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Foreword

The class of convex functions is particularly important in optimization. The
reader is probably familiar with them, at least in a smooth setting. The
beauty of convexity is that it provides a simple framework which allows
to seamlessly handle non-smooth functions and constraints in optimization
problems. In that respect, the treatise by R.T. Rockafellar [Roc97] is a
masterpiece, and we mostly follow its presentation (see Appendix C for more
references).

The key idea to handle constraints is to consider extended-valued func-
tions, which may take the value +∞ at points which are not feasible. Doing
analysis with such functions requires a little care, and it is very often more
convenient to work with their epigraphs instead, switching from the study
of functions to the study of sets. The class of convex sets is special, as they
have many nice properties, which convey as many interesting features to the
class of convex functions.

These lecture notes are intended as a course material for the “Optimiza-
tion for machine learning” class. Please note that they are at an early stage,
and as a consequence, they are probably riddled with typos.

They are aimed at an active reader who is equipped with some paper
and a pencil: not all the details of the proofs are given, but I have tried to
provide the main clues which help completing the proofs.

On the other hand, those notes are intended to serve as a reference,
and it is not necessary to learn everything that is written to complete the
curriculum. The most important results and definitions, which should be
known “by heart” are indicated by the symbol ♡. Conversely some parts,
indicated by (♠), contain discussions or results that can be omitted in a
first reading. They are not part of the curriculum, they usually give some
pointers or remarks to go beyond the framework of the course.

3





Contents

1 Extended-valued functions 9
1.1 Extended-valued functions, graphs and epigraphs . . . . . . . 9

1.1.1 Extended-valued functions. . . . . . . . . . . . . . . . 9
1.1.2 Proper functions . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Epigraph of a function . . . . . . . . . . . . . . . . . . 11

1.2 How to ensure the existence of a minimizer? . . . . . . . . . . 11
1.2.1 The Weierstrass theorem . . . . . . . . . . . . . . . . . 11
1.2.2 Lower semi-continuity . . . . . . . . . . . . . . . . . . 13
1.2.3 Coercive functions . . . . . . . . . . . . . . . . . . . . 16
1.2.4 Main existence result . . . . . . . . . . . . . . . . . . . 17
1.2.5 Some remarks on the infinite-dimensional case (♠) . . 18

1.3 How to prove the uniqueness of the minimizer? . . . . . . . . 18

2 Convex sets 21
2.1 Definiton and elementary examples . . . . . . . . . . . . . . . 21
2.2 Operations that preserve convexity . . . . . . . . . . . . . . . 22

2.2.1 Intersection . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Cartesian product . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Affine maps . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Sum of convex sets . . . . . . . . . . . . . . . . . . . . 23
2.2.5 Interior, closure . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Convex hulls . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Relative interior, extreme points, and faces . . . . . . . . . . . 26

2.4.1 Relative interior of a convex set . . . . . . . . . . . . . 26
2.4.2 Extreme points . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Projection onto a convex set and consequences . . . . . . . . 29
2.5.1 The projection theorem . . . . . . . . . . . . . . . . . 29
2.5.2 The separating hyperplane theorem . . . . . . . . . . . 30

3 Convex (extended-valued) functions 31
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Geometric definition . . . . . . . . . . . . . . . . . . . 31
3.1.2 Definition with inequalities . . . . . . . . . . . . . . . 33

5



6 CONTENTS

3.2 Some consequences of the definition . . . . . . . . . . . . . . . 34
3.2.1 Level sets of a convex function . . . . . . . . . . . . . 34
3.2.2 Convex functions which take the value −∞ . . . . . . 34

3.3 Operations that preserve convexity . . . . . . . . . . . . . . . 34
3.4 Convex functions and continuity . . . . . . . . . . . . . . . . 35
3.5 Strictly convex functions . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Strongly convex functions . . . . . . . . . . . . . . . . . . . . 37
3.6.1 Definition and characterization . . . . . . . . . . . . . 37
3.6.2 Why are strongly convex functions useful? . . . . . . . 37

4 Convexity, continuity and differentiability 39
4.1 Convexity on the real line . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Convex functions . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Strictly convex functions . . . . . . . . . . . . . . . . . 44

4.2 Convexity in dimension p ≥ 2 . . . . . . . . . . . . . . . . . . 45
4.2.1 Convex functions . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Strictly convex functions in dimension p ≥ 2 . . . . . . 47
4.2.3 Strongly convex functions . . . . . . . . . . . . . . . . 47

5 Subgradients and conjugate functions 49
5.1 Convex enveloppe of a function . . . . . . . . . . . . . . . . . 50
5.2 Subgradients of a function . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Fermat’s rule . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.3 Digression: the relative interior and polyhedral convex

functions . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.4 Subdifferential and operations . . . . . . . . . . . . . . 54

5.3 Conjugate functions . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.1 The convex conjugate . . . . . . . . . . . . . . . . . . 55
5.3.2 The double convex conjugate . . . . . . . . . . . . . . 56

5.4 Fenchel-Rockafellar duality . . . . . . . . . . . . . . . . . . . 57

A Reminder on topology 59
A.1 Interior, closure . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B Lower and upper limits of sequences and functions. 61
B.1 Lower and upper limits of sequences . . . . . . . . . . . . . . 61

C References 65

Index 66



Notation

The typical notation throughout the notes is the following. We want to
optimize a function f defined on some vector space X. We shall always
assume that X = Rp for some p ∈ N∗.

Vocabulary. We say that a function f : R → R is increasing (resp. strictly
increasing) if for all x, y ∈ R, x < y implies f(x) ≤ f(y) (resp. f(x) < f(y)).
Similarly, we say that f is decreasing (resp. strictly decreasing) if for all
x, y ∈ R, x < y implies f(x) ≥ f(y) (resp. f(x) > f(y)).

� You may find other documents in the English-speaking literature
in which “increasing” mean our “strictly increasing”, and “non-
decreasing” mean our ”increasing”. We adopt here the convention
of [AB06], which is close to the French terminology.

Indeterminate forms. We shall avoid as much as possible indeterminate
forms, but in case they happen we adopt the convention 0×∞ = 0×(−∞) =
0.

Moreover we define by convention

inf ∅ = +∞, sup ∅ = −∞. (1)

Line segments. Given two points x, y ∈ X, we define the closed line
segment joining x and y as [x, y] = { θx+ (1− θ)y | 0 ≤ θ ≤ 1 }. The open
line segment joining x and y is ]x, y[ = [x, y] \ {x, y}. Note that ]x, x[ = ∅
and that if x ̸= y, ]x, y[ = { θx+ (1− θ)y | 0 ≤ θ ≤ 1 }. The intervals ]x, y]
and [x, y[ are defined similarly and are left to the reader.

Interior, closure. If A ⊆ X, we denote by int(A) (resp. A) the interior
(resp. closure) of A. The open ball centered at x with radius r > 0 is denoted
by

B(x, r)
def.
= { y ∈ X | ∥x− y∥ < r } .
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Chapter 1

Extended-valued functions

In this chapter, we introduce a notion of extended-valued function, that is a
function which may take the value +∞ so as to encode constaints. This point
of view will be particularly useful when handling convex functions. Then, we
discuss the first fundamental question in optimization: how to ensure that
an extended-valued function has a minimizer. It is the occasion to review
several concepts and definitions that are also useful in the real-valued case
and to see how they adapt to this framework.

1.1 Extended-valued functions, graphs and epigraphs

1.1.1 Extended-valued functions.

Assume that we are interested in minimizing a function f : C → R, where
C ⊆ X is a constraint set (or simply the subset of X where f is defined),
that is, we want to solve the problem

min
x∈C

f(x). (1.1)

It is sometimes convenient to encode the constraint set C in the function
f and to pretend as if f were defined on the whole space X. To this end, we
may extend f in the following way,

f̃(x) =

{
f(x) if x ∈ C

+∞ otherwise.
(1.2)

so that (1.1) is equivalent to

min
x∈X

f̃(x). (1.3)

Example 1.1. One short way to encode the constraint set in the program

min
x∈[−1,1]

x2

9



10 CHAPTER 1. EXTENDED-VALUED FUNCTIONS

is to write it as

min
x∈R

(
x2 + χ[−1,1](x)

)
,

where χ[−1,1] is the indicator function (also called characteristic function) of
the set [−1, 1], defined as

∀x ∈ R, χ[−1,1](x) =

{
0 if x ∈ [−1, 1]

+∞ otherwise.
(1.4)

Writing the objective a sum of functions enables to study those functions
separately (e.g. compute their (sub)derivatives) and gather their properties
when studying the sum.

The points x ∈ X where f̃(x) = +∞ are the points that we really do not
want to obtain while solving the program (1.3). Similarly, we may encounter
points x where f̃(x) = −∞, that is, points that we should accept without
further discussion in our minimization program. In practice, that is of little
interest, since the problem is readily solved if such a point x exists, but the
value −∞ might appear in our intermediate calculations, and we should be
aware of that.

From now on, we drop the tilde and we simply write f instead of f̃ .
We may thus encounter extended-valued functions f : X → [−∞,+∞] (i.e.
R ∪ {±∞}), f : X → ]−∞,+∞] (i.e. R ∪ {+∞}) or real-valued functions
f : C → R. The reader should pay particular attention to the difference.

When referring to the set of points where f(x) < +∞, we speak of
effective domain (or simply domain) of f ,

dom(f)
def.
= {x ∈ X | f(x) < +∞} . (1.5)

� It may happen that f(x) = −∞ for some x ∈ dom(f), so the
effective domain should not be mistaken for the usual definition
domain of a function, i.e. the set of points where it is well-defined
and real-valued.

1.1.2 Proper functions

As we shall see in the following, functions which take the value −∞ (espe-
cially convex ones) are quite specific, as well as functions which are identically
equal to +∞. It is therefore convenient to exclude such cases.

Definition 1.1 (Proper function). Let f : X → [−∞,+∞] be an extended-
valued function. We say that f is proper if

1. there exists x ∈ X such that f(x) < +∞ (i.e. dom f ̸= ∅),
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2. for all x ∈ X, f(x) > −∞.

� The term “proper function” is standard in convex analysis. Unfor-
tunately, “proper function” has also a different meaning in anal-
ysis, where one requires that the inverse image of a compact set
is a compact set. Both notions are unrelated.

1.1.3 Epigraph of a function

A cornerstone of convex analysis (but not only) is the equivalence between
(extended-valued) functions and some specific sets. We know that a function
is characterized by its graph, that is the set

graph(f)
def.
= { (x, y) ∈ X × R | y = f(x) } . (1.6)

In convex analysis, a bigger role is played by the epigraph of f , i.e. the set
of points above the graph,

epi(f)
def.
= { (x, r) ∈ X × R | r ≥ f(x) } . (1.7)

The fundamental idea is that most operations on functions can be interpreted
as operations on their epigraphs.

Questions.

1. To which functions correspond the empty epigraph epi(f) = ∅ and the
full epigraph epi(f) = X × R?

2. Characterize the subsets of X × R which are epigraphs of extended
valued functions.

3. The domain dom(f) can be recovered from the epigraph epi(f) by a
simple operation. Which one?

1.2 How to ensure the existence of a minimizer?

When dealing with an optimization problem like (1.1) of (1.3), it is wise
to ensure that the problem has indeed a minimizer before trying to write
optimality conditions or designing an optimization algorithm. Otherwise,
we might be wasting our time!

1.2.1 The Weierstrass theorem

For that purpose, an important tool is the Weierstrass theorem. The reader
has probably already met it.
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Theorem 1.2 (Weierestrass). Let C ⊆ X be a nonempty compact set, and
let f : C → R be a continuous function. Then, f has a minimizer on C, i.e.

∃x∗ ∈ C, f(x∗) = min
x∈C

f(x).

The reader probably knows one or many proofs of that result. Let us
examine a standard proof which uses sequences.

Proof. Since C is nonempty, ℓ def.
= infx∈C f(x) exists in R ∪ {−∞}.

Step 1. Considering a minimizing sequence. By definition of the infimum, there exists
a sequence1 (xn)n∈N in C such that

lim
n→∞

f(xn) = ℓ. (1.8)

Step 2. Extracting a convergent subsequence. Since C is a compact subset of X, we
may extract a subsequence2 (xφ(n))n∈N which converges in C. In other words, there exists
x∗ ∈ C such that

lim
n→∞

xφ(n) = x∗. (1.9)

Step 3. Passing to the limit. Since f is continuous, we may pass to the limit in the
subsequence,

f(x∗) = lim
n→∞

f(xφ(n)) = ℓ. (1.10)

Hence x∗ is a minimizer of f on K. Incidentally, we note that ℓ > −∞.

The Weierstrass theorem is important, and in general it is the quickest
way to ensure the existence of a minimizer. However, it does not apply to
every case. For instance, how can we prove that the functions f1, f2 defined
by

f1(x) =

{
1/x for 0 < x < 1

(x− 1)2 for x ≥ 1
, (1.11)

f2(x) = ⌈|x|⌉ = min {n ∈ N | n ≥ |x| } (1.12)

have a minimizer?

1Recall the definition of the infimum: for all t > ℓ, there exists x ∈ C such that
ℓ ≤ f(x) ≤ t. We may pick for instance tn = ℓ+ 1/2n if ℓ ∈ R, or tn = −n if ℓ = −∞, to
construct such a sequence (xn)n∈N.

2A subsequence of (xn)n∈N is a sequence of the form (xφ(n))n∈N, where φ : N → N is
strictly increasing. We may also denote the subsequence by (xkn)n∈N.
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Figure 1.1: The continuity of a function is equivalent to (1.13) and (1.14)

1.2.2 Lower semi-continuity

Continuity is a condition which is a bit too strong to deal with all the prac-
tical optimization problems, especially if we use indicator functions in the
objective to encode constraints.

Let us remind that the continuity of a function f : X → R at some point
x ∈ X can be formulated as the following two conditions (see Figure 1.1),

∀t′ > f(x),∃r′ > 0,∀y ∈ B(x, r′), f(y) < t′, (1.13)
∀t < f(x),∃r > 0,∀y ∈ B(x, r), f(y) > t. (1.14)

It turns out than only “half of the definition” of continuity, namely (1.14), is
useful when proving the existence of a minimizer.

Definition 1.3 (Semi-continuity). Let f : X → [−∞,+∞]. We say that f
is lower semi-continuous (l.s.c.) at x ∈ X if

∀t < f(x),∃r > 0, ∀y ∈ B(x, r), f(y) > t. (1.15)

Similarly, we say that f is upper semi-continuous (u.s.c.) at x ∈ X if

∀t′ > f(x),∃r′ > 0, ∀y ∈ B(x, r′). f(y) < t′, (1.16)

Upper semi-continuity is mostly useful when considering maximization
problems. Since we focus here on minimization problems, we only consider
lower semi-continuity in the following.

Examples of lower semi-continuous functions are given in Figure 1.2.
Just like continuity can be characterized using sequences, there is a se-

quential characterization of lower semi-continuity.
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Figure 1.2: Top row: examples of lower semi-continuous (l.s.c.) functions.
The last function is defined by f(x) = sin(1/x) for x ̸= 0, f(0) = −1. Bottom
row: examples of functions which are not l.s.c. The last function is defined
by f(x) = sin(1/x) for x ̸= 0, f(0) = 0.

Proposition 1.4 (Sequential characterization). The function f : X → [−∞,+∞]
is lower semi-continuous if and only if for every sequence (xn)n∈N ∈ XN

which converges towards x,

lim inf
n→∞

f(xn) ≥ f(x). (1.17)

See Appendix B for a reminder on the limit inferior of a sequence.

Proof. (⇐) Let (xn)n∈N be a sequence converging to x, and let t < f(x). By (1.15), there
exists r > 0 such that f(y) > t for all y ∈ B(0, r). There exists N ∈ N such that for all
n ≥ N , xn ∈ B(x, r). Hence, for n ≥ N ,

inf
k≥n

f(xk) ≥ t.

so that lim infn→∞ f(xn) ≥ t. Since this is true for all t < f(x), we let t → f(x) and we
obtain (1.17).

(⇒) Assume that (1.17) holds, and by contradiction, suppose that (1.15) does not
hold. Then,

∃t < f(x), ∀r > 0, ∃y ∈ B(x, r), f(y) ≤ t.

We choose r = 2−n, for n ∈ N, and we let yn be a corresponding element in B(x, 2−n).
Then limn→∞ yn = x, but

lim inf
n→∞

f(yn) ≤ t < f(x),

which contradicts the assumption (1.17).

In practice, we usually require the lower semi-continuity at every point
of X, for which the following criterion holds.
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Proposition 1.5 (Global characterization of semi-continuity). Let f : X →
[−∞,+∞]. The following assertions are equivalent.

1. f is lower semi-continuous at x for every x ∈ X,

2. the level set

{f ≤ t} def.
= {x ∈ X | f(x) ≤ t } , (1.18)

is closed.

3. epi(f) is closed,

Proof. (i) ⇒ (iii). If epi(f) = ∅, it is closed and there is nothing to prove. Otherwise,
let ((xn, rn))n∈N be a sequence in epi(f), and assume that (xn, rn) → (x, r) ∈ X × R for
n → +∞. We want to prove that (x, r) ∈ epi(f). By definition of the epigraph,

∀n ∈ N, rn ≥ f(xn).

Passing to the limit inferior and using (1.17)

r ≥ lim inf
n→∞

f(xn) ≥ f(x),

we obtain that (x, r) ∈ epi(f). Hence epi(f) is closed.
(iii) ⇒ (ii). Let t ∈ R, we note that

epi(f) ∩X × {t} = {f ≤ t} × {t},

so that {f ≤ t} × {t} is closed, being the intersection of two closed sets. Since {f ≤ t} is
homeomorphic to {f ≤ t} × {t}, we deduce that it is closed as well.

(ii) ⇒ (i). Let t < f(x), by assumption the level set {f ≤ t} is closed. Equivalently,
its complement {f > t} is open. Since x ∈ {f > t}, there exists r > 0 such that B(x, r) ⊆
{f > t}, which is exactly (1.15).

It is instructive to apply the global characterization of lower semi-continuity
to indicator functions.

Example 1.2 (Closed constraint set and lower semi-continuity). Let C ⊆ X,
and f = χC the indicator function of C, i.e.

χC(x) =

{
0 if x ∈ C,
+∞ otherwise.

(1.19)

Then f is lower semi-continuous if and only if C is closed.

In this particular case, we note that the lower semi-continuity is almost
necessary, as it provides some form of closedness of the constraint set. Ex-
amples such as

min
x∈R

(
1

2
x2 + χ]0,+∞[(x)

)
(1.20)
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show that without the closedness of the constraint set, optimization prob-
lems may have no solution. We may (in the end) remove the compactness
assumption, but we should always assume some kind of closedness in our
problem: in the proof of Theorem 1.2, our minimizing subsequence should
converge inside the set of feasible points.

Questions.

1. Compare Proposition 1.5 with the global characterization of continuity.

2. Give an example of an (extended-valued) lower semi-continuous func-
tion whose domain is not closed.

3. Let f : X → [−∞,+∞] be an (extended-valued) function, and let S def.
=

epi(f) be the closure of its epigraph. Prove that S is the epigraph of
the largest lower semi-continuous function h such that h ≤ f . Such a
function is called the lower semi-continuous enveloppe of f .

4. Give a “functional definition” (that is, involving only functions) of the
lower semi-continuous enveloppe of f . Hint: the supremum of a family
of l.s.c. functions is l.s.c.

1.2.3 Coercive functions

An additional observation is that, in Step 2 of the proof of Theorem 1.2, if
we want to be able to extract a converging subsequence, we need to prevent
it from “escaping towards infinity”. It is possible if the functions takes large
values at infinity.

Definition 1.6. Let f : X → [−∞,+∞] be an extended-valued function. We
say that f is coercive if

lim
∥x∥→∞

f(x) = +∞. (1.21)

Questions.

1. Check that the functions f1, f2 defined in (1.11) (and possibly extended
by +∞ as in (1.2)) are coercive.

2. Prove that f is coercive if and only if, for every t ∈ R, its level set

{f ≤ t} def.
= {x ∈ X | f(x) ≤ t } , (1.22)

is bounded.
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Figure 1.3: The function x 7→ x2 is coercive, whereas the function x 7→
exp(x) is not coercive (incidentally, the second one has no minimizer)

1.2.4 Main existence result

The combination of coercivity and lower semi-continuity allows to extend
the Weierstrass theorem.

Theorem 1.7. Let f : X → ]−∞,+∞] be a proper, lower semi-continuous
and coercive function. Then f has a minimizer, i.e.

∃x∗ ∈ X, f(x∗) = min
x∈X

f(x).

Proof. Let ℓ = infX f . Since there exists x ∈ dom f , we have ℓ ∈ R ∪ {−∞}.
Step 1. Considering a minimizing sequence. Let (xn)n∈N be a minimizing sequence

in X, i.e.

lim
n→∞

f(xn) = ℓ. (1.23)

Step 2. Extracting a convergent subsequence. Let t > ℓ. There is an index N ∈ N such
that for all n ≥ N , xn ∈ {f ≤ t}. Since f is coercive, {f ≤ t} is bounded, i.e. there exists
R > 0 such that {f ≤ t} ⊆ B(0, R). Moreover, by the lower semi-continuity of f , the set
{f ≤ t} is closed; it is therefore compact. We may thus extract a subsequence (xφ(n))n∈N
which converges towards some x∗ ∈ {f ≤ t}.

Step 3. Passing to the limit inferior. Since f is lower semi-continuous, we have

f(x∗) ≤ lim inf
n→∞

f(xφ(n)) = ℓ. (1.24)

Hence x∗ is a minimizer of f on X. Since f is proper, we obtain that ℓ > −∞.

Remark 1.1. The assumption that f is proper in Theorem 1.7 may be re-
moved, but we should be ready to accept points x∗ such that f(x∗) = ±∞,
which is rarely interesting.

Remark 1.2. The idea of proof of Theorem 1.7 is the same as in the proof of
Theorem 1.2: pick a minimizing sequence, extract a convergent subsequence
and prove that the limit point is a minimizer. That line of argument is
common in variational analysis and is often called the direct method in the
calculus of variations.
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Questions.

1. The above formulation uses extended valued functions on X. Prove
that every proper, lower semi-continuous real-valued function attains
its infimum on every non-empty compact set C ⊆ X.

2. Prove the existence of minimizers for (1.11).

1.2.5 Some remarks on the infinite-dimensional case (♠)

Sequential definitions. We have used in the previous paragraphs the se-
quential definitions of properties (compactness, continuity. . . ). It is a good
exercise to write down these results using the standard definitions (with
coverings, etc.). In particular, in infinite dimension (with a general locally
convex topology), these properties are not always equivalent to their sequen-
tial counterpart!

Coercivity. In Definition 1.6, we have defined coercivity using the norm,
but in infinite dimension or in metric spaces, it is more relevant for the direct
method to require that for all t ∈ R, the closure of the level set, {f ≤ t},
is compact (see [DM93] for more detail, in particular the use of sequential
definitions). In X = Rp, both definitions are equivalent (check this as an
exercise).

Choice of topology. In X = Rp all (vector-space) topologies are equiva-
lent, but in the infinite-dimensional setting, one of the main concerns when
applying the direct method is finding a suitable topology. A too strong
topology does not yield the required compactness on the level sets of f , but,
in a too weak topology, f may not be lower semi-continuous. In reflexive
Banach spaces (in particular in Hilbert spaces) or in spaces that are the
dual of a vector space, the Banach-Alaoglu-Bourbaki theorem often provides
the desired compactness in the weak (or weak-*) topology, for sets that are
bounded in norm. See for instance [Bre11].

1.3 How to prove the uniqueness of the minimizer?

A standard tool to prove the uniqueness of a minimizer (if it exists), is the
strict convexity of f . We study in further detail in the next chapter, but let
us briefly mention the definition we need.

Definition 1.8. A proper function f : X → ]−∞,+∞] is strictly convex if

∀x, y ∈ dom(f), x ̸= y,∀θ ∈ ]0, 1[ , f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y).
(1.25)

Proposition 1.9. Let f : X → ]−∞,∞] be a proper, strictly convex func-
tion. Then f has at most one minimizer.
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Proof. By contradiction, assume that there exist x1, x2 ∈ X such that f(x1) = f(x2) =
minX f .

Then

f

(
1

2
x1 +

1

2
x2

)
<

1

2
f(x1) +

1

2
f(x2) = min

X
f, (1.26)

which contradicts the definition of the minimimum. As a result, there is a most one
minimizer.

Remark 1.3. Instead of considering a proper extended valued function, one
could simply consider a real-valued function on a convex set C ⊆ X.

If the functional f is not strictly convex (or not even convex), one should
proceed with a case-specific study, for instance by exploiting the optimality
conditions.
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It is sometimes more convenient, instead of studying directly an extended
valued function, to study its epigraph or its level sets. That is all the more
true when dealing with convex functions, whose properties directly follow
from the convexity properties of their epigraphs. This chapter summarizes
many interesting properties of convex sets.

2.1 Definiton and elementary examples

Let x, y ∈ X. The (closed) line segment joining x to y is

[x, y]
def.
= { (1− θ)x+ θy | 0 ≤ θ ≤ 1 } . (2.1)

21
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The quantity (1 − θ)x + θy is called a convex combination of x and y (or
sometimes a barycenter of x and y).

The open line segment1 joining x to y is

]x, y[
def.
= [x, y] \ {x, y} =

{
∅ if x = y,

{ (1− θ)x+ θy | 0 < θ < 1 } otherwise.
(2.2)

Definition 2.1. Let C ⊆ X. We say that C is convex if for all x, y ∈ C,
[x, y] ⊆ C.

Example 2.2. The following sets are convex.

• The empty set ∅.

• Linear spaces, affine spaces,

• The unit (or probability) simplex

∆p =

x ∈ Rp |
p∑

j=1

xj = 1 and ∀i ∈ J1 ; pK, xi ≥ 0

 . (2.3)

• Balls (open or closed) for any norm N on X,

{ y ∈ X | N(y − x) ≤ r } , { y ∈ X | N(y − x) ≤ r } . (2.4)

• The set of positive semidefinite matrices,

S+p (R)
def.
=
{
M ∈ Rp × p | M⊤ = M and ∀x ∈ Rp, x⊤Mx ≥ 0

}
.

(2.5)

Remark 2.3. By induction it is possible to consider convex combinations of
more than two points.The set C is convex if and only if

∀n ∈ N∗, ∀x1, . . . , xn ∈ C, ∀(θ1, . . . , θn) ∈ ∆n,

n∑
i=1

θixi ∈ C. (2.6)

2.2 Operations that preserve convexity

2.2.1 Intersection

Any intersection (possibly infinite) of convex sets is convex.

Proposition 2.4. Let {Ci}i∈I be a family of convex sets in X. Then
⋂

i∈I Ci

is convex.
Proof. If

⋂
i∈I Ci = ∅, there is nothing to prove. Otherwise, let x, y ∈

⋂
i∈I Ci. For each

i ∈ I, both x and y belong to Ci, hence [x, y] ⊆ Ci. Since this holds for every i ∈ I, we
have [x, y] ⊆

⋂
i∈I Ci, hence the convexity of

⋂
i∈I Ci.

1Sometimes in the English-speaking literature, the open line segment is dented by
(x, y).
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2.2.2 Cartesian product

Proposition 2.5. Let C1, . . . , Ck be convex subsets of the vector spaces
X1, . . . , Xk respectively. Then C1×. . .×Ck is a convex subset of X1×. . .×Xk.

Example 2.6. The cylinder

C =
{
(x1, . . . , xp) ∈ X | x21 + . . .+ x2p−1 ≤ 1, |xp| ≤ 1

}
is convex.

2.2.3 Affine maps

An affine map f : Rp → Rn is a map of the form x 7→ (Ax + b), where
A ∈ Rn×p is a matrix and b ∈ Rn is a vector.

Proposition 2.7. Let f : Rp → Rn be an affine map. Then

1. For all convex set C ⊆ Rp, the image f(C) is convex.

2. For all convex set D ⊆ Rn, the preimage f−1(D) = {x ∈ Rp | f(x) ∈ D }
is convex.

Proof. Let f : x 7→ Ax+ b be an affine map, with A ∈ Rn×p, b ∈ Rn. We assume that C
and D are nonempty, otherwise there is nothing to prove.

Let y1, y2 ∈ f(C). There exist x1, x2 ∈ Rp such that yi = f(xi), 1 ≤ i ≤ 2. For any
θ ∈ [0, 1],

(1− θ)y1 + θy2 = (1− θ)(Ax1 + b) + θ(Ax2 + b)

= A((1− θ)x1 + θx2) + b = f ((1− θ)x1 + θx2)

which is in f(C) since C is convex.
Now, let x1, x2 ∈ f−1(D), and let θ ∈ [0, 1]. Then by the linearity of A,

f ((1− θ)x1 + θx2) = (1− θ)f(x1) + θf(x2) ∈ D

since D is convex. Hence ((1− θ)x1 + θx2) ∈ f−1(D).

Example 2.8. As important particular cases, we note that if C is convex,

• the translate a+ C
def.
= { a+ x | x ∈ C }, where a ∈ X, is convex,

• the dilation αC
def.
= {αx | x ∈ C }, where α ∈ R.

2.2.4 Sum of convex sets

For C1, C2 ⊆ X, one may define their (Minkowski) sum:

C1 + C2
def.
= {x1 + x2 | x1 ∈ C1, x2 ∈ C2 } . (2.7)

If C1 or C2 is empty, then so is C1 + C2.

Proposition 2.9. Let C1, C2 ⊆ X be two convex sets. Then C1 + C2 is
convex.
Proof. This follows from Proposition 2.5 and Proposition 2.7. But you may also write a
direct proof as an exercise!
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2.2.5 Interior, closure

Convexity is compatible with topological properties. We refer to Appendix A.1
for a reminder on the definitions of the interior and closure of a set.

Proposition 2.10. Let C ⊆ X. Then both its interior int(C) and its closure
C are convex.

Proof. Interior. If int(C) = ∅, there is nothing to prove. Otherwise, let y, z ∈ int(C), and
let x = (1− θ)y+ θz, with θ ∈ [0, 1] (we may even assume that 0 < θ < 1, otherwise x = y
or x = z and thus x ∈ int(C)). There exists some radius r > 0 such that B(y, r) ⊆ C.
Applying the convexity of C to every line segment between z and any element of B(y, r),
we note that

(1− θ)B(y, r) + θz ⊆ C.

But (1− θ)B(y, r) + θz = B(x, (1− θ)r), hence x ∈ int(C), and int(C) is convex.
Closure. A point x ∈ X is in C if and only if there are points of C arbitrarily close

to x. In other words,

C =
⋂
ε>0

(C +B(0, ε)) . (2.8)

Thus, it follows from Proposition 2.9 and Proposition 2.4 that C is convex.

While the closure operation is quite natural with convex sets, taking the
interior is not always interesting, as one frequently works with convex sets
that have smaller dimension than the ambient space. The notion of relative
interior (see Section 2.4.1) is often more relevant.

2.3 Convex hulls

The convex hull of a subset A of X is the smallest convex subset of X which
contains A. That set can be described both from the outside and from the
inside.

Proposition 2.11 (Convex hull of a set). Let A ⊆ X. The convex hull of
A is the convex set given by

convA =
⋂

A⊂C,

C convex

C (2.9)

=

{
n∑

k=1

θkxk | n ∈ N∗, θ ∈ ∆n, x1, . . . , xn ∈ A

}
. (2.10)

The reader may check as an exercise that both representation describe
the same set, and that is indeed the smallest convex which contains A.

Interestingly, it is not necessary to take n arbitrary large in (2.10).

Theorem 2.12 (Carathéodory). Let p = dimX and A ⊆ X. Then every
point of convA is a convex combination of at most p+ 1 points of A.
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The proof relies on an induction argument, see for instance [HUL93,
Thm. III.1.3.6].

Sometimes it is more convenient to work with a convex set that is also
closed. The closed convex hull of A is the smallest closed convex set which
contains A.

Proposition 2.13 (Closed convex hull of a set). Let A ⊆ X. The closed
convex hull of A is the convex set given by

convA =
⋂

A⊂C,

C closed convex

C (2.11)

=

{
n∑

k=1

θkxk | n ∈ N∗, θ ∈ ∆n, x1, . . . , xn ∈ A

}
. (2.12)

Remark 2.14. Many notions in mathematics have this kind of inner and
outer representation. The linear span of a set is the smallest vector space
which contains A,

VectA =
⋂

A⊂C,

F vector space

F (2.13)

=

{
n∑

k=1

λkxk | n ∈ N∗, λ ∈ Rn, x1, . . . , xn ∈ A

}
. (2.14)

The affine hull of a set is the smallest affine space which contains A,

Aff A =
⋂

A⊂F,

F affine space

F (2.15)

=

{
n∑

k=1

λkxk | n ∈ N∗, λ ∈ Rn,
n∑

k=1

λk = 1, x1, . . . , xn ∈ A

}
.

(2.16)

The convex conic hull is the smallest convex cone which contains A,

coneA =
⋂

A⊂C,

C convex cone

C (2.17)

=

{
n∑

k=1

λkxk | n ∈ N∗, λ ∈ Rn
+, x1, . . . , xn ∈ A

}
. (2.18)

By relying on the notion of affine hull of a set, it is possible to define the
dimension of a convex set.

Definition 2.15 (Dimension of a convex set). Let C ⊆ X be a convex set.
We define its dimension dimC as the dimension of its affine hull Aff C.
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2.4 Relative interior, extreme points, and faces

2.4.1 Relative interior of a convex set

Consider the line segment [a, b] for a, b ∈ R2, a ̸= b. Obviously, its topological
interior is empty. Nevertheless, we intuitively feel that the points ]a, b[ are
“more in the interior” of [a, b] than the point a and b. Similarly, the square
[0, 1]2 × {0} has empty interior in R3, but it is tempting to say that the
points in ]0, 1[2 × {0} are more in the interior than the edges of the square.

The notion of relative interior formalizes this idea by considering the
interior when regarding the convex set as a subset of its affine hull.

Definition 2.16 (Relative interior). Let C ⊆ X be a convex set, and x ∈ C.
We say that x is in the relative interior of C if there exists r > 0 such that

(Aff C) ∩B(x, r) ⊆ C. (2.19)

We denote by rintC the collection of all such points.

One important property of the points in the relative interior of C is that
it is always possible to “step back” while looking in the direction of another
point of C.

Proposition 2.17. Let C ⊆ X be a convex set and x ∈ C. The following
assertions are equivalent.

1. x is in the relative interior of C,

2. For all y ∈ C \ {x}, there exists z ∈ C such that x ∈ ]y, z[.

Proposition 2.18. If C ⊆ X is a nonempty convex set, then rintC ̸= ∅.
Moreover dim(rintC) = dimC.

Proof. If C is a singleton {x}, the relative interior is reduced to {x}, and the result holds.
We assume now that C has more than two points. We know that

Aff C =

{∑
i∈I

λici | I ⊆ N finite, λ ∈ RI ,
∑
i∈I

λi = 1, {ci}i∈I ⊆ C

}
. (2.20)

We fix some c0 ∈ C and we rewrite it as

Aff C = c0 + V

where V =

{∑
i∈I

λi(ci − c0) | I ⊆ N finite, λ ∈ RI ,
∑
i∈I

λi = 1, {ci}i∈I ⊆ C

}

=

{∑
i∈I

λi(ci − c0) | I ⊆ N finite, λ ∈ RI , {ci}i∈I ⊆ C

}
.

In the last line, we have removed the constraint
∑

i∈I λi = 1, since it is always possible to
add c0 to the collection {ci}i∈I , with a weight such that

∑
i∈I λi = 1.
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Therefore, the collection {c− c0}c∈C spans V . By standard results in linear algebra,
we may extract a basis {ci − c0}1≤i≤m of V , where m = dimV =: dimC. Then, any
element x ∈ Aff C can be written as

x = c0 +

m∑
i=1

µi(ci − c0)

with µ ∈ Rm. Moreover, the µi’s are the coefficient of x− c0 in the basis {ci − c0}1≤i≤m,
hence they depend continuously on x.

Setting x∗ = 1
m+1

(
c0 +

∑m
i=1 ci

)
so that x∗ ∈ C, we deduce that there exists r > 0

such that for all x ∈ B(x∗, r) ∩ (Aff C),

∀i ∈ {1, . . . ,m},
∣∣∣∣µi −

1

m+ 1

∣∣∣∣ < 1

m(m+ 1)
.

Then µi > 0 for 1 ≤ i ≤ m, and setting

µ0
def.
= 1−

m∑
i=1

µi = 1− m

m+ 1
−

m∑
i=1

(
µi −

1

m+ 1

)
>

1

m+ 1
− m

m(m+ 1)
> 0.

Thus
∑m

i=0 µici is a convex combination of the ci’s and it belongs to C. We have proved
that B(x∗, r) ∩ (Aff C) ⊆ C, hence the claimed result.

Proposition 2.19 (Relative interior and affine maps (♠)). Let f : Rn → Rp

be an affine map.

• If C ⊆ Rn is a convex set, then rint(f(C)) = f(rintC).

• If D ⊆ Rp is a convex set and f−1(rintD) ̸= ∅, then rint(f−1(D)) =
f−1(rintD).

We refer to [HUL93, Prop. III.2.1.12] for a proof.
Similarly to the relative interior, it is possible to define the notion of

relative boundary,

rbd(C)
def.
= C \ (rintC). (2.21)

2.4.2 Extreme points

While the elements of the relative interior of a convex set C are those that
lie on open line segments in any suitable direction (see Proposition 2.17),
sthe points which do not belong to any open line segment in C. . .

Definition 2.20. Let C ⊆ X be a convex set, and x ∈ C. We say that x is
an extreme point of C is C does not belong to any open line segment in C.

An alternative characterization of x being an extreme point is the fol-
lowing implication:

∀y, z ∈ C, (x ∈ [y, z] =⇒ x = y or x = z.) (2.22)
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Proposition 2.21. Let C be a nonempty compact convex set. Then C has
at least one extreme point.

Proof. We consider the function f : X → R, defined by

∀x ∈ X, f(x) =
1

2
∥x∥22 .

It is continuous on the nonempty compact set C, hence it has a maximizer x ∈ C. The
key point is that f is strictly convex (see Section 3.5.1), but we provide a self-contained
argument here. If x = (1− θ)y + θz with y, z ∈ C and θ ∈ [0, 1],

∥x∥2 = ∥θz + (1− θ)y∥2 = θ2 ∥z∥2 + (1− θ)2 ∥y∥2 + 2θ(1− θ) ⟨z, y⟩︸ ︷︷ ︸
θ(1−θ)(∥z∥2+∥y∥2−∥z−y∥2)

= θ ∥z∥2 + (1− θ) ∥y∥2 − θ(1− θ) ∥z − y∥2 .

By assumption, ∥z∥2 ≤ ∥x∥2 and ∥y∥2 ≤ ∥x∥2. As a result,

0 ≤ −θ(1− θ) ∥z − y∥2

which implies that θ ∈ {0, 1} or z = y, hence in any case x ∈ {y, z}. The point x is thus
an extreme point of C.

Remark 2.22. The assumption that C is compact is important. Can you
find examples of unbounded or non-closed convex sets which do not have
extreme points?

The extreme points of a compact convex set contain all the necessary
information to recover the whole convex set.

Theorem 2.23 (Minkowski). Let C be a nonempty compact convex set.
Then C = conv(extrC).

Together with Carathéodory’s theorem Theorem 2.12, this implies that
each point of C is a convex combination of at most n+ 1 extreme points of
C, where n

def.
= dimC.

A convenient way to prove that a point x ∈ C is an extreme point of C
is to prove that it is an exposed point, that is x is the unique maximizer (or
minimizer) of some linear form on C.

Proposition 2.24 (Exposed points are extreme). Let C ⊂ X be a convex
set and let x ∈ C. If {x} = argmaxc∈C ⟨c, v⟩ for some v ∈ Rp \ {0}, then c
is an extreme point of C.

Proof. Assume that x = (1− θ)y + θz for some y, z ∈ C, θ ∈ ]0, 1[. Then

⟨x, v⟩ = (1− θ) ⟨y, v⟩+ θ ⟨z, v⟩ ≤ (1− θ)

(
max
c∈C

⟨c, v⟩
)
+ θ

(
max
c∈C

⟨c, v⟩
)

= max
c∈C

⟨c, v⟩ ,

and the inequality is strict unless ⟨y, v⟩ = ⟨z, v⟩ = maxc∈C ⟨c, v⟩, that is y = z = x.
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2.5 Projection onto a convex set and consequences

2.5.1 The projection theorem

One of the most important theorems on convex sets is the existence of a
unique projection for the Euclidean ℓ2 norm. In our finite-dimensional set-
ting, it might not be very surprising, but it becomes a fundamental tool in
infinite dimension (Hilbert spaces).

Theorem 2.25. Let C ⊆ X be a nonempty closed convex set. Then, for
every x ∈ X, there exists a unique point p ∈ C, such that

∥x− p∥22 = min
c∈C

∥x− c∥22 . (2.23)

Moreover, p is the unique point in C such that

∀c ∈ C, ⟨x− p, c− p⟩ ≤ 0. (2.24)

Proof. Existence. The extended-valued function

f : c 7→ ∥x− c∥22 + χC(c) =

{
∥x− c∥ if c ∈ C

+∞ otherwise
(2.25)

is lower semi-continuous (l.s.c.), as the sum of l.s.c. functions. Moreover, it is finite at
some point since C ̸= ∅, and it is coercive: for all c with ∥c∥ ≥ ∥x∥

f(c) ≥ (∥c∥ − ∥x∥)2 ∥c∥→+∞−−−−−−→ +∞.

By Theorem 1.7, there exists a minimizer p ∈ X, and necessarily p ∈ C.
Uniqueness. The function f is strictly convex (see Section 3.5.1), hence the minimizer

is unique.
Characterization. The point p ∈ C is a minimizer if and only if, for every c ∈ C, every

θ ∈ [0, 1], the inequality f(p) ≤ f(θc+ (1− θ)p) holds. But

f(p)− f(θc+ (1− θ)p) = ∥x− p∥2 − ∥x− (θc+ (1− θ)p)∥2

= ⟨x− p+ (x− (θc+ (1− θ)p)) , θ(c− p)⟩
= ⟨2(x− p) + θ(p− c), θ(c− p)⟩

= 2θ ⟨x− p, c− p⟩ − θ2 ∥c− p∥2 . (2.26)

If p is a minimizer, the left hand side is non-positive. We divide (2.26) by θ ̸= 0, and,
letting θ → 0+, we obtain 0 ≥ 2 ⟨x− p, c− p⟩.

Conversely, if (2.24) holds, we take θ = 1 in (2.26), and we obtain

f(p)− f(c) = 2 ⟨x− p, c− p⟩ − ∥c− p∥2 ≤ 0,

which implies that p is a minimizer.

The point p is called the projection of x onto C.

Remark 2.26. If C is not closed, the point p might not exist. For instance,
consider C = ]1,+∞[ and x = 0.

If C is closed, but not convex, the point p exists, but it might not be
unique. For instance, let C =

{
x ∈ R2 | ∥x∥ = 1

}
, and x = (0, 0).
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2.5.2 The separating hyperplane theorem

A hyperplane is a set of the form

H = {x ∈ X | ⟨x, y⟩ = α } ,

where y ̸= 0 and α ∈ Rp.
An open half space is a set of the form

D = {x ∈ X | ⟨x, y⟩ > α } or D = {x ∈ X | ⟨x, y⟩ < α } .

with the same conditions on yand α. A closed half space is defined similarly,
replacing the symbol < with ≤ and > with ≥.

We say that the hyperplane H separates a point x0 ∈ X from the set
C ⊆ X if one of the corresponding open half-spaces contains x0 and the
other one contains C.

In other words, H separates x0 from C if

• ⟨x0, y⟩ > α,

• ⟨c, y⟩ < α for every c ∈ C

(or symmetrically exchanging the symbols > and <).

Theorem 2.27. Let C ⊆ X be a nonempty, closed convex set, and x0 ∈
X \ C.

Then, there exists a hyperplane which separates x0 and C.
Proof. Let p denote the projection of x0 onto C. We know that

∀c ∈ C, ⟨x0 − p, c− p⟩ ≤ 0,

or equivalently ⟨c, x0 − p⟩ ≤ ⟨p, x0 − p⟩ .

Setting y
def.
= x0 − p ̸= 0, we obtain ⟨c, y⟩ ≤ ⟨p, y⟩ for all c ∈ C.

Moreover,

⟨x0, y⟩ = ⟨x0 − p, y⟩︸ ︷︷ ︸
=∥x0−p∥2>0

+ ⟨p, y⟩ > ⟨p, y⟩ .

As a result, setting α = 1
2
(⟨p, y⟩+ ⟨x0, y⟩), we have

∀c ∈ C, ⟨c, y⟩ ≤ ⟨p, y⟩ < α < ⟨x0, y⟩ , (2.27)

which yields the claimed result.

Corollary 2.28. Every closed convex set is the intersection of all the closed
half-spaces that contain it.
Proof. If C = X, it is not contained in any half-space. The intersection over the empty
collection being equal to X, the claim holds. If C = ∅, the result also holds (take any two
half-spaces with empty intersection).

If ∅ ⊊ C ⊊ X, let F be the the intersection of all the half-spaces that contain
C. Obviously, C ⊆ F . Assume by contradiction that there is some x0 ∈ F \ C. By
Theorem 2.27, there exists a hyperplane which separates x0 and C, for instance C ⊆
{x ∈ X | ⟨x, y⟩ < α } and ⟨x0, y⟩ > α.

As a result, x0 /∈ {x ∈ X | ⟨x, y⟩ ≤ α } ⊇ F , which contradicts the assumption. Hence
F = C.
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Convex functions play an important role in optimization. One reason is
that at each at each point, the slope of the function gives a rough idea of
where the set of minimizers is. In this chapter, we define the notion of convex
extended valued functions, and we summarize their elementary properties.

3.1 Definitions

3.1.1 Geometric definition

The definition of convexity is a simple geometric criterion which can be
applied to real-valued functions as well as to extended-valued functions.

31
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Definition 3.1. Let f : X → [−∞,+∞]. We say that f is convex if its
epigraph,

epi(f)
def.
= { (x, r) ∈ X × R | r ≥ f(x) } , (3.1)

is a convex set.

There are several common convex functions.

Affine functions If f(x) = ⟨p, x⟩ − α for some p ∈ X and α ∈ R, then

epi(f) =

{
(x, r) ∈ X × R |

〈(
p
−1

)
,

(
x
r

)〉
≤ α

}
is a half space. Therefore f is convex.

Squared Euclidean norm If f(x) = 1
2 ∥x∥

2, its epigraph is the region
above a paraboloid. Therefore it is convex.

Constantly infinity If f(x) = +∞ for all x, then epi(f) = ∅. If f(x) =
−∞ for all x, epi(f) = X × R. In both cases, f is convex.

Indicator function If f(x) = χC(x) (as in (1.19)), then epi(f) = C ×R+,
and f is convex if and only if C is convex.

Remark 3.1. The reader has probably already encountered a slightly different
definition which is used for real-valued functions. Consider a set C ⊆ X and
a mapping f : C → R. The function f is said to be convex if its epigraph

epi(f)
def.
= { (x, r) ∈ C × R | r ≥ f(x) } , (3.2)

is convex. Note that in that case, C must be convex.
Moreover, if we extend f into f̃ : X → ]−∞,+∞] as in (1.2), the epigraphs

of f and f̃ coincide, i.e.

epi(f̃) = { (x, r) ∈ C × R | r ≥ f(x) } = epi(f),

so that f̃ is convex (in the sense of Definition 3.1) if and only if f is convex
(in the classical sense).

As a result, in the following, we go back and forth between extended-
valued functions defined on X, and real-valued functions defined on a (pos-
sibly smaller) set C ⊆ X.
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x z

epi(f)

y

Figure 3.1: The convexity of the epigraph of f is equivalent to (3.3) (where
z

def.
= θx+ (1− θ)y). The image of the barycenter is below the barycenter of

the images.

3.1.2 Definition with inequalities

Another definition of convexity, perhaps more common, involves convex com-
binations and inequalities. We recall that the effective domain is dom(f) =
{x ∈ X | f(x) < +∞}.

Proposition 3.2. An extended-valued function f : X → [−∞,+∞] is convex
if and only if

∀x, y ∈ dom(f), ∀θ ∈ ]0, 1[ , f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).
(3.3)

Checking the equivalence stated in Proposition 3.2 is left to the reader
(see Figure 3.1).

Additionally, we may reformulate the convexity criterion with n ≥ 2
points. By induction, one may check that f is convex if and only if for all
x1, . . . , xn ∈ dom(f) and all θ1, . . . , θn > 0 such that

∑n
i=1 θi = 1,

f

(
n∑

i=1

θixi

)
≤

n∑
i=1

θif(xi). (3.4)

Remark 3.2. There are several variants of (3.3). The main difficulty is to
avoid indeterminate forms. See for instance [ET99, Def. I.2.1] or [Roc97,
Th. 4.1, Th. 4.2] for alternative formulations.

Remark 3.3 (Real-valued functions on a subset). In view of Remark 3.1,
we note that a function f : C → R is convex if and only if C is convex and

∀x, y ∈ C, ∀θ ∈ ]0, 1[ , f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (3.5)
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3.2 Some consequences of the definition

3.2.1 Level sets of a convex function

Proposition 3.3. If f : X → [−∞,+∞] is convex, then, for all t ∈ R, the
level set

{f ≤ t} def.
= {x ∈ X | f(x) ≤ t } (3.6)

is convex.

Proof. We note that

epi(f) ∩ (X × {t}) = { (x, t) ∈ X × R | f(x) ≤ t } = {f ≤ t} × {t}.

Since the left-hand side is convex (intersection of convex sets), we deduce that {f ≤ t}×{t}
is convex, hence so is its projection {f ≤ t}.

� The converse is not true! There are non-convex functions whose
level sets are all convex. A function with convex level sets is
called a quasi-convex function.

3.2.2 Convex functions which take the value −∞

Convex functions which take the value −∞ may arise in some calculations
(if we are not cautious), but they are not very interesting. For instance, in
dimension one, it is possible to check that if g : R → [−∞,+∞] is convex
and takes the value −∞, then there exists −∞ ≤ a < b ≤ +∞ such that

g(t) =

{
−∞ for t ∈ ]a, b[

+∞ for t ∈ R \ [a, b].
(3.7)

or

g(t) =

{
−∞ for t = a

+∞ for t ∈ R \ {a}.
(3.8)

As a result, there are at most two points where g may take a finite value!
Similarly, in dimension p ≥ 2, f can be finite only on the boundary of the
convex set {f ≤ −∞}.

Another difficulty which arises with functions taking values −∞ is that in
sums or convex combinations, we might face undetermined forms −∞+∞.
Therefore, we usually work with convex proper functions as much as possible.

3.3 Operations that preserve convexity

Very often, it is easier to check that a function is convex by relying on some
well known convex functions instead of applying the definition of convexity.
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Proposition 3.4. The following functions are convex.

1. f1 + f2, where f1, f2 : X → R ∪ {+∞} are convex,

2. αf , where α > 0 and f : X → [−∞,∞] is convex,

3. supi∈I fi, where {fi}i∈I is any collection (possibly uncountable) of con-
vex functions fi : X → [−∞,∞],

4. x1 7→ (infx2 f(x1, x2)), where f : X1 ×X2 → [−∞,∞] is convex.

Some other sufficient conditions, which rely on the derivatives, are given
in Chapter 4.

Proof. 1. One may check that (3.3) holds on dom(f1 + f2) = dom(f1) ∩ dom(f2).

2. Observe that epi(αf) = uα(epi(f), where uα is the linear map (x, r) 7→ (x, αr).

3. Note that (x, r) ∈ epi
(
supi∈I fi

)
if and only if, for all i ∈ I, (x, r) ∈ epi(fi).

Therefore epi
(
supi∈I fi

)
=

⋂
i∈I epi(fi) is convex.

4. Let g : x1 7→ infx2 f(x1, x2) and (x1, r) ∈ X1 × R. We note that (x1, r) ∈ epi g if
and only if for all ε > 0, there exists x2 ∈ X2 such that r ≥ f(x1, x2)− ε. In other
words iff (x1, r) ∈ Proj1(epi(f − ε)), where Proj1 : X1 ×X2 → X1 is the projection
onto the first component, Proj1(x1, x2) = x1.
As a result,

epi g =
⋂
ε>0

Proj1(epi(f − ε))

Since each function f − ε is convex, its epigragph is convex and so is its projection
(see Proposition 2.7). Their intersection is thus convex Proposition 2.4, hence g is
convex.

3.4 Convex functions and continuity

Convexity have some regulatity, at least in the interior of their domain.

Proposition 3.5. Let f : X → R ∪ {+∞} be convex. Then f is continuous
on int(dom f).

Remark 3.6. In fact, the proof shows that f is locally Lipschitz, i.e. on
every compact subset of int(dom f), there is some L > 0 such that f is
L-Lipchitz.

It may happen that int(dom f) = ∅, in which case the function cannot
be continuous at any point of dom f . However, it might be interesting to
apply the above result to f |V , the restriction of f to V

def.
= Aff(dom f), the

affine hull of dom f . The interior of dom f |V is then the relative interior of
dom f , rint(dom f).
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3.5 Strictly convex functions

The notion of strict convexity provides a straightforward argument to prove
that the minimizer of some function is unique (see Section 1.3).

3.5.1 Definition

As far as I know, there is no universal geometric definition for strictly convex
functions: this concept is mostly relevant for real-valued functions, and most
authors define it using inequalities. The main idea is that f should be convex
and its graph should not contain any nonempty open line segment.

A more common definition of strict convexity is given using inequalities.

Proposition 3.7. An extended-valued function f : X → [−∞,+∞] is strictly
convex if and only if

∀x, y ∈ dom(f), x ̸= y,∀θ ∈ ]0, 1[ , f (θx+ (1− θ)y) < θf(x) + (1− θ)f(y).
(3.9)

The canonical example of strictly convex functions is x 7→ ∥x∥2. Indeed,
for all θ ∈ ]0, 1[, x, y ∈ X,

∥θx+ (1− θ)y∥2 = θ2 ∥x∥2 + (1− θ)2 ∥y∥2 + 2θ(1− θ) ⟨x, y⟩︸ ︷︷ ︸
θ(1−θ)(∥x∥2+∥y∥2−∥x−y∥2)

= θ ∥x∥2 + (1− θ) ∥y∥2 − θ(1− θ) ∥x− y∥2

< θ ∥x∥2 + (1− θ) ∥y∥2 for x ̸= y.

3.5.2 Properties

Proposition 3.8. The following functions are strictly convex.

1. f1 + f2, where f1 : X → R ∪ {+∞} is convex and f2 : X → R ∪ {+∞}
is strictly convex,

2. αf , where α > 0 and f : X → [−∞,∞] is strictly convex,

3. max(f1, f2), where f1, f2 : X → [−∞,∞] are strictly convex functions.

The proof is left to the reader.

� If (fi)i∈I is an infinite family of strictly convex functions, in
general it is not true that supi∈I fi is strictly convex (consider,
e.g., fn(x) = 1 + 1

2nx(x− 1)).

Several other sufficient conditions for strict convexity are given in Sec-
tion 4.2.2.
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3.6 Strongly convex functions

Strong convexity is an even stronger(!) property than strict convexity. It is
helpful in optimization to derive convergence rates.

3.6.1 Definition and characterization

Definition 3.9. Let f : X → [−∞,+∞] and λ > 0. We say that f is
λ-strongly convex if x 7→

(
f(x)− λ

2 ∥x∥
2
)

is convex.

Remark 3.4. Let f be a proper function, and write f(x) = h(x) + λ
2 ∥x∥

2

where h is convex. Since x 7→ λ
2 ∥x∥

2 is strictly convex and h is convex, it
follows that f is strictly convex.

The class of λ-strongly convex functions is easy to handle since its char-
acterization directly follows from the characterization of the convexity of
functions of the form h

def.
= f − λ

2 ∥·∥
2.

Proposition 3.10 (Characterization using inequalities). Let f : X → [−∞,+∞]
be an extended valued function and λ > 0. Then, f is λ-strongly convex if
and only if for all x, y ∈ dom(f), all θ ∈ ]0, 1[,

f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− λ

2
θ(1− θ) ∥x− y∥2 . (3.10)

Proof. Apply the characterization of convexity to h
def.
= f − λ

2
∥·∥2 and recall that

∥θx+ (1− θ)y∥2 = θ ∥x∥2 + (1− θ) ∥y∥2 − θ(1− θ) ∥x− y∥2

(see Section 3.5.1).

3.6.2 Why are strongly convex functions useful?

The reader will see in lectures on algorithms how strong convexity can be
exploited, but let us highlight an important property.

If f : U → R is strongly convex, and x∗ ∈ U is the (unique) minimizer,
then, by taking x = x∗ in (3.10), we obtain

f(x∗) ≤ f (θx∗ + (1− θ)y) ≤ θf(x∗) + (1− θ)f(y)− λ

2
θ(1− θ) ∥x∗ − y∥2 .

Dividing by (1− θ) and letting θ → 1, we get

∀y ∈ U, f(y) ≥ f(x∗) +
λ

2
∥y − x∗∥2 . (3.11)

In other words, if we have an upper bound on the gap in the objective
values, i.e. if we know that our iterate y = x(k) satisfies(

f(x(k))−min f
)
≤ αk,
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with (hopefully) αk → 0, then we can deduce that our iterate is not too far
from the minimizer, i.e. ∥∥∥x(k) − x∗

∥∥∥2 ≤ 2

λ
αk → 0.
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In this chapter, we focus on the characterizations of convex functions
through their derivatives. Such characterizations turn out to be very useful
in practice.

4.1 Convexity on the real line

We begin by studying convex functions in a one-dimensional setting. This
section paves the way for the the proofs of the higher-dimensional setting
and it contains most of the technical discussion. It may be skipped at first
reading.

4.1.1 Convex functions

The convexity of a set is a one-dimensional property, in the sense that it only
involves its intersection with lines. Similarly, the convexity of a function only
involves its restriction to lines.

39
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Proposition 4.1. Let f : X → [−∞,+∞]. Then f is convex if and only if
for every x, y ∈ dom(f), the function g : R → [−∞,+∞], defined by

∀t ∈ R, g(t)
def.
= f(tx+ (1− t)y), (4.1)

is convex.

It is therefore particularly important to characterize univariate convex
functions.

In view of Section 3.2.2, the only interesting case is when g : R → ]−∞,+∞],
and by restricting our attention to I

def.
= dom(g), we are led to study real-

valued functions g : I → R, where I ⊆ R is an interval.
In the following, unless otherwise stated, I ⊆ R is an interval containing

at least two points.

Increasing slope of the chords

We define the slope between two points A = (a, a′), and B = (b, b′) in R2 as

s(A,B)
def.
=

b′ − a′

b− a
. (4.2)

The reader may check the following equivalence (see Figure 4.1).

Lemma 4.2. Let A = (a, a′), B = (b, b′), C = (c, c′) be three points in R2

such that a < b < c. The following assertions are equivalent.

(i) B is below [A,C],

(ii) C is above the line which joins A and B,

(iii) A is above the line which joins B and C,

(iv) s(A,B) ≤ s(A,C),

(v) s(A,C) ≤ s(B,C).

For a typical point x ∈ I, we define the corresponding point Mx
def.
=

(x, g(x)) ∈ R2. Applying Lemma 4.2, it is possible to prove the following
characterization of convexity using slopes.

Proposition 4.3 (Characterization with the slope of the chords). Let g : I →
R be a function. Then g is convex if and only if for all a ∈ I, the function

x 7→ s(Ma,Mx) =
g(x)− g(a)

x− a
(4.3)

is increasing on I \ {a}.
Proof. We note that a < b < c if and only if there is θ ∈ ]0, 1[ such that b = θa+(1− θ)c.
Moreover, Mb is below [Ma,Mc] if and only if g (θa+ (1− θ)c) ≤ θg(a) + (1− θ)g(c). By
Lemma 4.2 this is equivalent to s(Ma,Mb) ≤ s(Ma,Mc).
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A
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c

Figure 4.1: The relative positions of the lines (AB), (AC) and (BC) can be
compared by examining their slopes.

Increasing slopes

Proposition 4.3 has interesting consequences on the differentiability of g. Let
x0 ∈ int(I). We say that g has a left derivative at x0 if the limit

g′ℓ(x0)
def.
= lim

x→x0
x<x0

(
g(x)− g(x0)

x− x0

)
(4.4)

exists and is finite. Similarly, we say that g has a right derivative at x0 if
the limit

g′r(x0)
def.
= lim

x→x0
x>x0

(
g(x)− g(x0)

x− x0

)
(4.5)

exists and is finite. The function g is differentiable at x0 if and only if the
left and right derivatives at x0 exist and coincide.

It turns out that a convex function has left and right derivatives every-
where in the interior of its domain.

Proposition 4.4. If a, b ∈ int(I) with a < b, and g : I → R is convex, then
g′r(a) and g′ℓ(b) exist (in R) and

g′r(a) ≤
g(b)− g(a)

b− a
≤ g′ℓ(b). (4.6)

Remark 4.1. If a (resp. b) lies on the boundary of I, i.e. a = inf I (resp.
b = sup I), the limit (4.5) for x0 = a still exists (resp. (4.4) for x0 = b), but
it could be −∞ (resp. +∞).

Proof. Let c ∈ ]a, b[. Using Lemma 4.2 (or Proposition 4.3), we get

g(c)− g(a)

c− a
≤ g(b)− g(a)

b− a
≤ g(b)− g(c)

b− c
. (4.7)
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Since ratio on the left is increasing, its limit g′r(a) exists in R∪{−∞} as c → a. But since
a ∈ int(I), there exists d < a, and

−∞ <
g(d)− g(a)

d− a
≤ g(c)− g(a)

c− a
,

hence that limit must be finite.
A symmetric argument applies to the ratio on the right of (4.7) for c → b.

Theorem 4.5 (Characterization with derivatives). Let g : I → R, with I ⊆
R an open interval. The following assertions are equivalent.

(i) g is convex,

(ii) g is continuous on I and there exists a countable set S ⊆ I such that
g is differentiable on I \ S, with g′ is increasing on I \ S.

(iii) g is continuous on I and there exists a countable set S ⊆ I such that
g is differentiable on I \ S, with

∀y ∈ I, ∀x ∈ I \ S, f(y) ≥ f(x) + f ′(x)(y − x). (4.8)

Proof (♠). (i)⇒ (ii). Assume that g is convex. Then g has left and right derivatives at
every point of I, which implies that g is continuous on I. Moreover, for all x ∈ I, passing
to the limit h → 0+ in the slopes inequality

g(x− h)− g(x)

(−h)
≤ g(x+ h)− g(x)

h
,

we note that g′ℓ(x) ≤ g′r(x). Combining this observation with (4.6), we note that

∀a, b ∈ I such that a < b, g′ℓ(a) ≤ g′r(a) ≤ g′ℓ(b) ≤ g′r(b),

so that both g′ℓ and g′r are increasing functions, and at each point x ∈ I, the following
assertions are equivalent:

• g′ℓ(x) = g′r(x),
• g′ℓ is continuous at x,
• g′r is continuous at x.

The discontinuity set of a increasing function is countable, hence g′ℓ and g′r are equal
except on a countable set.

(ii) ⇒ (i). Assume by contradiction that g satisfies the properties of 2) but g is not
convex. Then, by Proposition 4.3, there exists1 a < b < c such that

g(b)− g(a)

b− a
>

g(c)− g(b)

c− b

But the mean value theorem2 together with the fact that g′ is increasing give

g(b)− g(a)

b− a
≤ sup

x∈]a,b[\S
g′(x) ≤ inf

x∈]b,c[\S
g′(x) ≤ g(c)− g(b)

c− b
,

1This requires a careful check. First, negate the fact that the slopes are increasing
for some a, so that the slopes corresponding to x = b and x = c with b < c are not in
the correct order. Then using Lemma 4.2, relabel a, b, and c to have a < b < c and the
claimed inequality.

2This is a refined version of the classical mean value theorem (inégalité des accroisse-
ments finis in French), which allows for g′ to be undefined on a countable set, see for
instance [Bou07, Thm. I.2.1].
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Figure 4.2: A convex function is below its chords (in between the two inter-
section points) and above its tangents.

which yields a contradiction. Hence g is convex.
(i) ⇒ (iii). Let y ∈ I and x ∈ I \ S. If y > x, let h > 0 such that x < x + h < y.

Using the chords inequality,

g(y)− g(x)

y − x
≥ g(x+ h)− g(x)

h
−→ g′(x) as h → 0.

If y < x let h > 0 such that y < x− h < x. Similarly,

g(y)− g(x)

y − x
≤ g(x− h)− g(x)

(−h)
−→ g′(x) as h → 0.

In both cases, we have obtained (4.8).
(iii) ⇒ (ii). Let x, y ∈ I \ S with x < y. By (4.8),

g(y) ≥ g(x) + g′(x)(y − x)

g(x) ≥ g(y) + g′(y)(x− y).

Summing both inequalities yield 0 ≥ (g′(x) − g(y))(y − x), and since x < y, we obtain
g′(x) ≤ g′(y). Hence g′ is increasing.

In practice, we often know that the function g is smooth. In that case,
Theorem 4.5 reformulates as

Proposition 4.6. Let I ⊆ R be an open interval, and let g ∈ C k(I), with
k ≥ 1. The following assertions are equivalent

(i) g is convex,

(ii) g′ is increasing,

(iii) For all x, y ∈ I,

g(y) ≥ g(x) + g′(x)(y − x). (4.9)

(iv) (if k ≥ 2) g′′(x) ≥ 0 for all x ∈ I.
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Remark 4.2. Comparing (3.5) and (4.9), we see that there are two compet-
ing geometric interpretations of convexity (see Figure 4.2):

• g is below its chords (between the two points of intersection, outside it
is above the chord),

• g is above its tangent.

4.1.2 Strictly convex functions

Again, strict convexity is a one-dimensional property. A function f is strictly
convex if and only it is strictly convex on every line which intersects dom(f).

Here, we consider again a function g : I → R. The main results of Sec-
tion 4.1.2 have a “strict” counterpart. We leave to the reader the task to
check that the following results hold.

Lemma 4.7. Let A = (a, a′), B = (b, b′), C = (c, c′) be three points in R2

such that a < b < c. The following assertions are equivalent.

(i) B is strictly below [A,C],

(ii) C is strictly above the line which joins A and B,

(iii) A is strictly above the line which joins B and C,

(iv) s(A,B) < s(A,C),

(v) s(A,C) < s(B,C).

Proposition 4.8 (Characterization with the slope of the chords). Let g : I →
R be a function. Then g is strictly convex if and only if for all a ∈ I, the
function

x 7→ s(Ma,Mx) =
g(x)− g(a)

x− a
(4.10)

is strictly increasing on I \ {a}.

Proposition 4.9. If a, b ∈ int(I) with a < b, and g : I → R is strictly
convex, then g′r(a) and g′ℓ(b) exist (in R) and

g′r(a) <
g(b)− g(a)

b− a
< g′ℓ(b). (4.11)

Theorem 4.10 (Characterization with derivatives). Let g : I → R, with
I ⊆ R an open interval. The following assertions are equivalent.

(i) g is strictly convex,
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(ii) g is continuous on I and there exists a countable set S ⊆ I such that
g is differentiable on I \ S, with g′ is strictly increasing on I \ S.

(iii) g is continuous on I and there exists a countable set S ⊆ I such that
g is differentiable on I \ S, with

∀y ∈ I, ∀x ∈ I \ S ∪ {y}, f(y) > f(x) + f ′(x)(y − x). (4.12)

As, we often know beforehand that the function g is smooth, Theo-
rem 4.10 reformulates as

Proposition 4.11. Let I ⊆ R be an open interval, and let g ∈ C k(I), with
k ≥ 1. The following assertions are equivalent

(i) g is strictly convex,

(ii) g′ is strictly increasing,

(iii) For all x, y ∈ I, with y ̸= x,

g(y) > g(x) + g′(x)(y − x). (4.13)

(iv) (if k ≥ 2) g′′(x) > 0 for all x in a dense subset of I.

� Do not forget the dense subset in point 4. of Proposition 4.11! It
is not true that any strictly convex function g satisfies g′′(x) > 0
for all x, for the same reason that there exist strictly increasing
functions whose derivative vanishes at isolated points

Proof. The equivalence of the first three point is left to the reader. We only focus on the
fourth one.

(i) ⇒ (iv). Since g is convex, we know that g′′(x) ≥ 0 for all x ∈ I. Assume by
contradiction that there is a nonempty open interval J ⊆ I such that g′′(x) = 0. Then g′

is constant in J and g is affine in J , which contradicts the strict convexity of g. Hence
g′′(x) > 0 on a dense subset of I.

(iv) ⇒ (ii). By the continuity of g′′ and by a density argument, g′′(x) ≥ 0 for all
x ∈ I, hence g′ is increasing. Now, let x, y ∈ I, x < y. By density there exists z ∈ ]x, y[
such that g′′(x) > 0, and for h > 0 small enough,

g′(z + h) ≥ g′(z) + h/2 > g′(z).

Since g′ is increasing, we obtain

g′(x) ≤ g′(z) < g′(z + h) ≤ g′(y)

hence g′ is strictly increasing.

4.2 Convexity in dimension p ≥ 2

4.2.1 Convex functions

Now, we turn back to convex functions defined on X = Rp, and we first
consider smooth functions.
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Smooth convex functions

From Proposition 4.1, we know that we can characterize convex functions
on X using their restrictions on lines. The key point when exploiting the
regularity of f is to relate the corresponding derivatives. Let U be an convex
open set, f ∈ C k(U) and g(t)

def.
= f(tx + (1 − t)y). Then, for all t ∈ R such

that tx+ (1− t)y ∈ U ,

g′(t) = ⟨∇f (tx+ (1− t)y) , x− y⟩ (4.14)

g′′(t) =
〈
x− y, ∇2f (tx+ (1− t)y) (x− y)

〉
, (4.15)

where ∇f(x) ∈ Rp and ∇2f(x) ∈ Rp×p respectively denote3 the gradient
and the Hessian of f at x.

Applying Proposition 4.6 to all the restrictions of f to lines yields the
important characterization.

Proposition 4.12. Let U ⊆ X be a nonempty open convex set, and let
f ∈ C k(U), with k ≥ 1. The following assertions are equivalent

(i) f is convex,

(ii) for all x, y ∈ U , ⟨∇f(x)−∇f(y), x− y⟩ ≥ 0,

(iii) for all x, y ∈ U , f(y) ≥ f(x) + ⟨∇f(x), y − x⟩,

(iv) (for k ≥ 2) for all x ∈ U , ∇2f(x) ⪰ 0.

Proof. (i) ⇒ (ii,iii,iv). Assume that f is convex. Let x, y ∈ U . Then, the function
g : t 7→ f(tx + (1 − t)y) is convex, the set [0, 1] is contained in the open interval dom g,
and by Proposition 4.6,

• 0 ≤ g′(1)− g′(0) = ⟨∇f(y)−∇f(x), y − x⟩,
• 0 ≤ g(1)− g(0)− g′(0) = f(y)− f(x)− ⟨∇f(x), y − x⟩,
• 0 ≤ g′′(1) =

〈
y − x, ∇2f(x)(y − x)

〉
.

That yields all the claimed items, except (iv). As the inequality 0 ≤
〈
y − x, ∇2f(x)(y − x)

〉
holds for all y in the open set U , it also holds in a small ball of radius r > 0 centered at
x, hence

∀u ∈ B(0, 1), r2
〈
u, ∇2f(x)u

〉
≥ 0,

which implies that ∇2f(x) ⪰ 0.
(ii) or (iii) or (iv) ⇒ (i). Conversely, let x, y ∈ U and let g : t 7→ f(tx + (1 − t)y).

For all t1, t2 ∈ dom(g), setting z1
def.
= t1x + (1 − t1)y and z2

def.
= t2x + (1 − t2)y, we note

that

(t2 − t1)
(
g′(t2)− g′(t1)

)
= ⟨∇f(z2)−∇f(z1), z2 − z1⟩ ,

g(t2)−
(
g(t1) + g′(t1)(t2 − t1)

)
= f(z2)− (f(z1) + ⟨∇f(z1), z2 − z1⟩) ,

g′′(t) =
〈
x− y, ∇2f (tx+ (1− t)y) (x− y)

〉
As a result, by Proposition 4.6, any of (ii), (iii) or (iv) implies that g is convex. Since this
holds for any x, y ∈ dom(f), we deduce that f is convex.

3The gradient represents the linear form df(x) : Rp → R. It depends on the scalar
product. The Hessian represents the bilinear form d2f(x) : Rp × Rp → R.
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General convex functions (♠)

So far, in dimension p, we have assumed that f is smooth, i.e. C k for
k ≥ 1. There are obviously nonsmooth convex functions (e.g., the ℓ1-norm,
∥x∥1 =

∑p
i=1 |xi|), but, as in the one-dimensional case, a convex function

cannot be too wild.

Theorem 4.13 ((♠)). Let U ⊆ X be a nonempty open convex set, and let
f : U → R.

Then f is continuous on U and f is differentiable at x, for Lebesgue
almost every x ∈ U .

Proof. The proof consists in observing that f must be Lipschitz on every compact subset
of U , see the exercise sheet for the proof of that point.

The Lipschitz property implies both the continuity and the differentiability almost
everywhere (this known as the Rademacher theorem), hence the result.

4.2.2 Strictly convex functions in dimension p ≥ 2

As for the case of convex functions, we may translate the results in dimension
one to the multi-dimensional case.

Proposition 4.14. Let U ⊆ X be a nonempty open convex set, and let
f ∈ C k(U), with k ≥ 1. The following assertions are equivalent

(i) f is strictly convex,

(ii) for all x, y ∈ U with x ̸= y, ⟨∇f(x)−∇f(y), x− y⟩ > 0,

(iii) for all x, y ∈ U with x ̸= y, f(y) > f(x) + ⟨∇f(x), y − x⟩,

A criterion involving the Hessian can be written but it is not practical
(try to write it as an exercise). The following sufficient condition will be
more convenient.

Proposition 4.15. Let U ⊆ X be a nonempty open convex set, and let
f ∈ C 2(U). If

∀x ∈ U, ∇2f(x) ≻ 0, (4.16)

then f is strictly convex.

4.2.3 Strongly convex functions

Similarly, we may derive the equivalent of Proposition 4.12 for strongly con-
vex functions (defined in Section 3.6)

Proposition 4.16. Let U ⊆ X be a nonempty open convex set, and let
f ∈ C k(U), with k ≥ 1. The following assertions are equivalent
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(i) f is λ-strongly convex,

(ii) for all x, y ∈ U , ⟨∇f(x)−∇f(y), x− y⟩ ≥ λ ∥x− y∥2,

(iii) for all x, y ∈ U , f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ λ
2 ∥y − x∥2,

(iv) (for k ≥ 2) for all x ∈ U , ∇2f(x) ⪰ λIp, where Ip ∈ Rp×p is the
identity matrix.
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In Chapter 4, we have seen that convex functions have some regular-
ity (e.g. continuity on the interior of the domain, differentiability almost
everywhere. . . ). Nevertheless, they may well have “kinks” (points of non-
differentiability) on some (small) set: think of the absolute value func-
tion x 7→ |x|. Such points are very important in optimization, since they
tend to attract minimizers when the function is perturbed. In fact, non-
differentiability is one of the reasons of the success of sparsity-based methods
in data sciences.

Therefore, it is important to be able to derive optimality conditions for
such non-smooth problems. Incidentally, our working with extended-valued
functions enables us to seamlessly tackle convex constrained optimization
problems.

49
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5.1 Convex enveloppe of a function

The cornerstone of this chapter is the following theorem in the theory of
convex sets. We call a closed half-space a lower level set of a (non-zero)
affine function, i.e. a set of the form

D = {x ∈ X | ⟨p, x⟩ − α ≤ 0 } , (5.1)

for some p ∈ X, α ∈ R. We recall the following consequence of the separating
hyperplane theorem, Corollary 2.28.

Theorem 5.1. Let C ⊆ X be a closed convex set. Then C is the intersection
of all the closed half-spaces that contain C.

Certainly, if f : X → [−∞,+∞] is convex lower semi-continuous, we may
apply this theorem to epi(f) ⊆ X × R. We obtain

Theorem 5.2. Let f : X → R ∪ {+∞} be a proper, convex, l.s.c. function.
Then, for all x ∈ X,

f(x) = sup {L(x) | L : X → R is affine and L ≤ f } . (5.2)

Proof. The proof consists in applying Theorem 5.1 to epi(f) and write it as the intersection
of half-spaces of the form

D =

{
(x, r) ∈ X × R |

〈(
p
s

)
,

(
x
r

)〉
− α ≤ 0

}
. (5.3)

There are two kinds of half-spaces in X × R,

• The oblique ones, i.e. such that s ̸= 0.

• The vertical ones, i.e. such that s = 0.

We show that the oblique ones correpsond to some affine functions which are below f .
The vertical ones, however, do not correspond to affine functions, and we need to be a bit
more careful.

Let x0 ∈ X, and r0 < f(x0). As the point (x0, r0) does not belong to epi f , there
exists a hyperplane which separates them. In other words, there are some (p, s) ∈ X ×R,
some α ∈ R, such that 〈(

p
s

)
,

(
x0

r0

)〉
> α, (5.4)

and ∀(x, r) ∈ epi f,

〈(
p
s

)
,

(
x
r

)〉
< α. (5.5)

First case: x0 ∈ dom f , that is f(x0) < +∞. We may as well write r0 = f(x0)− ε for
some ε > 0. Choosing (x, r) = (x0, f(x0)) in (5.5), we note that (5.4) implies

⟨p, x0⟩+ sf(x0) < α < ⟨p, x0⟩+ s(f(x0)− ε),

which implies that s < 0 (the hyperplane is oblique). Hence, dividing (5.5) by (−s) > 0,
we get

∀(x, r) ∈ epi f,

〈(
p̃
−1

)
,

(
x
r

)〉
< α̃ (5.6)
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for some p̃ ∈ X, α̃ ∈ R. In particular, for r = f(x), we get L̃(x)
def.
= ⟨p̃, x⟩ − α̃ < f(x),

while (5.4) implies L̃(x0) > f(x0)− ε. The function L̃ is thus an affine minorant of f , and

sup {L(x0) | L : X → R is affine and L ≤ f } ≥ L̃(x0) > f(x0)− ε.

If Γ(f)(x0) denotes the left-hand side of the above inequality, letting ε → 0, we obtain
Γ(f)(x0) ≥ f(x0). The converse inequality is immediate, as L(x0) ≤ f(x0) for every
admissible L.

Second case: x0 /∈ dom f , that is, f(x0) = +∞. If s < 0, we proceed as before, and
we build an affine minorant of f which takes a value larger than r0 at x0.

However, it is possible that s = 0 (vertical hyperplane), in which case we proceed
slightly differently. We know that there exists at least some point in the domain of f , and
from the first case above we deduce that there exists some affine minorant L̃1 of f : for all
x ∈ X, L̃1(x) ≤ f(x). We set L̃2(x)

def.
= L̃1(x) + t (⟨p, x⟩ − α) for some t > 0 chosen large

enough so that

L̃2(x0) = L̃1(x0) + t (⟨p, x0⟩ − α)︸ ︷︷ ︸
> 0 by (5.4)

> r0. (5.7)

Next, for all x ∈ dom f , we have from (5.5)

L̃2(x) = L̃1(x)︸ ︷︷ ︸
≤f(x)

+t (⟨p, x⟩ − α)︸ ︷︷ ︸
≤ 0 by (5.5)

≤ f(x). (5.8)

Hence L̃2 is an affine minorant of f , and we deduce that Γ(f)(x0) ≥ L̃2(x) ≥ r0. Letting
r0 → f(x0) = +∞, we get the desired equality.

Remark 5.3. The assumption that f is proper is important (or more pre-
cisely, that f(x) > −∞ for every x). Consider for instance the function

f(x) =

{
−∞ if x = 0

+∞ if x ̸= 0.

Then, the set on the right-hand side of (5.2) is empty, and sup ∅ = −∞.
Therefore (5.2) does not hold for x ̸= 0.

If f is any function (not necessarily convex nor l.s.c.), the right-hand
side of (5.2) defines a new function which is sometimes called (in French) la
Γ-régularisée de f ,

Γ(f)(x)
def.
= sup {L(x) | L : X → R is affine and L ≤ f } . (5.9)

If f has at least one affine minorant (i.e. if the r.h.s. of (5.2) or (5.9) is
nonempty), the function Γ(f) is the greatest convex lower semi-continuous
function below f , also known as the closed convex hull of f , denoted convf .

In the rest of this chapter we gather information of f by studying the
“best” affine minorants L of f at some point x: what are their slopes (sub-
gradient)? what are their intercept (minus the convex conjugate)?
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5.2 Subgradients of a function

5.2.1 Definition

Definition 5.4. Let f : X → [−∞,+∞] and let x ∈ X, p ∈ X.
We say that p is a sugradient to f at x, and we write p ∈ ∂f(x), if f(x)

is finite and

∀y ∈ X, f(y) ≥ f(x) + ⟨p, y − x⟩ . (5.10)

The collection of all subgradients ∂f(x) is called the subdifferential of f at x.

Let us consider a few examples.

Gradient of a smooth convex function. Let f be a convex function which
is finite and differentiable at some x ∈ X. By Proposition 4.12, we
know that

∀y ∈ dom(f), f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ .

Since the inequality also holds for y ̸∈ dom(f), we have (5.10), and
∇f(x) ∈ ∂f(x). In fact, it is the only subgradient (exercise!), and
∂f(x) = {∇f(x)}.

Absolute value function. In X = R, let f : x 7→ |x|. Observe that

∂f(x) =


1 if x > 0,

[−1, 1] if x = 0,

−1 if x < 0.

Convex functions on the real line. More generally, if I ⊆ R is an inter-
val and f : I → R is convex, we know from (4.4) that it has left and
right derivatives at every x ∈ int(I). Then,

∀x ∈ int(I), ∂f(x) =

{
{f ′(x)} if f is differentiable at x

[f ′
l (x), f

′
r(x)] in general.

Indicator of a convex set Let C ⊆ X be a nonempty convex set. Then

∂χC(x) =
{
s ∈ Rp | ∀x′ ∈ C,

〈
s, x′ − x

〉
≤ 0

}
= NC (x) (5.11)

is the normal cone to C at x (see the constrained optimization lecture!).

Remark 5.5. The notion of subgradient is global (defined by inequalities on
all X), contrary to the classical notion of gradient. However, if the function
is convex, it is sufficient to consider only local information.

We leave the proof of the following observation to the reader.

Proposition 5.6. For all f : X → [−∞,+∞], and x ∈ X, ∂f(x) is a
(possibly empty) closed convex set.
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5.2.2 Fermat’s rule

The main reason we are interested in subgradients is the following theorem.

Theorem 5.7 (Fermat’s rule). Let f : X → R ∪ {+∞} a proper function
and x ∈ X. Then,

(x ∈ argminX f) ⇐⇒ (0 ∈ ∂f(x)) . (5.12)
Proof. It is almost a tautology!

x ∈ argminX f ⇐⇒ ∀y ∈ X, f(y) ≥ f(x)

⇐⇒ ∀y ∈ X, f(y) ≥ f(x) + ⟨0, y − x⟩
⇐⇒ 0 ∈ ∂f(x),

since f(x) must be finite.

Fermat’s rule holds for any (proper) function f , but it is mostly useful
when dealing with convex functions, because we have theorems to compute
the subdifferential.

5.2.3 Digression: the relative interior and polyhedral convex
functions

In the next section, we describe the subdifferential of functions that result
from basic operations (sum, composition. . . ). The most precise formulas
hold under some “qualification” conditions which involve two notions.

First, the relative interior of a convex set C ⊆ X is its interior when
seen as a subset of Aff C (the smallest affine space which contains C), see
Section 2.4.1 for more detail. We denote it by rint(C). In other words,

rint(C)
def.
= {x ∈ C | ∃r > 0, (B(x, r) ∩Aff C) ⊆ C } (5.13)

While the interior of a convex set might be empty, one may prove that
the relative interior is never empty1 if C ̸= ∅.
Example 5.8. The relative interior of [0, 1] × {0} ⊆ R2 is ]0, 1[ × {0}, but
its interior is ∅!

The relative interior of 0×B(0, r) ⊆ R3 is 0×B(0, r). Again, its interior
is empty.

Second, we say that a convex function is polyhedral if its epigraph is
polyhedral (i.e. the intersection of finitely many closed half spaces). A
function is convex polyhedral if and only if it is of the form

f(x) = max
1≤i≤n

(⟨pi, x⟩ − αi) + χC(x), where C =

m⋂
j=1

{x ∈ X | ⟨x, qj⟩ ≤ βj } .

(5.14)

Example 5.9. The ℓ1 norm, x 7→ ∥x∥1 =
∑p

i=1 |xi| is polyhedral.
1In our finite-dimensional setting.
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5.2.4 Subdifferential and operations

The result of most operations can be guessed by the known formulas for clas-
sical gradients. The scaling operation is the easiest case (prove the proposi-
tion below as an exercise!).

Proposition 5.10 (Scaling). Let f : X → [−∞,+∞], and α > 0. Then, for
all x ∈ X, ∂(αf)(x) = α (∂f(x)).

However, the subdifferential of a sum behaves as expected under some
qualification condition.

Proposition 5.11 (Sum of convex functions). Let f, g : X → R ∪ {+∞} be
two proper functions, and x ∈ X. Then,

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x). (5.15)

If, moreover, f and g are proper convex, and

• rint(dom f) ∩ rint(dom g) ̸= ∅,

• or g is polyhedral and rint(dom f) ∩ dom g ̸= ∅,

then

∂f(x) + ∂g(x) = ∂(f + g)(x). (5.16)

Proof. We only prove the first point. If f(x) and g(x) are finite, for any p ∈ ∂f(x) and
q ∈ ∂g(x), then for all y ∈ X,

f(y) ≥ f(x) + ⟨p, y − x⟩ ,
g(y) ≥ g(x) + ⟨q, y − x⟩ .

Summing both inequalities, we obtain that p+ q ∈ ∂(f + g)(x).
For the second point, the interested reader may consult [Roc97, Th. 23.7].

The inclusion in (5.15) may be strict, even if f and g are convex. For
instance, let

f(x) = −
√

1− x2 + χ[−1,1](x), g(x) = χ[1,2](x).

Then f(x) + g(x) = χ{1}(x), and it is possible to check that

∂f(1) + ∂g(1) = ∅+ R− = ∅ ⊊ R = ∂(f + g)(x).

Proposition 5.12. Let f : x 7→ h(Ax), where h : Rm → R∪{+∞} is proper
and A ∈ Rm×p. Then,

A⊤∂h(Ax) ⊆ ∂f(x). (5.17)

If, moreover, h is convex proper and
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• ImA ∩ rint(domh) ̸= ∅,

• or h is polyhedral and ImA ∩ domh ̸= ∅,

then

A⊤∂h(Ax) = ∂f(x). (5.18)

Proof. We only prove the first point. If p ∈ (∂h)(Ax), then for all y ∈ X,

h(Ay) ≥ h(Ax) + ⟨p, Ay −Ax⟩ = h(Ax) +
〈
A⊤p, y − x

〉
.

Therefore, A⊤p ∈ ∂f(x).
For the equality case, we refer to [Roc97, Thm. 23.9]

5.3 Conjugate functions

5.3.1 The convex conjugate

Let us fix a slope p ∈ X. What is the “best” intercept for an affine minorant
of f with slope p?

Let L(x) = ⟨p, x⟩ − α be an affine minorant. We must have:

∀x ∈ X, ⟨p, x⟩ − α ≤ f(x) ⇐⇒ ∀x ∈ X, ⟨p, x⟩ − f(x) ≤ α,

so that the smallest possible value is α = supx∈X (⟨p, x⟩ − f(x)).

Remark 5.13. The optimal value α is not necessarily reached (the supre-
mum is not always a maximum). For instance, consider the function f(x) =√
x2 + 1 and the slope p = 1 corresponding to the function L(x) = x(the

graph of L is an oblique asymptote to the graph of f , they never touch).

Definition 5.14. The convex conjugate (or Legendre-Fenchel conjugate) of
f : X → [−∞,+∞] is the function f∗ : X → [−∞,∞] defined by

∀p ∈ X, f∗(p) = sup
x∈X

(⟨p, x⟩ − f(x)) . (5.19)

It turns out that the function f∗ has some interesting properties, even if
f is not convex (check this as an exercise).

Proposition 5.15. Let f : X → R ∪ {+∞} be a proper function. Then f∗

is convex, l.s.c. and proper.
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Proposition 5.16 (Legendre-Fenchel inequality). Let f be proper. Then,

∀x, p ∈ X, f(x) + f∗(p) ≥ ⟨p, x⟩ . (5.20)

Moreover,

p ∈ ∂f(x) ⇐⇒ f(x) + f∗(p) = ⟨p, x⟩ . (5.21)

Proof. By definition of the convex conjugate f∗(p) ≥ ⟨p, x⟩ − f(x). Since f∗(p) > −∞
and f(x) > −∞, we may add f(x) and deduce f(x) + f∗(p) ≥ ⟨p, x⟩.

Now, we characterize the equality case. Using that f is proper, we get

p ∈ ∂f(x) ⇐⇒ ∀y ∈ dom(f), f(y) ≥ f(x) + ⟨p, y − x⟩
⇐⇒ ∀y ∈ dom(f), ⟨p, x⟩ − f(x) ≥ ⟨p, y⟩ − f(y),

⇐⇒ ⟨p, x⟩ − f(x) = max
y∈dom(f)

(⟨p, y⟩ − f(y))

⇐⇒ ⟨p, x⟩ − f(x) = f∗(p)

5.3.2 The double convex conjugate

Let us recall the definition of the convex enveloppe and examine its connec-
tion with the conjugate function.

Γ(f)(x) = sup {L(x) | L is affine and L ≤ f }
= sup { ⟨p, x⟩ − α | p ∈ X,α ∈ R, ∀y ∈ X, ⟨p, x⟩ − α ≤ f(x) }
= sup { ⟨p, x⟩ − f∗(p) | p ∈ X }
= (f∗)∗(x)

Writing f∗∗ for (f∗)∗, we have obtained

Theorem 5.17. If f : X → [−∞,+∞], then f∗∗ = Γ(f). In particular, if f
is convex proper and lower semi-continuous, f∗∗ = f .

The double conjugate expresses a function f as a supremum of affine
functions.

Corollary 5.18. Let f be a proper, convex, l.s.c. function. Then p ∈ ∂f(x)
if and only if x ∈ ∂f∗(p).

Proof. Using the equality case in the Legendre-Fenchel inequality twice,

p ∈ ∂f(x) ⇐⇒ f(x) + f∗(p) = ⟨p, x⟩
⇐⇒ f∗∗(x) + f∗(p) = ⟨p, x⟩
⇐⇒ x ∈ ∂f∗(p).
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5.4 Fenchel-Rockafellar duality

In this section we consider some convex proper, lower semi-continuous func-
tions f : X → R∪{+∞} and g : Y → R∪{+∞} together with a linear map
K : X → Y .

We are interested in the variational problem

min
x∈X

f(x) + g(Kx) (5.22)

Typically g ◦ K is some loss function, and f is a regularization term,
added to avoid overfitting. For instance, if f is the ℓ1 norm and g is a square
fidelity term, (5.22) is the LASSO. Alternatively, (5.22) may encode some
constrained optimization problem, with g = χC the indicator function of the
constraint set and f the objective.

Provided some qualification conditions hold (see for the middle inequal-
ity below), a point x∗ is a minimizer2 if and only if

0 ∈ ∂ (f + g ◦K) (x∗) = ∂f(x∗) +K⊤∂g(Kx∗). (5.23)

In other words, x∗ is optimal iff there exists some z ∈ Y such that

z ∈ ∂g(Kx∗), and −K⊤z ∈ ∂f(x∗). (5.24)

It turns out that z is an optimal solution to some optimization problem
too. That result is known as duality.

For now, let us discuss the general situation (without qualification con-
ditions).

Proposition 5.19 (Weak duality). Let f : X → R ∪ {+∞} and g : Y →
R∪{+∞} be convex proper, lower semi-continuous functions and K : X → Y
a linear map. Then the following inequality holds

inf
x∈X

(f(x) + g(Kx)) ≥ sup
z∈Y

(
−f∗(K⊤z)− g∗(−z)

)
. (5.25)

Proof. For all x ∈ X, z ∈ Y , the Fenchel-Young inequality yield,

f(x) ≥ ⟨x, K∗z⟩ − f∗(K⊤z) (5.26)
g(Kx) ≥ ⟨Kx, −z⟩ − g∗(−z). (5.27)

Summing both equalities yields

f(x) + g(Kx) ≥ −f∗(K⊤z)− g∗(−z),

and we obtained the claimed inequality by taking the infimum over x and the supremum
over z.

2Note that our assumptions do not guarantee the existence of x∗, but that is a different
topic.
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The problem

sup
z∈Y

(
−f∗(K⊤z)− g∗(−z)

)
. (5.28)

is known as the Fenchel-Rockafellar dual to (5.22). It is a maximization
problem for a concave objective (which is equivalent to a convex minimization
problem by considering minus the objective). On the other hand, our original
problem (5.22) is usually referred to as the primal problem.

It is interesting to note that, if equality holds in (5.25) (which is called
strong duality) and if x∗ and z∗ are respectively optimal for the left and right
hand sides of (5.25), then equality must hold in (5.26) and (5.27). In other
words, we must have the following extremality relations,{

K⊤z∗ ∈ ∂f(x∗)

z∗ ∈ ∂g(Kx∗).
(5.29)

Conversely, if the extremality relations (5.29) hold, then (5.25) is an equality
and x∗ and z∗ are respectively optimal for the primal and dual problem.

Theorem 5.20 (Strong duality). Under the assumptions of Proposition 5.19,
if there exists some x0 ∈ X such that x0 ∈ rint dom f and Kx0 ∈ rint(dom g),
then strong duality holds

inf
x∈X

(f(x) + g(Kx)) = sup
z∈Y

(
−f∗(K⊤z)− g∗(−z)

)
. (5.30)

and there exists a solution to the dual problem (5.28).
Moreover, given any pair (x∗, z∗) ∈ X × Y , the following assertions are

equivalent:

• x∗ is a solution to (5.22) and z∗ is a solution to (5.28),

• x∗ and z∗ satisfy the extremality conditions (5.29).

See for instance [Roc97, Cor. 31.2.1].
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Reminder on topology

We recall here some basic notions of topology. Yet, we cannot summarize
here all the useful results that are useful in optimization. The reader who
is looking for a pedagogical and deep introduction to topology may consult
[CCM97].

A.1 Interior, closure

Let A ⊆ X, and x ∈ A. As usual, we denote by

B(x, r)
def.
= { y ∈ X | ∥x− y∥ < r } .

the open ball centered at x and with radius r > 0.
Given the point x, three cases may arise (see Figure A.1):

1. there exists r > 0 such that B(x, r) ⊆ A; we say that x lies in the
interior of A, and we write x ∈ int(A).

2. for all r > 0, B(x, r) ∩A ̸= ∅ and (B(x, r) \A) ̸= ∅; we say that x lies
on the boundary of A, we write x ∈ ∂A.

3. there exists r > 0 such that B(x, r) ⊆ (X \A); we say that x lies in
the exterior of A (which is nothing but the interior of X \A).

The closure of A is defined as

A
def.
= int(A) ∪ (∂A) .

We say that a set A is closed if A = A. If A is the complement of a
closed set, we say that A is open. A set is open if and only if it is equal to
its interior (hence if and only if it is a union of open balls).

Proposition A.1 (The closure as the set of all possible limits). Let A ⊆ X,
and a ∈ X. Then a ∈ A if and only if there is a sequence (an)n∈N of elements
in A such that a = limn→∞ an.
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Figure A.1: The point x is in the interior of A, x′ is on the boundary of A,
and x′′ is in the exterior of A.

A.2 Continuity

Let X1 = Rp1 and X2 = Rp2 . We say that a function is continuous at x ∈ X1

if for every ε > 0, there exists r > 0 such that f(B(x, r)) ⊆ B(x, ε).

Proposition A.2 (Sequential characterization of continuity). The function
f is continuous at x ∈ X1 if and only if for every sequence (xn)n∈N of
elements of X1 which converges to some x ∈ X1,

f(x) = lim
n→∞

f(xn).

Proposition A.3. The following assertions are equivalent:

1. the function f is continuous on X1 (i.e. at every point of X1),

2. the inverse image of every open subset of X2 is an open subset of X1,

3. the inverse image of every closed subset of X2 is an open subset of X1.

Remark A.4. Similar statements hold for functions f : A1 → A2 where Ai

is a subset of Xi (i ∈ {1, 2}) by considering the relative topology of Ai, i.e.
in all the definitions of interior, boundary . . . , the balls B(x, r) should be
replaced with (B(x, r) ∩Ai).
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Lower and upper limits of
sequences and functions.

B.1 Lower and upper limits of sequences

Let (un)n∈N a sequence of real numbers. In general, there is no reason for
limn→∞ un to exist (e.g. take un = (−1)n). If (un)n∈N is bounded, we know
by the Bolzano-Weierestrass theorem that we can extract a subsequence
(uφ(n))n∈N such that limn→∞ uφ(n) = ℓ for some ℓ ∈ R.

But can we choose the number ℓ? For instance, for un = (−1)n we could
have ℓ = 1 or −1 depending on the subsequence) ? And what if (un)n∈N is
not bounded?

The notion of limit inferior and limit superior address those issues.

Definition B.1. Let u = (un)n∈N be a sequence of real numbers. The limit
inferior of u is

lim inf
n→∞

un
def.
= lim

n→∞

(
inf
k≥n

uk

)
. (B.1)

The limit inferior of u is

lim sup
n→∞

un
def.
= lim

n→∞

(
sup
k≥n

uk

)
. (B.2)

Remark B.2. The sequence (infk≥n uk)n∈N is increasing, hence by the mono-
tone limt theorem, the limit in (B.1) always exists in [−∞,+∞]. Similarly,
the sequence

(
supk≥n uk

)
n∈N is decreasing, so that the limit in (B.2) always

exists.

Remark B.3. The limit inferior (resp. superior) is the lowest (highest)
value ℓ ∈ [−∞,+∞] such that we may extract a subsequence which converges
to ℓ.
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Example B.4. Using the definition, we note

• For un = (−1)n, lim infn→∞(−1)n = −1, whereas lim supn→∞(−1)n = 1.

• For un = n, lim infn→∞ un = lim supn→∞ un = +∞.

• For un = −n, lim infn→∞ un = lim supn→∞ un = −∞.

• For un = sin(n)en, lim infn→∞ un = −∞, lim supn→∞ un = +∞.

Proposition B.5. Let u = (un)n∈N be a sequence of real numbers. If
limn→∞ un exists, then lim infn→∞ un = lim supn→∞ un = limn→∞ un.
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Proposition B.6. Let u = (un)n∈N be a sequence of real numbers. Then

• lim infn→∞(−un) = − lim supn→∞(un)

• lim infn→∞ (αun) = α (lim infn→∞ un) for all α > 0,

• lim supn→∞ (αun) = α (lim supn→∞ un) for all α > 0,

• lim infn→∞ un ≤ lim supn→∞ vn,

• for all sequence (vn)n∈N in R,(
lim inf
n→∞

un

)
+
(
lim inf
n→∞

vn

)
≤ lim inf

n→∞
(un + vn)

provided the left-hand side is not the inderterminate form ∞−∞ (or
−∞+∞), and similarly

lim sup
n→∞

(un + vn) ≤
(
lim sup
n→∞

un

)
+

(
lim sup
n→∞

vn

)
provided the right-hand side is not the inderterminate form ∞−∞ (or
−∞+∞)
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References

There are many interesting references on convex and variational analysis.
The most authoritative treatise on convex analysis is perhaps the mono-

graph by R.T. Rockafellar [Roc97], which contains a surprisingly large amount
of results in a moderate number of pages, while being easy to read.

The two volume book [HUL93] by J.-B. Hiriart-Urruty and C. Lemaréchal
covers a lot of material as well, with a lot of details and figures. It also deals
with algorithmic aspect of convex optimization (which are not covered in
[Roc97]). The reference [BV04] is also a comprehensive and pedagogical
reference, and is illustrated with modern problems from signal processing or
statistics. It is available on the website of its authors1. For the specificic case
of univariate convex functions, the reader may consult the elegant study in
[Bou07]; the corresponding section (Section 4.1.1) is directly inspired from
it.

All the above-mentioned references are in finite dimension. The reader
who is interested in infinite-dimensional analysis may consult [ET99, Roc89]
and, in French, [ET74, Mor67].

1https://web.stanford.edu/~boyd/cvxbook/
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