
Chapter 2

Getting Started with Hadoop

Apache Hadoop is a software framework that allows distributed processing of large

datasets across clusters of computers using simple programming constructs/mod-

els. It is designed to scale-up from a single server to thousands of nodes. It is

designed to detect failures at the application level rather than rely on hardware for

high-availability thereby delivering a highly available service on top of cluster of

commodity hardware nodes each of which is prone to failures [2]. While Hadoop

can be run on a single machine the true power of Hadoop is realized in its ability

to scale-up to thousands of computers, each with several processor cores. It also

distributes large amounts of work across the clusters efficiently [1].

The lower end of Hadoop-scale is probably in hundreds of gigabytes, as it was

designed to handle web-scale of the order of terabytes to petabytes. At this scale

the dataset will not even fit a single computer’s hard drive, much less in memory.

Hadoop’s distributed file system breaks the data into chunks and distributes them

across several computers to hold. The processes are computed in parallel on all

these chunks, thus obtaining the results with as much efficiency as possible.

The Internet age has passed and we are into the data age now. The amount of data

stored electronically cannot be measured easily; IDC estimates put the total size of

the digital universe at 0.18 Zetabytes in 2006 and it is expected to grow tenfold by

2011 to 1.8 Zeta-bytes [9]. A Zetabyte is 1021 bytes, or equivalently 1000 Exabytes,

1,000,000 Petabytes or 1bn Terabytes. This is roughly equivalent to one disk drive

for every person in the world [10]. This flood of data comes from many sources.

Consider the following:

• The New York Stock Exchange generates about one terabyte of trade data per

day.

• Facebook hosts approximately 10 billion photos, taking up one petabyte of stor-

age. Ancestry.com, the genealogy site, stores around 2.5 petabytes of data.

• The Internet Archive stores around 2 petabytes of data, and is growing at a rate

of 20 terabytes per month.
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• The Large Hadron Collider near Geneva, Switzerland, produces around 15

petabytes of data per year.

2.1 A Brief History of Hadoop

Hadoop was created by Doug Cutting, the creator of Apache Lucene, a widely used

text search library. The Apache Nutch project, an open source web search engine,

had a significant contribution to building Hadoop [1].

Hadoop is not an acronym; it is a made-up name. The project creator, Doug Cutting,

explains how the name came about:

The name my kid gave a stuffed yellow elephant. Short, relatively easy to spell and pro-
nounce, meaningless, and not used elsewhere: those are my naming criteria. Kids are good
at generating such.

It is ambitious to build a web search engine from scratch as it is not only challenging

to build a software required to crawl and index websites, but also a challenge to run

without a dedicated operations team as there are so many moving parts. It is esti-

mated that a 1 billion page index would cost around $500,000 to build and monthly

$30,000 for maintenance [4]. Nevertheless, this goal is worth pursuing as Search

engine algorithms are opened to the world for review and improvement.

The Nutch project was started in 2002, with the crawler and search system being

quickly developed. However, they soon realized that their system would not scale to

a billion pages. Timely publication from Google in 2003, the architecture of Google

FileSystem, called the GFS came in very handy [5]. The GFS or something like that

was enough to solve their storage needs for the very large files generated as part of

the web crawl and indexing process. The GFS particularly frees up the time spent

on maintaining the storage nodes. This effort gave way to the Nutch Distributed File

System (NDFS) .

Google produced another paper in 2004 that would introduce MapReduce to the

world. By early 2005 the Nutch developers had a working MapReduce implemen-

tation in Nutch and by the middle of that year most of the Nutch Algorithms were

ported to MapReduce and NDFS.

NDFS and MapReduce implementation in Nutch found applications in areas beyond

the scope of Nutch; in Feb 2006 they were moved out of Nutch to form their

own independent subproject called Hadoop. Around the same time Doug Cutting

joined Yahoo! which gave him access to a dedicated team and resources to turn

Hadoop into a system that ran at web-scale. This ability of Hadoop was announced

that its production search index was generated by the 10,000 node Hadoop cluster

[6].
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In January 2008, Hadoop was promoted to a top level project at Apache, confirming

its success and its diverse active community. By this time, Hadoop was being used

by many other companies besides Yahoo!, such as Last.fm, Facebook, and the New

York Times.

The capability of Hadoop was demonstrated and publicly put at the epitome of the

distributed computing sphere when The New York Times used Amazon’s EC2 com-

pute cloud to crunch through four terabytes of scanned archives from the paper

converting them into PDFs for the Web [7]. The project came at the right time with

great publicity toward Hadoop and the cloud. It would have been impossible to try

this project if not for the popular pay-by-the-hour cloud model from Amazon. The

NYT used a large number of machines, about a 100 and Hadoop’s easy-to-use par-

allel programming model to process the task in 24 hours.

Hadoop’s successes did not stop here, it went on to break the world record to become

the fastest system to sort a terabyte of data in April 2008. It took 209 seconds to sort

a terabyte of data on a 910 node cluster, beating the previous year’s winner of 297

seconds. It did not end here, later that year Google reported that its MapReduce

implementation sorted one terabyte in 68 seconds [8]. Later, Yahoo! reported to

have broken Google’s record by sorting one terabyte in 62 seconds.

2.2 Hadoop Ecosystem

Hadoop is a generic processing framework designed to execute queries and other

batch read operations on massive datasets that can scale from tens of terabytes to

petabytes in size. HDFS and MapReduce together provide a reliable, fault-tolerant

software framework for processing vast amounts of data in parallel on large clusters

of commodity hardware (potentially scaling to thousands of nodes).

Hadoop meets the needs of many organizations for flexible data analysis capabilities

with an unmatched price-performance curve. The flexibility in data analysis feature

applies to data in a variety of formats, from unstructured data, such as raw text, to

semi-structured data, such as logs, to structured data with a fixed schema.

In environments where massive server farms are used to collect data from a variety

of sources, Hadoop is able to process parallel queries as background batch jobs on

the same server farm. Thus, the requirement for an additional hardware to process

data from a traditional database system is eliminated (assuming such a system can

scale to the required size). The effort and time required to load data into another sys-

tem is also reduced since it can be processed directly within Hadoop. This overhead

becomes impractical in very large datasets [14].

The Hadoop ecosystem includes other tools to address particular needs:

A Brief History of Handoop
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Fig. 2.1: Hadoop Ecosystem [14]

Common: A set of components and interfaces for distributed filesystems and gen-

eral I/O (serialization, Java RPC, persistent data structures).

Avro: A serialization system for efficient, cross-language RPC and persistent data

storage.

MapReduce: A distributed data processing model and execution environment that

runs on large clusters of commodity machines.

HDFS: A distributed filesystem that runs on large clusters of commodity machines.

Pig: A data flow language and execution environment for exploring very large

datasets. Pig runs on HDFS and MapReduce clusters [6].

Hive: A distributed data warehouse. Hive manages data stored in HDFS and pro-

vides a query language based on SQL (and which is translated by the runtime engine

to MapReduce jobs) for querying the data [7].

HBase: A distributed, column-oriented database. HBase uses HDFS for its under-

lying storage, and supports both batch-style computations using MapReduce and

point queries (random reads) [18].
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ZooKeeper: A distributed, highly available coordination service. ZooKeeper pro-

vides primitives such as distributed locks that can be used for building distributed

applications [19].

Sqoop: A tool for efficiently moving data between relational databases and HDFS.

Cascading: MapReduce is very powerful as a general-purpose computing frame-

work, but writing applications in the Hadoop Java API for MapReduce is daunting,

due to the low-level abstractions of the API, the verbosity of Java, and the relative

inflexibility of the MapReduce for expressing many common algorithms. Cascad-

ing is the most popular high-level Java API that hides many of the complexities

of MapReduce programming behind more intuitive pipes and data flow abstrac-

tions.

Twitter Scalding: Cascading is known to provide close abstraction to the daunting

Java API using pipes and custom data flows. It still suffers from limitations and

verbosity of Java. Scalding is Scala API on top of cascading that indents to remove

most of the boilerplate Java code and provides concise implementations of common

data analytics and manipulation functions similar to SQL and Pig. Scalding also

provides algebra and matrix models, which are useful in implementing machine

learning and other linear algebra-dependent algorithms.

Cascalog: Cascalog is similar to Scalding in the way it hides the limitations of

Java behind a powerful Clojure API for cascading. Cascalog includes logic pro-

gramming constructs inspired by Datalog. The name is derived from Cascading +

Datalog.

Impala: It is a scalable parallel database technology to Hadoop, which can be used

to launch SQL queries on the data stored in HDFS and Apache HBase without any

data movement or transformation. It is a massively parallel processing engine that

runs natively on Hadoop.

Apache BigTop: It was originally a part of the Cloudera’s CDH distribution, which

is used to test the Hadoop ecosystem.

Apache Drill: It is an open-source version of Google Drell . It is used for inter-

active analysis on large-scale datasets. The primary goals of Apache Drill are real-

time querying of large datasets and scaling to clusters bigger than 10,000 nodes. It

is designed to support nested data, but also supports other data schemes like Avro

and JSON. The primary language, DrQL, is SQL like [20].

Apache Flume: It is responsible data transfer between ”source” and ”sink”, which

can be scheduled or triggered upon an event. It is used to harvest, aggregate, and

move large amounts of data in and out of Hadoop. Flume allows different data for-

mats for sources, Avro, files, and sinks, HDFS and HBase. It also has a querying
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engine so that the user can transform any data before it is moved between sources

and sinks.

Apache Mahout: it is a collection of scalable data mining and machine learning

algorithms implemented in Java. Four main groups of algorithms are:

• Recommendations, a.k.a. collective filtering

• Classification, a.k.a categorization

• Clustering

• Frequent itemset mining, a.k.a parallel frequent pattern mining

It is not merely a collection of algorithms as many machine learning algorithms are

non-scalable, the algorithms in Mahout are written to be distributed in nature and

use the MapReduce paradigm for execution.

Oozie: it is used to manage and coordinate jobs executed on Hadoop.

2.3 Hadoop Distributed File System

The distributed file system in Hadoop is designed to run on commodity hardware.

Although it has many similarities with other distributed file systems, the differences

are significant. It is highly fault-tolerant and is designed to run on low-cost hard-

ware. It also provides high-throughput to stored data, hence can be used to store

and process large datasets. To enable this streaming of data it relaxes some POSIX

standards. HDFS was originally built for the Apache Nutch project and later forked

in to an individual project under Apache [21].

HDFS by design is able to provide reliable storage to large datasets, allowing high-

bandwidth data streaming to user applications. By distributing the storage and com-

putation across several servers, the resource can scale up and down with demand

while remaining economical.

HDFS is different from other distributed file systems in the sense that it uses a write-

once-read-many model that relaxes concurrency requirements, provides simple data

coherency, and enables high-throughput data access [22]. HDFS prides on the prin-

ciple and proves to be more efficient when the processing is done near the data rather

than moving the data to the applications space. The data writes are restricted to one

writer at a time. The bytes are appended to the end of the stream and are stored in

the order written. HDFS has many notable goals:

• Ensuring fault tolerance by detecting faults and applying quick recovery meth-

ods.



2.3 Hadoop Distributed File System 39

• MapReduce streaming for data access.

• Simple and robust coherency model.

• Processing is moved to the data, rather than data to processing.

• Support heterogeneous commodity hardware and operating systems.

• Scalability in storing and processing large amounts of data.

• Distributing data and processing across clusters economically.

• Reliability by replicating data across the nodes and redeploying processing in the

event of failures.

2.3.1 Characteristics of HDFS

Hardware Failure: Hardware failure is fairly common in clusters. A Hadoop clus-

ter consists of thousands of machines, each of which stores a block of data. HDFS

consists of a huge number of components and with that there is a good chance of

failure among them at any point of time. The detection of these failures and the

ability to quickly recover is part of the core architecture.

Streaming Data Access: Applications that run on the Hadoop HDFS need access

to streaming data. These applications cannot be run on general-purpose file sys-

tems. HDFS is designed to enable large-scale batch processing, which is enabled by

the high-throughput data access. Several POSIX requirements are relaxed to enable

these special needs of high throughput rates.

Large Data Sets: The HDFS-based applications feed on large datasets. A typical

file size is in the range of high gigabytes to low terabytes. It should provide high

data bandwidth and support millions of files across hundreds of nodes in a single

cluster.

Simple Coherency Model: The write-once-read-many access model of files

enables high throughput data access as the data once written need not be changed,

thus simplifying data coherency issues. A MapReduce-based application takes

advantage of this model.

Moving compute instead of data: Any computation is efficient if it executes near

the data because it avoids the network transfer bottleneck. Migrating the computa-

tion closer to the data is a cornerstone of HDFS-based programming. HDFS pro-

vides all the necessary application interfaces to move the computation close to the

data prior to execution.
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Heterogeneous hardware and software portability: HDFS is designed to run on

commodity hardware, which hosts multiple platforms. This features helps wide-

spread adoption of this platform for large-scale computations.

Drawbacks:

Low-latency data access: The high-throughput data access comes at the cost

of latency. Latency sensitive applications are not suitable for HDFS. HBase has

shown promise in handling low-latency applications along with large-scale data

access.

Lots of small files: The metadata of the file system is stored in the namenode’s

memory(master node). The limit to the number of files in the file-system is depen-

dent on the namenode memory. Typically, each file, directory, and block takes about

150 bytes. For example, if you had one million files, each taking one block, you

would need at least 300 MB of memory. Storing millions of files seems possible,

but hardware is incapable of accommodating billions of files [24].

Fig. 2.2: HDFS Architecture [1]
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2.3.2 Namenode and Datanode

The HDFS architecture is built in tandem with the popular master/slave architec-

ture. An HDFS cluster consists of a master server that manages the file-system

namespace and regulates files access, called the Namenode. Analogous to slaves,

there are a number of Datanodes. These are typically one per cluster node and man-

age the data stored in the nodes. The HDFS file-system exists independently of the

host file-system and allows data to be stored in its own namespace . The Namen-

ode allows typical file-system operations like opening, closing, and renaming files

and directories. It also maintains data block and Datanode mapping information.

The Datanodes handle the read and write requests. Upon Namenode’s instructions

the Datanodes perform block creation, deletion, and replications operations. HDFS

architecture is given in Figure 2.2

Namenode and Datanodes are software services provided by HDFS that are designed

to run on heterogeneous commodity machines. These applications typically run on

Unix/Linux-based operating systems. Java programming language is used to build

these services. Any machine that supports the Java runtime environment can run

Namenode and Datanode services. Given the highly portable nature of Java pro-

gramming language HDFS can be deployed on wide range of machines. A typ-

ical cluster installation has one dedicated machine that acts as a master running

the Namenode service. Other machines in the cluster run one instance of Datanode

service per node. Although you can run multiple Datanodes on one machine, this

practice is rare in real-world deployments.

A single instance of Namenode/master simplifies the architecture of the system.

It acts as an arbitrator and a repository to all the HDFS meta-data. The system is

designed such that there is data flow through the Namenode. Figure 2.3 shows how

the Hadoop ecosystem interacts together.

2.3.3 File System

The file organization in HDFS is similar to the traditional hierarchical type. A user

or an application can create and store files in directories. The namespace hierarchy

is similar to other file-systems in the sense that one can create, remove, and move

files from one directory to another, or even rename a file. HDFS does not support

hard-links or soft-links.

Any changes to the file-system namespace is recorded by the Namenode. An appli-

cation can specify the replication factor of a file that should be maintained by HDFS.

The number of copies of a file is called the replication factor.
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Fig. 2.3: Interaction between HDFS and MapReduce [1]

2.3.4 Data Replication

HDFS provides a reliable storage mechanism even though the cluster spans thou-

sands of machines. Each file is stored as a sequence of blocks, where each block

except the last one is of the same size. Fault tolerance is ensured by replicating the

file blocks. The block size and replication factor is configurable for each file either

by the user or an application. The replications factor can be set at file creation and

can be modified later. Files in HDFS are write-once and strictly adhere to a single

writer at a time property (Figure 2.4).

Namenode, acting as the master, takes all the decisions regarding data block repli-

cation. It receives a heartbeat, check Figure 2.5 on how it works, and block report

from the Datanodes in the cluster. Heartbeat implies that the Datanode is functional

and the block report provides a list of all the blocks in a Datanode.

Replication is vital to HDFS reliability and performance is improved by optimizing

the placement of these replicas. This optimized placement contributes significantly

to the performance and distinguishes itself from the rest of the file-systems. This

feature requires much tuning and experience to get it right. Using a rack-aware repli-

cation policy improves data availability, reliability, and efficient network bandwidth

utilization. This policy is the first of its kind and has seen much attention with better

and sophisticated policies to follow.

Typically large HDFS instances span across multiple racks. Communication between

these racks go through switches. Network bandwidth between machines in different

racks is less than machines within the same rack.
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Fig. 2.4: Data Replication in Hadoop [22]

The Namenode is aware of the rack-ids each Datanode belongs to. A simple pol-

icy can be implemented by placing unique replicas in individual racks; in this way

even if an entire rack fails, although unlikely, the replica on another rack is still

available. However, this policy can be costly as the number of writes between racks

increases.

When the replication factor is, say 3, the placement policy in HDFS is put a replica

in one node per rack. This policy cuts the inter-rack write, which improves perfor-

mance. The chance of rack failure is far less than node failure. This policy signifi-

cantly reduces the network bandwidth used when reading data as a replica is placed

in only two unique racks instead of three. One-third of replicas are on one node and

one-third in another rack, while another third is evenly distributed across remain-

ing racks. This policy improves performance along with data reliability and read

performance.

Replica Selection: Selecting a replica that is closer to the reader significantly

reduces the global bandwidth consumption and read latency. If a replica is present

on the same rack then it is chosen instead of another rack, similarly if the replica

spans data centers then the local data center hosting the replica is chosen.

Safe-mode: When HDFS services are started, the Namenode enters a safe-mode.

The Namenode receives heartbeats and block reports from the Datanodes. Each

block has a specified number of replicas and Namenode checks if these replicas

are present. It also checks with Datanodes through the heartbeats. Once a good per-
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centage of blocks are present the Namenode exits the safe-mode (takes about 30s).

It completes the remaining replication in other Datanodes.

2.3.5 Communication

The TCP/IP protocols are foundations to all the communication protocols built in

HDFS. Remote Procedure Calls (RPCs) are designed around the client protocols

and the Datanode protocols. The Namenode does not initiate any procedure calls, it

only responds to the request from the clients and the Datanodes.

Robustness: The fault-tolerant nature of HDFS ensures data reliability. The three

common type of failures are Namenode, Datanode, and network partitions.

Data Disk Failure, Heartbeats, and Re-replication: Namenode receives periodic

heartbeats from the Datanodes. A network partition, failure of a switch, can cause all

the Datanodes connected via that network to be invisible to the Namenode. Namen-

ode used heartbeats to detect the condition of nodes in the cluster, it marks them

dead if there are no recent heartbeats and does not forward any I/O requests. Any

data part of the dead Datanode is not available and the Namenode keeps track of

these blocks and triggers replications whenever necessary. There are several rea-

sons to re-replicate a data block: Datanode failure, corrupted data block, storage

disk failure, increased replication factor .

Fig. 2.5: Heart Beat Mechanism in Hadoop [22]
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Cluster Rebalancing: Data re-balancing schemes are compatible with the HDFS

architecture. It automatically moves the data from a Datanode when its free space

falls below a certain threshold. In case a file is repeatedly used in an application,

a scheme might create additional replicas of the file to re-balance the thirst for the

data on the file in the cluster.

Data Integrity: Data corruption can occur for various reasons like storage device

failure, network faults, buggy software, etc. To recognize corrupted data blocks

HDFS implements a checksum to check on the contents of the retrieved HDFS files.

Each block of data has an associated checksum that is stored in a separate hidden

file in the same HDFS namespace. When a file is retrieved the quality of the file is

checked with the checksum stored, if not then the client can ask for that data block

from another Datanode (Figure 2.6).

Fig. 2.6: Each cluster contains one Namenode. This design facilitates a simplified model for man-
aging each Namespace and arbitrating data distribution [22]

2.3.6 Data Organization

Data Blocks: HDFS by design supports very large files. Applications written to

work on HDFS write their data once and read many times, with reads at streaming

speeds. A typical block size used by HDFS is 64 MB. Each file is chopped into 64

MB chunks and replicated.
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Staging: A request to create a file does not reach the Namenode immediately. Ini-

tially, The HDFS client caches the file data into a temporary local file. Application

writes are redirected to this temporary files. When the local file accumulates content

over the block size, the client contacts the Namenode. The Namenode creates a file

in the file-system and allocates a data block for it. The Namenode responds to the

client with the Datanode and data block identities. The client flushes the block of

data from the temporary file to this data block. If the file is closed the Namenode

is informed, and it starts a file creation operation into a persistent store. Suppose, if

the Namenode dies before commit the file is lost.

Replication Pipelining: Local file caching mechanism described in the previous

section is used for writing data to an HDFS file. Suppose the HDFS file has a repli-

cation factor of three. In such event the local file accumulates a data block of data,

and the client receives a list of Datanodes from the Namenode that will host the

replica of the data block. The client then flushes the data block in the first Datanode.

Each Datanode in the list receives data block in smaller chunks of 4KB, the first

Datanode persists this chunk in its repository after which it is flushed to the second

Datanode. The second Datanode in turn persists this data chunk in its repository and

flushes to the third Datanode, which persists the chunk in its repository. Thus the

Datanodes receive data from the previous nodes in a pipeline and at the same time

forwarding to the next Datanode in the pipeline.

2.4 MapReduce Preliminaries

Functional Programming: MapReduce framework facilitates computing with

large volumes of data in parallel. This requires the workload to be divided across

several machines. This model scales because there is no intrinsic sharing of data

as the communication overhead needed to keep the data synchronized prevents the

cluster from performing reliably and efficiently at large scale.

All the data elements of MapReduce cannot be updated, i.e., immutable. If you

change the (key, value) pair in a mapping task, the change is not persisted. A new

output (key, value) pair is created before it is forwarded by the Hadoop system into

the next phase of execution.

The benefits of the above approach is to allow streaming write to files. If a client
writes a file directly to a remote file without buffering, the network speed and
network congestion impacts the throughput considerably. There are earlier file-
systems that successfully use client side caching to improve performance. In case
of HDFS a few POSIX rules have been relaxed to achieve high performance data
uploads.
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MapReduce: Hadoop MapReduce is a simple software framework used to pro-

cess vast amounts of data in the scale of higher terabytes in parallel on large clus-

ters of commodity hardware in a reliable, fault-tolerant manner. A MapReduce job

splits the dataset into independent chunks that are processed by many map tasks in

parallel. The framework then sorts the output of this map which are then input to

the reduce task. The input and output of the job are stored on the file-system. The

framework also takes care of scheduling, monitoring, and re-launching failed tasks.

Typically, in Hadoop the storage and compute nodes are the same, the MapReduce

framework and HDFS run on the same set of machines. This allows for the frame-

work to schedule jobs on nodes where data are already present, resulting in high-

throughput across the cluster.

List Processing: MapReduce as paradigm transforms a list of input data into

another set of output lists. The list processing idioms are map and reduce. These

are principles of several functional programming languages like Scheme, LISP,

etc.

Mapping Lists: A list of items provided one at a time to a function called the

mapper, which transforms these elements one at a time to an output data element.

For example, a function like toUpper converts a string into its uppercase version,

and is applied to all the items in the list; the input string is not modified but a new

transformed string is created and returned (Figure 2.7).

Fig. 2.7: Mapping creates a new output list by applying a function to individual elements of an
input list [22].

The framework consists of one JobTrackeron the master/Namenode and one Task-
Tracker per cluster node/Datanodes. The master is responsible for scheduling jobs,
which are executed as tasks on the Datanodes. The Namenode is responsible for
monitoring, re-executing failed tasks.



48 2 Getting Started with Hadoop

Reducing Lists: The intermediate outputs of the mappers are sent to a reducer
function that receives an iterator over input values. It combines these values return-

ing a single output (Figure 2.8).

Fig. 2.8: reducing a list iterates over the input values to produce an aggregate value as output [22].

Keys and Values: : Every value in an input for MapReduce program has a key

associated to it. Keys identify related values. A collection of timestamped speedome-

ter readings, the value, from different cars has the license plate number, the key,

associated to it.

AAA-123 65mph, 12:00pm

ZZZ-789 50mph, 12:02pm

AAA-123 40mph, 12:05pm

CCC-456 25mph, 12:15pm

...

The mapping and reducing functions receive not just values but (key, value) pairs.

The output of each of these functions is the same: both a key and a value must be

emitted to the next list in the data flow.

MapReduce is also less strict than other languages about how the Mapper and

Reducer work. In more formal functional mapping and reducing settings, a map-

per must produce exactly one output element for each input element, and a reducer

must produce exactly one output element for each input list. In MapReduce, an arbi-

trary number of values can be output from each phase; a mapper may map one input

into zero, one, or one hundred outputs. A reducer may compute over an input list

and emit one or a dozen different outputs.
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Keys divide the reduce space : A reducing function turns a large list of values into

one (or a few) output values. In MapReduce, all of the output values are not usu-

ally reduced together. All of the values with the same key are presented to a single

reducer together. This is performed independently of any reduce operations occur-

ring on other lists of values, with different keys attached (Figure 2.9).

Fig. 2.9: Different colors represent different keys. All values with the same key are presented to a
single reduce task [22].

2.5 Prerequisites for Installation

Hadoop cluster installation requires the following software packages:

1. Linux-based operating system, preferably Ubuntu

2. Java version 1.6 or higher

3. Secure Shell Access across the machines

Step 1: Check for Java in the systems:

user@ubuntu:∼$ java -version
java version "1.6.0_27"
OpenJDK Runtime Environment (IcedTea6 1.12.6) (6b27-1.12.6-1

ubuntu0.12.04.2)
OpenJDK 64-Bit Server VM (build 20.0-b12, mixed mode)

If the above command does not yield the correct output.

user@ubuntu:∼$ sudo apt-get install openjdk-6-jdk

The installation is available in:

/usr/lib/jvm/java-6-openjdk-amd64

2.4 MapReduce Preliminaries
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Step 2: The communication between nodes in the cluster happens via ssh. In a

multi-node cluster setup of communication is between individual nodes, while in

sing-node cluster, localhost acts as server.

Execute the following command to install ssh:

user@ubuntu:∼$ sudo apt-get install openssh-server openssh-
client

After the installation, generate an ssh key:

user@ubuntu:∼$ ssh-keygen -t rsa -P ""
Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa):
Created directory ’/home/hduser/.ssh’.
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
9b:82:ea:58:b4:e0:35:d7:ff:19:66:a6:ef:ae:0e:d2 hduser@ubuntu
The key’s randomart image is:
[...snipp...]
user@ubuntu:∼$

Note : If there is an error you must check your ssh installation, repeat Step 2.

Step 3: In order to establish password-less communication, the public key is trans-

fered to the slave machines from the master, which will be discussed in the follow-

ing sections. In the case of single-node cluster, the slave and master are in the same

machine but communication is over the localhost server.

user@ubuntu:∼$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/
authorized_keys

Step 4: Test the password-less connection by creating an ssh connection to local-

host.

user@ubuntu:∼$ ssh localhost
The authenticity of host ’localhost (::1)’ can’t be established.
RSA key fingerprint is d7:87:25:47:ae:02:00:eb:1d:75:4f:bb:44:f9

:36:26.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’localhost’ (RSA) to the list of

known hosts.
Linux ubuntu 2.6.32-22-generic #33-Ubuntu SMP Wed Apr 28

13:27:30 UTC 2010 i686 GNU/Linux
Ubuntu 10.04 LTS
[...snipp...]
user@ubuntu:∼$

If the connection should fail, these general tips might help:
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• Enable debugging with ssh -vvv localhost and investigate the error in

detail.

• Check the SSH server configuration in /etc/ssh/sshd_config, in partic-

ular the options PubkeyAuthentication (which should be set to yes) and

AllowUsers (if this option is active, add the user user to it). If you made any

changes to the SSH server configuration file, you can force a configuration reload

with sudo /etc/init.d/ssh reload.

2.6 Single Node Cluster Installation

Step 1: Download and extract Hadoop source

There are several ways to install Hadoop on your system:

• Ubuntu Hadoop Package(.deb)

• Hadoop Source Code

• Third Party Hadoop Distributions (Cloudera, Hortonworks etc)

We are going to install hadoop from its source. Download Hadoop 1.0.3 from the

link below:

user@ubuntu:∼$ wget https://dl.dropboxusercontent.com/u
/26579166/hadoop-1.0.3.tar.gz

Unpack the Hadoop source code (I have assumed your current working directory as

home directory, you can pick your own directory)

user@ubuntu:∼$ sudo tar xzf hadoop-1.0.3.tar.gz
user@ubuntu:∼$ sudo mv hadoop-1.0.3 hadoop

Hadoop source is present in path: /home/user/hadoop

Step 2: Update the system .bashrc file found in the /home folder. Set the fol-

lowing environment variables for Hadoop use:

• Set HADOOP HOME to the extracted folder, as shown in Step 1.

• Set JAVA HOME to the installed Java path, shown in Step 1 of Section 2.5.

• Append HADOOP HOME/bin to the system path, so that the executables are

visible system-wide.

# Set Hadoop-related environment variables
export HADOOP_HOME=/home/user/hadoop
export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd64
export PATH=$PATH:$HADOOP_HOME/bin
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Step 3: Configuring Hadoop is simple, in the sense the changes have to be made in

the following files found in /home/user/hadoop/conf:

1. hadoop-env.sh: Set the JAVA HOME environmental variable, this is specific

to Hadoop environment settings.

Change:

# The java implementation to use. Required.
# export JAVA_HOME=/usr/lib/j2sdk1.5-sun

to:

# The java implementation to use. Required.
export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd64

2. core-site.xml: This file sets the HDFS path, where the file-system is

installed and the data is stored. Create a folder /home/user/hadoop tmp,

which will be used as the storage location. Since the file is of xml format, the

variables are set as property.

Change:

<property>
<name>hadoop.tmp.dir</name>
<value>Enter absolute path here</value>
<description>A base for other temporary directories.

</description>
</property>

To:

<property>
<name>hadoop.tmp.dir</name>
<value>/home/user/hadoop_tmp</value>
<description>A base for other temporary directories.

</description>
</property>

Final core-site.xml looks like this:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/user/hadoop_tmp</value>
<description>A base for other temporary directories.

</description>
</property>
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<property>
<name>fs.default.name</name>
<value>hdfs://localhost:54310</value>
<description>The name of the default file system. A URI

whose scheme and authority determine the FileSystem
implementation. The uri’s scheme determines the config
property (fs.SCHEME.impl) naming the FileSystem
implementation class. The uri’s authority is used to
determine the host, port, etc. for a filesystem.

</description>
</property>
</configuration>

3. mapred-site.xml: This file contains the configuration paramters set/unset

for MapReduce jobs. One such parameter is the URL for JobTracker.

Add the following code to the file:

<property>
<name>mapred.job.tracker</name>
<value>localhost:54311</value>
<description>The host and port that the MapReduce job

tracker runs at. If "local", then jobs are run in-
process as a single map and reduce task.

</description>
</property>

4. hdfs-site.xml: The replication factor is set/unset in the file by adding the

following configuration setting:

<property>
<name>dfs.replication</name>
<value>1</value>
<description>Default block replication. The actual number

of replications can be specified when the file is
created. The default is used if replication is not
specified in create time.

</description>
</property>

Step 4: Formatting file-system

So far the environmental variables and configuration files have been changed to

suit the needs of a cluster. Installing the Hadoop Distributed File System(HDFS)

means to format the installation path, as shown in Step 3, that is, /home/user/
hadoop tmp.

Execute the following command:

user@ubuntu:∼$ ./hadoop/bin/hadoop namenode -format

The expected output of successful format looks like below:
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user@ubuntu:∼$ ./hadoop/bin/hadoop namenode -format
13/10/18 10:16:39 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = ubuntu/127.0.1.1
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 1.0.3
STARTUP_MSG: build = https://svn.apache.org/repos/asf/hadoop/

common/branches/branch-1.0 -r 1335192; compiled by ’hortonfo’
on Tue May 8 20:31:25 UTC 2012

************************************************************/
13/10/18 10:16:39 INFO util.GSet: VM type = 64-bit
13/10/18 10:16:39 INFO util.GSet: 2% max memory = 17.77875 MB
13/10/18 10:16:39 INFO util.GSet: capacity = 2ˆ21 = 2097152

entries
13/10/18 10:16:39 INFO util.GSet: recommended=2097152, actual

=2097152
13/10/18 10:16:39 INFO namenode.FSNamesystem: fsOwner=user
13/10/18 10:16:39 INFO namenode.FSNamesystem: supergroup=

supergroup
13/10/18 10:16:39 INFO namenode.FSNamesystem: isPermissionEnabled

=true
13/10/18 10:16:39 INFO namenode.FSNamesystem: dfs.block.

invalidate.limit=100
13/10/18 10:16:39 INFO namenode.FSNamesystem:

isAccessTokenEnabled=false accessKeyUpdateInterval=0 min(s),
accessTokenLifetime=0 min(s)

13/10/18 10:16:39 INFO namenode.NameNode: Caching file names
occuring more than 10 times

13/10/18 10:16:39 INFO common.Storage: Image file of size 109
saved in 0 seconds.

13/10/18 10:16:40 INFO common.Storage: Storage directory /home/
user/hadoop_tmp/dfs/name has been successfully formatted.

13/10/18 10:16:40 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at ubuntu/127.0.1.1

************************************************************/
user@ubuntu:∼$

Note: Always stop the cluster before formatting.

Step 5: After the file-system is installed, start the cluster to check if all the frame-

work daemons are working.

Run the command:

user@ubuntu:∼$ /usr/local/hadoop/bin/start-all.sh

This will startup a Namenode, Datanode, Jobtracker and a Tasktracker on your

machine as daemon services.
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user@ubuntu:∼$ ./hadoop/bin/start-all.sh
starting namenode, logging to /home/user/hadoop/libexec/../logs/

hadoop-user-namenode-ubuntu.out
localhost: starting datanode, logging to /home/user/hadoop/

libexec/../logs/hadoop-user-datanode-ubuntu.out
localhost: starting secondarynamenode, logging to /home/user/

hadoop/libexec/../logs/hadoop-user-secondarynamenode-ubuntu.
out

starting jobtracker, logging to /home/user/hadoop/libexec/../
logs/hadoop-user-jobtracker-ubuntu.out

localhost: starting tasktracker, logging to /home/user/hadoop/
libexec/../logs/hadoop-user-tasktracker-ubuntu.out

user@ubuntu:∼$

To check if all the daemon services are functional, use the built-in Java process tool:

jps

user@ubuntu:∼$ jps
21128 Jps
20328 DataNode
20596 SecondaryNameNode
20689 JobTracker
20976 TaskTracker
19989 NameNode

Note: If any of above services are missing, debug by looking at the logs in

/home/user/hadoop/logs.

Step 6: Stopping the cluster

To stop all the daemons execute the following command:

user@ubuntu:∼$ ./hadoop/bin/stop-all.sh

output:

user@ubuntu:∼$ ./hadoop/bin/stop-all.sh
stopping jobtracker
localhost: stopping tasktracker
stopping namenode
localhost: stopping datanode
localhost: stopping secondarynamenode
user@ubuntu:∼$
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2.7 Multi-node Cluster Installation

To enable simple installation of a multi-node cluster, it is recommended that every

node in the proposed cluster have Hadoop installed and configured as per the single-

node installation instructions in Section 2.6. In the case of single node both master

and slave are on the same machine, after installation it is only a matter of identifying

the ”master” and ”slave” machines.

Here we try to create a multi-node cluster with two nodes, as shown in Figure 2.10.

We will modify the Hadoop configuration to make one Ubuntu box the ”master”

(which will also act as a slave) and the other Ubuntu box a ”slave”.

Fig. 2.10: Multi-node Cluster Overview

Note 1: We will call the designated master machine just the ”master” from

now on and the slave-only machine the ”slave”. We will also give the two

machines these respective hostnames in their networking setup, most notably in

/etc/hosts. If the hostnames of your machines are different (e.g. ”node01”)

then you must adapt the settings in this section as appropriate.

Note 2: Shutdown each single-node cluster with bin/stop-all.sh before con-

tinuing if you haven’t done so already.

Step 1: Networking
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While creating a multi-node cluster it is assumed that all the nodes in the proposed

cluster are reachable over the network. Ideally, these are connected to one hub or

switch. For example, machines are connected to a switch and are identified by the

address sequence 192.168.0.x/24.

Since we have a two-node cluster, IP addresses 192.168.0.1 and 192.168.0.2
are assigned to nodes respectively. Update /etc/hosts on both machines with

the following lines:

192.168.0.1 master
192.168.0.2 slave

Step 2: Secure Shell Access across the network.

In Sections 2.6 and 2.5 password-less logins are created by generating an ssh key

and adding that key to authorized key listing. Similarly, the key generated on

the master node is transfered to each of the slave nodes. The keys must be

transfered so that Hadoop jobs can be started and stopped without the user authen-

tication.

execute the following command from the master node.

user@master:∼$ ssh-copy-id -i $HOME/.ssh/id_rsa.pub user@slave

This will prompt you to enter the login password for user user on the slave
machine, copy the master public key and assign correct directory and permis-

sions.

user@master:∼$ ssh-copy-id -i $HOME/.ssh/id_rsa.pub user@slave

After successful transfer of the keys, test the connection to each of the slave nodes

from the master. The step is also needed to save slaves host key fingerprint to the

hduser@masters known_hosts file.

master to master:

user@master:∼$ ssh master
The authenticity of host ’master (192.168.0.1)’ can’t be

established.
RSA key fingerprint is 3b:21:b3:c0:21:5c:7c:54:2f:1e:2d:96:79:eb

:7f:95.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’master’ (RSA) to the list of known

hosts.
Linux master 2.6.20-16-386 #2 Fri Oct 18 20:16:13 UTC 2013 i686
...
user@master:∼$

master to slave:
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user@master:∼$ ssh slave
The authenticity of host ’slave (192.168.0.2)’ can’t be

established.
RSA key fingerprint is 74:d7:61:86:db:86:8f:31:90:9c:68:b0

:13:88:52:72.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’slave’ (RSA) to the list of known

hosts.
Ubuntu 12.04
...
user@slave:∼$

Step 3: Multi-node configuration

With reference Step 3 in Section 2.6 the following files in the /home/user/
hadoop/conf directory need to be changed:

1. core-site.xml on all machines

Change the fs.default.name parameter, which specifies the NameNode

(the HDFS master) host and port. In our case, this is the master machine.

Change:

<property>
<name>fs.default.name</name>
<value>hdfs://localhost:54310</value>

</property>

To:

<property>
<name>fs.default.name</name>
<value>hdfs://master:54310</value>

</property>

2. hdfs-site.xml on all machines

change the |dfs.replication— parameter (in |conf/hdfs-site.xml—) which spec-

ifies the default block replication. It defines how many machines a single file

should be replicated to before it becomes available.

The default value of dfs.replication is 3. However, we have only two

nodes available, so we set dfs.replication to 2.

Change:

<property>
<name>dfs.replication</name>
<value>1</value>

</property>
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To:

<property>
<name>dfs.replication</name>
<value>2</value>

</property>

3. mapred-site.xml on all machines

Change the mapred.job.tracker parameter which specifies the Job
Tracker (MapReduce master) host and port. Again, this is the master in our

case.

Change:

<property>
<name>mapred.job.tracker</name>
<value>localhost:54311</value>
</property>

To:

<property>
<name>mapred.job.tracker</name>
<value>master:54311</value>

</property>

4. masters file, on the master node

This file identifies the machines as the Namenode and Secondary
Namenodes associated by the IP addresses. Enter the hostname that has been

allocated as the master in the /etc/hosts file.

master

5. slaves file, on the master node

This file lists the hosts, one per line, where the Hadoop slave daemons (DataN-

odes and TaskTrackers) will be run. Instead of wasting the compute resource of

the master we add master as a slave so that it can share the load of cluster.

master
slave

If you have additional slave nodes, just add them to the slaves file, one host-

name per line.

master
slave
anotherslave01
anotherslave02
anotherslave03



60 2 Getting Started with Hadoop

Note: Typically, one machine in the cluster is designated as the NameNode and

another machine the as JobTracker, exclusively. These are the actual ”mas-

ter nodes”. The rest of the machines in the cluster act as both DataNode and

TaskTracker. These are the slaves or ”worker nodes”.

Additional Configuration Parameters: There are some other configuration

options worth studying

In file conf/mapred-site.xml:

• mapred.local.dir

Determines where temporary MapReduce data is written. It also may be a list of

directories.

• mapred.map.tasks

As a rule of thumb, use 10x the number of slaves (i.e., number of TaskTrackers).

• mapred.reduce.tasks

As a rule of thumb, use

num tasktrackers * num reduce slots per tasktracker *
0.99.

If num tasktrackers is small

use (num tasktrackers - 1) * num reduce slots per
tasktracker.

Step 4: Starting multi-node cluster

Starting the cluster is performed in two steps.

• We begin with starting the HDFS daemons: the Namenode daemon is started on

master, and DataNode daemons are started on all slaves (here: master and

slave).

Run the command bin/start-dfs.sh on the machine you want the (pri-

mary) NameNode to run on. This will bring up HDFS with the NameNode run-

ning on the machine you ran the previous command on, and DataNodes on the

machines listed in the conf/slaves file.

user@master:∼$ ./hadoop/bin/start-dfs.sh
starting namenode, logging to /usr/local/hadoop/bin/../logs/

hadoop-hduser-namenode-master.out
slave: Ubuntu 10.04
slave: starting datanode, logging to /usr/local/hadoop/bin

/../logs/hadoop-hduser-datanode-slave.out
master: starting datanode, logging to /usr/local/hadoop/bin

/../logs/hadoop-hduser-datanode-master.out



2.7 Multi-node Cluster Installation 61

master: starting secondarynamenode, logging to /usr/local/
hadoop/bin/../logs/hadoop-hduser-secondarynamenode-master.
out

user@master:∼$

At this point, the following Java processes should run on master

user@master:∼$ jps
16017 Jps
14799 NameNode
14880 DataNode
14977 SecondaryNameNode
hduser@master:∼$

and the following Java processes should run on every slave node.

user@master:∼$ jps
15183 DataNode
16284 Jps
hduser@master:∼$

• Then we start the MapReduce daemons: the JobTracker is started on mas-

ter, and TaskTracker daemons are started on all slaves (here: master and

slave).

user@master:∼$ ./hadoop/bin/start-mapred.sh

At this point, the following Java processes should run on master

user@master:∼$ jps
16017 Jps
14799 NameNode
15686 TaskTracker
14880 DataNode
15596 JobTracker
14977 SecondaryNameNode
hduser@master:∼$

and the following Java processes should run on every slave node.

user@master:∼$ jps
15183 DataNode
15897 TaskTracker
16284 Jps
hduser@master:∼$

Step 5: Stopping the cluster

Similar to Step 4, the cluster is stopped in two steps:
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• Stop the MapReduce daemons: the JobTracker is stopped on master, and Task-

Tracker daemons are stopped on all slaves (here: master and slave).

Run the command bin/stop-mapred.sh on the JobTracker machine.

This will shut down the MapReduce cluster by stopping the JobTracker daemon

running on the machine you ran the previous command on, and TaskTrackers
on the machines listed in the conf/slaves file.

In our case, we will run bin/stop-mapred.sh on master:

user@master:∼$./hadoop/bin/stop-mapred.sh
stopping jobtracker
slave: Ubuntu 10.04
master: stopping tasktracker
slave: stopping tasktracker
user@master:∼$

At this point, the following Java processes should run on master

user@master:∼$ jps
16017 Jps
14799 NameNode
14880 DataNode
14977 SecondaryNameNode
hduser@master:∼$

and the following Java processes should run on slave

user@master:∼$ jps
15183 DataNode
16284 Jps
hduser@master:∼$

• Stop the HDFS daemons: the NameNode daemon is stopped on master, and

DataNode daemons are stopped on all slaves (here: master and slave).

Run the command bin/stop-dfs.sh on the NameNode machine. This will

shut down HDFS by stopping the NameNode daemon running on the machine

you ran the previous command on, and DataNodes on the machines listed in the

conf/slaves file.

In our case, we will run bin/stop-dfs.sh on master:

user@master:∼$./hadoop/bin/stop-dfs.sh
stopping namenode
slave: Ubuntu 10.04
slave: stopping datanode
master: stopping datanode
master: stopping secondarynamenode
user@master:∼$

At this point, only the following Java processes should run on master
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user@master:∼$ jps
18670 Jps
user@master:∼$

and the following on slave.

user@slave:∼$ jps
18894 Jps
user@slave:∼$

2.8 Hadoop Programming

Running wordcount Hadoop MapReduce job. This program reads text files and

counts how often words occur. The input is text files and the output is text files, each

line of which contains a word and the count of how often it occurred, separated by

a tab.

Download input data: The Notebooks of Leonardo Da Vinci

user@ubuntu:∼$ wget http://www.gutenberg.org/cache/epub/5000/
pg5000.txt

output

user@ubuntu:∼$ wget http://www.gutenberg.org/cache/epub/5000/
pg5000.txt

--2013-10-18 11:02:36-- http://www.gutenberg.org/cache/epub
/5000/pg5000.txt

Resolving www.gutenberg.org (www.gutenberg.org)... 152.19.134.47
Connecting to www.gutenberg.org (www.gutenberg.org)

|152.19.134.47|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1423803 (1.4M) [text/plain]
Saving to: ‘pg5000.txt’

100%[======================================>] 14,23,803 241K/s
in 5.8s

2013-10-18 11:02:43 (241 KB/s) - ‘pg5000.txt’ saved
[1423803/1423803]

Restart the Hadoop cluster: using script start-all.sh

user@ubuntu:∼$ ./hadoop/bin/start-all.sh

2.7 Multi-node Cluster Installation
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Copy local example data to HDFS: using copyFromLocal dfs option.

user@ubuntu:∼$ ./hadoop/bin/hadoop dfs -copyFromLocal pg5000.txt
input

user@ubuntu:∼$ ./hadoop/bin/hadoop dfs -ls
Found 1 items
-rw-r--r-- 1 user supergroup 1423803 2013-10-18 11:35 /user

/user/input

Run wordcount program: The wordcount program has already been compiled

and stored as a jar file. This jar file comes with the downloaded Hadoop source. The

wordcount example can be found in the hadoop-examples-1.0.3.jar.

user@ubuntu ./hadoop/bin/hadoop jar hadoop-examples-1.0.3.jar
wordcount input output

This command will read all the files in the HDFS directory /user/user/input,

process it, and store the result in the HDFS directory /user/user/output.

user@ubuntu:∼$ ./hadoop/bin/hadoop jar hadoop-examples-1.0.3.jar
wordcount input output

13/10/18 13:47:34 INFO input.FileInputFormat: Total input paths
to process : 1

13/10/18 13:47:34 INFO util.NativeCodeLoader: Loaded the native-
hadoop library

13/10/18 13:47:34 WARN snappy.LoadSnappy: Snappy native library
not loaded

13/10/18 13:47:34 INFO mapred.JobClient: Running job:
job_201310181134_0001

13/10/18 13:47:35 INFO mapred.JobClient: map 0% reduce 0%
13/10/18 13:47:48 INFO mapred.JobClient: map 100% reduce 0%
13/10/18 13:48:00 INFO mapred.JobClient: map 100% reduce 100%
13/10/18 13:48:05 INFO mapred.JobClient: Job complete:

job_201310181134_0001
.
.
.
13/10/18 13:48:05 INFO mapred.JobClient: Virtual memory

(bytes) snapshot=4165484544
13/10/18 13:48:05 INFO mapred.JobClient: Map output records

=251352

Check if the result is successfully stored in HDFS directory /user/user/output

user@ubuntu:∼$ ./hadoop/bin/hadoop dfs -ls output
Found 3 items
-rw-r--r-- 1 user supergroup 0 2013-10-18 13:48 /user

/user/output/_SUCCESS
drwxr-xr-x - user supergroup 0 2013-10-18 13:47 /user

/user/output/_logs
-rw-r--r-- 1 user supergroup 337648 2013-10-18 13:47 /user

/user/output/part-r-00000
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Inspect if the output has been correctly populated.

user@ubuntu:∼$ hadoop dfs -cat /user/mak/output/part-r-00000
"(Lo)cra" 1
"1490 1
"1498," 1
"35" 1
"40," 1
"AS-IS". 1
"A_ 1
"Absoluti 1
"Alack! 1
"Alack!" 1
.
.
.

Hadoop Web Interfaces: The progress of the Hadoop job can be monitored using

the built-in web interfaces. These interfaces provide a graphical representation of

the jobs.

http://localhost:50070/ — web UI of the NameNode daemon

http://localhost:50030/ — web UI of the JobTracker daemon

http://localhost:50060/ — web UI of the TaskTracker daemon

NameNode Web Interface (HDFS layer): It shows details of the storage capacity

and usage, number of live nodes and dead nodes, access to logs, browse file-system,

etc (Figure 2.11).

JobTracker Web Interface (MapReduce layer): It provides information about

job statistics, job statuses if running/completed/failed and also job history logs

(Figure 2.12).

TaskTracker Web Interface (MapReduce layer): It shows the status of run-

ning and non-running tasks. It also gives access to the tasktracker log files of that

task.



66 2 Getting Started with Hadoop

Fig. 2.11: NameNode Web Interface (HDFS layer)

Fig. 2.12: JobTracker Web Interface (MapReduce layer)
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Fig. 2.13: TaskTracker Web Interface (MapReduce layer).

2.9 Hadoop Streaming

Hadoop streaming is a utility that helps users to write and run MapReduce jobs

using any executable or script as a mapper and/or reducer. Streaming is similar to

a pipe operation in Linux. The text input is printed on the stdin stream, then

passed to the Mapper script reading from stdin. The resulting output is written to

the stdout stream which is then passed to Reducer. Finally, the reducer writes the

output to a storage location, typically an HDFS directory.

The command line interface looks as follows.

$HADOOP_HOME/bin/hadoop jar \
$HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper /bin/cat \
-reducer /bin/wc

Here the -mapper and -reducer are Linux executables that read and write to

stdin and stdout respectively. The hadoop-streaming.jar utility creates

a MapReduce job on the cluster and monitors its progress.

When the mapper tasks are executed, the input is converted into lines and fed into

the stdin of the mapper task. The mapper processes these lines as they come and

converts them to (key, value) pairs, which are then sent out to the stdout. These

(key, value) pairs are then fed into the stdin of the reducer task launched after

the completion of the mapper. The (key, value) pairs are reduced by the key and

2.8 Hadoop Programming
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operation is performed on the values. The results are then pushed to the stdout that

is written to persistent storage. This is how streaming works with the MapReduce

framework.

Consequently, this is not limited to scripting languages. Java classes can also be

plugged in as mapper classes.

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-
streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper org.apache.hadoop.mapred.lib.IdentityMapper \
-reducer /bin/wc

Note: Streaming tasks exiting with nonzero status are considered failed.

Streaming Command Line Interface: Streaming supports streaming command

options as well as generic command options. The general command line syntax is

shown below.

Note: Be sure to place the generic options before the streaming options, otherwise

the command will fail.

bin/hadoop command [genericOptions] [streamingOptions]

The Hadoop generic command options you can use with streaming are listed here

[28]:

Commands Description

-input directoryname or
filename

(Required) Input location for mapper

-output directoryname (Required) Output location for reducer

-mapper JavaClassName (Required) Mapper executable

-reducer JavaClassName (Required) Reducer executable

-file filename Make the mapper, reducer, or combiner executable available locally
on the compute nodes

-inputformat JavaClassName Class you supply should return key/value pairs of Text class. If not
specified, TextInputFormat is used as the default

-outputformat
JavaClassName

Class you supply should take key/value pairs of Text class. If not
specified, TextOutputformat is used as the default

-partitioner JavaClassName Class that determines which reduce a key is sent to

-combiner JavaClassName Combiner executable for map output
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Any executable can be specified as a mapper or a reducer, if the file is not present in

the nodes then -file option is used to tell Hadoop to package this file as part of

the job and send across the cluster nodes.

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper myPythonScript.py \
-reducer /bin/wc \
-file myPythonScript.py

In addition to executables, other files like configuration files, dictionaries, etc., can

also be shipped to the nodes while job submission using -file option.

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper myPythonScript.py \
-reducer /bin/wc \
-file myPythonScript.py \
-file myDictionary.txt

Hadoop Streaming with Python: Python-based mapper and reducer are written

as executables. They will read from and write to sys.stdin and sys.stdout
respectively, similar to the discussion above. Here a simple wordcount program is

implemented in python as follows:

Step 1: Map Step

The mapper executable reads the lines from sys.stdin, splits them into words,

and prints out each word as a key and associated count 1 as the value. This file is

stored as /home/user/mapper.py.

Note: Make sure the file has execution permission chmod +x /home/hduser/
mapper.py

#!/usr/bin/env python

import sys

for line in sys.stdin:
line = line.strip()
words = line.split()
for word in words:

print word, "1"

Step 2: Reduce step

The output of the mapper is passed as the input to the reducer. The reducer groups

the words as keys and sums the value associated with each word, thus counting the
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frequency of words in the input file. This file is stored as /home/user/reducer.
py.

Make sure the file has execution permission

chmod +x /home/user/reducer.py.

#!/usr/bin/env python

from operator import itemgetter
import sys

current_word = None
current_count = 0
word = None

for line in sys.stdin:
line = line.strip()

word, count = line.split()

try:
count = int(count)

except ValueError:
continue

if current_word == word:
current_count += count

else:
if current_word:

print current_word, current_count
current_count = count
current_word = word

if current_word == word:
print current_word, current_count

Note: The input file must be transfered to the HDFS before executing the streaming

job.

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/
streaming/hadoop-*streaming*.jar \

-file /home/user/mapper.py \
-mapper /home/user/mapper.py \
-file /home/user/reducer.py \
-reducer /home/user/reducer.py \
-input input -output output

If you want to modify some Hadoop settings on the fly like increasing the number

of Reduce tasks, you can use the -D option:

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/
streaming/hadoop-*streaming*.jar -D mapred.reduce.tasks=16
...
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