ⊂ Ω and that the decomposition (u, v) is optimal. Then Spt v ∩ ∂Ω 6= ∅.

Proof. By contradiction, assume that d(Spt v, ∂Ω) > 0, so that there exists ε > 0 such that Spt v ⊂ Ω−ε.
As (u, v) is optimal, the Euler-Lagrange equation (5.14) holds.

Since
R

R2 pvR
|Dp| = ‖v‖G = supw∈BV(R2)\0

R
R2 wvR
|Dw| , p is a non-trivial minimizer of:

G(w) :=
∫
|Dw| −

∫
R2

v

‖v‖G
w, (5.35)

which means that p is a solution of the prescribed mean curvature problem associated to − v
‖v‖G

. Now,
let Et = {p ≥ t} for t ≥ 0 and Et = {p < t} for t < 0. Since Ω−ε is convex:

Per (Et ∩ Ω−ε) ≤ Per Et, (5.36)

with strict inequality if |Et \ Ω−ε| > 0.
Now, we replace p with p∗ = p1Ω−ε , so that {p∗ ≥ t} = Et ∩ Ω−ε for t ≥ 0, and {p∗ < t} =

Et ∩ Ω−ε for t < 0.
Since |Dp|(Ω(−ε,ε)) > 0, the coarea formula implies that the setB = {t > 0, |Et∩Ω(−ε,ε)| > 0} has

positive Lebesgue measure. Therefore, inequality (5.36) is strict for all t ∈ B so that
∫
|Dp∗| <

∫
|Dp|.

Since
∫
p∗v =

∫
pv, we see that G(p∗) < G(p), which is a contradiction.

Proposition 5.2.15. Let Ω ⊂ R2 be a C1,1 convex body, f ∈ L2(R2) \ {1Ω}, u = 1Ω and v = f − 1Ω.
Assume that Spt v ⊂ D0 ∪D1, where D0 ⊂ Ω, D1 ⊂ R2 \ Ω are such that D0 ∩D1 = ∅, D1 is strictly
convex and

∀U ⊂ R2such that U ⊃ D0 ∪D1, Per U ≤ Per D0 + Per D1. (5.37)

with strict inequality when |U \ (D0 ∪D1)| > 0.
If (u, v) is an optimal decomposition for the TV-G model, then Spt v ∩ ∂Ω 6= ∅.

2In each integral below, ν points toward the exterior of Ω.
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Proof. We proceed as in Proposition 5.2.14 by contradiction by assuming that d(Spt v, ∂Ω) > 0. First,
let us observe that we may replace D1 with any convex set which is contained in D1, without losing the
property (5.37). Indeed, letD2 ⊂ D1 be a convex set. By submodularity of the perimeter, for all U ⊂ R2

such that D0 ∪D2 ⊂ U :

Per (U ∪D1) + Per (U ∩D1)︸ ︷︷ ︸
≥Per D2

≤ Per U + Per D1 (5.38)

so that Per D0 + Per D1 + Per D2 ≤ Per U + Per D1, (5.39)

Per D0 + Per D2 ≤ Per U. (5.40)

Similarly we may replace D0 with any convex set which is contained in D0.
As a consequence, since by assumption d(Spt v, ∂Ω) > 0, we may assume that d(D0, ∂Ω) > ε and

d(D1, ∂Ω) > ε for some ε > 0. Let p be as in the proof of Proposition 5.2.14, and considerEt = {p ≥ t}
for t ≥ 0 and Et = {p < t} for t < 0. By the submodularity of the perimeter:

Per Et ∩ (D0 ∪D1) ≤ Per Et + Per D0 ∪D1 − Per (Et ∪D0 ∪D1)︸ ︷︷ ︸
≤0

(5.41)

with strict inequality if |Et \ (D0 ∪D1)| > 0. Since |Dp|(Ω(−ε,ε)) > 0, the coarea formula implies that
the set B = {t > 0, |Et ∩ Ω(−ε,ε)| > 0} has positive Lebesgue measure. Therefore, inequality (5.41)
is strict for all t ∈ B so that if p∗ = p1D0∪D1 ,

∫
|Dp∗| <

∫
|Dp|. Since

∫
p∗v =

∫
pv, we see that

G(p∗) < G(p), which is a contradiction.

We conjecture that, in the above propositions, the assumptions on the geometry of Spt v can be
removed. The fact that v vanishes in a neighborhood of ∂Ω implies that the level lines of p are line
segments. On the other hand, since −λp = div z, the value of −λp on ∂Ω should be equal, at least
formally, to the curvature of ∂Ω. Those two behaviors seem difficult to conciliate, but we have not
managed to reach a contradiction.

To sum up, our interpretation is that for the TV-G model to provide good decompositions, the original
image should have textures in a neighborhood of the edges (as in Figures 5.3 and 5.4). Otherwise, the
texture part is modified so that it is not empty in a neighborhood of the edges, and a shadow of the edges
or a gradation appears in the texture part.

5.3 The TVL1 model

Several authors [Yin et al., 2007a, Haddad, 2007, Aujol et al., 2006] have noticed the ability of the TVL1
model in the problem of cartoon-texture separation. Relying mainly on empirical observations, they ar-
gued that this model could compare favorably with the TV-G model by discriminating objects in function
of their scales. While the last section detailed the main properties of the TV-G model for decompositions
we now turn to the TVL1 model and we try to understand the results of Section 5.1.2 in light of the
results of Chapter 3.

5.3.1 Toy example

Like the TV-G model, the TV L1 model is able to decompose some functions of the form "indicator +
sine", as the following proposition illustrates.

Proposition 5.3.1. Let N ∈ N∗. For 2 ≤ λ ≤ 2N , the function f defined by

f̃(r) = 1[0,1](r)− β sin(Nπr)1[2,3](r), (5.42)
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has an optimal decomposition given by:

u(x) = 1B(0,1)(x),

ṽ(r) = −β sin(Nπr)1[2,3](r).

Figure 5.10 – TV − L1 decomposition predicted by Proposition 5.3.1: original image f (left), cartoon
part u = 1B(0,1) (middle), texture part v(x) = − sin(Nπr)1[2,3](r) (right).

Proof. Let k∗ ∈ {0, 1 . . . , N} and rk = 2 + k
N , for k ∈ {0, 1 . . . , k∗}. The Euler-Lagrange equation

(2.2) amounts to finding a vectorfield z ∈ X∞, a function p ∈ L∞ such that:
z̃(1) = 1,
|z̃(r)| ≤ 1 for r ≥ 0,
pk := p̃(r) = (−1)k+1 for r ∈ [rk, rk+1) and k ∈ {0, . . . , N − 1},
|p̃(r)| ≤ 1 for r ≥ 0

(5.43)

and div z + λp = 0. (5.44)
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r
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r

p(
r)

Figure 5.11 – Construction of the vectorfield z and function p in Proposition 5.3.1.

Notice that if p̃ is constant on [ρ, r), the integration of div z = −λp leads to:

z̃(r) =
1
r

(
ρz̃(ρ)− λp̃

2
(r2 − ρ2)

)
(5.45)

• For r ∈ [0, 1), we define p̃(r) = − 2
λ , so that z̃(r) = r.
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• For r ∈ [1, 2), we define p̃(r) = 2
λ , so that z̃(r) = 1

r (2− r2).

• For r ∈ [rk, rk+1), k ∈ {0, . . . , N − 1}, we define by induction p̃(r) = (−1)k+1 and:

z̃(r) =
1
r

(
rkzk +

λ(−1)k

2
(r2 − r2k)

)
. (5.46)

• For r ∈ [rN ,+∞), we set p̃(r) = 0, so that z̃(r) = zN
rN
r , where zN is defined below.

For λ ≥ 2, the derivative of (5.46) has the sign of (−1)k. By monotonicity, it is therefore sufficient to
check that |z̃(rk)| ≤ 1 for all k ∈ {0, . . . , N} so as to ensure that |z̃(r)| ≤ 1 for all r ≥ 0. If we set
Vk := zkrk, we see with Eq. (5.46) that Vk satisfies the simple recursion:

Vk+1 = Vk +
λ(−1)k

2
(r2k+1 − r2k). (5.47)

Therefore:

k−1∑
j=0

(Vj+1 − Vj)︸ ︷︷ ︸
Vk−V0

=
λ

2

k−1∑
j=0

(−1)j
(
r2j+1 − r2j

)
(5.48)

=
λ

2

k−1∑
j=0

(−1)j

(
1
N2

+
2
N

(
2 +

j

N

))
(5.49)

=
λ

2

[(
1− (−1)k

2

)(
1
N2

+
4
N

)
− 1

2N2

(
(−1)k(2k − 1) + 1

)]
, (5.50)

where we have used the identity:
∑k−1

j=0 j(−1)j−1 = 1
4

(
(−1)k(2k − 1) + 1

)
. As a consequence, we

eventually get:

Vk = V0 +
λ

2

[
(−1)k+1

(
2
N

+
k

N2

)
+

2
N

]
. (5.51)

The condition |z| ≤ 1 is equivalent to:

− 1 ≤ 1
rk

(
−2 +

λ

2

[
(−1)k+1

(
2
N

+
k

N2

)
+

2
N

])
≤ 1. (5.52)

Considering the parity of k, one sees that this condition is in fact equivalent to λ ≤ 2N since rk = 2+ k
N .

By construction, z and p satisfy all the conditions in (5.44).

Again, we see that the higher the frequency N , the larger the interval of λ for which the decomposi-
tion is optimal.

5.3.2 No shadow edges nor halos

From the above example, let us notice that the model does not produce shadow edges or extra-oscillations:
it is also clear that the argument in Section 5.2.4 does not hold with the TVL1 model, since any extra-
oscillation added in the texture part has a cost in terms of energy. Moreover, there is no need for the
texture part to be filled near edges of the cartoon part. From the Figures 5.2 and 5.5, we can see that the
texture part does not look inflated compared to the one of TV-G, and that the edges are less visible.

As a consequence, we see that the TVL1 model does not suffer from some of the drawbacks of TV-G.
Yet, we still have to explain why it performs so well in cartoon-texture decomposition: we believe it is
related to the connection between the TVL1 scale-space and granulometries.
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5.3.3 Granulometries

Granulometries were introduced with mathematical morphology by Matheron and Serra to mea-
sure the petrographic distribution of oolites and chlorite cement in Lorraine iron ores (see
[Matheron and Serra, 2002]). To this end, they have introduced operations like erosions, dilations and
openings and computed variograms called granulometries that allow to discriminate objects by their size
(see [Matheron, 1964, Haas et al., 1967]). Since then, the use of mathematical morphology and granu-
lometries has spread to various areas of image processing especially in the study of textures in general
[Soille, 2003].

Definition 5.3.2. A granulometry is a family of openings {γµ} depending on a positive parameter µ, that
are decreasing functions with respect to µ: µ2 ≥ µ1 > 0⇒ γµ2 ≤ γµ1 . The cumulative size distribution
of a set F is µ 7→ 1− |γµF |

|F | . Its derivative is called the granulometric spectrum of F : − 1
|F |

d
dµ |γµF |.

Figure 5.12 shows the result of openings with increasing radii on a Brodatz texture. The larger the
radius, the larger the patterns that are removed. Therefore it is natural to think that granulometries indi-
cate the proportion of objects at each scale within the image. This behavior is illustrated in Figure 5.13
for three Brodatz textures. The profile of the granulometric spectrum gives important information about
the characteristic scales of textures: a texture whose granulometric spectrum is concentrated on small
values of µ is "rough" (that is, composed of tiny objects) whereas if the granulometric spectrum is con-
centrated on high values of µ the texture is considered smoother (made with objects at larger scale) (see
for instance [Soille, 2003]).

The property of granulometries, which is to progressively destroy tiny objects, has proved its practical
efficiency for the discrimination of textures, since granulometric spectra have been used for years in
texture analysis (see for instance [Serra, 1988, Vanrell and Vitria, 1993]). Leaving aside the condition
on the ratio perimeter/area in Theorem 3.3.9, we notice that the TVL1 model provides a granulometry
on the family of convex sets (since γµF = Fµ if µ ≤ 1

λ∗ , ∅ otherwise). Eventually, the tresholding on
the ratio perimeter/area, which gives another information about the scale of the object, reinforces this
property.

Figure 5.12 – From left to right: original image, openings of radius 5, 10, 20. As the radius increases,
larger patterns are removed.

In a nutshell, TVL1 acts on images as a granulometry (which kills small details and high curvatures)
followed by a thresholding on the ratio perimeter/area. When the fidelity parameter λ varies, objects are
altered in function of their granulometry and then vanish when their ratio perimeter/area is too small.
The v part contains object with fine granulometry, whereas u contains objects with coarse granulometry
(which is what we expect of a cartoon-type image).

It is interesting that, aside from the many works on cartoon-texture decomposition relying on the
idea of favoring oscillations in the texture term [Meyer, 2001, Vese and Osher, 2003, Osher et al., 2003,
Aujol et al., 2005, Aujol and Chambolle, 2005, Aujol et al., 2006], a norm that does not even notice os-
cillations provides similar results.

To conclude, let us mention that the granulometric behavior of TVL1 is so striking that granulome-
tries have been independently reinvented in the context of TVL1 by Vixie et al. [Vixie et al., 2010]. In
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Figure 5.13 – Examples of granulometries. The granulometric spectrum indicates the characteristic
scales of the image.

that paper, the authors aim at classifying shapes. In order to discriminate between shapes or images, the
authors consider (among other signatures) the function:

sF : λ 7→ |U(λ)∆F |
|F |

(5.53)

where U(λ) is a solution to the (geometric) TVL1 problem associated to F ⊂ R2:

min
U⊂R2

Per U + λ|U∆F |.

Then, they plot λ 7→ sF ( 1
λ) and they show that this curve gives information about the scales of the

object. In particular, they notice the importance of its jumps and they propose to examine the derivative
λ 7→ d

dλsF ( 1
λ) (see Figure 5.15). This is precisely the philosophy of granulometries and granulomet-

ric spectra used in [Maragos, 1989] for shape analysis, and Corollary 3.4.3 shows that the examined
quantities are in fact almost the same.

(a) Fork 4 (b) Fork 16 (c) Spoon 10

Figure 5.14 – Example of shapes considered in [Vixie et al., 2010] for classification.
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Figure 5.15 – This Figure is extracted from [Vixie et al., 2010]. Top: Evolution the first fork as λ de-
creases. Bottom: Cumulated histograms sF ( 1

λ) for different shapes F (left) and their derivatives (right),
the "granulometric" spectra d

dλsF ( 1
λ) .



Chapter 6

Spatially adaptive TVL1

In this chapter we focus on a variant of the TVL1 model of the form:

inf
u

∫
R2

|Du|+
∫

R2

|u− f |λ(x)dx, (6.1)

in which the fidelity parameter λ can be locally adapted to the content of the image. The motivation
for this model comes from two areas. First, following [Gilboa et al., 2006] for the ROF model, one
may want to use a higher fidelity parameter in textured regions so as to preserve fine details while
smoothing homogeneous regions. Second, Nikolova has shown that the TVL1 model was well-suited
to the denoising of images degraded by impulse noise or salt and pepper noise (see [Nikolova, 2002] for
a theoretical analysis, [Nikolova, 2004a] for impressive numerical experiments with both types of noise).
Recent algorithms like [Chan et al., 2004, Chan et al., 2005, Cai et al., 2010] for the removal of impulse
noise consist in first detecting the location of the impulses, then modifying an energy which is close to
a modified TVL1 energy that smoothes only the pixels detected as noisy. A way to interpret this model
is to consider this as a spatially adaptive TVL1 where λ(x) = 0 for all detected noisy pixels x. In our
framework, we assume for technical reasons that λ(x) ≥ c > 0 for some constant c. When c → 0, the
model is close to the one used in [Chan et al., 2004].

This chapter is composed of a theoretical part and an experimental part. The first part shows that
there are (locally) two options when using adaptive TVL1 and defining λ(x): either one bounds λ(x)
and gets regular solutions (λ(x) giving a bound on the curvature), or one lets λ unbounded and then
any shape can be preserved by TVL1, including those with corners. The second part shows numerical
experiments with impulse noise.

6.1 Theoretical analysis of the model

In this section, we give elementary properties which show that the model does indeed what it is expected
to do: as before, the functional problem is equivalent to a family of geometric problems on the level sets
of the image, and the value λ controls the curvature of the level lines. Moreover, setting very large values
for λ allows to preserve objects of the original image, even with corners.

6.1.1 Definition of the model

It will sometimes be more convenient to consider the weight λ ∈ L1
loc as the density of a measure Λ

which is absolutely continuous with respect to the Lebesgue measure: λ(x)dx = dΛ. We will assume
that there exists c > 0 such that:

λ(x) ≥ c > 0 for a.e. x ∈ R2. (6.2)

Notice that under these assumptions, the space of Λ-integrable functions, that we denote by Lp
Λ,

enjoys the usual properties of Lebesgue spaces (duality Lp
Λ-Lp′

Λ , density of smooth functions, etc.).
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When λ is constant, Problem (6.1) amounts to the regular TVL1 model, in which case we shall say
that the problem is stationary .

Proposition 6.1.1 (Existence). Assume condition (6.2) is true. Then there exists (at least) one solution
to Problem (6.1). Let us define:

T : L1
λ → P(L1

λ) (6.3)

the operator which maps f to the set of solutions Tf = {u ∈ L1
λ, u is a solution of (6.1)}. Then the set

Tf is convex and closed in L1
λ.

Proof. The proof relies on the direct method of the calculus of variations. Let un be a minimizing
sequence. Then,

min(c, 1)
(∫
|Dun|+

∫
R2

|f(x)− un(x)|dx
)
≤
∫
|Dun|+

∫
R2

|f − un|dΛ ≤ C (6.4)

thus we can extract a subsequence (still denoted as un) which converges to u ∈ L1 in L1 andDun ⇀ Du
in the sense of measure convergence. Up to another extraction, we can even assume that the sequence
un(x) converges to u(x) for almost every x ∈ R2. But then by semicontinuity and Fatou’s lemma:

lim inf
n

(∫
|Dun|+

∫
R2

|f − un|dΛ
)
≥
∫
|Du|+

∫
R2

|f − u|dΛ (6.5)

and u is a solution of Problem 6.1.

Proposition 6.1.2. The energy reformulates:

E(u) =
∫ +∞

−∞
Per {x, u(x) > t}+ Λ ({x, u(x) > t}∆|{x, f(x) > t}) dt. (6.6)

We are thus led to study the geometric problem:

inf
U⊂R2

EG(U) := Per U + Λ(U∆F ) (6.7)

for F ⊂ R2. To insist on the dependence on the data F , we shall sometimes write EG(U,F ).

Proof. Notice that:∫
R2

|u− f |dΛ =
∫

R2

(∫ u(x)

f(x)
dt

)
1f(x)<u(x) +

(∫ f(x)

u(x)
dt

)
1u(x)<f(x)dΛ

=
∫

R2

∫ +∞

−∞

(
1f(x)≤t<u(x) + 1u(x)≤t<f(x)

)
dt dΛ

with

{x, (u(x) > t ≥ f(x)) or (u(x) ≤ t < f(x))} = {x, u(x) > t}∆{x, f(x) > t}. (6.8)

By Fubini’s theorem:∫
R2

|f − u|dΛ =
∫ +∞

−∞

∫
R2

1{x,u(x)>t}∆{x,f(x)>t}dΛdt

=
∫ +∞

−∞

∫
R2

Λ ({x, u(x) > t}∆{x, f(x) > t}) dt.
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6.1.2 Monotonicity

In this section we adapt the monotonicity result (Theorem 3.1.3). We mainly follow the steps of
[Yin et al., 2007b] for the stationary case, though the proofs we give are slightly different.

Lemma 6.1.3. Let F ⊂ G ⊂ R2 with finite Λ-measure, let U1, U2 be corresponding solutions, and
U∧ = U1 ∩ U2. We have:

EG(U1, F )− EG(U∧, F ) ≥ EG(U1, G)− EG(U∧, G) (6.9)

where EG(U,F ) is the geometric energy of U (see Equation (6.7)) with data F .

Proof. Since the perimeter parts of the energies are equal, it is sufficient to prove the following inequality
for the fidelity terms:

Λ(U1∆F )− Λ((U1 ∩ U2)∆F ) ≥ Λ(U1∆G)− Λ((U1 ∩ U2)∆G). (6.10)

Let U ⊂ R2 with finite Λ-measure. Since G and F have finite measure we can write:

Λ(U∆G) = Λ(U ∪G)− Λ(U ∩G)
= Λ(U ∪ F ) + Λ((G \ (F ∪ U))− (Λ(U ∩ F ) + Λ(U ∩ (G \ F ))
= Λ(U∆F ) + Λ((G \ F ) ∩ UC)− Λ(U ∩ (G \ F ))

Therefore:
Λ(U∆F )− Λ(U∆G) = Λ(U ∩ (G \ F ))− Λ((G \ F ) ∩ UC) (6.11)

Notice that the right side of the last equation is a non-decreasing function of U . Therefore its value for
U = U1 is larger than for U = U1 ∩ U2, hence the result.

Lemma 6.1.4. The mapping U 7→ Λ(U∆F ) is submodular, i.e.:

Λ ((U ∩ V )∆F ) + Λ ((U ∪ V )∆F ) ≤ Λ(U∆F ) + Λ(V∆F ). (6.12)

Proof. Let us write: u = 1U , v = 1V , f = 1F and notice that u2 = u, v2 = v.
We have:

|uv − f | = |(u− f)v + (1− v)(v − f)| ≤ v|u− f |+ (1− v)|v − f |, (6.13)

|u+ v − uv − f | = |(u− f)(1− v)− vf + v2| ≤ (1− v)|u− f |+ v|v − f |. (6.14)

Therefore: |uv − f |+ |u+ v − uv − f | ≤ |u− f |+ |v − f |. Integration with respect to the measure Λ
gives the result.

Theorem 6.1.5 (Pseudo-monotonicity). Let S1 ⊂ S2 ⊂ R2, andUi, i = 1, 2 be a solution of the adaptive
geometric problem associated to Si. Then

• U∧ = U1 ∩ U2 is a solution associated to S1

• U∨ = U1 ∪ U2 is a solution associated to S2.

Proof. We proceed as in [Yin et al., 2007b].

0 ≥ EG(U1, S1)− EG(U∧, S1) by optimality of U1

≥ EG(U1, S2)− EG(U∧, S2) by Lemma 6.1.3

≥ EG(U∨, S2)− EG(U2, S2) (see below)

≥ 0 by optimality of EG(U2, S2).

The third inequality is a consequence of the submodularity of the perimeter and of the fidelity term. As a
result, all inequalities are in fact equalities and U∧ (resp. U∨) is a minimizer associated to S1 (resp. S2).
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A consequence of this monotonicity property is the geometric equivalence theorem.

Theorem 6.1.6 (Geometric equivalence). Let f ∈ L1
λ.The following assertions are equivalent:

(i) u is solution of (6.1)

(ii) Almost every level set Uρ of u is solution of (6.7).

Proposition 6.1.7 (Contrast invariance). Let g : R → R be a Lipschitz homomorphism. Then, for all
f ∈ L1

λ:
Tλ(g ◦ f) = g(Tλf). (6.15)

6.1.3 Smoothness of the boundary

The following results explain that, as in the stationary case, when λ is bounded, the boundary of the
solutions is smooth.

Proposition 6.1.8. Assume λ is essentially bounded. Let F ⊂ R2, and U ⊂ R2 be a solution of the
TVL1 problem associated to F . Then ∂U coincides with the reduced boundary of U , and it is a C1,1

hypersurface.

Proof. It is the same as the stationary case. Let M ≥ ess sup |λ|. Since TV L1 is idempotent, U is a
strong M-minimizer of the perimeter:

Per (U,Ω) ≤ Per (U ′,Ω) +
∫

U∆U ′
λ(x)dx ≤ Per (U ′,Ω) +M |U∆U ′|, (6.16)

for every open set Ω and every U ′ with locally finite perimeter such that U∆U ′ ⊂⊂ Ω. We get the result
by applying the regularity theorem 4.7.4 in [Ambrosio, 1997]).

Notice that, if we assume λ to be only locally bounded, the result holds locally.
In the following proposition, we assume that the weight has bounded variation, which ensures that it

has a well-defined interior trace T (i)λ and exterior trace T (e)λ on the boundary of the solution U . This
trace controls the curvature of the solution.

Theorem 6.1.9. Let us assume that λ ∈ BVloc ∩ L∞loc. Let U ⊂ R2 be a bounded open set solution of
the TVL1 problem for some F ⊂ R2. Then:

− T (e)λ(x) ≤ κ∂U (x) ≤ T (i)λ(x)H1a.e.x ∈ ∂U. (6.17)

Proof. Let V = D×I ⊂ R2 be an open set intersecting ∂∗U , such that, up to anH1 negligible set, U∩V
is the hypograph of a C1 function, and h ∈ C1

0 (V ). Let α > 0 small, and ψα(x) := x + αh(x)ν(x),
where ν ∈ C1(V,R2) is a vector field such that |ν| = 1 on U , and coincides with the outer normal of U
on ∂∗U ∩ V . Let us extend ψα by ψα(x) = x for x /∈ U . Notice that when α is small enough, ψα is a
C1 diffeomorphism of R2 in R2, such that ψα(U ∩ V ) ⊂ U ∩ V . Let us write Uα := ψα(U). Then, if h
is non-positive, since U and Uα coincide outside V and Uα ∩ V ⊂ U ∩ V :

0 ≤ EG(Uα)− EG(U)
α

=
Per Uα − Per U

α
+

Λ(U)− Λ(Uα)
α

(6.18)

(Note that EG refers here to the geometric energy associated with data U .)
The first term tends to

∫
∂∗U κ∂∗UhdH1 for α→ 0, so let us focus on the second one. Since:∫

Uα

λ(y)dy =
∫

U
λ(x+ αh(x)ν(x)) det(I + αD(hν))dx (6.19)
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we have:

Λ(Uα)− Λ(U)
α

=
∫

U

λ(x+ ανh)− λ(x)
α

det(I + αDw)dx+
∫

U
λ(x)

(
det(I + αD(hν))− 1

α

)
dx

(6.20)
The limit of this expression for α→ 0+ (see Lemmas 6.1.11 and 6.1.12) is:∫

U
(Dλ, hν) +

∫
U
λdiv (hν) =

∫
∂∗U

T (i)λh|ν|2dH1 (6.21)

Eventually, for all h ≤ 0 with support in V :

0 ≤
∫

∂∗U
(κ∂∗U − T (i)λ)hdH1 (6.22)

thus κ(x) ≤ T (i)λ(x), H1a.e.x ∈ V ∩ ∂U .
Proceeding similarly with UC , we get the other inequality.

Remark 6.1.10. It is easy to see (consider for instance a disc), that even in the convex case, the condition
(Per C

Λ(C) ≤ 1, κ∂C(x) ≤ λ(x) H1a.e.x ∈ ∂C) of Theorem 3.3.4 is necessary but not sufficient for a
general weight λ.

However, it is possible to compare to the stationary case to get sufficient conditions. If:

|κ∂C(x)| ≤ ess inf
y∈C

λ(y) and
Per C
|C|

≤ ess inf
y∈C

λ(y), (6.23)

then C is solution1.

Below are two lemmas that justify the passage to the limit in the proof of Proposition 6.1.9. We give
them for the convenience of the reader, but they are quite standard. We shall write w(x) := h(x)ν(x)
(we have w ∈ C1

c (R2,R2), with Spt w ⊂⊂ V ).

Lemma 6.1.11. Under the hypothesis of Theorem 6.1.9:

lim
α→0+

∫
U
λ(x)

(
det(I + αD(w))− 1

α

)
=
∫

U
λTr(Dw)h (6.24)

Proof. Recall that when A and H are two matrices:

lim
t→0

det(A+ tH)− detA
t

= (detA) Tr(A−1H) (6.25)

Therefore d
dα det(I+αDw) = det(I+αDw) Tr

(
(I + αDw)−1Dw

)
, and by the mean value theorem:

det(I + αDw)− 1
α

≤ sup
β∈[0,α]

det(I + βDw) Tr
(
(I + βDw)−1Dw

)
(6.26)

which is uniformly bounded on U .
As a consequence, the dominated convergence theorem applies, and the result follows.

Lemma 6.1.12. Under the hypothesis of Theorem 6.1.9:

lim
α→0+

∫
U

λ(x+ αw(x))− λ(x)
α

det(I + αDw)dx =
∫

U
(Dλ,w) (6.27)

1It is sufficient to write: Per U +
R
∅ dΛ = Per U + c

R
∅ dx ≤ Per V + c

R
C\V

dx ≤ Per V +
R

C\V
dλ
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Proof. Let U1, U2 be two open sets, such that U2 ⊂⊂ U1 ⊂⊂ U and |Dλ|(U \U2) ≤ ε (which is possible
since U is open). Let us choose ϕ ∈ C1

c , 0 ≤ ϕ ≤ 1, such that ϕ(x) = 1 for x ∈ U1, Spt ϕ ⊂ U , and∣∣〈(Dλ,w), ϕ〉 −
∫
U (Dλ,w)

∣∣ ≤ ε. Notice that for α small enough, ψα(U \ U1) ⊂ U \ U2, and we can
even assume that 1/2 ≤ detDψα ≤ 2 uniformly on U .

The result will follow from the inequality:∣∣∣∫U λ(x+αw)−λ(x)
α detDψαdx−

∫
U (Dλ,w)

∣∣∣ ≤ ∣∣∣∫U λ(x+αw)−λ(x)
α (detDψα − ϕ) dx

∣∣∣
+
∣∣∣∫U λ(x+αw)−λ(x)

α ϕdx−
∫
U (Dλ,w)

∣∣∣
• Let us show that:∣∣∣∣∫

U

λ(x+ αw)− λ(x)
α

(detDψα − ϕ) dx
∣∣∣∣ ≤ 6|Dλ|(U \ U2) ‖w‖∞ (6.28)

Since ϕ ≡ detDψα ≡ 1 on U1, and |detDψα − ϕ| ≤ 3 in U \ U1, it suffices to prove that:∫
U\U1

∣∣∣∣λ(x+ αw)− λ(x)
α

∣∣∣∣ dx ≤ 2|Dλ|(U \ U2) ‖w‖∞ (6.29)

We proceed by approximation: let λn ∈ C∞(U) converging to λ in L1 and such that |Dλn|(U \
U2)→ |Dλ|(U \U2) (such a sequence exists as we may assume by choice of U2 that |Dλ|(∂U2) =
0, see for instance [Andreu-Vaillo et al., 2002, Theorem B.4]).∫

U\U1

|λn(x+ αw)− λn(x)|dx ≤ α
∫

U\U1

∫ 1

0
|〈∇λn(x+ αws), w〉|dsdx

≤ α
∫

U\U1

∫ 1

0
|∇λn(x+ αws)|dsdx‖w‖∞

≤ α
∫ 1

0

∫
U\U1

|∇λn(x+ αws)|dsdx‖w‖∞

≤ α
∫ 1

0

∫
U\U2

|∇λn((y))|detDψ−1
sα dy‖w‖∞ since ψsα(U \ U1) ⊂ U \ U2

≤ 2α‖∇λn‖L1(U\U2)‖w‖∞ = 2α|Dλn|(U \ U2)‖w‖∞

We pass to the limit n→ +∞ to get the inequality.

• On the other hand, we have:∫
U

λ(x+ αw(x))− λ(x)
α

ϕ(x)dx =
1
α

∫
Uα

λ(y)ϕ(ψ−1
α (y))|detDψ−1

α |dy −
1
α

∫
U
λ(x)ϕ(x)dx

(6.30)
But for y ∈ U \ Uα, ψ−1

α (y) /∈ U thus ϕ(ψ−1
α (y)) = 0. Therefore:

∫
U

λ(x+αw(x)−λ(x))
α ϕ(x)dx =

∫
U λ(y)

ϕ(ψ−1
α (y))− ϕ(y)

α︸ ︷︷ ︸
→−∇ϕ·w

 |detDψ−1
α︸ ︷︷ ︸

→1

|dy

+
∫
U λ(y)ϕ(y)

detDψ−1
α − 1
α︸ ︷︷ ︸

→−Tr Dw

dy
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The quotients are uniformly bounded (by the mean value theorem) and converge pointwise. Since
λ ∈ L1, we can apply Lebesgue’s dominated convergence theorem, which gives us the following
limit:

−
∫

U
λ(y)∇ϕ(y) · w −

∫
U
λϕdiv w = 〈(Dλ,w), ϕ〉 (6.31)

• Finally:

lim sup
α→0

∣∣∣∣∫
U

λ(x+ αw)− λ(x)
α

detDψαdx−
∫

U
(Dλ,w)

∣∣∣∣ ≤ ε+ 6|Dλ|(U \ U2) ‖w‖∞

≤ (1 + 6‖w‖∞)ε

and this is true for every ε > 0, hence the result.

6.1.4 Corners with adaptive TVL1

The last subsection showed that in regions where λ is bounded, the boundary of the solution is regular.
In the stationary case it is well-known that one cannot preserve sharp corners while minimizing the total
variation in the ROF model (see for instance [Meyer, 2001]) or in the TVL1 model (Proposition 3.2.5).
On the contrary, one might want, in certain regions of an image, to preserve corners or tiny details.

In [Barozzi et al., 1987], it was proved that any bounded set F ⊂ R2 with finite perimeter has a
variational curvature, i.e. there exists a non-negative weight λ(x) such that F is solution of the problem:

inf
U⊂F

Per U −
∫

U
λ(x)dx. (6.32)

In view of the geometrical analysis of this paper, this clearly implies that when the data F is convex
(for instance a square), there exists a weight λ(x) such that TVL1 preserves this data. The idea in
[Barozzi et al., 1987] is to consider an increasing sequence λn → +∞ and consider the associated
solutions of the stationary problem (which gives a non-decreasing sequence of sets Ei). Then define
λ(x) = λi if x ∈ Ei \ Ei−1 (see Figure 6.1). We see that no condition is imposed on the weight λ
outside of the convex set since Ei ⊂ F .

It seems difficult to generalize this result to non convex shapes. However, in view of image processing
applications, we can extend it to polygons.

Proposition 6.1.13. Let F ⊂ R2 be a simple polygon (not necessarily convex). Then there exists a
weight λ ∈ L1 such that F is invariant by adaptive TVL1. Moreover, given a distance r > 0, one can
assume that λ(x) = 0 for dist(x, F ) > r.

Let us remind the reader that a simple polygon is a polygon whose boundary does not cross itself.
The last part of the proposition means that the choice of λ is almost local, and that one can combine
weights associated with different objects provided they are far enough from one another.

Proof. Let X = {(x1, y1), . . . , (xN , yN )} denote the set of vertices of the polygon F . Set 0 < α <
min ({|xi − xj |, /xi 6= xj |} ∪ {|yi − yj |, /yi 6= yj |}) and define a grid αZ2. Define its open cells by:

∀(i, j) ∈ Z2, Vi,j = {(x, y) ∈ R2, αi < x < α(i+ 1), αj < y < α(j + 1)}. (6.33)

Since the number of segments is finite, we can assume, up to a rotation of the axes, that no segment is
parallel with the axes (therefore the edges of F intersect with the grid only at isolated points). Moreover,
by choice of α the closure of each Vi,j contains at most one vertex, and either F ∩ Vi,j is convex or
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FC ∩Vi,j is convex (since it is the intersection of the triangle defined by the vertex and its two neighbors
with the convex cell Vi,j), see Figure 6.1.

In each cell Vi,j such that F ∩Vi,j 6= ∅, consider the restricted TVL1 problem (we assume for clarity
that F ∩ Vi,j is convex, but by self-duality of the model it deals with the other case as well):

inf
U⊂F∩Vi,j

Per U −
∫

U
λi,j(x)dx (6.34)

By the result of [Barozzi et al., 1987], one can find a weight λi,j such that F ∩ Vi,j is a solution, and λi,j

vanishes outside F ∩ Vi,j .
Now we collect the weights and define a function λ such that λ ≡ λi,j on Vi,j for all (i, j) ∈ Z2.

Then, since by assumption the edges of F intersect the grid at most at isolated points:

|D1F |(R2) =
∑

(i,j)∈Z2

|D1F |(Vi,j) (6.35)

By summing the inequalities on cells, for any U ⊂ R2:

|D1F |(R2) =
∑

(i,j)∈Z2

(
|D1U |(Vi,j) +

∫
(F∩Vi,j)∆(U∩Vi,j)

λ(x)dx

)
≤ |D1U |(R2) +

∫
(F∆U)

λ(x)dx

(6.36)
Therefore F is a solution with such λ.

To be coherent with our framework (Equation 6.2), once such λ is found, one can even replace λ by
λ+ c.

Figure 6.1 – (Left) A convex polygon and its solution Ei with TVL1 using an increasing sequence λi (the
darker the greater value of λ). In [Barozzi et al., 1987], it is proved that using precisely the weights λi

in the corresponding sets leads to a perfect preservation of the convex set. (Right) Generalization to non
convex polygons. If the boundary is simple, one can define a grid such that for each cell Vi,j , F ∩ Vi,j is
convex or FC ∩ Vi,j is convex.

6.1.5 Zoom and the generalized Cheeger problem

In the stationary case, it is equivalent to say that a disc suddenly vanishes when λ varies or that it suddenly
vanishes when its radius varies. For the spatially adaptive TVL1, we may similarly ask what happens
when the image is zoomed (simultaneously with the fidelity map).

Such a zoom consists in replacing F ⊂ R2 with αF = {αx, x ∈ F} and λ(x) with λ( x
α) for α > 0.

Since the following two problems are equivalent:

min
U ′⊂R2

Per U ′ +
∫

R2

1U ′∆(αF )(x)λ
(x
α

)
dx (6.37)

and

min
U⊂R2

Per U +
∫

R2

1U∆F (y)αλ(y)dy (6.38)
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(the correspondence is given by U ′ = αU ), a zoom of factor α of the image amounts to changing the den-
sity λ with αλ. The question of which set suddenly vanishes when the image is zoomed is therefore re-
lated to the notion of generalized Cheeger set studied in [Carlier and Comte, 2007], [Buttazzo et al., 2007],
and [Carlier et al., 2009].

Given a nonempty open bounded set F ⊂ R2, determine:

hF := inf
X⊂F

∫
F |D1X |(x)∫

X λ(x)dx
=

Per X
Λ(X)

(6.39)

Any minimizer X of this problem is called a generalized Cheeger set of F . If F itself is a minimizer,
we say that F is Cheeger in itself.

Notice that F is Cheeger in itself if and only if it is solution of the problem:

min
X⊂F

Per X − λF Λ(X) . (6.40)

with λF = Per F
Λ(F ) .

We can also extend the notion of calibrable sets to this framework.

Definition 6.1.14. Let E be a bounded set with finite perimeter. We say that E is Λ-calibrable if there
exists a vector field ξ ∈ X∞ with ‖ξ‖∞ ≤ 1 such that−div ξ = λE1Eλ(x) in D′(R2) for some λE , and
(ξ,D1E) = |D1E | as measures in R2.

With this definition, Propositions 1.3.2 and 1.3.3 are true when replacing the Lebesgue measure with
Λ.

As a consequence, a Λ-calibrable set F is (Λ-)Cheeger in itself, and the converse is true when F is
convex.

Now the answer to the initial question is clear: replacing Λ with αΛ (α > 0), every Λ-calibrable set
suddenly vanishes, and every suddenly vanishing set is Λ-Cheeger in itself. In the convex case, those
implications are in fact equivalences, but one should be careful that at the critical point (when α = λF )
the set of solutions may strictly contain ({∅, F}), since uniqueness may not hold in the generalized
Cheeger problem.

6.1.6 Shouldn’t we change the regularization term instead?

Another choice for a spatially adaptive TVL1 is to change the regularization term instead of the fidelity
term. In a Bayesian setting, this makes sense if for instance we focus on the preservation of the texture or
small details: the prior (i.e. the total variation) should change rather than the likelihood (the fidelity term).
Yet, we do not choose this approach because for our application it is much more complicated (although
several authors have obtained excellent results with it, notably in segmentation [Bresson et al., 2007,
Koko and Jehan-Besson, 2010]).

The first (minor) issue one has to face is related to the discretization of the model. Assume that we
want to solve:

min
u∈RN×N

∑
1≤i,j≤N

gi,j

√
(∇xu)2i,j + (∇yu)2i,j + λ

∑
1≤i,j≤N

|ui,j − fi,j |,

where the gi, j are chosen in function of the observed regularity of the region or the detection of the
impulse noise. The traditional forward discretization of the gradient:

(∇xu)i,j =
{
ui+1,j − ui,j if 1 ≤ i ≤ N − 1
0 if i = N

, (∇yu)i,j =
{
ui,j+1 − ui,j if 1 ≤ j ≤ N − 1
0 if j = N

.

(6.41)
raises the issue of the choice of α. Assume for instance that the pixel (i0, j0) should be smoothed
(because it is in a smooth region or it is detected as noisy). A natural idea is to set gi0,j0 � 1, but
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this would only force ui0,j0 to be close to ui0+1,j0 and ui0,j0+1. To have ui0,j0 close to ui0−1,j0 or
ui0,j0−1, other coefficients should be increased. In [Koko and Jehan-Besson, 2010], the authors bypass
this difficulty by choosing a large value αi0,j0 and then they convolve α with a Gaussian with small
standard deviation. Another way to solve this problem could be to use a centered scheme of the form
(∇xu)i,j = 1

2(ui+1,j − ui−1,j), (∇yu)i,j = 1
2(ui,j+1 − ui,j−1) (this would then require an adaptation of

the divergence for the minimization scheme).
In the continuous case, a related issue may be observed through the Euler Lagrange Equation2.

Considering the TVg + L1 problem:

min
u

∫
R2

g(x)|∇u(x)|dx+
∫

R2

|f(x)− u(x)|dx, (6.42)

we formally get:

− div
(
g(x)∇u(x)
|∇u|(x)

)
+ sign (u(x)− f(x)) = 0, (6.43)

which means:

− g(x)div
(
∇u(x)
|∇u|(x)

)
−∇g(x) · ∇u(x)

|∇u|
+ sign (u(x)− f(x)) = 0. (6.44)

As a consequence the TVg +L1 problem is not simply a weighted TVL1 model because of the apparition
of the middle term. The impact of this middle term seems difficult to predict. In segmentation, it is inter-
preted as a shock term that enhances the detection of edges. Indeed, Bresson et al. [Bresson et al., 2007]
have shown that the TVg +L1 problem amounts to the geodesic active contour [Caselles et al., 1997] on
the level sets of the image.

Therefore, another way to investigate the model is to consider the geodesics of the associated geo-
metric problem:

min
U

∫
∂U
g(x)dH1(x) + λ|U∆F |. (6.45)

Figure 6.2 shows the difference between the TVg + L1 with convolution of g and the spatially
varying λ. Using a spatially adaptive λ amounts to interpolating the level lines in the noisy regions
with line segments. This should avoid too oscillating boundaries in the resulting image. On the con-
trary, the adaptivity on g favors oscillating boundaries. This might be the reason why the authors of
[Koko and Jehan-Besson, 2010] propose to postprocess the result of the TVg +L1 model with a deinter-
lacer (EDDI) [De Haan and Lodder, 2002].

As a conclusion, the adaptivity on the regularization term is useful in several problems like segmen-
tation, but in our case it seems to mostly introduce difficulties.

6.2 Application to impulse noise removal

In this section, we show an application of the spatially adaptive TVL1: impulse noise removal. By
combining a noise detector with spatially adaptive TVL1, we show that performance close to state-of-
the-art methods can be obtained. Notice that we do not claim that the proposed method is a breakthrough:
its purpose is mainly to illustrate an application of the model. We consider discrete images defined on a
grid Ω = J1, NK2.

Impulse noise comes from bit errors in transmission, wrong pixels or faulty memory locations in
hardware. It can be divided in two categories:

2This remark is inspired from the one of Tshcumperlï¿ 1
2

and Deriche on anistropic diffusion with divergence form expres-
sions [Tschumperlé and Deriche, 2005].



6.2. APPLICATION TO IMPULSE NOISE REMOVAL 123

(a) Noisy Level
set

(b) TVg + L1 +
convolution of g

(c) Adaptive λ

Figure 6.2 – Left: a level set contaminated by an impulse noise. Middle: with the TVg + L1 method
with Gaussian filtering of g [Koko and Jehan-Besson, 2010], changing the weight of the total variation
changes the geodesics. Right: with the adaptive λ the geodesics are not modified.

.

• Salt-and-Pepper noise: each pixel x is assigned the value

f(x) =


αmax with probability p/2
αmin with probability p/2
I0(x) with probability 1− p

(6.46)

where I0 is the uncorrupted image, and αmax (resp αmin) is its maximum (resp. minimum) value.

• Random-valued impulse noise: each pixel x is assigned the value

f(x) =
{

n(x) with probability p
I0(x) with probability 1− p (6.47)

where {n(x)}x∈Ω are identically uniformly distributed random variables in Jαmin, αmaxK.

In [Nikolova, 2004a], a method called Detail Preserving Variational Method (DPVM) is proposed to
remove salt-and-pepper noise as well as random-valued impulse noise. The idea is to solve the mini-
mization problem:

min
u∈RN×N

∑
i,j

ϕ ((∇u)i,j) + λ
∑
i,j

|fi,j − ui,j |. (6.48)

Different choices for the function ϕ are possible. It may be the `1 norm: ϕ(px, py) = |px| + |py| (in
which case this amounts to the TVL1 model) or the regularized total variation, or the Huber function.
The author uses ϕ(px, py) = |px|1.3 + |py|1.3 in her numerical experiments.

As noted in [Chan et al., 2005], this method has the drawback of smoothing the pixels that are re-
garded as non-corrupted. In [Chan et al., 2004, Chan et al., 2005], the method is therefore modified to
include a detection step (based on the adaptive median filter (AM) in the case of salt-and-pepper noise, or
the Adaptive Center Weighted Median Filter (ACWMF) [Chen and Wu, 2001a] for the random-valued
impulse noise) which gives a mapN of the (supposedly) noisy pixels. Then, they minimize the following
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energy [Chan et al., 2005]:

min
u∈RN×N

∑
(i,j)∈N

|ui,j − fi,j |+ β
∑

(i,j)∈N


∑

(m,n)∼(i,j),

(m,n)∈N

ϕ(ui,j − um,n) + 2
∑

(m,n)∼(i,j),

(m,n)/∈N

ϕ(ui,j − fm,n)

 ,

(6.49)

where (m,n) ∼ (i, j) means that (m,n) is a neighbor of (i, j).
A similar energy can be found in [Chan et al., 2004] for impulse noise removal and in

[Dong et al., 2007] where it is adapted to the iterating of the procedure. Let us also mention that a related
challenging problem has been considered in [Cai et al., 2008, Cai et al., 2010], where the authors restore
images contaminated by blur and impulse noise. We do not consider blurred images in the following.

Now let us give more details about the detection step.

6.2.1 Noise detectors: a short review

Impulse noise removal algorithms have been relying on a detection step for almost two decades. Before
focussing on detectors for the random-valued impulse noise, let us mention that problem (6.47) is much
more difficult than problem (6.46). Indeed, very often in natural images, only few pixels reach the
extremal values. With salt-and-pepper noise, a first guess for the set of corrupted pixels is therefore the
pixels for which f(x) = αmin or αmax (see [Sun and Neuvo, 1994, Koko and Jehan-Besson, 2010]).
A more sophisticated procedure is used in [Chan et al., 2005]. Both methods seem to lead to excellent
detection rates.

For the random-valued impulse noise, things are not that easy, since corrupted pixels may
take any value between 0 and 255. Many detection procedures have been proposed. Some of
them rely on the median or similar ideas: switching median (SM) filter [Sun and Neuvo, 1994],
multi-state median (MSM) filter [Chen and Wu, 2001b], adaptive center-weighted median fil-
ter (ACWMF) [Chen and Wu, 2001a], peak-and valley filter [Windyga, 2001] conditional signal-
adaptive median (CSAM) filter [Pok et al., 2003], pixel-wise Median Absolute Deviation (PWMAD)
[Crnojevic et al., 2004], etc. More generally, many filters rely on the order of the pixel values, or
the order of their differences: Signal Dependent Rank Order Median [Abreu et al., 1996], Rank Or-
dered Absolute Differences (ROAD) [Garnett et al., 2005] or the recent Rank-Ordered Logarithmic Dif-
ference (ROLD) [Dong et al., 2007] Let us also mention the modified threshold Boolean filter (TBF)
[Aizenberg et al., 2005], the Jarque-Bera test based median (JM) [Besdok and Yüksel, 2005]. filter, and
fuzzy-based methods like [Van De Ville et al., 2003, Xu et al., 2004].

Since the recent state-of-the art methods related to TVL1 like ACWMF-EPR [Chan et al., 2004] and
ROLD-EPR [Dong et al., 2007] are based respectively on the ACWMF and ROLD detectors, we focus
on the ACWMF, ROAD and ROLD detectors.

6.2.1.1 Adaptive Center-Weighted Median Filter (ACWMF)

The Adaptive Center-Weighted Median Filter is proposed [Chen and Wu, 2001a] to detect impulse noise.
Let fi,j be the values of the noisy image. For w ∈ N, the weighted median mw(f)i,j of f is :

mw(f)i,j = med ({fk,l, |k − i| ≤ h, |l − j| ≤ h} ∪ {w � fi,j}) (6.50)

where w � fi,j stands for w copies of the value fi,j , and h ∈ N is a window size. For w = 0 the weighted
median amounts to the standard median, and for w ≥ h(2h+ 1) it amounts to the identity filter.

Now, let L = 2h(2h+1), and define the distance dk = |m2k+1(f)i,j−fi,j | for k ∈ {0, 1, . . . , L−1}.
It is clear that dK ≤ dk−1 for k ≥ 1. The idea of the ACWMF detector is that if one of the distances dk

for k ∈ {0, 1, . . . , L− 1} is above a certain threshold Tk, the pixel should be regarded as noisy.
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In practice, the authors consider 3× 3 windows (h = 1), and they propose the following thresholds:

Tk = s ·MAD + δk (6.51)

where [δ0, δ1, δ2, δ3] = [40, 25, 10, 5], and MAD is the median of the absolute deviations from the
median:

MAD = med{|fk,l − (med f)i,j |, |k − i| ≤ 1, |l − j| ≤ 1}. (6.52)

This detector yields satisfying detection rates, it is used in [Chen and Wu, 2001a] to precess a median
filter, and in an iterated fashion in [Chan et al., 2004, Cai et al., 2008, Cai et al., 2010] to precess a vari-
ational method.

6.2.1.2 Rank Ordered Absolute/Logarithmic Differences (ROAD and ROLD)

The Rank Ordered Absolute Differences detector was proposed in [Garnett et al., 2005]. In the original
paper, it is followed with a "trilateral filter" which removes the noisy pixel in an efficient way. For
x = (i, j), the idea is to consider the distances with the neighbors {|fk,l − fi,j |, |k − i| ≤ h, |l − j| ≤
h, (i, j) 6= (k, l)} and to sort them by increasing order: r1(x) ≤ r2(x) . . . ≤ r(2h+1)2−1(x). The ROAD
indicator is then:

ROADm(x) =
m∑

n=1

rn(x), (6.53)

where 2 ≤ m ≤ (2h + 1)2 − 2. In practice, the authors use h = 1, m = 4. To detect noisy pixels, one
selects a threshold T > 0, and the noise candidate pixels x are such that ROADm(x) > T .

In [Dong et al., 2007], a variant was proposed using the logarithm of the differences:

ROLDm(x) =
m∑

n=1

r̃n(x), (6.54)

where r̃n = 1 + max{log2(rn),−5}/5.
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Figure 6.3 – Detection versus percentage of false hits for the ROAD, ROLD and ACWMF detectors.
.

Figure 6.3 illustrates the detection rate versus the percentage of false hits on the Lena image as T
varies. The ACWMF is also shown, where s is the varying parameter, which takes values between 0.05
and 0.6 as recommended in [Chen and Wu, 2001a, Chan et al., 2004]. It is clear that ROAD and ROLD
are better detectors than the ACWMF. The difference between ROAD and ROLD is less obvious. For
less than 0.88% of the noisy pixels detected, ROLD has less false hits than ROAD. Since it is usually
below this value that one uses the detector (because above 0.88% the corresponding false hit rate is not
acceptable), ROLD is more interesting, and the experiments of [Dong et al., 2007] show that the mean
square error is lower when applying ROLD instead of ROAD before the Edge Preserving Regularization
(EPR).
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6.2.2 The importance of iterating the detection

A first denoising experiment is illustrated in Figures 6.4 and 6.5. We have used the spatially adaptive
TVL1 to denoise the image using the map of outliers given by ACWMF, ROAD and ROLD. We set
λi,j = 0.001 for all pixels detected as noisy and λi,j = 80 for the others. The corresponding functional is
very similar to the one used in [Chan et al., 2004, Chan et al., 2005], but as we will see, its interpretation
is much simpler. We have used the Chambolle-Pock algorithm (see Chapter 4) with 800 iterations. The
test image is lena with 30% random-valued impulse noise. The quality is measured using the PSNR,
given by the formula:

PSNR(u, I0) = 10 log10

2552

1
N2

∑
x

(I0(x)− u(x))2
. (6.55)

This experiment confirms that the ACWMF is less efficient than ROAD and ROLD, since many spots
are not detected with ACWMF. In fact, with ROLD and ROAD, the quantity of undetected noisy pixels
is not negligible but their intensity is usually close to the original value of each pixel, so that this is not
visually disturbing.

However, this is not always true with ROLD, as illustrated in Figure 6.5, where ROLD leaves a noisy
white spot. Although ROLD provides a better PSNR than ROAD, it is less sensitive to extreme outliers,
because of the concavity of the logarithm. As a result, it may happen that ROLD misses visibly noisy
pixels. For this reason, we will not use ROLD in the following but ROAD.

Yet, it is clear that the remaining noisy pixel is now very easy to detect using ROAD or ROLD,
so that another iteration of the detection and denoising steps allows to detect missed noisy pixels.
The natural procedure is therefore to first use a very high threshold to detect and remove the extreme
outliers. Then the ordered distances should be more robust and a smaller threshold allows to detect
more subtle outliers without many false detections. This iterative approach is used in [Chan et al., 2004,
Dong et al., 2007]. We have adapted it using ROAD and TVL1 and different thresholds from those used
in [Dong et al., 2007] (we use 2.3, 1.1 and 0.7, corresponding respectively to the detection of 50%, 75%
and 82% of the noisy pixels on the Lena image). The quantitative justification of iterating the detections
is given in Figure 6.6: we see that the at the second iteration the false hit rate is lower. The gain of the
third iteration is much smaller, and there is no point in iterating more.

Figure 6.7 illustrates the result of each iteration on the Goldhill image. The first iteration has a
deliberately high threshold, so that the false detection rate is very low but only the most obvious outliers
are detected. Then, as the thresholds increase, the visual quality is improved.

Table 6.1 describes the PSNR obtained by the exposed denoising methods. As in [Chan et al., 2004],
we give the highest value obtained by letting the parameters vary. Results from [Chan et al., 2004,
Dong et al., 2007] with comparable noise intensities are also reported, but comparison is difficult since
the experiment is different. In any case, this table shows that the performance of the exposed method is
neither worse nor better than the state-of-the art methods, and that the noise removal method has in fact
little impact on the final result compared to the noise detection.

6.2.3 Conclusion

The spatially adaptive TVL1 with ROAD provides similar performance as [Chan et al., 2004,
Dong et al., 2007]. In fact, its main advantage is its simplicity. The algorithms for ACWMF-EPR are
summarized in Figure 6.8 and 6.9. The pseudo-code for ROAD-TVL1 is more compact, and basically
the iterated spatially adaptive TVL1 and EPR methods are almost identical (leaving aside the factor 2 in
the regularization).

In fact, we think that the real issue with random-valued impulse noise lies in the detection step. The
way to "fill the gaps" does not matter much provided one uses a reasonable method. As an extreme
illustration of this, we show in Figure 6.10 two results based on the ROAD detection on the Lena image
with 30% random-valued impulse noise. One is reconstructed using spatially adaptive TVL1, the other
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(a) Original (b) Noisy (30%) (c) ACWMF + median

(d) ACWMF + TVL1 (e) ROAD + TVL1 (f) ROLD + TVL1

Figure 6.4 – Experiment using a noise detector + a local denoiser (TVL1 or median). The PSNR are (c)
27.61 dB, (d) 28.75 dB, (e) 30.84 dB, (f) 31.05 dB.

Table 6.1 – Numerical result for 30% noise removal. For the algorithms with a star, the given values are
taken from [Chan et al., 2004, Dong et al., 2007] when available for the same image and comparable
noise intensity. They do not reflect the same experiment.

Lena Bridge Cameraman Goldhill
ACWMF+med 27.94 23.72 23.27 26.90
DPVM * 27.29 22.44 24.72 27.13
ACWMF-EPR (4 iter.) * 28.33 22.76 25.08 27.52
ACWMF-TVL1 (1 iter.) 28.75 23.91 23.61 27.01
ROAD-TVL1 (1 iter.) 30.84 24.53 23.32 28.95
ROLD-TVL1 (1 iter.) 31.05 24.73 23.63 29.33
ROAD-TVL1 (3 iter.) 31.29 24.74 23.95 29.75
ROLD-EPR (4 iter.) * 32.32 24.79 - -

one is given by "an oracle" and consists in replacing the noisy pixels with the values of the noise free
image. The PSNR in the first case is 30.05 dB, in the second one it is 36.6 dB. Yet, leaving aside a few
geometric details3, the overall visual impression is the same, with many slight spots of noise.

3To be precise, the lower part of the iris is not well reconstructed. It seems here that, to minimize the perimeter, the algorithm
has cut the iris at the boundary of the spot. Maybe a curvature penalizing energy would be more adequate in this case (see for
instance [Masnou and Morel, 1998, Schoenemann et al., 2011]).
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(a) Original (b) Noisy (30) (c) ACWMF + median

(d) ACWMF + TVL1 (e) ROAD + TVL1 (f) ROLD + TVL1

Figure 6.5 – Zoom of Figure 6.4. Notice that ROLD misses a white noisy pixel in the top right-hand
corner.
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Figure 6.6 – Detection versus percentage of false hits for the ROAD filter when iterating the detection
and denoising steps. A second iteration reduces the false hit rate, but more iterations hardly provide any
gain.
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Figure 6.7 – Evolution of the result with the iterations using ROAD-TVL1. The PSNR for iterations 1,2,3
is 21.80 dB, 27.97 dB, 29.75 dB.
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Algorithm ACWMF-EPR [Chan et al., 2004]

Inputs: Noisy Image f
Output: Denoised image u(4)

Set u(0) := f .
for all r ∈ {0, 1, 2, 3} do

Apply ACWMF with the thresholds T (r)
k = s ·MAD + δk + 20 × (3 − r) to get the noise set

M(r).
Set N (r) =

⋃r
l=0M(r).

Set u(r+1)
i,j := u

(r)
i,j for (i, j) /∈ N (r).

Set u(r+1)
i,j for (i, j) ∈ N (r) such that u(r+1) solves:

min
u∈RN×N

∑
(i,j)∈N

|ui,j − u(r)
i,j |+ β

∑
(i,j)∈N


∑

(m,n)∼(i,j),

(m,n)∈N

ϕ(ui,j − um,n) + 2
∑

(m,n)∼(i,j),

(m,n)/∈N

ϕ(ui,j − u(r)
m,n)

 .

end for

Figure 6.8 – The ACWMF-EPR algorithm

Algorithm ROAD-TVL1

Inputs: Image f
Output: Denoised image u(3)

Set u(0) := f (noisy image).
for all r ∈ {0, 1, 2} do

Apply ROAD on u(r) with the thresholds T (r) to get the noise setM(r).
Set λ(r)

i,j := 0.001 for (i, j) ∈M(r), λ(r)
i,j := 80 otherwise.

Set u(r+1) a minimizer of :

min
u∈RN×N

∑
(i,j)

|(∇u)i,j |+
∑
(i,j)

λi,j |ui,j − u(r)
i,j |.

end for

Figure 6.9 – The iterated ROAD-TVL1 algorithm
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Figure 6.10 – In both images, the noise (30%) was detected using ROAD. One of them was reconstructed
with spatially adaptive TVL1, the other using the "oracle", i.e. the values of the noise free image. Can
the reader guess which one was restored using TVL1?

Answer:therightone.
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Chapter 7

Extension to the anisotropic case

In this chapter, our aim is to justify the empirical observations of Chapter 4 concerning the Darbon-
Sigelle algorithm [Darbon and Sigelle, 2006] with 4-connectivity, namely that the solution of the TVL1
geometric problem for convex sets seems to be given by openings with squares instead of balls. As we
mentioned in Chapter 4, in that case the numerical scheme for the energy is:

E(u) :=

(
N−1∑
k=0

N∑
l=0

|uk+1,l − uk,l|+
N∑

k=0

N−1∑
l=0

|uk,l+1 − uk,l|

)
+

∑
1≤k,l≤N

|uk,l − fk,l|. (7.1)

This energy is anisotropic, and when the pixel size goes to zero, one can show that this model Γ-
converges1 to the following continuous model (see for instance [Chambolle et al., 2010]):∫

|Du|1 +
∫

R2

|f(x)− u(x)|dx. (7.2)

where for smooth functions u the integrand in the left term is the `1 norm of the gradient.
This is a particular case of anisotropic total variation, which is the subject of intensive research

[Bellettini et al., 2001, Kawohl and Novaga, 2008, Bellettini et al., 2009, Caselles et al., 2008]. Invok-
ing a result by Bellettini et al. [Bellettini et al., 2001], we explain in this chapter that given a crystalline
anisotropic total variation, the minimizer of the TVL1 geometric problem with convex input is given by
an opening with the Wulff shape followed by a thresholding on the ratio anisotropic perimeter/area. The
Wulff shape is the set which minimizes the perimeter for a given volume.

We begin by recalling some basic facts about anisotropic total variation, then we state the basic
properties of anisotropic TVL1 before explaining the result of [Bellettini et al., 2001].

7.1 Anisotropic total variation

7.1.1 Introduction

The total variation is used to model surface tension in physical problems where interfaces between sub-
stances (fluid or solid) occur. Notice that it may also model the interface between one substance and a
vacuum. Since the atoms, molecules or ions on the interface have a different environment than those
inside the substance, a surface energy arises. However, as the atoms are organized in a lattice, the inter-
actions between them may crucially depend on the orientation. Therefore, in many problems the surface
tension is anisotropic, and the notion of perimeter used in the models should be anisotropic.

The corresponding evolution, observed in crystal growth [Taylor et al., 1992], or statistical physics
[Spohn, 1993] is the anisotropic mean curvature motion. In the mathematical community, the study

1The Γ-convergence is a convergence for functionals which implies the convergence of the minimizers. See for instance
[Braides, 2002].
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of such problems was initiated by Taylor in [Taylor, 1978]. A peculiarity of the anisotropic mean
curvature motion is that some facets of the evolving object may bend or split in several pieces. In
[Bellettini et al., 2001], which provides the key result of this chapter, Bellettini et al. characterize the
convex facets that evolve without bending or splitting: such facets are called calibrable. We refer the
reader to [Bellettini, 2004] for a didactic introduction to the anisotropic mean curvature and many useful
references.

As far as image processing is concerned, the anisotropic total variation appears for instance in
[Esedoglu and Osher, 2004] where the anisotropic version of the Rudin-Osher-Fatemi is studied, and
in [S. Setzer and Teuber, 2008, Steidl and Teuber, 2009] where the dual norm of the anisotropy is the
composition of the `1 norm and an affine transform: the authors use such energies to preserve paral-
lelograms in images. In [Grasmair and Lenzen, 2010], a linear transform is introduced before the com-
putation of the `2 norm of the gradient, and this transform is chosen locally, depending on the struc-
ture of the image. The authors show that this modification yields sharper images than usual Rudin-
Osher-Fatemi model. Moreover, anisotropies appear naturally when working with graph-cut meth-
ods. As these methods have become standard in computer vision[Greig et al., 1989, Hochbaum, 2001,
Boykov and Kolmogorov, 2004, Chambolle, 2005], the study of anisotropic total variation in image pro-
cessing is far from being anecdotal.

Closely related to our problem are the papers about the total variation flow and Cheeger sets: in
[Moll, 2005], Moll shows the well-posedness of the anisotropic total variation flow, and in particular he
characterizes the subdifferential of the total variation. In [Kawohl and Novaga, 2008], the anisotropic
Cheeger problem is studied as the limit of the p-Laplace eigenvalue problems for p→ 1. The uniqueness
of the anisotropic Cheeger set of a convex set in the plane is also shown. In [Caselles et al., 2008],
Caselles et al. characterize by their curvature convex calibrable sets with respect to anisotropic norms in
dimensionN (hence generalizing the result of [Bellettini et al., 2001] in dimension 2), with the additional
assumption that the convex set satisfies a ball condition. As with the isotropic case, the connection with
the ROF problem plays a crucial role in the study of dependence of the solutions of minX⊂C Perφ X −
λ|X| on the parameter λ. In [Caselles et al., 2009], applications of the anisotropic Cheeger problem are
given in connection with the 3D segmentation problem and color diffusion. Notice that in this chapter
we only consider uniform anisotropies whereas for instance [Moll, 2005, Caselles et al., 2009] deal with
the more general case of spatially varying anisotropies.

7.1.2 Anisotropies and total variation

In this section, we consider an anisotropy, i.e. a convex function φ : R2 7→ R+ such that:

∃c > 0, ∀x ∈ R2, φ(x) ≥ c|x|, (7.3)

and such that φ is 1-homogeneous:

∀t ∈ R, φ(tx) = |t|φ(x). (7.4)

Notice that this implies that there exists C > 0 such that φ(x) ≤ C|x| for all x ∈ R2. The unit ball Wφ

for this norm will be called the Wulff shape:

Wφ = {y ∈ R2, φ(y) ≤ 1}. (7.5)

It is a convex body (i.e. a bounded convex set which contains the origin in its interior).

Definition 7.1.1. Let φ : R2 → R+ be an anisotropy. We say that:

• The metric φ is crystalline if Wφ is a polytope.

• The dual norm of φ is the anisotropy φo defined by:

∀x ∈ R2, φo(x) = sup{〈x, y〉, y ∈Wφ}. (7.6)
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For instance φ : x 7→ |x|1 and φ : x 7→ |x|∞ are crystalline, and they are dual to each other. Notice
that in general, if φ is an anisotropy, (φo)o = φ.

Given an anisotropy φ, the φ-total variation is defined as:∫
|Du|φ = sup

{∫
R2

udiv ϕ, ϕ ∈ C1
c (R2,Wφ)

}
. (7.7)

Similarly, the anisotropic perimeter of a measurable set E ⊂ R2 is:

Perφ (E) = sup
{∫

E
div ϕ, ϕ ∈ C1

c (R2,Wφ)
}
. (7.8)

For u and E smooth enough, these quantities are respectively equal to:∫
|Du|φ =

∫
R2

φo(∇u(x))dx, and Perφ (E) =
∫

∂E
φo(ν)dH1, (7.9)

where ν refers to the outer unit normal of E. In particular, we see that if we take φ = | · |∞, we obtain
the smoothing term used in the anisotropic TVL1 (7.2).

7.1.3 Basic properties

Most properties of Chapter 1 for the isotropic total variation remain true with the anisotropic one. We
state them without proof. The reader may consult [Bellettini et al., 1999, Moll, 2005, Caselles et al., 2008,
Caselles et al., 2009] for more details.

For convenience, we write:

Jφ :
L1 −→ R+ ∪ {+∞},
u 7−→

∫
|Du|φ

. (7.10)

As Jφ is the supremum of convex, lower semi-continuous functions, we have:

Proposition 7.1.2. The total variation Jφ is convex, lower semi-continuous with respect to L1 conver-
gence.

Bellettini et al. have proved an extension of the coarea in [Bellettini et al., 1999]:

Proposition 7.1.3 (Coarea formula). Let u ∈ BV(R2). Then:∫
|Du|φ =

∫ ∞

−∞
Perφ {x ∈ R2, u(x) ≥ t}dt. (7.11)

If the right member is finite, then u ∈ BV(R2).

The subdifferential of the anisotropic total variation is used in the definition of the anisotropic total
variation flow [Moll, 2005], but also in the study the Cheeger problem in connection with the Rudin-
Osher-Fatemi problem [Caselles et al., 2008, Caselles et al., 2009]:

Proposition 7.1.4 (Subdifferential of the total variation). Let p ∈ L∞(R2,R2). Then p ∈ ∂J(u) if and
only if:

∃z ∈ L∞, φ(z(x)) ≤ 1 a.e., div z = p and −
∫

(z,Du) =
∫
|Du|φ. (7.12)

The following three results concern the anisotropic perimeter.

Proposition 7.1.5 (Submodularity of the anisotropic perimeter). Let E,F ⊂ R2 be measurable sets.
Then:

Per φ (E ∩ F ) + Per φ (E ∪ F ) ≤ Per φ (E) + Per φ (F ) . (7.13)
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The next result can be found in [Caselles et al., 2008]:

Proposition 7.1.6. Let C ⊂ R2 be a closed convex set. For all E ⊂ R2 with finite perimeter:

Perφ (E ∩ C) ≤ Perφ E. (7.14)

Eventually, the isoperimetric inequality is proved in [Fonseca, 1991]:

Proposition 7.1.7 (Isoperimetric inequality for anisotropies). There is a constant C > 0 such that for
all E ⊂ R2 with finite perimeter,

C|E| ≤ Perφ E, (7.15)

with equality if and only if E = x+Wφ for some x ∈ R2.

7.2 Anisotropic TVL1 and openings

In this section, we state without proof the results that can be obtained by following the same pattern
as in Chapter 3. We eventually obtain the result for openings of convex sets as a consequence of
[Bellettini et al., 2001]. In this section we assume that the anisotropy is crystalline.

7.2.1 The geometric problem

The anisotropic TVL1 problem is given by:

min
u∈BV(R2)

∫
|Du|φ + λ

∫
R2

|f − u|. (7.16)

Existence of solutions for (7.16) follows from the compactness theorem and the semicontinuity result
(Proposition 7.1.2). The coarea formula (7.11) implies that the problem reformulates as:

min
u∈BV(R2)

∫ +∞

−∞
(Perφ Ut + λ|Ut∆Ft|) dt, (7.17)

where Ut and Ft denote the upper level sets of respectively u and f .
As in the isotropic case, this problem is equivalent to the family of geometric problems, for almost

every t ∈ R:

min
U⊂R2

Perφ U + λ|U∆Ft|, (7.18)

The solutions of this problem are "smooth" in a certain sense: assume for instance that |F | < +∞,
then U is a minimizer of

Perφ U + λ

∫
U
(1− 2 · 1F (x))dx, (7.19)

and the following regularity result for quasi-minimizers of the crystalline perimeter[Ambrosio et al., 2002,
Theorem 6.19] applies.

Theorem 7.2.1 ([Ambrosio et al., 2002]). There exists Σ(U) ⊂ R2 with H1(Σ(U)) = 0 such that for
all x0 ∈ ∂U \Σ(U), there exists a neighborhood V of x0 where ∂U is the graph of a Lipschitz function.
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7.2.2 The case of convex sets

By Proposition 7.1.6, in case C = Ft or C = R2 \ Ft is convex, the geometric problem associated with
C ⊂ R2 is equivalent to:

min
U⊂C

Perφ U − λ|U |. (7.20)

Eventually, the solutions of this problem are obtained from the results of [Bellettini et al., 2001]:

Proposition 7.2.2 (Openings with the Wulff shape). Let φ be a crystalline anisotropy, and C ⊂ R2 be a
bounded convex set. Let Cr be the opening of C with rWφ, and consider the geometric problem (7.20).

Then:

• if
Perφ C1/λ

|C1/λ|
< λ, the solution is C1/λ,

• if
Perφ C1/λ

|C1/λ|
= λ, the solutions are ∅ and C1/λ,

• if
Perφ C1/λ

|C1/λ|
> λ, the solution is ∅.

Let us recall that Cr =
⋃
{B, B ⊂ C and ∃y ∈ C, B = y + rWφ}.

Proof. In [Bellettini et al., 2001, Theorem 5.2], Bellettini et al. characterize the minimizers of problem
(7.20) by their anisotropic curvature when C is a convex facet. The proof amounts to a "calibration
argument" similar to those exposed in Chapter 2. They show that for a general anisotropy φ, the sets:

ΩC
λ = {x ∈ int (C), κφ < λ}, and ΘC

λ = {x ∈ int (C), κφ ≤ λ}, (7.21)

are solutions of (7.20), and that any other minimizer Ũ satisfies ΩC
λ ⊂ Ũ ⊂ ΘC

λ . In the case where the
anisotropy φ is crystalline, the meaning of the anisotropic curvature κφ above is not straightforward, we
refer the reader to [Bellettini, 2004, Caselles et al., 2008] for more details.

The point with crystalline anisotropies is that Bellettini et al. have characterized the sets ΩC
λ and ΘC

λ

as openings. Writing κmin = ess infC κφ, they obtain that:

∀λ > κmin, int ΩC
λ =

⋃{
B,B ⊂ int (C) and ∃y ∈ C, B = y +

1
λ
Wφ

}
, (7.22)

∀λ ≥ κmin,ΘC
λ =

⋃{
B,B ⊂ C and ∃y ∈ C, B = y +

1
λ
Wφ

}
. (7.23)

For λ > κmin, since C is convex, the sets ΩC
λ and ΘC

λ can be identified with C1/λ, thus the solution
of the geometric problem is given by an opening. As κmin is the value such that ΩC

λ vanishes, i.e. the
maximum value of λ such that:

∀U ⊂ C, 0 = Perφ ∅ − λ|∅| ≤ Perφ U − λ|U |, (7.24)

the test on the ratio perimeter/area follows.
The last point is to check that only ∅ and C1/λ are solutions for λ = κmin. This amounts to the

uniqueness of the anisotropic Cheeger set which was proved in [Kawohl and Novaga, 2008, Theorem
5.1].
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7.3 Illustrations

From the previous section, we know that when the anisotropy is crystalline, the result of the geometric
problem associated with a convex set is given by an opening with the Wulff shape followed by a thresh-
olding on the ratio perimeter/area. Let us emphasize that this result holds for all total variations of the
form: ∫

R2

φo(Du), with φ(v) or φo(v) = max
1≤i≤k

|gi · v|, (7.25)

and Span{g1, . . . gk} = R2.
In particular, for φo = | · |1, the structuring element is the square

Wφ = {(x1, x2) ∈ R2,max(|x1|, |x2|) ≤ 1}. (7.26)

In a dual way, if φo = | · |∞, the structuring element is the rotated square

Wφ = {(x1, x2) ∈ R2, |x1|+ |x2| ≤ 1}. (7.27)

In Figure 7.2, we have used the following anisotropic total variation. Let e+ = 1√
2
(1, 1), e− =

1√
2
(−1, 1)). We set Wφ =

{
(x1, x2) ∈ R2, |〈x, e+〉| ≤ 2

√
2, |〈x, e−〉| ≤

√
2

2

}
, which corresponds to:

φ(y) = 2
√

2|〈y, e+〉|+
√

2
2
|〈y, e−〉|, (7.28)

φo(x) = max
(

1
2
√

2
|〈x, e+〉|,

√
2|〈x, e−〉|

)
. (7.29)

The projection on Wφ is straightforward:

PWφ
(x) =

〈x, e+〉

max
(
1, 〈x,e+〉

2
√

2

)e+ +
〈x, e−〉

max
(
1, 〈x, e−〉

√
2
)e−, (7.30)

and we inject this expression in (4.10) to replace the `2 projection, so as to adapt the Pock-Chambolle
algorithm [Chambolle and Pock, 2011] to our total variation.

The Wulff shape is displayed on Figure 7.1. To be coherent with the Matlab simulation, we have
used the Matlab convention so that the vertical axis is oriented downwards. The result of the adapted
Pock-Chambolle algorithm is given on Figure 7.2. As λ decreases, the Wulff shape appears more clearly.

Let us now consider more traditional anisotropies. Figure 7.3 compares the results given by the
Darbon-Sigelle algorithm [Darbon and Sigelle, 2006] using 4-connectivity (i.e. φ0 = | · |1), and the
FLST algorithm with opening with squares. For these simple shapes the results are almost identical.
For more complicated shapes however, the result may differ in a more patent way, as we have seen in
Chapter 4. Notice that the evolution is reminiscent of the anisotropic mean curvature motion experiments
(see for instance [Chambolle and Darbon, 2009]).

Figure 7.4 shows the result given by the Darbon-Sigelle algorithm [Darbon and Sigelle, 2006] with
8-connectivity. As the fidelity parameter decreases, the Wulff shape progressively appears. It is a regular
octagon.

7.4 Conclusion

In this chapter we have extended the core result of this part of the thesis to the case of anisotropic
TVL1: the geometric problem associated with convex sets is solved by an opening with the Wulff shape
followed by a test on the ratio anisotropic perimeter/area. As in the isotropic case, this leads to a precise
approximation of the solutions of TVL1 in the non-convex case when the level-set is not too complicated.
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Figure 7.1 – Anisotropic Wulff shape used in the experiment of Figure 7.2. The vertical axis is oriented
using the convention adopted in Matlab.

This concludes the part devoted to the TVL1 model: we have given more insight to the observation by
Darbon [Darbon, 2005] that TVL1 is a morphological filter by highlighting the connection with openings
for convex sets. This connection also allows to interpret the behavior of the filter for cartoon-texture
decomposition as a granulometry. Incidentally we have compared the TVL1 and the TV+G models, and
we have shown that the former gives satisfying decompositions, whereas the latter yields artifacts in the
texture part around edges. Then we have investigated the case of a spatially varying fidelity parameter,
and we have proposed a framework which encompasses the core ideas of [Chan et al., 2004] while being
very simple.
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Figure 7.2 – Result of the Pock-Chambolle algorithm [Chambolle and Pock, 2011] with 8-connectivity.
As λ decreases the Wulff shape appears: it is a rectangle as in 7.1.
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(a) Darbon-Sigelle C-4 (b) FLST+openings (c) Darbon-Sigelle C-4 (d) FLST+openings

Figure 7.3 – Comparison of the Darbon-Sigelle algorithm [Darbon and Sigelle, 2006] and the FLST-
based algorithm. As the images are not exactly binary (the edge pixels are interpolated), the solutions
for the geometric problem may differ depending on the intensity value, hence the apparition of grey
zones. No animals were injured during this experiment.
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Figure 7.4 – Result of the Darbon-Sigelle algorithm [Darbon and Sigelle, 2006] with 8-connectivity. As
λ decreases the Wulff shape appears: it is a regular octagon.
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Chapter 8

Introduction to the Non Local Means

This part is devoted to non local algorithms for image denoising. In this chapter, we recall the definition
of the Non-Local Means filter (NLM) and, using simple toy models, we illustrate some of its properties.
Topics such as the patch size, the bandwidth or the search window are discussed. The framework is a
bias-variance trade-off.

In this part of the thesis, we assume that we given a noisy image u which is a noisy version of an
unobserved deterministic image f corrupted by an Additive White Gaussian Noise (AWGN). This time
we work in a discrete setting: let Ω ⊂ Z2 be the (bounded) set indexing the pixels. For any pixel x in the
grid Ω, the model has the following formulation:

u(x) = f(x) + ε(x) , (8.1)

where ε is a centered Gaussian noise with known variance σ2 and the noise components ε(x) are inde-
pendent.

8.1 Introduction

8.1.1 The Non-Local Means and their descendants

Whereas the total variation is a good prior to model cartoon images, it is less adequate to denoise textures.
Around 2005, a breakthrough in image denoising was made with the simultaneous introduction of the
Non-Local Means [Buades et al., 2005] and the UINTA filters [Awate and Whitaker, 2006]. Both filters
rely on the idea of taking advantage of self-similarities of images. When averaging patterns that are
repeated across the image, one may reduce drastically the variance of the noise without blurring the
details (see Figure 8.1). These similarities may appear at large distances, hence the term "non-local" to
qualify the algorithm.

The idea of averaging pixels depending on their similarity had been proposed before the paper by
Buades, Coll and Morel, and the authors highlight the similarity between the Non-Local Means and the
Yaroslavsky filter [Yaroslavsky, 1985]:

Y NFh,ρu(x) =
1

C(x)

∑
y∈B(x,ρ)

e−
|u(x)−u(y)|

h2 u(y). (8.2)

where C(x) is a normalization constant, and B(x, ρ) is a window with radius ρ centered around x.
However, this filter, as well as the similar sigma filter introduced in [Lee, 1983] is meant to be local: the
typical window B(x, ρ) is 5× 5 or 7× 7. Similarly, the bilateral filter [Tomasi and Manduchi, 1998]:

BLh,ρu(x) =
1

C(x)

∑
y∈Ω

e−
|u(x)−u(y)|2

2h2 e
− |x−y|2

2ρ2 u(y), (8.3)
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Figure 8.1 – Most natural images have self-similarities. Averaging similar patterns allows to reduce the
noise without smoothing out the details. This is the principle of the Non-Local Means. This picture is
taken from the Kodak Image Suite.

gives a strong emphasis to the neighboring pixels, although all pixels in the image may have a (small)
contribution.

In fact, it is the combination of the two major innovations of the filter, the claimed non-locality and
the use of patches, that makes the denoising so efficient. The non-locality is a bit controversial since the
performance of the filter is in fact better when the search for similar pixels is reduced to a (large) sliding
window, and several authors [Brox et al., 2008, Gilboa and Osher, 2007, Salmon and Strozecki, 2010b]
prefer to use the term "Semi-Local Means" to underline this point. We will come back to this issue in
Section 8.3.3. Still, the used window size (between 11×11 and 25×25) is much larger than its equivalent
in other filtering methods, and this allows to reduce the variance of the noise by a larger amount than
with local filters.

The use of patches, on the contrary, has been widely adopted by the image denoising community.
Buades, Morel and Coll were inspired by the work of Efros and Leung [Efros and Leung, 1999] (and
more recently [Criminisi et al., 2004]) in texture synthesis, where the use of patches allows to compare
neighborhoods in a Markovian framework. In image denoising, the interest of using patches to compare
neighborhood comes from their robustness to noise. As a result, several authors have proposed adap-
tations or variants of existing methods to the patch framework with a substantial improvement of the
denoising performance.

In [Kindermann et al., 2005, Gilboa and Osher, 2007, Gilboa and Osher, 2008], the total variation is
replaced with a non-local total variation which favors self-similarities within the image. An interesting
point with these variational methods is that they also allow to deblur images. A variational framework
was also chosen by Brox et al. [Brox and Cremers, 2007] and Azzabou et al. [Azzabou et al., 2007c].
All these methods interpret the Non-Local Means (or its variant) as one step of a gradient descent for the
minimization of a certain energy.

A close point of view is the study of the Non-Local Means in the patch space: in [Szlam, 2006] and
[Tschumperlé and Brun, 2009], the Non-Local Means are interpreted as one step of a heat equation in the
patch space and the connection with classical diffusion-based denoising algorithms is established. The
analysis of the non-local heat equation is carried further in [Peyré, 2008, Peyré, 2009]: Peyré argues that
natural images lie on a manifold in the patch space, and the Non-Local Means consist in a diffusion on
this manifold. His argumentation is strengthened by the study of different image models (e.g. smooth or
cartoon) for which the author gives an explicit parametrization. Let us also mention the work of Singer
et al. [Singer et al., 2009] where the link with the Fokker-Planck equation is established for various non-
local neighborhood filters (including the Non-Local Means).

Some authors adopt a more statistical framework. In [Kervrann and Boulanger, 2008], Kervrann and
Boulanger provide a patch-based variant of Lepski’s method. Their iterative filter automatically and lo-
cally selects the search window by considering a bias-variance trade-off. In [Goossens et al., 2008], the
Non-Local Means are connected to robust estimation problem. This leads the authors to question the
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choice of the exponential weight for the Non-Local Means and to propose a series of weight functions
(Section 8.3.3 will support their conclusions). Interestingly enough, Elad established a similar connection
between the bilateral filter and robust estimation in [Elad, 2002], which brought him to the same conclu-
sions about the exponential weight of the bilateral filter. In [Azzabou et al., 2007b], the authors propose
a denoising algorithm based on Marginal Posterior Modes estimation. This allows them to select locally
the bandwidth of the filter. Let us also mention the work of Doré and Cheriet [Dore and Cheriet, 2009]
where the bandwidth is also selected locally, this time relying on theCp statistic. Whereas the Non-Local
Means are designed for additive Gaussian white noise, many applications require to tackle different kinds
of noise. Let us mention the extension of the Non Local Means to colored Gaussian noise by Goossens
et al. [Goossens et al., 2008], and the work of Deledalle et al. [Deledalle et al., 2009], who propose an
iterative algorithm based on maximum likelihood estimation which allows to deal with different noise
models, e.g. multiplicative speckle noise. This is especially important when processing Synthetic Aper-
ture Radar (SAR) images (see [Deledalle et al., 2010a]). The authors also focussed on Poisson noise
in [Deledalle et al., 2010b]. The statistical framework also allows to interpret the performance of the
Non-Local Means: Salmon and Le Pennec interpret the filter as a PAC-bayesian aggregation of estima-
tors of each patch [Salmon and Le Pennec, 2009a, Salmon and Le Pennec, 2009b]. This leads to oracle
inequalities to bound the performance of the Non-Local Means.

Another interesting statistical result was given in [Van De Ville and Kocher, 2009] by Van De Ville
and Kocher: they gave a closed form expression for Stein’s Unbiased Risk Estimate (SURE) in the case
of the Non-Local Means. We will use this result in Chapters 9 and 10.

Many works deal with direct improvements of the Non-Local Means, whether regarding the visual
quality or the computation time: Louchet and Moisan propose in [Louchet and Moisan, 2010] a combina-
tion of a (local) total variation based filter and the Non-Local Means. The parameter of the total variation
filter is locally chosen so that the Non-Local Means find enough similarities in the smoothed image. They
show that this helps reducing the visual artifacts of the filter. Brox et al. [Brox et al., 2008] refine the
Non-Local Means both in terms of visual quality (their algorithm is designed for texture denoising) and
computation speed (their filter is iterative, so that the computation time becomes a critical issue). Other
methods to accelerate the Non-Local Means have been proposed: identifying a convolution in the patch
distances, Wang et al. [Wang et al., 2006] a use a Fast Fourier Transform to accelerate the computation
of the patch distances (which is the most time consuming step of the algorithm). In [Darbon et al., 2008],
Darbon et al. use summed area tables (like Viola and Jones [Viola and Jones, 2001] for object detection)
to speed up the computation of the distances. Both methods have complexity that is independent of the
size of the patch, contrary to the original algorithm.

This list is far from being exhaustive, but it is hopeless to list all the works that have been inspired
by the Non-Local Means. Let us conclude this introduction by mentioning two state-of-the art meth-
ods which are both patch-based. The first one, called Learned Simultaneous Sparse Coding (LSSC),
is based on dictionary learning techniques, well-suited for overcomplete representation (based for in-
stance on `1 regularization or greedy algorithms). It was proposed by Mairal et al. [Mairal et al., 2008,
Mairal et al., 2009] following the work of Aharon et al. [Aharon et al., 2006]. It has to be noted that this
algorithm incorporates a prior on images by initializing a dictionary of patches on a large clean dataset.
Another state-of-the-art method in denoising is BM3D [Dabov et al., 2007]. It also relies on patches and
consists of a smart combination of classical filtering techniques, such as wavelet denoising and Wiener
Filter, applied in the space of patches.

In this thesis, we do not claim to compete with these methods. Our aim is to provide more insight
on the Non-Local Means, and, without changing the philosophy of the algorithm, to try to improve its
performance.

8.1.2 Notations

We consider a noisy image u defined on the domain Ω ⊂ Z2. Given an odd number s and a pixel x ∈ Ω,
we define the square patch U(x) of width s centered at x as the s2-dimensional vector whose coordinates
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are the gray values of the pixels in a square neighborhood of x with side s :

U(x) = (u(x+ j))|j|∞≤ s−1
2
. (8.4)

The Non-Local Means filter (NLM) compares patches in the image u to restore the value at pixel x
according to the following formula:

NLu(x) =

∑
y∈Ω e

− ‖U(x)−U(y)‖2

2h2 u(y)∑
y′∈Ω e

− ‖U(x)−U(y′)‖2
2h2

=
1

C(x)

∑
y∈Ω

ω(x, y)u(y), (8.5)

where ω(x, y) = e−
‖U(x)−U(y)‖2

2h2 and C(x) is a normalizing factor.
In Chapter 9 and in most of the present chapter, we use the following normalized `2 norm to compare

the patches:

‖U(x)− U(y)‖2 =
1
s2

∑
|j|≤ s−1

2

(u(x+ j)− u(y + j))2,

so that h is homogeneous to a gray level. However, in Chapter 10, we will consider more general
weighted `2 distances, which encode some geometry. A shape S is a collection of non-negative values
(Si)i∈J− s−1

2
, s−1

2
K2 such that

∑
j Sj = 1, and the associated distance is:

‖U(x)− U(y)‖2S =
∑

|j|≤ s−1
2

Sj · (u(x+ j)− u(y + j))2.

Sometimes, when the context makes it clear, we may write d2
S(x, y) instead of ‖U(x)−U(y)‖2S . Notice

that in the original paper [Buades et al., 2005], the `2 distance is weighted by a Gaussian function. For
simplicity, and since this does not affect much performance, most authors do not keep this Gaussian
weighting.

Since the common habit is to restrict the above search for patches to a search window of side-length
W around x, the sums in (8.5) may be replaced by sums over all y ∈ Ω such that |x− y|∞ ≤ W−1

2 .
As a consequence the user of the NLM has to set three parameters to denoise an image:

Choice of the bandwidth h. Many authors (for instance [Kervrann and Boulanger, 2008,
Louchet and Moisan, 2010]) use a χ2 test to set the parameter h. They only accept patches that are likely
to be exact replicas of the one they want to denoise: for instance they choose the smallest h such that 99%
of exact replicas contaminated by the noise are accepted. This leads to a linear relation between h and
σ, and the experiments reported in [Buades et al., 2005, Tasdizen, 2009, Van De Ville and Kocher, 2009]
confirm that, in terms of PSNR, the best value of h is roughly proportional to σ. Still, we prove in this
thesis that there is interest in choosing the parameter h depending on the image. First, the rule of select-
ing h = Cσ is too rough: the visual difference between the results with the optimal h and the predicted
value Cσ may be noticeable. Second, the optimal bandwidth widely varies between the different regions
of an image (see Section 9).

In fact, an exact replica is not always available (e.g. along contrasted curved edges or on isolated
details), and different options are available. A first possibility is to smooth the image nonetheless by
imposing a large value of h. This is the approach used in [Dore and Cheriet, 2009, Duval et al., 2011],
and we will describe it in Chapter 9. Another approach is to change the similarity criterion by replacing
patches with other shapes, in order to take into account the local geometry. This idea was introduced
by Salmon and Strozecki [Salmon and Strozecki, 2010a] by shifting the patches in order to have more
similar patches near edges. With Charles Deledalle and Joseph Salmon, we took this approach to a step
further by replacing shifted patches with general shapes. This is the subject of Chapter 10.
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Choice of the search windowW . In the seminal paper [Buades et al., 2005], the theoretical NLM
is exposed as a fully non-local filter, i.e. the search for similar pixels is done in the whole image.
The complexity of this algorithm is then O(|Ω|2 · s2), which is far too large for most applications.
As a consequence the authors propose to reduce the search to a window around x (with typical size
11 × 11 to 25 × 25). The complexity becomes O(|Ω| · W2 · s2) with W2 � |Ω|. However, the
computation time is not the only reason to reduce the search window, since several authors have noticed
that a large search window often degrades the quality of the denoising [Kervrann and Boulanger, 2006,
Kervrann and Boulanger, 2008, Gilboa and Osher, 2007]. The most striking example is the approach
chosen in [Kervrann and Boulanger, 2006, Kervrann and Boulanger, 2008] where the size of the search
window is made following bias-variance considerations. Like most authors, we will only consider a fixed
search window. Section 8.3.3 shows that the influence of the search window is considerably reduced
when the exponential function in the weights is replaced with a function with compact support.

Choice of the patch size s2. In the literature, this parameter is typically set to 5 × 5, 7 × 7 or
9 × 9. A value of 1 × 1 yields the Yaroslavsky filter (8.2). The interest of using large patches is to
have a robust estimation of the similarity. The drawback is that the measure is less adapted to quick
transitions in the image: as a result, details are more blurred (see Section 8.2.2.2) and there are more
noisy halos since it is more difficult to find similar pixels near contrasted edges (see 8.3.4). Few authors
have tried to mix different sizes of patches: [Mairal et al., 2008] in the context of learning with patches,
and [Salmon and Strozecki, 2010a] in a variant of NLM.

To give more intuition about these parameters, the rest of this chapter is made of various examples
that highlight the interaction between them, and the artifacts that they induce.

8.2 The importance of the bias of a method

8.2.1 Bias-variance trade-off

Like any other denoising method, the NLM is based on several assumptions on the images to process.
As noted in [Szlam, 2008], these are mainly:

• There are similar patches (H1).

• Similar patches have similar central pixels (H2).

Roughly speaking, the stronger the assumptions a method makes, the less variance it has, but the more
biased it is in case the images do not really satisfy these assumptions. In the case of NLM, the estimation
of the variance of the result is much easier than the estimation of the bias. In this thesis, our goal is to
take the bias into account when making a decision (whether on the choice of the parameter or on the
choice of the shape) so as to minimize the sum of the bias and the variance (i.e. the quadratic error).

Now, let us give more detail about this bias-variance tradeoff. To fix ideas, we momentarily assume
that the weights are computed on the noise free image (and thus deterministic). If the variance σ2 of the
noise is small and the patch size is large1, this approximation makes sense. Indeed, if U(z) denotes the
patches of the noisy image u = f + ε, with ε Gaussian White Noise, we have with high probability2:
‖U(x)− U(y)‖2 ≈ E‖U(x)− U(y)‖2 = ‖F (x)− F (y)‖2 + 2σ2.

The risk of denoising the pixel x is given by:

E|NLu(x)− f(x)|2 = E|NLu(x)−NL f(x)|2 + E|NL f(x)− f(x)|2

+ 2E ((NLu−NL f(x))(NL f(x)− f(x))) .

1Roughly, we assume that σ2

s
is small compared to the typical square distance ‖F (x)− F (y)‖2, which is typically 102 as

illustrated in Figure 8.6
2This approximation is not valid for x = y. However, the same qualitative conclusions can be drawn by slightly adapting

the following discussion. We skip this for the sake of clarity.
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The last term vanishes since E(NLu(x)−NL f(x)) = 1
C(x)

∑
y E(ε(y))ω(x, y) = 0. The first term

is the variance term: it is small when the smoothing parameter h is large. The second one is the bias
term: it is small when h is small. Thus, the optimal choice of h is a trade-off between bias and variance.

An image is all the easier to denoise with the NLM filter as its bias term stays low for large intervals
of h. We call such images patch regular. This property corresponds to the assumption (H2). This patch
regularity will be made precise in the rest of the thesis. Notice that a similar, information theoretic
formulation can be found in [Awate and Whitaker, 2006], stating that conditionally to the rest of the
patch, the entropy of the law of the central pixel is very low.

In Chapters 9 and 10, we estimate the risk of NLM using SURE (recently introduced in
[Van De Ville and Kocher, 2009] in the context of NLM), so that we need not assume that the weights
are deterministic.

8.2.2 The bias on simple examples

To give more intuition about the bias of the NLM, we now study three toy models on a noise free signal
(so that u = f ). As the variance term vanishes, we may observe the consequences of the assumptions of
the NLM, namely:

1. Even periodic images are altered.

2. The search window has an impact on the visual quality of the result.

3. A large patch size tends to blur objects.

4. There is a loss of contrast depending on the occurrence of each pattern

5. A weight with compact support instead of an exponential allows to reduce the bias.

6. The less contrasted the details, the more they are degraded, and this relation is highly non linear.

We do not claim that that these properties are new. We simply propose to highlight them on simple
examples.

8.2.2.1 Periodic crenel

The reader who is not familiar with the NLM might think that it is able to restore arbitrarily well any
periodic signal. However, it can be shown that the only functions that are invariant by NLM are constant
functions (a direct proof is given in [Gilboa and Osher, 2007]), so that even periodic signals must be
altered. To illustrate this, we consider a quickly oscillating texture modelled by a periodic crenel with
period T and intensity α. For simplicity, we assume that:

• The periodic signal is a crenel, with period T = 2p (where p is an odd number) and intensity α.

• The patch size is s =
(
k + 1

2

)
T , for k ∈ N (i.e. the period of the signal is small compared to the

patch size).

• The size of the search window is infinite, or it is a multiple of T .

An illustration of the following discussion is given in Figure 8.2.
We set the origin at the center of a crenel, and we consider one pixel x. Let us first compute the patch

distances to x. For −T
2 + 1 ≤ j ≤ T

2 , a translation by j pixels leads to a difference of (2k+ 1)|j| pixels,
so that :

‖F (x)− F (xj)‖2 =
(2k + 1)|j|α2

s
=

2
T
|j|α2
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where F (x) and F (xj) denote the patches centered respectively at x and xj , and xj = x + j. The
distances for j > T

2 and j < −T
2 + 1 are obtained by periodicity, and the resulting distance function is a

periodic triangle (see Figure 8.2).
Now, we assume for instance that the pixel x belongs to the crenel, i.e. there exist j1, j2 ≥ 0 such

that f(xj) = α for −j2 ≤ j (mod T ) ≤ j1, with j1 + j2 + 1 = T
2 and f(xj) = 0 otherwise.

If we set r = 1
T

α2

h2 , we have by periodicity:

NL f(x) =

∑
−T

2
<j≤T

2
e−

‖F (x)−F (xj)‖2

2h2 f(j)∑
−T

2
<j≤T

2
e−

‖F (x)−F (xj)‖2

2h2

,

= α

∑j1
j=0 e

−rj − 1 +
∑j2

j=0 e
−rj

2
∑T

2
−1

j=0 e−rj − 1 + e−r T
2

,

= α

1
e−r−1

(
2e−(

j1+j2
2

+1)r cosh( j1−j2
2 r)− (e−r − 1)

)
1

e−r−1
(e−r T

2 − 1)(1 + e−r)
.

Recalling that j1 = T
2 − 1− j2, we get:

NL f(x) =
α

(1− e−r T
2 )(1 + e−r)

(
1− e−r − 2e−

1
2
(T

2
+1)r cosh rx

)
. (8.6)

The expression for the other parts of the signal are obtained by replacing NL f(x) with α−NL f(x) and
translating the signal by T

2 .
The corresponding curve is a piecewise catenary that is all the farther from the crenel as r is small

(see Figure 8.2). This shows that even periodic signals may suffer from bias (point 1.).
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Figure 8.2 – Effect of NLM on a periodic crenel. Left: extract of the original signal and the patch
distance related to pixel 118. Right: the result is a piecewise catenary (see (8.6)).

8.2.2.2 Isolated detail

Let us consider an isolated pattern modeled by a single crenel (as before, its size is T
2 and its intensity is

α, but this time, we assume moreover that the patch size is s = T/2). If the signal has length N ≥ T
and if we neglect boundary effects, we have inside the crenel :

NL f(x) = α
1− e−r − 2e−

1
2
(T

2
+1)r cosh rx

(1− e−r)
(

2
∑T

2
j=0 e

−rj − 1 + (N − T − 1)e−r T
2

) , (8.7)

where r = 2 α2

sh2 and x ∈
[
−T

4 + 1
2 ,

T
4 −

1
2

]
.
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This is again a catenary. Observe that, contrary to total variation based methods, the result when
denoising an object depends on the size of the whole image: in the case of an infinite signal (or image)
(N → +∞) we see that NL f(x) = 0 for all x! An interpretation of this phenomenon is that NLM has
the following a-priori : good images are images with repetitive patterns. The larger the background, the
less the isolated detail is "repeated" compared to the background. The phenomenon also appears when
denoising lines in an image (see Figure 8.4). If a line contains O(

√
N) pixels in an image with N pixels,

the output has intensity O( 1√
N

).
In practice, one usually restricts the set of patches to a search window around x, so that this depen-

dence on N is changed into a dependence onW (hence point 2.). The dependence onW was noted in
[Kervrann and Boulanger, 2008, Dore and Cheriet, 2009] and we believe this example strengthens their
argument. The idea is that, when denoising a small detail, pixels are averaged with any other. Because
of the exponential function, the weights assigned to the wrong patches are small, but they are nonzero.
If these patches are overwhelming they will have a strong influence.

Two remedies have been proposed: use a small search window W or replace the exponential
weights with functions with compact support (i.e. that vanish for ‖F (x) − F (y)‖2/(2h2) large
enough) so that e−r T

2 in (8.7) is replaced with zero (hence point 5, see also [Goossens et al., 2008,
Louchet and Moisan, 2010, Salmon, 2010b]). The connection between these methods is discussed in
Section 8.3.3. Let us also mention [Kervrann and Boulanger, 2008] where the bias is locally controlled
by choosingW at each pixel.

Incidentally, notice that the larger the patch size, the larger the impact of W on the blurring of the
detail (see point 3. and Figure 8.3).
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Figure 8.3 – Loss of isolated details. Left: an extract of a synthetic input signal and the result provided
by the NLM filter, it is a catenary inside the crenel (see (8.7)). The size of the crenel is 7, its intensity
α = 64, the patch size is s = 7, h = 20. Depending on the total size of the signal (N = 200 or
N = 800), the result does not vary much since e−r T

2 � 1. Right: same experiment, using a patch size
s = 15. Since the patch size is larger than the pattern, the size of the signal has a large impact on the
bias (e−r T

2 ≈ 1).

Figure 8.4 – Loss of lines and isolated details. Left: Boat image with little noise (σ = 5). Middle: Result
of the NLM filter (h = 6, s2 = 7× 7, search window 11× 11). Right: same experiment, using a search
window 61 × 61. Notice that several ropes vanish when the size of the search window increases (this
should be seen on a computer screen).
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8.2.2.3 Step edge

As a last example, let us consider two regions (one with θN black pixels, the other with (1− θ)N pixels
with intensity α, and θ ∈ (0, 1)) delimited by a step edge. Taking the limit N → +∞, one may compute
the asymptotic output of the filter (see Figure 8.2):

NL f(x) =
α(1− θ)

(1− θ) + θe(2b(x)−s)r
, (8.8)

where b(x) is the number of black pixels in the patch centered at x (e.g. b(x) = s if the patch of center
x lies completely inside the black region). Observe that the gray levels of the two regions are shifted
differently, depending on their number of pixels (point 4.). Eventually, the transition width between the
two regions is proportional to the patch size.
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Figure 8.5 – Effect of NLM on a step signal. The proportion of black pixels is θ = 3
4 , and the size of the

signal is N = 1000. The parameters are s = 21, h = 10 (dashed line) and h = 20 (dash-dot line). The
length of the transition is equal to the patch size. The bias at each pixel is all the more important as h is
large and the pixel value is rare (see (8.8)).

The previous three examples also show the nonlinear behavior of the filter with respect to the contrast
(point 6.). Two regions with the same geometry but different contrast are handled differently by the filter
(notably for the rare patch effect exhibited in Section 9.3.2).

8.3 The bias-variance tradeoff in the patch space

As we have seen, the NLM filter introduces bias even on simple signals that apparently satisfy assump-
tions (H1) and (H2). As with many filters, a first way to control this effect is to tune the bandwidth h so
as to accept a little bias in order to reduce the variance while minimizing their sum. A second approach,
if images do not satisfy assumptions (H1) or (H2) (i.e. if there are no similar patches, or if similar
patches do not have similar central pixels), is to change the similarity measure.

The present section gives some insight of the two approaches in the patch space.

8.3.1 Regularity in the patch space

The aim of this paragraph is to interpret the easiness with which one may solve the bias-variance
trade-off as a regularity property of the image that can be read in the patch space. Several authors
[Szlam, 2006, Peyré, 2008, Peyré, 2009, Tschumperlé and Brun, 2008, Tschumperlé and Brun, 2009,
Singer et al., 2009] interpret the behavior of the algorithm as a diffusion on a manifold in the patch
space. We agree with this model but we wish to stress the importance of considering a manifold with
density (or a current).
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The patch application3:

F : Ω −→ P ⊂ Rs2

x 7→ (f(y), |y − x|∞ ≤ s−1
2 )

, (8.9)

which maps every pixel x of the domain to the patch of center x in the patch spaceP , gives a parametriza-
tion of a surface in the patch space (provided f is smooth enough).

However, the geometry of such surfaces is complicated as there are many self-intersections. More-
over, the geometry of the patch manifold does not take into account redundancies in the image. For
instance, a closed surface may represent either a single pattern or a periodic one, while this difference
is crucial for the NLM. Thus, inasmuch as we are interested in the bias-variance trade-off in the patch
space, we focus on the mass distribution of the patch set rather than on its geometry, in a more elementary
framework.

A measure in the patch space may be defined by pushing forward the Lebesgue measure of the spatial
domain:

∀A ∈ B(Rs2
), m(A) = L2(F−1(A)).

If the search window is the whole image, the weights ω(x, y) = e−
‖F (x)−F (y)‖2

2h2 depend only on the patch
value F (x) rather than on the pixel position x itself, and so do the normalization factors C(x). Therefore

we can denote them by W (F (x), F (y)) = 1
C(F (x))e

− ‖F (x)−F (y)‖2

h2 and C(F (x)), and we may write:

NL f(x) =
1

C(x)

∫
Ω

f(y)ω(x, y)dy =
1

C(F (x))

∫
P
c(P )W (F (x), P )dm(P ), (8.10)

where c is the application that maps a patch to the value of its central pixel (i.e. c(F (x)) = f(x)).
Because of the normalization of the weights, the measure 1

C(F (x))W (F (x), ·)m has total mass 1. The
"bias" of the filter can therefore be expressed as:

NL f(x)− f(x) =
1

C(F (x))

∫
P

(c(P )− c(F (x)))W (F (x), P )dm(P ). (8.11)

As a result the bias can be expressed as the moment of the measure 1
C(F (x))W (F (x), ·)m along the axis

corresponding to the central pixel. For instance, if an image has a measure m widely spread along the
central pixel axis in a neighborhood of F (x), the estimation of f(x) might be considerably biased.

The patch regularity assumption (H2) may be reformulated by asking that the measure m makes the
above integral small.

Lipschitz regularity A natural assumption to control the bias in (8.11) is to assume a Lipschitz reg-
ularity of the center: the support of W (F (x), ·)m is contained in the set {P ∈ P, |c(P ) − f(x)| ≤
k‖Ṗ − Ḟ (x)‖}, where Ṗ ∈ Rs2−1 denotes the patch omitting its central pixel (i.e. P = (c(P ), Ṗ )), and
k > 0 is a constant. This provides the upper bound:

|NL f(x)− f(x)| ≤ k√
1 + k2

1
C(F (x))

∫
P
‖P − F (x)‖W (F (x), P )dm(P ).

However, this bound is not satisfactory since it may be arbitrarily close to k√
1+k2

255 (or any positive
constant, depending on supΩ u): consider the mass defined by the crenel signal of Section 8.2.2.2, with
α = 255 and N → +∞ Again, since the exponential weights never cancel, the effect of overwhelming
patches is out of control. On the contrary, if one uses a kernel ϕ with compact support as proposed in
[Goossens et al., 2008] (e.g. ϕ(x) = 0 for x ≥ 1), the bias is bounded by

√
2k√

1+k2
h.

3In this paragraph, to be coherent with the manifold model, we assume that images are defined on a continuous domain.
Otherwise, the Lebesgue measure may be replaced with the counting measure.
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Figure 8.6 – Similarity diagrams for the pixels indicated by a blue or green cross. Top: A natural image.
Middle: Two regions. It is more difficult to reduce the variance without introducing bias for the minority
pixels than for the majority. Bottom: Stripes. Pixels near edges suffer from more bias than pixels at the
center of each stripe. The Lipschitz constant k is larger near edges.

Similarity diagram A visual way to examine the regularity at a point is to plot the patch set as the
couples: (‖Ṗ − Ḟ (x)‖, c(P )− f(x)). This representation is inspired from the one in [Singer et al., 2009]
where, in dimension 1, patches of size 2 are represented as couples (f(y), f(y + 1)) for all y. It allows
to see if the estimation of each pixel will be much biased and it contains exactly the information NLM
needs to compute NL f(x). Such similarity diagrams are shown in Figure 8.6 in the case of a natural
image in the case of the examples of Sections 8.2.2.1 and 8.2.2.3. This shows that the regularity constant
k varies in the image, and it is especially high near edges.

Replacing patches with shapes Replacing square patches with a shape S amounts to changing the
metric in the patch space:

‖F (x)− F (y)‖2 =
∑

j

1
s2
1J− s−1

2
, s−1

2
K2(j)(f(x+ j)− f(y + j))2, (8.12)

with :
‖F (x)− F (y)‖2S =

∑
j

S(j)(f(x+ j)− f(y + j))2. (8.13)

This is equivalent to replacing the level lines of W (F (x), ·), which are balls, with ellipsoids (which may
be degenerate depending on which coefficients vanish). In a similarity diagram, this generally changes
the order of the pixels, so that the regularity of an image depends on the chosen shape (see Chapter 10).
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8.3.2 Bias-variance trade-off in the patch space

The bias-variance dilemma above may be translated to the patch space. Let R1 := E|NLu(x) −
NL f(x)|2 and R2 := E|NL f(x)− f(x)|2. Since4:

R1 = E

(
1

C(x)

∑
y

ε(y)ω(x, y)

)2

= σ2 1
C(x)2

∑
y

(ω(x, y))2 =
1

C(F (x))2
σ2

∫
P

(W (F (x), P ))2 dm(P ),

(8.14)
the risk is given by:

R1 +R2 = σ2

∫
P

(W (F (x), P ))2

C(F (x))2
dm(P ) +

(∫
P
(c(P )− c(F (x)))

W (F (x), P )
C(F (x))

dm(P )
)2

. (8.15)

By Cauchy-Schwarz’s inequality, the first term is minimal when the weights are uniform (i.e. h→ +∞).
On the contrary, if the image is patch regular, the second one is small for small values of h (since patches
with a different central pixel are allowed, but they should be very far in the patch space - see Figure 8.6).
As expected, the best choice for h is thus a trade-off between reducing the variance by taking a large
number of pixels in the average, and not averaging pixels that belong to very different patches.

The interpretation of this quantity is even clearer when the kernel is not Gaussian but given by an indi-
cator function: ω(x, y) = 1‖F (x)−F (y)‖2≤h2 . In the patch space, the weights can be written: W (P,Q) =
1Bh(P )(Q), where Bh(P ) denotes a ball with radius h and center P , and C(P ) = m(Bh(P )) is its
m-measure, i.e. the number of patches within distance h of P . Then, similar computations show that:

R1 +R2 =
σ2

m(Bh′(F (x)))
+

(
1

m(Bh′(F (x)))

∫
Bh′ (F (x))

(c(P )− c(F (x)))dm(P )

)2

, (8.16)

where h′ =
√
h2 − 2σ2 corresponds to a threshold on the noise free image. The minimum value of

R1 +R2 is all the lower as the image is regular (e.g. the lipschitz constant k is small). Figure 8.6 shows
the trade-off for different pixels. In the middle row, a threshold h′ = 7 allows to reduce the variance
without introducing bias. However the variance will decrease more for the majority pixels than for the
minority ones. In the bottom row, it is quickly necessary to introduce bias near edges in order to reduce
the variance, contrary to the center of stripes.

8.3.3 The choice of the search window seen from the patch space

We have seen in Sections 8.2.2.2 and 8.3.1 that the bias term depends on the size of the search window.
Using a small search window is the common use and the reason invoked is that, besides the speed-up, the
result is visually better. However, on the theoretical ground, it is very different to restrict the search of
patches to a window for computational reasons than to do this because we know that it will produce better
results: the second approach contradicts the "non local philosophy" introduced in [Buades et al., 2005].
If a similar object appears at the other side of the image there is no reason not to use it to denoise a
pattern. On the other hand, we have seen that kernels with compact support allow to control the bias.
The following experiment determines to what extent.

To this end, we need to distinguish two different kinds of pixels that may introduce bias when denois-
ing a pixel x (see Figure 8.7). First, pixels that belong to patches that are similar but have very different
central values (‖Ḟ (x)− Ḟ (y)‖ is small but |f(x)− f(y)| is large): these patches are cause of non patch
regularity. We have seen that this kind of pixels arise for instance at edges. Second, pixels that belong
to very different patches (both ‖Ḟ (x) − Ḟ (y)‖ and |f(x) − f(y)| are large). These pixels have a small
weight but, as in Section 8.2.2.2, it is non-zero. Contrary to the pixels of the first type, we can get rid of
them by using a truncated kernel.

4Again, we assume in this section that the weights are computed on the noise-free image. We do not make this assumption
in the next two chapters.
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Figure 8.7 – Left: Evolution of the PSNR as the size of the search window increases, for different values
of the threshold T , on the boat image. Using a good threshold (e.g. T = 20) for the weights makes the
algorithm more robust to changes of the search window. The parameters are: h = 10, s = 7, σ = 10.
Right: the different kinds of irrelevant pixels in a similarity diagram.

We run the NLM filter on several images degraded by a noise with σ = 10, and look at the evolution
of the PSNR when the size of the search window increases. However, we truncate the weights in the
following way:

ω(x, y) =

{
e−

‖U(x)−U(y)‖2

2h2 if ‖U(x)− U(y)‖ ≤ T,
0 otherwise.

(8.17)

where the parameter h is set to 10. Since the patch distance is normalized, for a threshold value T = 255,
the algorithm is equivalent to the usual NLM filter. Typical curves for several values of T are shown in
Figure 8.7. The PSNR first increases with W , since the variance decreases and the bias introduced on
small neighborhoods is very low. When W gets large enough, many pixels in the search window are
irrelevant to denoise x and the bias increases much: the PSNR drops.

The interesting point in this experiment is that when imposing a small threshold value T , the filter is
almost insensitive to the increase of the search window. This shows that the pixels of the first kind are
not prominent when the search window increases, and therefore the loss of PSNR without thresholding
is due to the bias induced by pixels of the second kind.

As a consequence, images are mostly patch regular and truncated weights make the algorithm more
robust to the choice of the search window. In [Goossens et al., 2008], it is proposed to use kernels with
compact support and the authors show that this allows to preserve textures better (which can also be
understood in light of Section 8.2.2.2). Let us stress the fact that it also makes the algorithm more robust
to the choice of the search window.

Remark 8.3.1. It is shown in [Tasdizen, 2009] that projecting the patches on their principal components
before computing the distances reduces the decay of the PSNR when W increases. Since the main
advantage of this modified `2 distance is its improved robustness to noise, this suggests that some of the
error committed when increasing W is due to the uncertainty on the distances (for large σ). However,
the PCA does not solve the problem of non-zero weights (as in Section 8.2.2.2) and we have performed
several experiments highlighting the same bias problem for largeW when using PCA.

8.3.4 The choice of the patch size seen from the patch space

In the literature ([Tasdizen, 2009, Van De Ville and Kocher, 2009, Mairal et al., 2009]), the best results
with strong noise are obtained with large patches. As noted in [Singer et al., 2009], using a large patch
allows a more robust discrimination between areas that are not actually similar, which is interesting in the
presence of noise. Let us illustrate this in an experiment displayed in Figure 8.8. We consider an image
with mainly two kinds of patches, say two regions (with intensities α and 0) and a noise with standard
deviation σ such that the two noisy regions are hard to distinguish. This time we compute the similarity
diagram on the noisy image: the two regions cannot be discriminated with a 3 × 3 patch, but with size
15× 15, two different clouds clearly appear.
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The shapes of the similarity diagrams are explained by the Bienaymé-Tchebychev inequality. Indeed,
let P (resp. Q) be a perfect grey (resp. black) patch and U(x) be a noisy patch completely included in
the grey region. Then

∀ε > 0, P
(∣∣‖U(x)− P‖2 − σ2

∣∣ > ε
)
≤ 2σ4

s2ε2
,

so that for a large patch size s2, most patches of the grey (resp. black) regions lie near the sphere of
radius σ and center P (resp. Q).

Since the two clusters are separated with a large patch size, a good threshold value h allows to average
the pixels of the first cluster only. This does not introduce bias if the first cluster actually corresponds
to the pixels of the grey region, i.e. ‖U(x) − P‖2 ≤ ‖U(x) − Q‖2. But if εi ∼ N (0, 1) i.i.d. for
i ∈ {1, . . . , s2} :

P
(
‖U(x)−Q‖2 < ‖U(x)− P‖2

)
= P

 1
s2

s2∑
i=1

(α− σεi)2 <
1
s2

s2∑
i=1

(σεi)2


= P

αs
2σ

<
1
s

s2∑
i=1

εi

 =
∫ +∞

αs
2σ

e−t2/2 dt√
2π
, (8.18)

so that when s is large, most patches are averaged with the correct cluster.
In the case of a general shape S, similar computations show that:

∀ε > 0, P
(∣∣‖U(x)− P‖2S − σ2

∣∣ > ε
)
≤ 2σ4

ε2

∑
i

S2
i ,

and

P
(
‖U(x)−Q‖2S < ‖U(x)− P‖2S

)
=
∫ +∞

α

2σ
√P

i S2
i

e−t2/2 dt√
2π
. (8.19)

Since
∑

i Si = 1, it is more robust to use large binary shapes (but there is no prescription on their
geometry).

The same holds for natural images: large patches are needed for their robustness to noise. An exam-
ple is shown in Figure 8.9 where a small patch size induces a mottling effect. However, large patches
make the algorithm more exposed to both bias and variance. First, as in Section 8.2.2.2 using a large
patch size reduces the importance of little contrasted small details, so that they are more blurred. Second,
if the image has textures with highly contrasted transitions or curved and contrasted edges, using a too
large patch will prevent the algorithm from finding redundancies and the variance will stay large (see
Figure 8.10). The next two chapters explain how to overcome both issues using very different strategies.
The first one consists in selecting the smoothing parameter h locally: when choosing the useful patches,
be more selective when denoising a small fading out detail and more lenient when it becomes difficult
to find similar patches. The second approach is to change the shape of the patch, in order to adapt to the
local geometry. This amounts to changing the metric in the patch space, so that the similarity diagrams
are changed.

8.4 Conclusion

In this chapter we have studied the classical NLM filter, and we have highlighted some of its properties
on simple examples. In particular, as the search window gets larger, the bias of the filter increases, but
this effect can be limited with the use of weights with compact support. Large patches are robust to noise
but they tend to blur the details that are not contrasted, and they create noise halos around details or edges
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Figure 8.8 – Left: original (intensity 0 and α = 32) and noisy image (σ = 30). Middle and right:
similarity diagram for a pixel at the center of the grey region (the patch size is respectively 3 × 3 and
15 × 15). With a large patch size one sees two clusters. Question: Does the closest cluster correspond
to patches which were originally grey as well? When s is large, the answer is yes with high probability:
in strong noise, a large patch size discriminates better the two regions than a small one.

Figure 8.9 – Left and right: extract of the result of the NLM filter with s2 = 3 × 3 and s2 = 5 × 5 on
a noisy image (σ = 10, h optimized for PSNR). Using a too small patch size makes the algorithm less
robust to noise and Lena’s skin looks mottled. It looks smoother with patch size 5× 5 but visual artifacts
appear in the eye.

that have a high contrast. For each exhibited artifact, we have seen that an adequate choice of parameters
could reduce it.

Concerning the rare patch artifact, notice that many other tricks have been proposed to reduce it.
Some authors propose to modify the "self-similarity" of x, ω(x, x) = 1, by replacing it with either
maxy 6=x exp(−‖U(x)−U(y)‖2

2h2 ) [Buades et al., 2005] or exp(−σ2

h2 ) [Salmon, 2010b]. This trick is gener-
ally not enough and more stringent methods are sometimes used. In [Gilboa and Osher, 2007], and later
in [Brox et al., 2008], all weights are set to zero except the five largest and those of the four spatial
neighbors of the pixel to denoise. In [Brox and Cremers, 2007] Brox and Cremers use uniform weights
and they impose a minimum of at least 20 similar patches. In [Louchet and Moisan, 2010], Louchet and
Moisan propose to prefilter the image using a localized Rudin-Osher-Fatemi model. At each pixel, they
smooth the image so that the NLM finds enough similarities. Let us also mention the work of Salmon and
Strozecki [Salmon and Strozecki, 2010a], where shifted patches replace the traditional centered patch,
which allows to find more similarities near edges.

Most of those methods are efficient, but some of them move the method away from the simplicity of
the original Non-Local Means. In the next chapter, we design a variant of the NLM which sticks to the
original spirit, except that its parameters vary locally. The choice of these parameters is made according
to a bias variance tradeoff.
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(a) Original (b) Noisy (c) Top: original, bottom: noisy

(d) Patch size 5× 5 (e) Patch size 9× 9 (f) Top: 5× 5, bottom: 9× 9

Figure 8.10 – Choice of the patch size (bis): original image (a), noisy image (b) (σ = 10), NLM filter
with patch size s2 = 5× 5 (d), and s2 = 9× 9 (e). Zoomed versions are shown in (c) and (f). Around the
letters it is very difficult to find similar patches, and a noisy halo appears. A smaller patch size reduces
the spread of the halo since it allows to find similar patches for the furthest pixels. Another solution
would have been to force a high smoothing parameter h (those used here were chosen to maximize the
PSNR).



Chapter 9

Spatially adaptive choice of the
bandwidth h

In this chapter, we propose an algorithm that locally selects the smoothing parameter h of the NLM, so
as to reduce the artifacts exhibited in the last chapter. To handle this problem as a bias-variance trade-off,
we need an estimate of the quadratic risk. The first section studies an oracle estimate to describe the
optimal behavior of a local selection of the parameter h. Then, we use Stein’s Unbiased Risk Estimate
to estimate the local quadratic error and to select the right parameter.

As the previous chapter advocates for kernels with compact support (see also [Goossens et al., 2008]),
we consider in the following general filters of the form:

NLu(x) =

∑
y∈Ω ω(x, y)u(y)∑

y′∈Ω ω(x, y′)
=

∑
y∈Ω ϕ

(
‖U(x)−U(y)‖2

2h2

)
u(y)∑

y′∈Ω ϕ
(
‖U(x)−U(y′)‖2

2h2

) , (9.1)

with ϕ non-negative and non-decreasing. Since with a kernel with compact support, the filter is more
robust to the choice of W than it is with a global one, so that in the following, we fix W in advance
and then we choose locally h. This approach is dual to the one proposed by Kervrann and Boulanger
[Kervrann and Boulanger, 2008] who fix h and then control the bias and variance of the filter by choosing
the size of the search window.

In this chapter and in the following, NL refers to the NLM as an operator, whereas f̂ refers to the
corresponding estimator of f , i.e.:

f̂(x) = NLu(x). (9.2)

The performance of each method is evaluated using the Peak Signal to Noise Ratio (PSNR) defined
by

PSNR(f̂ , f) = 10 log10

2552

1
|Ω|

∑
x∈Ω

(f(x)− f̂(x))2
, (9.3)

and the Structural SIMilarity (SSIM) defined in [Wang et al., 2004]. The SSIM is between 0 and 1 and a
value closed to 1 means that the estimated image has a similar structure to the noise-free image.

9.1 Oracle estimation

To show that the behavior of the SURE-based method of Section 9.3 is an approximation of the optimal
one, we first build an oracle which has access to the real local squared error. Although this algorithm is
not usable in practice, it gives an idea of what parameters should be used in each region and what can be
expected in terms of visual quality.
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For the oracle estimation only, we have used the indicator kernel ϕ(x) = 1[0,1/2](x). This ker-
nel has compact support, and it does not suffer from the overestimation of the self-weights ω(x, x)
pointed out in [Salmon, 2010b]. Let us recall that for y 6= x, the distance between noisy patches
‖U(x) − U(y)‖2 ≈ ‖F (x) − F (y)‖2 + 2σ2 is increased by the noise level, whereas the self-distance
‖U(x) − U(x)‖2 is always zero. Therefore, with Gaussian weights, the weight 1

C(x)ω(x, x) = 1
C(x)

is proportionally e
2σ2

2h2 times larger in presence of noise than it would be without noise. As a conse-

quence, some authors set ω(x, x) to e−
δ2

2h2 , where δ2 = miny 6=x ‖U(x) − U(y)‖2, or replace it with

e−
σ2

h2 (see [Salmon, 2010b]). On the contrary, the indicator weights do not behave this way, and we
need not give a special value to ω(x, x). Notice that the indicator weights have also been used in
[Brox and Cremers, 2007, Salmon and Strozecki, 2010a] for similar reasons.

With this kernel, minimizing the bound (8.16) over the radius h′ amounts to finding the optimal
number of pixels nx := m(Bh′(U(x))) when denoising x. To build our oracle estimate, we compute
the risk on the noise free image u for each integer, and we keep the minimizing value nx. Then we can
estimate f(x) from u by averaging the centers of the nx patches U(y) that are the nearest to U(x) in
euclidean distance. In a nutshell, we use the oracle to define a map nx and then compute the non-local
filter on the noisy image ũ, keeping only the best nx patches. This roughly amounts to one iteration of
[Brox and Cremers, 2007] where the number of similar patches n is selected locally using an oracle.

Figure 9.1 shows the number of pixels nx recommended by the oracle and the associated smoothing
parameter hx (that is, we display the norm ‖U(x)− U(y)‖ where y is the last pixel taken into account).
As expected, in very smooth regions the oracle selects as many pixels as possible whereas in regions
where the image is not patch regular (i.e. near edges) the oracle recommends to use very few pixels. The
case of textures is in-between. More surprising is the map of the corresponding hx: the values prescribed
near edges are much higher than in smooth regions or textured regions. In fact, even though the oracle
prescribes very few pixels to reduce the variance term, one has to go very far in the patch space to gather
enough pixels. This is illustrated in Figure 9.2 (notice that here these similarity diagrams are computed
on the noisy image). Therefore, one should use much higher values of h near edges. Let us stress that this
problem is not related with the overestimation of the self-weight mentioned above, since the indicator
kernel does not suffer from this drawback.

Figure 9.3 shows the PSNR as a function of the size of search window (to be compared with Fig-
ure 8.7). This time, the global trend of the PSNR is non decreasing with the size of the search window.
The conclusion is that there is no harm in computing fully non-local means, provided that we choose well
the pixels in the means1, but there is also little gain in doing so unless the image has large smooth areas
(like the mountain image). In general, the PSNR tends to stabilize for a side-lengthW greater than 25.
Slights oscillations of the PSNR are due to the following balance: when increasing the search window,
one adds to the mean several relevant pixels that help reduce the variance, but also a few pixels of the
first kind (see Section 8.3.3) which perturb the estimation of u(x). However they are very few, so that
on the overall the PSNR is stabilized.

9.2 Stein’s Unbiased Estimation of the Risk (SURE) for the NLM

This section shows that the error committed by the NLM can be estimated (without the noise free im-
age!) by using Stein’s Unbiased Estimate of the Risk (SURE). This is a way to handle the bias-variance
dilemma of Section 8.3 without making the assumption that the weights are deterministic.

1Put it this way, this statement looks as a tautology, but one should remember that the expression (9.1) imposes a structure
on the choice of the pixels, and it would not be true if pixels of the first kind (see Section 8.3.3) were overwhelming in natural
images.
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Figure 9.1 – Map of parameters prescribed by the oracle. The original images were degraded with
σ = 10, the patch size is s = 7. From top to bottom: original images (without noise), map of the number
of pixels in the mean, map of the corresponding h parameter. In the second row, the white regions
represent a number of pixels nx ≈ 3000. In the third row, first image, the parameter h is approximately
equal to 14 on the lake, while it ranges from 15 to 20 in the forest, and from 40 to 75 along the edges
of the mountains and the lake. On the rocks it is around 30. Although the denoising of edges should be
performed with very few pixels, the corresponding parameter h should be very large.

9.2.1 Estimation of the risk

The first applications of SURE date from the 1980’s, when it was used to choose the smooth-
ing parameter in families of linear estimates [Li, 1985] such as for model selection, ridge
regression, smoothing splines, etc. It was then widely used in the wavelet community
[Zhang and Luo, 1999, Combettes and Pesquet, 2004] after the introduction of the SURE-Shrink algo-
rithm [Donoho and Johnstone, 1995] . Solo [Solo, 1996] gave a general form of SURE for an estimator
defined as a minimizer of a regular energy, especially for least square regression regularized by a Sobolev
norm or the Total Variation. More recently, Blu and Luisier [Blu and Luisier, 2007] proposed to build
linear combinations of estimates and to select the coefficients using SURE. Moreover, Ramani et al.
[Ramani et al., 2008] have proposed a Monte Carlo approach to evaluate SURE when a closed-form ex-
pression is not available or too computer-intensive. In the case of the NLM, it was recently shown by
Van De Ville and Kocher [Van De Ville and Kocher, 2009] that SURE had a closed-form expression. We
had come to the same conclusion when we discovered their paper.

Let us first recall the result by Stein (see [Stein, 1981]):
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Figure 9.2 – Similarity diagram for three different pixels. The red line indicates the ball of radius hx

prescribed by the oracle (the pixels at the right of this line are not taken into account into the mean). In
the interior of homogeneous regions (a), a small radius (hx ≈ 17) is sufficient to reduce the variance
of the noise. Near edges (b and c), one has to look very far in the patch space to find enough pixels to
reduce the variance (hx ≈ 50 and 95 respectively). The threshold is especially large in the third case
since the compensation of the darker and brighter pixels yields a very small bias.

Proposition 9.2.1 (Stein). Let f(x) ∈ R, ε(x) ∼ N (0, σ2), and u(x) = f(x)+ε(x). Denote by γ(u(x))
an estimate of f(x) and assume that γ : R→ R is absolutely continuous, and

i) lim|z|→∞ γ(f(x) + z)e−
z2

2σ2 = 0,

ii) E(γ(f(x) + ε(x)))2 < +∞, and

iii) E|γ′(f(x) + ε(x))| < +∞.

Then the following relation holds:

E|γ(u(x))− f(x)|2 = E
(

(γ(u(x))− u(x))2 + 2σ2∂γ(u(x))
∂ε(x)

)
− σ2 . (9.4)

The proof relies on an integration by parts. Let u be the noisy image, f̂ = NLu the result of NLM
applied to the noisy image using the noisy weights. Then:

r(x) = (f̂(x)− u(x))2 + 2σ2 ∂ f̂(x)
∂ε(x)

− σ2 , (9.5)

is an unbiased estimate of the risk at pixel x, i.e. E(r(x)) = E|f̂(x) − f(x)|2. In
[Van De Ville and Kocher, 2009], an analytic expression of r is given in the case of the Gaussian weights.
The authors show that this estimator yields a very robust estimation of the global mean square error.

In the general case of a kernel ϕ with compact support, the middle term rewrites:

∂ f̂(x)
∂ε(x)

=
ϕ(0)
Cx

+
1
Cx

∑
x′

u(x′)
∂ω(x, x′)
∂ε(x)

−

(
1
Cx

∑
x′

u(x′)ω(x, x′)

)(
1
Cx

∑
x′′

∂ω(x, x′′)
∂ε(x)

)
, (9.6)

where Cx =
∑

x′ ω(x, x′) is the normalization constant, and

∂ω(x, x′)
∂ε(x)

=
1
h2
ϕ′
(
d2

S(x, x′)
2h2

)(
S (0)

[
u(x)− u(x′)

]
+ S

(
x− x′

) [
u(x)− u(2x− x′)

])
. (9.7)
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Figure 9.3 – Evolution of the PSNR as the size of the search windowW increases. Left: for the oracle
with indicator weights on different images. The patch size is s = 7, the noise level is σ = 10. With a
locally defined smoothing parameter h, there is no or very little loss when using a large window, so that
the choice of W is not a real issue, contrary to Figure 8.7. Right: for the Local Minimizer of the Risk
Estimate (MRE) on the image "mountain". The local MRE filter, the NLM with polynomial weight and
the classical NLM are displayed (for the last two filters, the parameter h was optimized for PSNR for
each size of the search window). The local SURE filter is robust to the size of the search window, mainly
because of the compact support of the weights.

Here, for convenience, we have used the notation for shapes:

S (τ) =


1
s2 , if ‖τ‖∞ ≤

s−1
2 ,

0, otherwise,
(9.8)

so that the term S (x− x′) of (9.7) vanishes when x′ does not belong to the patch centered at x (i.e.
‖x− x′‖∞ ≤ s−1

2 ).
As with the Gaussian weights, this procedure yields a very reliable estimation of the (global) mean

square error when it is summed over all pixel x in the image. Notice that it is necessary to compute the
NLM for each parameter to estimate the corresponding risk, and that Eq. (9.6) adapts straightforwardly
to the trick of replacing ϕ(0) with exp(−σ2

h2 ) in the self-weight.
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Figure 9.4 – Left: Evolution of the global Mean Square Error (MSE) as the bandwidth h increases, and
its estimation using SURE. Right: map of the estimated risk on the Lena image (h = 29).

9.2.2 Is it legal to average the SURE map?

As illustrated in Figure 9.4, SURE gives a reliable estimate of the global mean square error, but its
pointwise values are very oscillating. As a result it cannot be directly used to find the best local parameter.



166 CHAPTER 9. SPATIALLY ADAPTIVE CHOICE OF THE BANDWIDTH H

To circumvent this difficulty, we locally average values of the estimated risk so as to make it more robust.
In [Luisier, 2010], Luisier computes E

(
r(x)− (γ(u(x))− f(x))2

)2 for a general estimator. He
shows that for a shrinkage operator, this quantity vanishes as the size of the blocks on which the MSE
is computed goes to infinity. In the case of NLM, a theoretical proof is not so straightforward, but our
experiments confirm that the larger the size of the block, the more reliable the estimation of the MSE
(this is why the global SURE is so reliable).

As a consequence, in this chapter and the following we will average the estimated risk on small
neighborhoods to have a measure that is as robust and local as possible. The assumptions behind this are
that for each pixel:

•
∑

i∈N (x)

αir(x+ i) is a reliable estimator of E

( ∑
i∈N (x)

αi(f̂(x+ i)− f(x+ i))2
)

.

• The local MSE, E

[ ∑
i∈N(x)

αi(f̂(x+ i)− u(x+ i))2
]

is a good approximation of E
(
f̂(x)− u(x)

)2
.

Again we have to face a tradeoff between locality and robustness.

9.3 A local parameter choice for the NLM

9.3.1 Algorithm

In order to select local parameters, we use the estimation (9.5) to minimize the risk depending on the
local content of the image (textured areas, smooth regions, . . . ). Since the pointwise estimation of the
risk is not robust, we need to locally average the estimations. The underlying assumption is that the
risk is roughly homogeneous within each region (smooth/textured). One should find the right balance
between having enough samples to estimate the risk, and keeping a local estimation.

Considering a set of values {h1, h2, . . . hn} for the smoothing parameter, we compute for each value
the output of the filter (NLi u)i=1..n and the associated risk map (ri)i=1..n. We convolve each risk map
ri with a disk indicator or a Gaussian with small radius to have a more robust estimation of the local risk.
Then we choose for each pixel x the value i(x) that minimizes the convolved risk at pixel x, r̂i(x), and
we retain the corresponding estimation NLi(x) u(x). We call this selection procedure Local Bandwidth
Minimizer of the Risk Estimate (LBMRE) for h, for reasons that will be clear in the next chapter.

Implementation The procedure we propose, LBMRE, is described in Figure 9.5. It is necessary to
compute many NLM filters, but this procedure is simpler than several methods proposed in the literature
inasmuch as it is not iterative. The expensive computations of the patch distances need be performed
only once (since all the filters work with the same input image), and as the other computations are
independent, they can be parallelized. As an indication our code takes 26 s to execute lines 1 to 15 (the
rest is negligible) on a 256× 384 image using a search windowW of 23× 23 and 64 values of h, on an
Intel Core2 Duo 2.5GHz and 4Gb RAM. And the speed can still be improved, since our C code (which
uses SSE instructions to vectorize the computations) uses only one of the two cores. Additional tricks
could be added like taking advantage of the fact that for each pixel, if a weight is zero for some value
h1, it is necessarily zero for all h2 ≤ h1. Moreover, several approaches proposed in the literature (like
the use of integral images to compute the patch distances in [Darbon et al., 2008], or the cluster tree in
[Brox et al., 2008] to accelerate the NLM) could be adapted.

9.3.2 Experimental results

In this section, we illustrate the differences between the NLM filter with optimal global parameter (i.e.
using the value of h that minimizes the true MSE) and the NLM with local parameter, estimated us-
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Non-Local Means with Local bandwidth (LBMRE)

for all pixel x do
for all translation k ∈ Z2, |k|∞ ≤ W−1

2 do
dist← ‖U(x)−U(x+k)‖2

2
for i=1 to n do

(
∑
uϕ)i ← (

∑
uϕ)i + u(x+ k)ϕ(dist

h2
i

)

(
∑
ϕ)i ← (

∑
ϕ)i + ϕ(dist

h2
i

)

(
∑
uϕ′)i ← (

∑
uϕ′)i + u(x+ k)ϕ′(dist

h2
i

)

(
∑
ϕ′)i ← (

∑
ϕ′)i + ϕ′(dist

h2
i

)
end for

end for
for i=1 to n do

NLi u(x)← (
∑
uϕ)i / (

∑
ϕ)i

ri(x)← . . . (Eq. 9.5)
end for

end for
for i=1 to n do

r̂i ← ri ∗Gρ

end for
for all pixel x do

LBMRE(x)← NLi(x) u(x) where i(x) = arg mini ri(x)
end for

Figure 9.5 – Local Bandwidth Minimizer of the Risk Estimate (LBMRE) algorithm.

ing SURE (LBMRE). The indicator oracle (Section 9.1) is also shown. The NLM filters 2 used with
SURE are given by the polynomial kernel: ϕ(x) = 1[0,1](x)

(
1− (10x6 − 24x5 + 15x4)

)
. Observe

that this kernel is smooth enough to apply Proposition 9.2.1. In the following, the local and global ver-
sions share the same values for the parameters that are not locally selected and unless otherwise stated,
the size of the search window is set to 29 × 29, the patch size is 7 × 7. Notice that the use of com-
pactly supported weights already gives a better result than the original Gaussian ones, as explained in
[Goossens et al., 2008]. When the noise level is σ = 10, we take {h1, h2, . . . , hn} = {3, 3.5, . . . , 34.5}
(see the previous paragraph) and we scale these values proportionally when σ varies.

Original3 and noisy images are displayed on Figure 9.6. On Figure 9.7, it is shown that the local
selection of h enables one to get rid of the rare patch effect, responsible for noisy halos around edges.
The advantage of using the local approach is further illustrated in Figure 9.8, where one observes in
particular that the macro-texture made of the tiger stripes is better preserved using a local selection of h.
Both the PSNR and SSIM are improved in these experiments, as illustrated by Tables 9.1 and 9.2.

Next, we display in Figure 9.9 the maps of prescribed values for h, first using the (ideal) oracle,
then using the approach described in Section 9.3.1. Of course, the values prescribed by the oracle are
spatially more accurate than those using LBMRE. The corresponding denoising result is also better. It is
therefore tempting to try to improve the estimation of h. We performed various attempts in this direction,
for example using some non-local regularization of the risk map, relying on weights computed on the
noisy image. This did not improve the PSNR but, instead, yielded some visible artifacts and we did not

2We do not replace the self weight ω(x, x) by the maximum of the weights ω(x, y). This would slightly reduce the rare
patch effect described here but it would not solve it, because this effect is due to the configuration of the patch cloud (see
Figure 9.2) and even the indicator weights suffer from it. This trick would also favor the loss of details. Moreover, its relevance
is questioned in [Salmon, 2010b].

3These images are taken from the Berkeley Database [Martin et al., 2001], and so are the mountain image on Figure 9.1 and
the country house image in Figure 9.16



pursue further in this direction. Observe also that some abnormally high h values are present on the map
obtained from local SURE. They may be explained by very flat risk curves in these areas, as illustrated
on the same figure, and therefore do not impair significantly the denoising process.

In the experiments of Figures 9.10 and 9.11, it is shown that the optimal local value of h near an
edge strongly depends on its contrast. As a consequence there is no way to globally set h to efficiently
denoise edges.

The experiment of Figure 9.12 shows that the LBMRE approach permits the reduction of noise halos
and artifacts that appear when the patch size s is increased. Figure 9.13 displays an example where the
local approach yields a better preservation of fine details. Last, it is illustrated in Figures 9.15 and 9.14,
that this ability to increase the value of s enables to avoid the mottling effect (local intensity fluctuation
due to a non-robustness of small patch sizes), without washing out textures.

Eventually, we can also locally adapt the patch size using the estimation given by SURE. We will
come back to this issue in the next chapter. The gain in letting both s and h vary locally is visually small
compared to varying h only, or s only. The explanation is that one degree of freedom already allows to
limit the artifacts of the NLM. There is nothing to more to gain in having two degrees of freedom.

Figure 9.6 – Original and noisy images (σ = 10).

Figure 9.7 – Bird image. From left to right: NLM with global smoothing parameter h optimized for
PSNR, NLM with local h using LBMRE, Zoom of the NLM with global h, local h , and their respective
method noise (u−NLu). Along contrasted edges, the global NLM leaves a noisy halo. This "rare patch
effect" is all the stronger as the edge is winding. The local choice of the smoothing parameter corrects
this shortcoming.
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Figure 9.8 – Tiger image. From top to bottom: NLM with global parameter h optimized for PSNR, NLM
with local h (LBMRE), oracle.
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Figure 9.9 – Map of the prescribed value of h using the oracle (left) and the filtered SURE (middle). The
middle map is rough but it shows the same general behavior as the left one. In some areas, the chosen h
is very high since the filtered SURE is flat when h varies (right). It has no visual consequence.
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Figure 9.10 – Penguin image. Top: NLM with global parameter optimized for PSNR. Bottom: local h
using LBMRE.

Figure 9.11 – Experiment with σ = 20. Left: NLM filter (h = 30 optimized for the PSNR). The global
optimal parameter is too high for the least contrasted edges, so that, as in (8.8), they are blurred. Middle
left: local h using LBMRE. Along the least contrasted edge, the chosen value of h is about 24. If we
set the global parameter to 24 (middle right), these edges become sharp but the more contrasted edges
become noisy. Right: map of h prescribed by the indicator oracle. The more contrasted the edge, the
higher h should be.
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(a) Original (b) Global h, s2 = 5× 5 (c) Global h, s2 = 7× 7

(d) Noisy σ = 10 (e) Local h, s2 = 5× 5 (f) Local h, s2 = 7× 7

Figure 9.12 – Couple image (only an extract is shown). Top: extract of the original image (a), NLM with
global parameter h: the patch size is s2 = 5 × 5 in (b) (PSNR 32.46 dB), and s2 = 7 × 7 in (c) (32.14
dB). In both cases, h was chosen to maximize the PSNR. Bottom: noisy image (c) (σ = 10), NLM with
local h using LBMRE: the patch size is s2 = 5 × 5 in (e) (32.77 dB), and s2 = 7 × 7 in (f) (32.70 dB).
Notice how the face, the tie and the shoulder are smoother with the local SURE (the reader should zoom
on this picture) with both patch sizes. Yet the contrast of the wall is not lost.
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(a)Original image (without noise). (b) Gaussian weights, global h.

(c) Polynomial weights, global h. (d) Polynomial weights, local h.

Figure 9.13 – Comparison of the NLM on a noisy image (σ = 10). In (b) and (c), the parameter h is
optimized for PSNR. The difference between them is barely visible. In regions 1),2) and 3), the adaptivity
using SURE (d) allows to reconstruct fine structures such as ropes and antennas. However, the filter
leaves a noisy spot in region 4) when trying to preserve a fine rope.
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(a) Global h, s2 = 3× 3 (b) Global h, s2 = 5× 5 (c) Global h, s2 = 7× 7

(d) Local h, s2 = 3× 3 (e) Local h, s2 = 5× 5 (f) Local h, s2 = 7× 7

Figure 9.14 – Patch size and textures. Top: NLM with different patch sizes s2 using a global parameter h
optimized for PSNR. Bottom: Local h using LBMRE. The least contrasted textures are better preserved
with a small patch size. However, what looks like texture with patch size 3 × 3 might as well be the
mottling artifact (see below). With the local parameter h, the textures are preserved even with a large
patch size.

(a) Global h, s2 = 3× 3 (b) Global h, s2 = 5× 5 (c) Global h, s2 = 7× 7

(d) Local h, s2 = 3× 3 (e) Local h, s2 = 5× 5 (f) Local h, s2 = 7× 7

Figure 9.15 – Patch size and robustness to noise (same experiment as in Figure 9.14). With a too small
patch size, the algorithm leaves too much noise: Lena’s skin looks mottled. As the patch size increases,
this effect reduces but the rare patch artifact appears. With a local h, the rare patch effect is reduced,
which allows to use large patches.
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9.3.3 A variant using aggregation

The experiments above show that the proposed algorithm allows to preserve some details with low con-
trast. However, it sometimes leaves a spot of noise where the risk is wrongly estimated (see Figure 9.13).
A way to trust less the estimation of the risk is to use the Exponential Aggregation detailed in Chapter 10
At the end of Algorithm 9.5, instead of taking:

LBMRE(x) = NLi(x) u(x) where i(x) = arg min
i

r̂i(x) (9.9)

we take:

LBEWA(x) =
∑n

i=1 e
− r̂i(x)

T NLi u(x)∑n
i=1 e

−
r̂hi

(x)

T

. (9.10)

We have used this aggregation procedure with a temperature T = 0.5σ2, and we refer to it as
Local Bandwidth with Exponentially Weighted Aggregation (LBEWA). Tables 9.1 and 9.2 compare the
PSNR/SSIM of the algorithm 9.5 and its variant using aggregation on several images, the noise standard
deviation is respectively σ = 10 and σ = 20. It shows that a higher PSNR may be reached by averaging
different estimators instead of taking the (supposedly) best one at each pixel. However this is not always
true, and the result is sometimes not as good as the local MRE for h. Another point to notice is that
the BM3D algorithm [Dabov et al., 2007] challenges the oracle in terms of PSNR. This indicates that
no matter how well we estimate the risk (with SURE or something else), a pixelwise NLM with local h
cannot beat BM3D.

The most notable difference between LBMRE and LBEWA is in fact visual. The aggregation pro-
cedure yields images that look slightly more noisy, but more pleasant than the output of the NLM filter
(whether with global optimal bandwidth or LBMRE). In textured areas, the NLM tends to blur all the
patterns that have little contrast and to do absolutely nothing as soon as the contrast increases. This sharp
transition is visually annoying. The LBMRE generally reduces this artifact near edges, but it might fail
in smooth regions. The aggregation procedure makes the transition between these regions less shocking
since the algorithm leaves a little noise everywhere on the one hand and on the other hand the contrasted
regions are less noisy: the aggregation contains smoothed estimations that reduce the effect of the rough
ones. In images with textures with little contrast, this usually allows to preserve some more details. As
the comparison with BM3D [Dabov et al., 2007] shows, the textures are less blurred (still, on the overall
BM3D yield a better visual and numerical quality).

The interest of averaging different estimators in denoising has been known for years (e.g.
[Leung and Barron, 2006, Coifman and Donoho, 1995]). In the specific case of NLM, let us mention
the aggregation of shifted NLM in [Salmon and Strozecki, 2010a], and the combination of global NLM
parameters in [Van De Ville and Kocher, 2011] in the spirit of the SURE-let framework.

Another connection with the EWA aggregation for h is the common practice of taking a convex com-
bination of the denoised image and the noisy one [Buades et al., 2005, Van De Ville and Kocher, 2011].
Indeed, the estimators corresponding to the small values of h are close to the noisy image. However, the
estimators corresponding to large values of h correspond to highly smoothed images, so that the EWA
aggregation reduces the variance of the noise in regions with high contrast.
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Table 9.1 – Comparison of the PSNR (dB) / SSIM [Wang et al., 2004] for the aggregation (σ = 10).
NLM Gaussian weights NLM polynomial weights BM3D NLM ind. w.

Global h
Local h

Global h
Local h Local h Local h

(LBMRE) (LBMRE) (LBEWA) Oracle

barbara 33.08/0.961 33.71/0.968 33.28/0.962 33.84/0.970 33.51/0.966 34.94/0.977 35.21/0.978
boat 31.84/0.938 32.59/0.952 32.13/0.943 32.76/0.955 32.55/0.949 33.86/0.966 33.95/0.963
bird 32.60/0.916 33.11/0.923 32.60/0.917 32.92/0.920 33.07/0.922 33.83/0.931 33.68/0.923
bridge 29.50/0.879 29.98/0.893 29.42/0.879 29.73/0.890 29.86/0.896 30.79/0.911 30.68/0.916
cameraman 32.35/0.910 33.26/0.922 32.52/0.912 33.07/0.921 33.14/0.920 34.08/0.932 34.19/0.925
city 31.46/0.938 32.12/0.949 31.56/0.940 32.08/0.950 32.05/0.943 33.19/0.958 33.67/0.962
country house 30.81/0.823 31.38/0.848 30.78/0.822 31.21/0.841 31.36/0.848 32.02/0.851 32.35/0.880
couple 31.92/0.931 32.58/0.951 32.23/0.941 32.81/0.955 32.47/0.946 34.00/0.967 33.99/0.965
fingerprint 30.34/0.979 30.76/0.987 30.37/0.983 30.69/0.987 30.69/0.989 32.48/0.991 31.94/0.989
flinstones 31.27/0.971 31.93/0.978 31.14/0.971 31.50/0.977 32.04/0.979 32.48/0.980 33.71/0.984
hill 30.55/0.854 31.08/0.868 30.53/0.847 30.90/0.863 31.01/0.870 31.81/0.883 32.13/0.902
house 34.55/0.879 35.20/0.896 34.88/0.887 35.46/0.900 35.10/0.891 36.59/0.918 36.52/0.915
lake 32.14/0.926 32.65/0.936 32.19/0.927 32.59/0.937 32.58/0.930 33.63/0.949 33.60/0.948
lena 34.00/0.947 34.56/0.958 34.26/0.952 34.82/0.960 34.35/0.953 35.86/0.969 35.77/0.967
man 32.08/0.936 32.74/0.949 32.32/0.941 32.87/0.952 32.59/0.946 33.94/0.963 33.99/0.963
mandrill 30.28/0.931 31.02/0.949 30.51/0.930 31.33/0.951 30.98/0.950 33.18/0.966 32.18/0.963
peppers 32.89/0.903 33.54/0.912 33.17/0.906 33.67/0.914 33.41/0.908 34.72/0.927 35.18/0.936
tiger 31.59/0.846 32.28/0.855 31.72/0.846 32.31/0.858 32.17/0.850 33.42/0.887 33.41/0.886
ucla 30.43/0.928 31.03/0.940 30.48/0.932 30.78/0.937 30.93/0.939 31.63/0.948 31.68/0.952
windmill 34.11/0.942 35.13/0.956 34.31/0.946 35.04/0.958 34.83/0.947 35.81/0.966 36.87/0.958

Table 9.2 – Comparison of the PSNR (dB) / SSIM [Wang et al., 2004] for the aggregation (σ = 20).
NLM Gaussian weights NLM polynomial weights BM3D NLM ind. w.

Global h
Local h

Global h
Local h Local h Local h

(LBMRE) (LBMRE) (LBEWA) Oracle

barbara 29.44/0.917 29.81/0.929 30.11/0.929 30.52/0.938 29.12/0.912 31.67/0.952 31.20/0.946
bird 28.79/0.813 29.28/0.836 28.91/0.826 29.36/0.837 28.95/0.813 30.18/0.859 29.85/0.825
boat 28.55/0.860 29.07/0.887 29.03/0.871 29.59/0.897 28.70/0.865 30.80/0.926 30.21/0.915
bridge 25.56/0.729 25.99/0.750 25.58/0.714 25.92/0.741 25.85/0.750 26.83/0.782 26.97/0.809
cameraman 28.73/0.830 29.47/0.852 28.96/0.841 29.57/0.854 29.22/0.833 30.52/0.878 30.28/0.844
city 26.80/0.868 27.44/0.884 27.25/0.882 27.76/0.895 27.36/0.866 29.06/0.916 29.05/0.903
couple 28.32/0.867 28.68/0.884 28.85/0.884 29.29/0.897 28.26/0.864 30.73/0.929 29.85/0.915
country house 27.71/0.703 28.06/0.724 27.77/0.702 28.12/0.724 27.93/0.716 28.88/0.743 28.88/0.772
fingerprint 26.59/0.938 26.86/0.953 27.02/0.951 27.21/0.957 26.52/0.948 28.86/0.972 28.38/0.969
flinstones 27.59/0.941 28.47/0.958 28.17/0.952 28.87/0.961 28.31/0.954 29.60/0.966 30.06/0.967
hill 27.13/0.724 27.48/0.739 27.35/0.721 27.70/0.743 27.16/0.725 28.54/0.778 28.53/0.800
house 31.60/0.841 31.87/0.844 32.32/0.851 32.56/0.851 31.30/0.826 33.77/0.869 32.81/0.838
lake 27.90/0.855 28.33/0.865 28.01/0.863 28.37/0.870 28.13/0.843 29.37/0.893 29.30/0.874
lena 30.93/0.907 31.22/0.916 31.44/0.912 31.70/0.922 30.62/0.902 32.94/0.940 31.89/0.928
man 28.79/0.862 29.18/0.881 29.13/0.867 29.52/0.888 28.68/0.858 30.56/0.917 30.16/0.913
mandrill 26.59/0.840 26.90/0.863 26.91/0.836 27.36/0.872 26.67/0.847 29.11/0.912 28.18/0.906
peppers 29.38/0.845 29.83/0.851 29.83/0.854 30.26/0.858 29.33/0.830 31.38/0.885 31.04/0.867
tiger 28.29/0.741 28.82/0.758 28.46/0.742 29.02/0.764 28.63/0.746 30.01/0.806 29.58/0.776
ucla 26.81/0.824 27.28/0.855 26.73/0.829 27.19/0.855 27.08/0.844 27.94/0.875 28.12/0.892
windmill 30.12/0.899 30.88/0.908 30.69/0.910 31.32/0.915 30.41/0.881 32.05/0.934 32.42/0.890
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(a) Original image (b) Noisy Image (σ = 10).

(c) Global h. (d) Local h, minimizer of the risk (MRE)

(e) Local h, EWA aggregation (f) BM3D

Figure 9.16 – Comparison on the country house image (σ = 10).
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Figure 9.17 – Zoom of Figure 9.16.
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(a) Original image (b) Noisy Image (σ = 10).

(c) Global h. (d) Local h, minimizer of the risk (MRE)

(e) Local h, EWA aggregation (f) BM3D

Figure 9.18 – Comparison on the UCLA image.
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(a) Original image (b) Local h, minimizer of the risk (MRE)

(c) Local h, EWA aggregation (d) BM3D

Figure 9.19 – Comparison on the UCLA image.

(a) Original image (b) Local h, minimizer of the risk (MRE)

(c) Local h, EWA aggregation (d) BM3D

Figure 9.20 – Comparison on the UCLA image.
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Chapter 10

From patches to shapes: NLM-SAP

In the previous chapter, we have introduced an algorithm to locally set the bandwidth parameter h.
Although it was originally designed to prevent the degradation of textured areas, the main benefit of this
locality is to reduce the noisy halo around rare contrasted areas. Given a similarity diagram (as defined in
Chapter 8), the choice of h amounts to defining a cut: in order to reduce the halo one accepts to introduce
some bias. The philosophy is not very different from the one of [Brox and Cremers, 2007] who impose
a minimum number of similar patches, so that even rare patches are smoothed enough.

On a totally different basis, another method to reduce the noisy halo has been proposed by Salmon
and Strozecki [Salmon and Strozecki, 2010a]: in some cases, for a given pixel, it is sufficient to shift
the patch used in the computation of the similarities to provide enough similar pixels (see Figure 10.1).
This approach is very efficient to remove the noisy halo (when used with a smart aggregation procedure,
e.g. the Weighted Average Reprojection described below), but it is constrained by the square shape of
the patch: at every location where a square patch cannot fit, the halo effect is likely to appear. A way to
circumvent this limitation is to replace the square patches with more general shapes: in narrow regions,
one may fit elongated shapes to look for similarities.

The object of this chapter is to describe an extension of the method of Salmon and Strozecki to
general shapes.

This chapter relates a joint work with Charles Deledalle and Joseph Salmon1.

10.1 Non-Local Means with an arbitrary shape

10.1.1 Shapes: a generalization of patches

As we have seen in the last two chapters, the original NLM algorithm sometimes suffers from a noise halo
around edges because of an abrupt lack of redundancy in the image (see Fig. 10.2). This phenomenon is
also called the rare patch effect. To reduce the variance of the noise in these areas, we propose to replace
the simple square patches with more general shapes (see Fig. 10.3).

More precisely, the (dis)similarity between pixels is usually measured using a Euclidean norm:

d2(x, x′) =
∑

|τ |∞≤ s−1
2

1
s2

(u(x+ τ)− u(x′ + τ))2 , (10.1)

or using the weighted Euclidean distance ‖·‖2,a as in [Buades et al., 2005]. In fact, to encode a general
shape using the metric, we may replace the usual distance with the following weighted `2 distance :

d2
S(x, x′) =

∑
τ∈Ω

S (τ) (u(x+ τ)− u(x′ + τ))2 , (10.2)

1a little anisotropic diffusion of this work towards the last two chapters might even be noticed!
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(a) Centered square patch (b) Shifted square patch (c) Shifted square patch (d) Adapted shape

Figure 10.1 – Similarities using patches/shapes. Top: the geometric configuration and the similar
patches. Bottom: the associated weights. If the patch is centered (a) fewer similar patches candidates
are found than if the patch is decentered (b). Yet in narrow areas, even decentered patches cannot fit (c)
and one should use more complicated shapes to find enough neighbors (d).

Figure 10.2 – Illustration of the noise halo appearing around high contrasted edges on images de-
noised by the NLM. The input noisy images are corrupted versions of the noise-free images presented on
Fig. 10.6 damaged by AWGN with standard deviation σ = 20. Noise halo arises from an abrupt lack of
redundancy around edges sometimes referred as the rare patch effect.

where for all τ , 0 ≤ S (τ) and
∑

τ∈Ω S (τ) = 1. As before Ω refers to the whole image. In this chapter,
since we use the Discrete Fourier Transform, the image is assumed to be periodic, so that in the above
sum u(x+ τ) makes sense for all τ ∈ Ω.

With this notation, we can easily rewrite the original NLM with a simple shape S by choosing:

S (τ) =


1
s2 , if ‖τ‖∞ ≤

s−1
2 ,

0, otherwise,
(10.3)

The interest of this notation is that S may encode a more complicated geometry than a simple square.
Changing the shape amounts to changing the metric in the patch space and therefore the similarity

diagram. In the patch space, the modification of the coefficients of S changes the level sets of the
distance from balls to ellipsoids. Notice that the axes of the ellipsoid will always coincide with the
canonical axes of the patch space. This is clear since the weighted `2 distance corresponds to the usual
Euclidean distance after a diagonal map in the patch space. To consider ellipsoids with different axes,



10.1. NON-LOCAL MEANS WITH AN ARBITRARY SHAPE 183

one should apply a more general linear map before computing the `2 norm. This is out of the scope of
this work. Let us mention that recently Van De Ville and Kocher [Van De Ville and Kocher, 2011] have
computed an expression of SURE when the distance is computed after a general linear map.

The main point with the framework of shapes is that in the next Section we present an algorithm
which is able to compute very efficiently the NLM with shapes, using the Fast Fourier Transform (FFT)
to compute the distances in Eq. (10.2). Our implementation is independent of the shape, and can thus
be applied with different shapes (see Section 10.1.2 for details). As soon as we consider the use of
anisotropic shapes, and not just squares or disks centered on the pixel of interest, two questions emerge.
The first one is how to choose the collection of shapes to consider. The second issue is to propose a way
to combine the estimators provided by each shape.

The collection of shapes should be composed of more than one shape to locally take into account
the geometrical properties of natural images. The collection should therefore be diversified enough to
identify directional features (see Fig. 10.8 for a visual illustration). At the same time, it should remain
small enough so that the algorithm is not computationally intensive.

10.1.2 Fast algorithm to handle shapes

In this section, we present a fast way to compute the NL-Means weights for general shapes, based
on the 2D-FFT. It is inspired from works initiated in [Wang et al., 2006] and [Darbon et al., 2008] to
speed up the NL-Means algorithm. However, contrary to these approaches, ours can deal with non-
square and/or non-binary patches, i.e., with general shapes S. Like them, our method is independent
of the shape size. Let us also mention that other fast implementations of the NL-Means have been
proposed [Mahmoudi and Sapiro, 2005, Bilcu and Vehvilainen, 2008, Pang et al., 2009]: such methods
use a pre-selection of the patches based either on statistical tests or comparisons of the gradient. We
should however emphasize that the final estimates with those approaches are approximated solutions of
the original NL-Means. Our method does not rely on such tricks and computes the exact NL-Means in
the case of a square shape in Eq. (10.2).

In [Wang et al., 2006] and [Darbon et al., 2008], the authors propose to compute the Euclidean dis-
tances using “Summed Area Tables" [Crow, 1984] (also called “Integral Images" [Viola and Jones, 2001]).
This allows them to reduce the computational cost of the NL-Means fromO(|W |·|Ω|·|P|) toO(|W |·|Ω|),
where |W | = `2 is the number of pixels in the search window, |Ω| is the image domain size and |P|
is the patch size (we refer to [Darbon et al., 2008] for more details). To compute these integral images,
the authors change the original algorithm by swapping the two “for” loops: instead of considering all the
shifts for each pixel, they consider all the pixels for each shift.

We use basically the same swapping trick. Notice that Equation (10.2) can be reformulated for any
translation parameter δ (i.e., taking x′ = x+ δ) as a discrete convolution:

d2
S(x, x+ δ) =

∑
τ∈Ω

S (τ) (u(x+ τ)− u(x+ δ + τ))2

= (Š ?∆δ)(x) , (10.4)

where (̌S (τ) = S (−τ), ∆δ(x) = (u(x)− u(x+ δ))2 and ? is the convolution operator. This term can
be interpreted as the correlation between the shape S and the square difference of the observe image and
the δ-shifted version. The convolution Š ?∆δ can be computed quickly thanks to following relation:

Š ?∆δ = F−1(F(Š)F(∆δ)) = F−1(F(S)F(∆δ)) , (10.5)

where F is the 2D discrete Fourier transform (2D-FFT) and F−1 is its inverse transform. According
to Equation (10.5), and given a translation δ, we only need to perform one term by term multiplication
in Fourier domain and two 2D-FFT (note that F(S) can be computed off-line). The repetition of this
procedure for every translation δ covering the search window, leads to an algorithm (whose pseudo-code
is detailed in Fig. 10.4) with a complexity of O(|W | · |Ω| · log(|Ω|)). After submitting this work to a
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(a) (b)

Figure 10.3 – (a) Examples of shapes considered. The “central” pixel is shown in red, dark pixels
illustrate high weights. Shapes are grouped in four categories: F1. the isotropic disk family, F2. the
half-pies family, F3. the quarter-pies family and F4. the bands family. (b) Parametrization of the pie
slices and bands.

journal we learnt that Laurent Condat had simultaneously proposed a similar algorithm using recursive
filters [Condat, 2010].

10.1.3 Families of shapes

The main purpose of this chapter is to show that the use of different shapes allows to reduce the rare patch
effect. This point of view is a generalization of the NLM based on square patches with the reprojection
studied in [Salmon and Strozecki, 2010a], since each translated patch can be regarded as a de-centered
shape. Here, h is fixed and the challenge is to find shapes with enough similar candidates in the search
window to reduce the noise.

We now present several types of families that we have considered. The first collections consist of
classical squares and disks shapes. Then, we propose more directional shapes such as pie slices and
bands displayed in Fig. 10.3.

Squares: To begin with, we apply our framework to the most commonly used shapes, i.e., the square
shapes of odd length (so that the squares have a central pixel). For instance, choosing:

S (τ) =


1
s2 , if ‖τ‖∞ ≤

s−1
2 ,

0, otherwise,
(10.6)

leads to the classical (simplified) NLM definition with square patches of size s× s and distance between
patches measured by the Euclidean norm.

Gaussian: The original, but less common choice, is to set:

S (τ) =


1
Z exp(−(τ2

1 + τ2
2 )/2a2), if ‖τ‖∞ ≤

s−1
2 ,

0, otherwise,
(10.7)
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Algorithm 2D-FFT NL-Means for an arbitrary shape

Inputs: noisy image u, 2D-FFT of the shape F(S)
Parameters: search window W , bandwidth h
Output: estimated image f̂
Initialize accumulator images A and B to zero
for all shift vector δ in the search window W do

Compute the square difference image ∆δ

∆δ(x) := (u(x)− u(x+ δ))2 for all pixels x in Ω

Compute the 2D-FFT F(∆δ)
Perform the convolution of ∆δ by the shape Š

d2
S(·, ·+ δ)←

(
F−1

(
F(S)F(∆δ)

))
(·)

. O(|Ω| · log |Ω|) operations using 2D-FFT
for all pixels x in Ω do

Compute the weights

ω(x, x+ δ) = ϕ

(
d2

S(x, x+ δ)
2h2

)
Update the accumulators

A(x)← A(x) + ω(x, x+ δ)u(x+ δ)
B(x)← B(x) + ω(x, x+ δ)

end for
end for
Final (normalized) estimator f̂(x) = A(x)

B(x) for all pixel x
Note: the central pixel (δ = 0) is treated as a special case

. see Section 10.3 for details

Figure 10.4 – NL-Means pseudo-code for an arbitrary patch shape S. Pre-computations (based on 2D-
FFT) of distances between shapes from the noisy image and shapes from its shifted version leads to a
smaller complexity of O(|W | · |Ω| · log |Ω|), independent of the shape S.

where Z is a normalizing factor. Equation (10.7) means that the norm ‖·‖2,a is used to measure the dis-
tance between patches. This limits the influence of square patches corners and leads to a more isotropic
comparison between patches.

Disks: Disk shapes are defined in the same way, using the Euclidean norm instead:

S (τ) =


1
Z , if ‖τ‖2 ≤

p−1
2 ,

0, otherwise.
(10.8)

A non-binary version may also be defined for pixels crossed by the boundary.

Pie slices: We study a family of shapes, denoted as “pie”, whose elements are defined with three param-
eters: two angles and a radius. These shapes represent a portion of a disk delimited by two lines and
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surrounding the discrete central pixel.

Bands: This family of shapes is simply composed of rectangles, potentially rotated and decentered with
respect to the pixel of interest.

10.2 Aggregation of shape-based estimates

In the previous chapter, we have considered many NLM estimators, and at each pixel we have kept the
estimator with the smallest estimated risk. However, SURE does not yield a perfect estimation of the
pointwise square error, therefore it is sometimes better to combine the different estimators instead of
keeping a single one. This is called the aggregation problem.

In this section we investigate several ways to aggregate the NLM estimators based on different shapes
of “patches”. We have extended the standard square shape to other shapes such as disks, pies or bands
(see Section 10.1.3). Thus, the new goal in this context is to determine how to locally take the most of
each proposed denoiser.

Assume that for any pixel x in the image, we have built a collection of K pixel estimators
f̂1(x), · · · , f̂K(x) based on different shapes, and that estimates of their corresponding performances are
available. With this information at hand, we can address different aggregation/optimization problems.
Indeed, the ways of combining the estimators at hand may depend on the theoretical aggregation problem
we aim to solve (as described by [Nemirovski, 2000] and [Tsybakov, 2003]):

(S) The selection problem: finding the best estimator among f̂1(x), · · · , f̂K(x).

(L) The linear problem: finding the best linear combination of f̂1(x), · · · , f̂K(x).

(C) The convex problem: finding the best convex combination of f̂1(x), · · · , f̂K(x).

Before looking into these problems, let us recall that the risk should be filtered before considering its
pointwise value, as in the previous chapter.

10.2.1 Uniformly weighted aggregation (UWA)

This is the simplest form of aggregation that we consider. The idea is to give the same weight to any
shape-based estimator. With few shapes it is already an improvement in practice (both in term of PSNR
and SSIM, see Table 10.3), but as the number of shapes increases, we can take into account positions
that are completely irrelevant. It is in essence, the one proposed in [Buades et al., 2005] and referred as
blockwise NL-means in [Kervrann and Boulanger, 2006], with shapes being decentered square patches.
Such an aggregation procedure still suffers from the rare patch effect (see Fig. 10.12, third line, for a
visual illustration). We can express for any pixel x the uniform estimate f̂UWA(x) as the mean of the
shape-based estimates:

f̂UWA(x) :=
1
K

K∑
k=1

f̂k(x) . (10.9)

In our experiments, this method can be considered as the benchmark to be improved when using more
complex aggregating strategies.

10.2.2 Variance-based decision, Weighted Average (WAV)

A possible way to limit the halo effect is to adapt WAV-reprojection [Salmon and Strozecki, 2010a] to
general shapes. The idea, also proposed by Dabov et al. [Dabov et al., 2007] in a different context, is
to perform a weighted average of the estimates f̂1(x), · · · , f̂K(x). To limit the noise halo, each weight
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should be chosen inversely proportional to the (approximate) variance of the corresponding estimator.
In the context of NLM, this approximate variance can be obtained in closed-form in the same way as in
[Kervrann and Boulanger, 2006], assuming that the coefficients ω(x, x′) can be treated as deterministic,
as in Chapter 8. It is the sum of the square of the weights, as shown in Eq. (8.15). Measuring the
performance of the estimators in term of variance is well justified since the halo effect results from the
high variance of our estimators around the edges (see [Salmon and Strozecki, 2010a]). However, it tends
to over-smooth the edges and the thin details since it does not consider the bias of each estimator.

10.2.3 SURE-based decisions

A way to take the bias into account is to consider the risk estimate rather than the variance to locally
attribute more weight to the estimators with small risks. Stein’s Unbiased Risk Estimate (SURE) is
described in Section 9.2.1. In [Van De Ville and Kocher, 2009] and in the previous chapter, the aim is to
select globally the best bandwidth for a given image. Here, we employ SURE to choose the shape locally
(i.e., for each pixel), since it is very unlikely that a single shape should be optimal for a whole natural
image.

Let us recall that by Proposition 9.2.1, the following quantity is an unbiased estimator for the k-th
shape at pixel x:

rk(x) = (f̂k(x)− u(x))2 + 2σ2∂ f̂k(x)
∂ε(x)

− σ2. (10.10)

Equivalently: E(rk(x)) = E|f̂k(x)− f(x)|2.
As in the previous chapter, the expression is:

∂ f̂k(x)
∂ε(x)

=
ϕ(0)
Cx

+
1
Cx

∑
x′

u(x′)
∂ω(x, x′)
∂ε(x)

−

(
1
Cx

∑
x′

u(x′)ω(x, x′)

)(
1
Cx

∑
x′′

∂ω(x, x′′)
∂ε(x)

)
(10.11)

where Cx =
∑

x′ ω(x, x′) is a normalization constant. The main difference is that the distance is now
the metric associated with each shape S. In particular:

∂ω(x, x′)
∂ε(x)

=
1
h2
ϕ′
(
d2

S(x, x′)
2h2

)(
S (0)

[
u(x)− u(x′)

]
+S

(
x− x′

) [
u(x)− u(2x− x′)

])
(10.12)

As we are using K shapes, we get r1(x), · · · , rK(x), unbiased risk estimates respectively for the
shape-based estimators f̂1(x), · · · , f̂K(x).

10.2.3.1 Regularizing the risk maps

In practice, the estimation of the risk given by (10.10) is too noisy to guide a local choice of the shape
(see Figure 10.5). To make it more robust, it is necessary to locally regularize the risk maps, so as to
approximate at each pixel the expectations used in Eq. (10.10): our aim is to find estimates r̂k(x) close
to the true risks E[(f̂k(x)− f(x))2]. These latter quantities will be referred to as the oracle risks since in
our simulations we will compute them using the true image.

In the previous chapter, the convolution of the risk map was an efficient way to estimate the local
risk in view of setting h. Indeed, for small values of h, the risk is typically high on both sides of edges,
whereas it is low for large values of h. As a consequence, there is no harm in diffusing the risk across
edges, the resulting algorithm behaves as expected, i.e. uses large values of the bandwidth near edges.

Here, the problem is different since we want to choose a shape. The anisotropy of shapes implies that
on one side of an edge the risk may be low whereas it may be very high on the other side. A convolution
diffuses the risks across the edges, and any comparison of the risks associated with each shape might
become unstable.
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In order to average the risks on each side of edges separately, we have adopted a variant of the
Yaroslavsky filter [Yaroslavsky, 1985]. A natural idea is to use the noisy image u(x) to compute the
similarities. Yet, we have found a slightly better way. Up to a constant, the estimator of the risk (10.10)
can be decomposed in two terms: the square of the method noise [Buades et al., 2005], and a divergence
term Dk(x) = 2σ2 ∂ f̂k(x)

∂ε(x) . This divergence term has little variance compared to the noisy image and
to the method noise (see Figure 10.5) and contains all the needed information to guide the averaging
process: it is uniformly high in the regions where the halo effect is likely to appear, whereas it is low in
smooth regions. As a consequence, we obtain better results by using the following regularized version
of the risk:

r̂k(x) =
1

C(x)

∑
x′

1{|Dk(x)−Dk(x′)|≤κ} rk(x′), (10.13)

where the sum is taken over a small neighborhood of x, C(x) is a normalizing constant and κ is a band-
width parameter. Fig. 10.5 shows that this regularization procedure provides smooth risk maps, following
edges of the underlying noise-free image, and finer than without regularization. We have displayed the
oracle risk map and the estimated risk map provided by SURE and the Yaroslavsky regularization. For
illustration purpose, we also show the decomposition of SURE as the sum of the square of the method
noise and the divergence term.

Other attempts to regularize the risk map have been performed (median filter, variants of Perona-
Malik diffusion and NL-means). Yaroslavsky regularization provides the best trade-off between comput-
ing time, visual and numerical results, and we have adopted this approach.

In the following, we assume that the risk maps r1(x), · · · , rK(x) have been filtered, so that we are
allowed to consider pointwise values.

10.2.3.2 Minimizer of the risk estimates (MRE)

With our measure of performance, the most natural way to address the selection problem (S) is to select
the shape that minimizes the local risk estimate we have at hand:

f̂MRE(x) := f̂k∗(x) where k∗ = arg min
k

rk(x) . (10.14)

Such a selection rule is all the more relevant as the shapes are really different. In most cases, selecting
the locally optimal shape yields satisfying results, but it is sometimes more appropriate to combine some
of the best performing estimators as in the next paragraph.

10.2.3.3 Exponentially weighted aggregation (EWA)

In many cases, it might be better to combine several estimators rather than just selecting one. Especially,
it happens to be relevant if the best estimators (in term of evaluated risk) are diversified enough or if the
risk of the MRE was wrongly under-estimated. Thus, we have also used the statistical method of Ex-
ponentially Weighted Aggregation as introduced by Leung and Barron [Leung and Barron, 2006]. This
method has been theoretically studied in [Dalalyan and Tsybakov, 2007, Dalalyan and Tsybakov, 2008]
and adapted for patch-based denoising in [Salmon and Le Pennec, 2009b]. It consists in aggregating the
estimators by performing a weighted average with weights based on the confidence attributed to each
estimator, measured in term of the risk. More precisely:

f̂EWA(x) :=
K∑

k=1

αk f̂k(x) , (10.15)

with αk =
exp(−rk(x)/T )∑K

k′=1 exp(−rk′(x)/T )
.
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Figure 10.5 – Maps of the risk associated to a circular shape: (first line) the oracle risk map, (second
line) the SURE map without regularization and (third line) the SURE map with Yaroslavsky regulariza-
tion. Second and third rows correspond to the decomposition (10.10).

The temperature parameter T > 0 is a smoothing parameter, that controls the confidence at-
tributed to the risk estimates. If T → ∞, then the EWA is simply the uniform aggregate f̂UWA de-
fined before. Conversely, when T → 0, then f̂EWA → f̂MRE. Most theoretical works about EWA (see
[Leung and Barron, 2006, Dalalyan and Tsybakov, 2007, Dalalyan and Tsybakov, 2008]) recommend a
large temperature parameter T = 4σ2 under few assumptions (like independence) on the estimators
f̂1(x), · · · , f̂K(x). In practice, since assumptions on the estimators family may not be satisfied, we have
used a smaller value, T = 0.4σ2.
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10.2.3.4 Minimizing the risk of linear combinations

Suppose we want to solve the linear problem of aggregation. A natural way to find a good linear combi-
nation is to solve the following problem:

f̂LIN(x) :=
K∑

k=1

α∗k f̂k(x) , (10.16)

where α∗ := arg min
α∈RK

E

(
K∑

k=1

αk f̂k(x)− f(x)

)2

.

Here, the linearity of the combination allows to use Stein’s Lemma (Proposition 9.2.1). It provides an
unbiased estimate of the risk of the weighted average estimate:

E

(
K∑

k=1

αk f̂k(x)− f(x)

)2

= E

( K∑
k=1

αk f̂k(x)− u(x)

)2

+ 2σ2
K∑

k=1

αk
∂ f̂k(x)
∂ε(x)

− σ2.

Therefore, neglecting the term that does not depend on α in the last equation, the optimal weights α∗ can
be obtained by solving the following:

α∗(x) = arg min
α∈RK

∑
k,k′

αkαk′E(f̂k(x)f̂k′(x)) +
K∑

k=1

αk

(
2σ2E

(
∂ f̂k(x)
∂ε(x)

)
− 2E

(
u(x)f̂k(x)

))
.

Using the first order optimality conditions, the last problem amounts to solving a linear system in α. This
type of estimator is known to perform quite well for wavelet thresholding estimation where it is referred
to as the SURE-LET (for SURE-Linear Expansion of Thresholds, see [Blu and Luisier, 2007]). However,
in our framework, this method is not applicable. Indeed, if we work pixelwise, we have only one sample
of the SURE for each pixel. This leads to an ill-conditioned system to solve, and the calculated α∗

behaves poorly. The reason is that the matrix [f̂k(x)f̂k′(x)]k,k′=1,...,K is of rank one, and thus the system
to solve is ill-conditioned. If we work on small blocks, these blocks should at least contain K pixels,
whereK is the number of shapes. However, this is in practice not sufficient since, depending on the noise
or on the behavior of the NLM, nothing guarantees that the matrix has full rank or is well-conditioned.

In a global setting (i.e. if the block is the whole image), the matrix is well conditioned with
high probability, and Vandeville and Kocher apply this method to globally combine different NLM
[Van De Ville and Kocher, 2011] with success. Our attempts to regularize the problem to make it lo-
cal (e.g. with Tikhonov regularization) did not yield satisfying results.

As a consequence, in the numerical experiments, we only consider aggregation using the Minimizer
of the Risk Estimate (MRE), the Weighted Average based on Variance (WAV) and the Exponentially
Weighted Aggregation (EWA), which correspond to the selection problem (S) and to the convex prob-
lem (C).

10.3 Numerical and Visual Results

This section presents quantitative and qualitative results obtained on four images synthetically corrupted
by AWGN.

In all the experiments, unless otherwise specified, the NLM-SAP is used with the following default
parameters:

• search window: width ` = 11 px,

• shape family: 15 shapes from families F1 and F2 on Fig. 10.3.a with shape areas of 12.5, 25 and
50 px2,
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(a) Cameraman (b) City (c) Windmill (d) Lake

Figure 10.6 – Several 256 × 256 noise-free images for our experiments. These images present edges
with high contrast on which the rare patch effect appears.

• aggregation: EWA with T = 0.4σ2,

• risk regularization: Yaroslavsky regularization with search window of size 11 × 11 px2 and κ is
proportional to the estimated standard deviation of the divergence map.

The computation time is proportional to the number K of shapes used in the NLM-SAP algorithm:
we need to perform one NLM-like algorithm per shape. Thanks to the FFT acceleration, the computing
time required for one shape, whatever the shape, is of about 2s for a 256 × 256 image with a Matlab
implementation on an Intel Pentium 64-bit, 3.00 GHz. For comparison, the naive Matlab implementation
of NL-Means takes about 100s, for square patches of area 7×7 px2. The computation of one local SURE
map, using Yaroslavsky filtering, takes about 0.2s per shape. To sum up, NLM-SAP using 15 shapes
leads to a computing time of about 32s which is still less than the naive Matlab implementation of NLM.

Remark 10.3.1. The focus of this chapter is on the choice of the patch shape to reduce artifacts. To avoid
heavy computations, we do not try to find simultaneously an optimal bandwidth h and a combination of
shapes. As a consequence, we use the rule proposed in [Buades et al., 2009] for h, h2 = 2

√
8σ4

|S| (where

|S| is the equivalent size of the shape |S| = (
P

S(τ))2P
S(τ)2

), and the associated trapezoidal kernel:

ω(x, x′) =


1 if d2(x,x′)

2h2 ≤ σ2

h2

1− d2(x,x′)−2σ2

2h2 for σ2

h2 ≤ d2(x,x′)
2h2 ≤ σ2

h2 + 1
0 for d2(x,x′)

2h2 > σ2

h2 + 1

. (10.17)

Unless otherwise specified, this choice of h and kernel is also the one used in all the numerical illustra-
tions of this chapter.

10.3.1 Behavior of NLM-SAP

In this section, we will study the behavior of NLM-SAP according to some parameters such as the type of
shape family, the type of aggregation and the type of risk regularization. Each noisy image is corrupted
by AWGN with standard deviation σ = 20.

Unless otherwise specified, the corrupted images are obtained from four 256×256 noise-free images
presented on Fig. 10.6: the famous cameraman image and city, windmill and lake2. These images are
particularly interesting in the study of the Non-Local Means with Adaptive Patch Shapes (NLM-SAP)
since they present edges with high contrast for which the classical NLM suffer from the rare patch effect
(see Fig. 10.2).

2three sub-images extracted from Laurent Condat’s database: http://www.greyc.ensicaen.fr/~lcondat/

http://www.greyc.ensicaen.fr/~lcondat/
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Table 10.1 – Gain by using multi-scale isotropic shapes in terms of PSNR and SSIM values (PSNR/SSIM).
Circular patch shapes respectively with area of 12.5, 25 and 50 px2 are used and their results are com-
pared to the one obtained when using a combination of these three scales of patches.

Cameraman City Lake Windmill
Noisy input image 22.13/0.400 22.13/0.567 22.13/0.456 22.13/0.385
Patch shape area of 12.5 px2 29.59/0.822 28.11/0.873 28.68/0.849 30.91/0.879
Patch shape area of 25 px2 29.38/0.828 27.94/0.880 28.46/0.855 30.72/0.895
Patch shape area of 50 px2 29.06/0.825 27.59/0.879 28.33/0.857 30.35/0.899
Combination of these three scales 29.58/0.844 28.32/0.897 28.93/0.878 31.08/0.912

(a) Area 12.5 px2 (b) Area 50 px2 (c) Combination

Figure 10.7 – Results obtained with circular shapes of different scales (12.5 px2, 50 px2, combination
of 12.5, 25 and 50 px2). The smallest patch size provide best PSNR but has more artifacts in smooth
regions, whereas larger ones suffer from the noise halo. Combination of scales limits those two issues.

10.3.1.1 Multiscale isotropic shapes

The first experiment consists in choosing locally the patch shape. Table 10.1 and Figure 10.7 illustrate
the gain of performance to use multi-scale patch shapes instead of using only one fixed size. In this
experiment, we consider three circular shapes of areas: 12.5, 25 and 50 px2. Comparatively, for the
original version of NL-means, the authors suggest to use square patches of fixed size 7 × 7 = 49 px2.
In this experiment, the smallest shapes provide the best PSNR. Indeed, we have seen in the previous
two chapters that large patches induce bias and noise halos. Yet, small patches tend to leave some noise
in homogeneous region (in the previous chapter we exhibited a mottling artifact, on Figure 10.7 it is
more like a chessboard artifact). The aggregation of these three scales of shapes with our NLM-SAP
methods improves slightly the PSNR. Visually speaking, combining different scales of isotropic patch
shapes leads to a diminution of both the residual noise and the halo effect.

This is well reflected in Tab. 10.1 by the gain in term of the SSIM criterion which provides quality
measurements closer to our perception system. Yet a slight halo still subsists above the hair of the
cameraman. We will see in the following that the results can still be improved by considering both
multi-scale and anisotropic patch shapes.

10.3.1.2 Families of anisotropic shapes

Table 10.2 gives numerical results obtained by using different families. The compared families are the
ones presented on Fig. 10.3.a, i.e., the disks, the half-pies, the quarter-pies and the bands. Combinations
of these families are also studied. Our experiments show that most suitable shape families, both in terms
of PSNR and SSIM, have to contain isotropic shapes, directional shapes and various scales of shapes.
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Table 10.2 – Gain by using anisotropic or mixture of isotropic and anisotropic shapes in terms of
PSNR and SSIM values (PSNR/SSIM). The studied patch shapes are the isotropic disks, the half-pies,
the quarter-pies, the bands and some combination of them (see Fig. 10.3.a).

Cameraman City Lake Windmill

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.385 22.13/0.456
Patches with disk shapes (family F1) 29.58/0.844 28.32/0.897 28.93/0.878 31.08/0.912
Patches with half-pie shapes (family F2) 29.72/0.843 28.48/0.896 29.00/0.877 31.29/0.912
Patches with quarter-pie shapes (family F3) 29.64/0.842 28.27/0.891 28.89/0.875 31.24/0.912
Patches with band shapes (family F4) 29.72/0.841 28.45/0.894 28.98/0.875 31.36/0.912
Combination of shape families F1 and F2 29.74/0.844 28.53/0.897 29.04/0.878 31.32/0.913
Combination of shape families F1, F2, F3 and F4 29.75/0.842 28.49/0.895 29.02/0.876 31.40/0.913

Increasing the number of shapes does not necessarily improve the denoising quality. Using 15 shapes
from families F1 and F2 with the three different scales, seems to be a good trade-off between computing
time and denoising quality. Figure 10.8 illustrates why using directional shapes is important to reduce
the rare patch effect. Indeed, each oriented patch shape enables the restoration of edges in the target
direction but is inappropriate in the other directions. Then a fine aggregation of them leads to high
quality restoration of edges in all directions. Figure 10.9 displays weight maps induced by using patches
with only one fixed square shape (i.e., classical NLM) compared to patches with adaptive scales and
orientations (i.e., NLM-SAP). For the classical NLM, all the weights are concentrated around the target
pixel: this is the rare patch effect. For NLM-SAP, the weights are more spread, and other similar pixels
are detected thanks to multi-scale and anisotropic patch shapes. It is clear that the limitation of the rare
patch effect around edges with high contrast leads to a good reduction of the noise halo.

10.3.1.3 Aggregation procedure

Table 10.3 presents the numerical performances associated with four aggregation procedures: Uniformly
Weighted Aggregation (UWA), Weighted Average based on Variance (WAV), Minimizer of the Risk
Estimate (MRE) and Exponentially Weighted Aggregation (EWA). As expected, EWA provides best
results, in terms of PSNR and SSIM, since compared to the other three it combines estimates with the
best bias-variance trade-off. The local behaviors of NLM-SAP for WAV, MRE and EWA are presented
on Fig. 10.10. The average areas and the average orientations of the selected shapes are given for the
cameraman image. It summarizes for all pixels the information of the average shape as given in Fig.
10.9.d. In smooth regions, anisotropic shapes are not necessarily worse than isotropic ones (like disks or
squares). In fact all shapes with the same size should perform equally: weights provided by WAV and
EWA are close to uniform distributions.

We note that:

• The WAV aggregation scheme is particularly adapted to the reduction of the noise halo, and it
gives the most appealing orientation maps. However, this scheme is based on variance and it does
not take the bias into account, so that it tends to blur small details with little contrast. This is really
minor however.

• The MRE produces very chaotic orientation maps. As in the previous chapter, a slight variation
of the risk may induce a brutal variation of the parameter. As a consequence, compared to EWA,
MRE suffers from brutal transitions, since it selects only one shape per pixel, while EWA evolves
in a smoother way due to the weighted combination of shapes for each pixel.

• The EWA scheme produces orientation maps that are roughly similar to the WAV. In both cases,
the selected patch shapes clearly adapt to the local scale and orientation of the image geometry.
The chosen sizes of the shapes are smaller around edges and textured areas than in homogeneous
areas. The chosen orientation follows the orthogonal orientation of the shapes which is consistent
with the remarks given in Section 10.1.1.



194 CHAPTER 10. FROM PATCHES TO SHAPES: NLM-SAP

Figure 10.8 – Eight denoised images obtained for different oriented patch shapes. The proposed final
aggregate is in the center. Each denoiser provides good performances in a specific target direction but
suffers from noise halos in the other directions. The final (central) aggregate takes advantage of every
oriented-denoiser to provide high quality restored edges. The patch shape used is indicated in white.
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(a) Target pixel (b) Neighborhood for NLM

(c) Neigh. for NLM-SAP (d) Avg. shape for NLM-SAP

Figure 10.9 – Illustration of the diminution of the rare patch effect. (a) The noisy image with a high-
lighted target pixel and its neighborhood. (b) The associated maps of weights obtained by using only
square patches of fixed size (i.e., classical NLM). (c) The associated maps of weights with multi-scale and
anisotropic patch shapes (i.e., NLM-SAP with F1 and F2). (d) Weighted average of the shapes combined
by NLM-SAP.

Table 10.3 – Comparisons of different aggregation procedures in terms of PSNR and SSIM values
(PSNR/SSIM). The compared aggregation types are UWA, WAV, MRE and EWA.

Cameraman City Lake Windmill

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.385 22.13/0.456
Uniform Weighted Average (UWA) 29.60/0.843 28.29/0.895 29.01/0.879 31.04/0.910
Weighted Average based on Variance (WAV) 29.64/0.841 28.15/0.887 28.69/0.868 31.10/0.910
Minimizer of the Risk Estimate (MRE) 29.40/0.838 27.99/0.889 28.34/0.864 30.84/0.907
Exponentially Weighted Average (EWA) 29.74/0.844 28.53/0.897 29.04/0.878 31.32/0.912

The difference between WAV and EWA is small. It can be noticed on small details with little contrast,
like the ear of the cameraman or the top of the camera in Fig. 10.10. The price to pay for EWA is
the addition of three parameters: the temperature, and the two parameters of the modified Yaroslavsky
filter. Fortunately, we have noticed that these parameters could be set once and for all (as detailed at the
beginning of Section 10.3).

10.3.1.4 Regularization method

Finally, we have studied the influence of the regularization of the risk maps on the aggregation results.
Three methodologies are compared: aggregation using the noisy risk maps (i.e., SURE maps), the con-
volved risk maps (using a disk kernel of radius 4) and the risk maps obtained by Yaroslavsky regulariza-
tion. Table 10.4 gives the corresponding numerical performances and Fig. 10.11 illustrates the behavior
of each type of risk map regularization.

The first point to notice is that there is clearly a need for a regularization of the risk map. The
aggregation based on the noisy (i.e. not filtered) risk leads to an erratic choice of the shape, which results
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(a) WAV (b) MRE (c) EWA

Figure 10.10 – Aggregation method. Average areas (top) and average orientations (middle line) of
selected shapes for different aggregation procedures on a noisy realization of the cameraman image.
The average areas and the average orientations are represented using colors whose legends are given on
the top right corners. Bottom: Corresponding results focused on the neck of the cameraman. From left
to right: WAV, MRE and EWA aggregations. Notice that the ear of the cameraman loses its contrast with
the WAV aggregation.

in a noise halo around edges.

Then comes the question of the choice of the regularization. The risk maps based on convolution
and Yaroslavky of SURE maps provide comparable results in terms of PSNR and SSIM (which are far
above those of the noisy risk map). However, the choice of the local sizes and orientations of the patch
shapes is more relevant in the maps obtained by Yaroslavsky regularization, in terms of scale adaptivity,
feature directions and spatial coherency. Using Yaroslavsky filtering, the NLM-SAP acts as expected by
selecting big sizes of shapes, even around edges, since the shape orientations have been chosen properly
to reduce the rare patch effect. By comparison, the convolution forces the size of shapes to be small
around edges since it cannot select properly the suitable orientations.
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Table 10.4 – Comparisons of regularization procedures of the risk maps in terms of PSNR and SSIM
values (PSNR/SSIM). The compared regularization procedures are the ones using the noisy risk maps
directly (i.e., SURE maps), the convolved risk maps and the risk maps obtained by Yaroslavsky regular-
ization.

Cameraman City Lake Windmill

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.456 22.13/0.385
Noisy risk maps (SURE maps) 29.13/0.817 27.41/0.865 28.38/0.846 30.15/0.872
Convolved risk maps 29.71/0.845 28.49/0.898 29.13/0.881 31.26/0.912
Yaroslavsky risk maps 29.74/0.844 28.53/0.897 29.04/0.878 31.32/0.912
True risk maps (MSE maps provided by an oracle) 32.09/0.880 32.31/0.938 32.27/0.922 34.43/0.935

To sum up, the anisotropic regularization is necessary to find a good orientation. What "saves"
the convolution is the presence of small shapes in the family of shapes. Visually, on the overall, the
differences are slight. Some differences may be noticed around the camera in Figure 10.11.

We have also investigated other regularization strategies (median filter, NL-Means,anisotropic diffu-
sion) but we have not found striking improvements. However, Tab. 10.4 shows that there is still a gap of
numerical performance between regularizations of the risk maps and an “oracle risk map” defined as the
image of local square errors associated to each shape: (f̂k(x)− f(x))2.

10.3.2 Comparisons with state-of-the-art methods

In this section, the NLM-SAP is compared with state-of-the-art denoising methods. The comparisons
have been made between the classical (pixelwise) NLM with 9× 9 patch size, the blockwise NLM using
either UWA or WAV reprojection (with square patches of a single scale), the pixelwise NLM local MRE
for h proposed in chapter 9, a refinement of the NLM by Goossens et al. [Goossens et al., 2008], the
Block-Matching and 3D filtering (BM3D) denoiser [Dabov et al., 2007], and the proposed NLM-SAP
approach. Notice that the classical NLM and the NLM with UWA or WAV reprojection, as well as the
NLM-SAP use a trapezoidal kernel, whereas the local MRE for h and the NLM by Goossens et al. use
their respective original kernels.

Table 10.5 shows that NLM-SAP brings a gain of PSNR of about 1 dB compared to the classical
NLM (for σ ≤ 20). The SSIM is also usually increased. The BM3D approach leads to better numerical
results than all Non Local based approaches. Figure 10.12 gives the visual results. While the blockwise
NLM using UWA aggregation and the refinement of the NLM [Goossens et al., 2008] illustrate the rare
patch effect by the presence of noise halos, BM3D and NLM-SAP have reduced a lot this phenomenon.
The NLM-SAP provides smooth results with accurate details, such as the head of the cameraman, the
house windows, the windmill blades, the tree-trunk and the car. Visually, the quality of images obtained
with NLM-SAP challenges those obtained with BM3D.
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(a) Noisy risk (b) Convolved risk (c) Yaroslavsky

Figure 10.11 – Regularization of the risk. Average areas (top) and average orientations (middle line)
of selected shapes for different risk maps on a noisy realization of the cameraman image. The average
areas and the average orientations are represented using colors whose legends are given on the top
right corners. Bottom: Corresponding results focused on the neck of the cameraman. From left to right,
results using the noisy risk maps (i.e., SURE maps), the convolved risk maps and the risk maps obtained
by Yaroslavsky regularization.
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Table 10.5 – Numerical performance in terms of PSNR and SSIM values (PSNR/SSIM). The compared
methods are the classical (pixelwise) NLM [Buades et al., 2005], the blockwise NLM using UWA repro-
jection for square patches, the blockwise NLM using WAV reprojection for square patches, the local
Bandwidth MRE for h of Chapter 9, BM3D [Dabov et al., 2007], and NLM-SAP.

NL-Means UWA NLM WAV NLM LBMRE Goossens et al. BM3D NLM-SAP

σ = 5

barbara 36.04/0.986 36.28/0.987 36.48/0.986 37.06/0.986 37.95/0.988 38.15/0.989 36.94/0.986
boat 35.41/0.983 35.61/0.983 35.76/0.983 36.13/0.982 36.92/0.985 37.15/0.986 36.34/0.984
bridge 34.33/0.958 34.37/0.958 34.43/0.959 34.68/0.961 35.21/0.965 35.31/0.967 34.76/0.963
cameraman 36.71/0.949 36.97/0.952 37.29/0.956 37.44/0.956 37.73/0.958 38.14/0.961 37.67/0.957
city 35.65/0.963 35.92/0.965 36.32/0.971 36.69/0.974 36.43/0.971 37.45/0.978 37.14/0.976
couple 35.73/0.983 35.98/0.984 36.21/0.984 36.47/0.983 37.03/0.985 37.35/0.986 36.70/0.983
fingerprint 34.15/0.997 34.16/0.997 34.16/0.997 34.81/0.996 36.48/0.997 36.38/0.997 34.41/0.997
flinstones 34.85/0.990 35.00/0.990 35.15/0.990 35.21/0.990 35.74/0.991 36.05/0.991 35.62/0.991
hill 34.74/0.940 34.83/0.942 34.94/0.943 35.11/0.943 35.73/0.950 35.96/0.952 35.43/0.948
lake 36.46/0.960 36.78/0.963 37.10/0.969 37.19/0.970 37.53/0.971 38.12/0.976 37.77/0.974
lena 37.07/0.981 37.36/0.982 37.56/0.982 37.77/0.981 38.36/0.983 38.52/0.984 37.90/0.981
man 35.87/0.982 36.13/0.983 36.40/0.982 36.76/0.982 37.31/0.984 37.68/0.985 36.98/0.982
mandril 34.85/0.986 34.94/0.987 35.02/0.986 35.65/0.983 37.50/0.988 37.39/0.989 35.41/0.985
windmill 37.75/0.970 38.15/0.972 38.75/0.978 39.27/0.979 38.75/0.978 39.87/0.983 39.43/0.980

σ = 10

barbara 32.23/0.969 32.61/0.971 32.89/0.970 33.85/0.970 34.29/0.973 34.90/0.977 33.69/0.970
boat 32.00/0.956 32.41/0.958 32.61/0.955 32.77/0.955 33.21/0.962 33.85/0.967 32.99/0.953
bridge 29.08/0.884 29.23/0.889 29.40/0.891 29.70/0.887 30.46/0.904 30.66/0.906 30.03/0.896
cameraman 32.13/0.909 32.47/0.913 32.85/0.921 33.11/0.920 33.52/0.926 34.05/0.930 33.50/0.923
city 30.60/0.922 31.00/0.926 31.49/0.941 32.07/0.948 32.01/0.943 33.14/0.955 32.73/0.952
couple 31.99/0.952 32.41/0.954 32.67/0.952 32.81/0.955 33.25/0.959 33.93/0.967 33.07/0.948
fingerprint 28.77/0.988 28.83/0.988 28.95/0.988 30.66/0.986 32.14/0.990 32.41/0.990 30.44/0.988
flinstones 30.33/0.976 30.71/0.978 31.07/0.977 31.50/0.977 31.68/0.978 32.40/0.980 31.85/0.978
hill 30.32/0.859 30.66/0.869 30.96/0.871 30.93/0.863 31.43/0.877 31.85/0.883 31.49/0.871
lake 31.64/0.919 32.10/0.924 32.42/0.936 32.56/0.936 32.95/0.940 33.62/0.949 33.22/0.943
lena 34.08/0.962 34.47/0.964 34.65/0.962 34.81/0.961 35.34/0.965 35.79/0.969 35.00/0.959
man 32.14/0.953 32.53/0.955 32.75/0.951 32.87/0.951 33.34/0.958 33.90/0.963 33.20/0.949
mandril 30.11/0.954 30.26/0.955 30.39/0.952 31.29/0.950 32.73/0.960 33.09/0.966 31.11/0.948
windmill 33.00/0.938 33.48/0.941 34.06/0.953 35.05/0.957 34.62/0.958 35.81/0.966 35.24/0.958

σ = 20

barbara 29.87/0.936 30.30/0.939 30.31/0.937 30.62/0.939 30.95/0.946 31.76/0.953 30.41/0.930
boat 29.29/0.892 29.63/0.893 29.55/0.886 29.59/0.897 29.92/0.902 30.81/0.927 29.67/0.877
bridge 25.68/0.739 26.11/0.756 26.17/0.743 25.89/0.738 26.20/0.761 26.76/0.775 26.24/0.728
cameraman 28.59/0.823 29.01/0.831 29.23/0.838 29.58/0.856 29.49/0.852 30.34/0.871 29.74/0.844
city 26.58/0.863 27.07/0.868 27.30/0.877 27.85/0.893 28.00/0.893 29.06/0.912 28.53/0.897
couple 29.03/0.892 29.42/0.895 29.41/0.889 29.25/0.893 29.82/0.903 30.67/0.927 29.37/0.877
fingerprint 26.48/0.958 26.94/0.960 27.16/0.958 27.20/0.957 27.75/0.965 28.80/0.972 27.45/0.951
flinstones 27.19/0.958 27.70/0.959 28.03/0.955 28.92/0.961 28.54/0.962 29.55/0.966 29.04/0.960
hill 27.50/0.733 27.86/0.745 27.78/0.735 27.62/0.741 27.99/0.756 28.51/0.779 27.83/0.724
lake 27.78/0.854 28.23/0.861 28.18/0.865 28.48/0.872 28.82/0.881 29.38/0.894 29.04/0.878
lena 31.61/0.926 31.99/0.928 31.95/0.924 31.67/0.922 32.37/0.932 32.98/0.940 31.92/0.918
man 29.34/0.886 29.64/0.887 29.54/0.880 29.55/0.889 29.81/0.895 30.52/0.915 29.62/0.872
mandril 27.02/0.869 27.31/0.872 27.35/0.864 27.33/0.867 28.22/0.884 29.04/0.910 27.45/0.846
windmill 29.36/0.883 29.94/0.890 30.18/0.901 31.44/0.917 30.85/0.917 32.06/0.935 31.32/0.912

σ = 40

barbara 26.65/0.855 26.78/0.858 26.67/0.856 26.86/0.866 27.49/0.879 28.04/0.896 26.04/0.831
boat 26.26/0.781 26.38/0.784 26.21/0.779 26.27/0.789 26.74/0.800 27.64/0.848 26.06/0.762
bridge 23.01/0.529 23.14/0.540 23.02/0.533 23.16/0.568 23.15/0.552 23.98/0.615 22.91/0.511
cameraman 25.89/0.707 26.11/0.724 25.88/0.724 26.29/0.768 26.62/0.766 27.26/0.801 26.28/0.749
city 23.50/0.733 23.75/0.746 23.42/0.736 23.77/0.766 24.04/0.779 25.25/0.829 23.70/0.747
couple 25.73/0.769 25.87/0.772 25.75/0.767 25.67/0.775 26.33/0.792 27.43/0.849 25.39/0.737
fingerprint 23.45/0.855 23.78/0.859 23.72/0.856 23.93/0.885 24.08/0.878 25.27/0.926 23.07/0.817
flinstones 24.76/0.903 24.86/0.898 24.63/0.890 25.29/0.915 25.35/0.916 26.07/0.933 25.02/0.888
hill 24.57/0.555 24.73/0.568 24.67/0.564 24.63/0.583 24.97/0.590 25.87/0.659 24.43/0.540
lake 24.71/0.715 24.88/0.732 24.67/0.727 24.99/0.759 25.25/0.774 25.86/0.805 24.79/0.742
lena 28.31/0.846 28.51/0.850 28.42/0.848 28.37/0.853 29.14/0.868 29.77/0.883 28.22/0.839
man 26.42/0.779 26.52/0.781 26.45/0.778 26.46/0.785 26.83/0.792 27.57/0.833 26.30/0.761
mandril 23.75/0.678 23.83/0.677 23.74/0.671 23.98/0.707 24.16/0.705 25.22/0.789 23.39/0.633
windmill 26.41/0.769 26.59/0.787 26.36/0.789 27.46/0.837 27.23/0.839 28.04/0.878 26.65/0.815
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Figure 10.12 – Comparisons of the visual denoising performance of the proposed NLM-SAP and other
state-of-the-art methods (σ = 20). From top to bottom, the original and noisy images, the results
obtained by the classical (pixelwise) NLM [Buades et al., 2005], the blockwise NLM using UWA repro-
jection for square patches the BM3D denoiser [Dabov et al., 2007], and the proposed NLM-SAP.



10.3. NUMERICAL AND VISUAL RESULTS 201

Table 10.6 – Comparisons of the proposed approaches for σ = 10 in terms of PSNR and SSIM values
(PSNR/SSIM). All the original images have been taken from the Berkeley database [Martin et al., 2001],
except the lighthouse which comes from the Kodak Image Suite.

NLM global h LBMRE LBEWA NLM-SAP

Tiger 31.76/0.847 32.36/0.860 32.20/0.850 32.47/0.850
Country house 30.83/0.823 31.19/0.840 31.39/0.849 31.54/0.837
Bear 29.36/0.893 29.90/0.913 30.06/0.917 30.02/0.918
Church 36.51/0.962 36.93/0.963 36.87/0.957 37.47/0.965
Lighthouse 32.45/0.934 32.88/0.946 32.79/0.941 33.24/0.945
Pyramid 35.66/0.902 35.90/0.903 35.34/0.894 36.08/0.901

10.3.3 Comparison with the spatially adaptive choice of h

To close this chapter, let us comment a few visual results which compare the three proposed methods
of this thesis: LBMRE (local h, chosen as the minimizer of the risk estimate), LBEWA (local h, using
Exponentially Weighted Aggregation) and NLMSAP (global h but local choice of the shape using EWA
aggregation).

Figure 10.13 shows the result of a denoising on the image of a bear. Whereas the fur is washed out
by the global algorithm, both LBMRE and NLMSAP preserve snippets of this texture, but some other
parts are a bit smoothed. It seems that the contrast is slightly better with LBMRE than with NLMSAP.
The best result is provided with LBEWA, as all the details of the fur are preserved.

Another example is shown in Figure 10.14 on a church image. Again, the global parameter h op-
timized for PSNR leads to images that are too smooth on the overall but too noisy around details with
high contrast. The three proposed methods reduce the noisy halo, but the cleanest result is provided by
NLMSAP. With LBEWA, there is still a little variance around edges with contrast, but as the overall im-
age has a slightly grainy aspect, this is not visually annoying. On the contrary, the contrast of the texture
on the roof (especially the glint) seems better preserved with LBMRE and LBEWA than with NLMSAP.

Figure 10.15 shows results on an image of lighthouse. It is clear that all the methods involving
locality (whether for h or for the shape) preserve the contrast better than the global one. Although
LBMRE reduces the halo, it leaves glitches of noise in the clouds. On the contrary, the result of LBEWA
is homogeneously grainy and no noticeable artifact appears. Again, NLMSAP provides smooth images,
and leads to the cleanest result in terms of noise halo.

Eventually, the results on the image of a pyramid is shown in Figure 10.16. The same conclusions
as in the previous figures hold. This time, one may find that the result of LBEWA is a bit too noisy:
in images with very smooth variations and little texture, there is no advantage in introducing very low
smoothing parameters in the average, so that the result is unnecessarily noisy. Notice that for coher-
ence, we have used the same parameters for LBEWA in all these experiments. Tuning the temperature
parameter would certainly help in this case.

As for the numerical results, we already know from the previous chapter that LBEWA is slightly
below LBMRE in terms of PSNR, and from the present chapter that LBMRE is not as good as NLM-
SAP. Nevertheless, Table 10.6 gives a few numerical values for noise intensity σ = 10.

It is is clear that among the three proposed methods, NLM-SAP provides the best numerical perfor-
mance as well as images with high visual quality. The resulting images are globally smooth, artifact-free,
with very clean transitions along edges with high contrast. Yet, we especially like the grainy aspect pro-
duced by LBEWA. In several cases, it allows to preserve textures better than with NLM-SAP, and the
overall result looks more natural.
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Figure 10.13 – Comparison of the proposed methods on the bear image.
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Figure 10.14 – Comparison of the proposed methods on the church image.
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10.4 Conclusion

We have pushed the philosophy of using directional shapes to reduce the halo as far as we could. By
construction, the aggregation based on Weighted Average Variance (WAV) is well adapted to the problem
of reducing the halo. It has the (minor) drawback of slightly blurring details with little contrast.

To reduce this bias, it is necessary to estimate the local risk rather than the variance only. As in
the previous chapter, the pointwise values of SURE are not reliable, and it is necessary to regularize
them. The convolution of the risk gives good results, but since the filtered risk is not sharp around edges,
the algorithm is not able to find the right orientations. As a result it chooses small shapes near edges,
which already limits the halo. To reduce the halo further and to comply with our initial philosophy, an
anisotropic filtering of the risk is necessary.

Once the risk is filtered, the Exponentially Weighted Aggregation (EWA) produces better results than
the Minimizer of the Risk Estimate (MRE), since the decisions of latter have too brutal variations.

The final algorithm is better than those exposed in the previous chapter, and, in terms of visual
quality, it is competitive with state-of-the-art methods like BM3D. Yet, a simplified version where the
Yaroslavsky filtering and the EWA step are replaced with a WAV aggregation would yield very similar
results. It is arguable whether the slight improvement brought by considering the risk and EWA is worth
the effort, and we recommend the WAV version as much as the EWA version.
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Figure 10.16 – Comparison of the proposed methods on the pyramid image.



Conclusion and Perspectives

Conclusion

In this thesis, we have studied two image restoration models: TVL1 and the Non-Local Means. For each
model, we have provided a theoretical study, and we have proposed extensions.

In the first part, we have explored the link between the TVL1 model and mathematical morphology.
As TVL1 is a morphological filter, it is equivalent to study it as a functional operator or a set operator.
Choosing the latter approach, we have shown that the level sets of the solutions have smooth boundary,
and that in the case where the original level set is convex, the solution is given by an opening followed
by a thresholding. Using this link with mathematical morphology, we have related the good behavior
of the model in the cartoon-texture decomposition problem to granulometries, which were introduced
in the early years of mathematical morphology. We have compared the TVL1 model to the TV+G
decomposition model, and we have exhibited artifacts in the latter which do note appear with the former.
In applications like the denoising of textured images, or impulse noise removal, it is important to define
a spatially varying fidelity parameter. We have defined such a framework, and we have applied it to
impulse noise removal, obtaining comparable results with recent algorithms.

In the second part, we have studied the Non-Local Means filter. Using basic models, we have high-
lighted its properties and explained its artifacts. Then, we have proposed two algorithms (LBMRE
and LBEWA) which locally set the bandwidth parameter. Both rely on Stein’s Unbiased Risk Estimate
(SURE), and they clearly outperform the Non-Local Means with global parameter: textures and small
details are better preserved, whereas the artifacts which appears along edges with high contrast are re-
moved. As LBEWA is a convex combination of estimators, it is more robust to errors in the estimation of
the risk, and it takes less brutal decisions than LBMRE. A third algorithm was proposed in collaboration
with Charles Deledalle and Joseph Salmon, NLM-SAP, which uses arbitrary shapes instead of patches,
in order to find as many similarities as possible. Its performance is better than the first two algorithms,
and it is even an interesting alternative to state-of-the art methods.

Perspectives

A first way to extend this work is to characterize more precisely the apparition of edges in the texture
part provided by the TV+G model: aside from the simple cases given here, does it always happen?

The spatially adaptive TVL1 model could be applied to problems arising in medical imaging, where
one has a mask which indicates areas that should not be smoothed (e.g. because they are crucial for
diagnosis).

Another question of interest concerns impulse noise removal. As we have seen, the most important
step in the denoising algorithm is the detection step. Yet, in case of large spots of noise, the adap-
tive TVL1 model interpolates the level lines with approximately line segments, which is not what the
Gestalt theory would recommend. As the problem of filling holes due to large spots of noise is close
to the inpainting problem, an approach based on the curvature of the level lines could be interesting
[Masnou and Morel, 1998, Schoenemann et al., 2011]. For instance, the geometric problem on each
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level set could be replaced with the following:

min
U⊂R2

∫
∂∗U

(1 + κb
∂∗U )dH1 +

∫
U∆F

λ(x)dx, (10.18)

where b > 0 and, as in Chapter 6, λ(x)� 1 in noisy regions, λ(x)� 1 otherwise.
Concerning the Non-Local Means, we particularly like the results provided by LBEWA, and we find

that its properties should be studied further. We have used a fixed rule for the temperature which does
not seem to be optimal, as on smooth images the result looks a bit too noisy. Nevertheless, this approach
gives promising visual results and a better control of its behavior would yield a method which removes
most of the noise without degrading textures. Moreover, its results confirm the importance of aggregating
estimators in image restoration, as claimed in [Salmon, 2010a].

The NLM-SAP is also interesting, and it could be adapted to more general kinds of noise, by adapting
results given by [Hudson, 1978, Raphan and Simoncelli, 2007] on unbiased risk estimates for general
exponential families, into algorithms like [Deledalle et al., 2009].
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