
15

Efficient Similarity Joins for Near-Duplicate Detection

CHUAN XIAO and WEI WANG, The University of New South Wales
XUEMIN LIN, The University of New South Wales and East China Normal University
JEFFREY XU YU, Chinese University of Hong Kong
GUOREN WANG, Northeastern University, China

With the increasing amount of data and the need to integrate data from multiple data sources, one of
the challenging issues is to identify near-duplicate records efficiently. In this article, we focus on efficient
algorithms to find a pair of records such that their similarities are no less than a given threshold. Several
existing algorithms rely on the prefix filtering principle to avoid computing similarity values for all possible
pairs of records. We propose new filtering techniques by exploiting the token ordering information; they
are integrated into the existing methods and drastically reduce the candidate sizes and hence improve the
efficiency. We have also studied the implementation of our proposed algorithm in stand-alone and RDBMS-
based settings. Experimental results show our proposed algorithms can outperform previous algorithms on
several real datasets.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Search process; clustering

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Similarity join, near duplicate detection

ACM Reference Format:
Xiao, C., Wang, W., Lin, X., Yu, J. X., and Wang, G. 2011. Efficient similarity joins for near-duplicate detection.
ACM Trans. Datab. Syst. 36, 3, Article 15 (August 2011), 41 pages.
DOI = 10.1145/2000824.2000825 http://doi.acm.org/10.1145/2000824.2000825

1. INTRODUCTION

Near-duplicate data is one of the issues accompanying the rapid growth of data on
the Internet and the growing need to integrate data from heterogeneous sources. As
a concrete example, a sizeable percentage of the Web pages are found to be near
duplicates by several studies [Broder et al. 1997; Fetterly et al. 2003; Henzinger 2006].
These studies suggest that around 1.7% to 7% of the Web pages visited by crawlers are
near-duplicate pages. Near-duplicate data bear high similarity to each other, yet they
are not bitwise identical. There are many causes for the existence of near-duplicate
data: typographical errors, versioned, mirrored, or plagiarized documents, multiple
representations of the same physical object, spam emails generated from the same
template, etc.

W. Wang was partially supported by ARC DP0987273 and DP0881779. X. Lin was partially supported by
ARC DP110102937, DP0987557, DP0881035, NSFC61021004, and a Google Research Award.
Authors’ addresses: C. Xiao (corresponding author), W. Wang, X. Lin, School of Computer Science and
Engineering, The University of New South Wales, Australia; email: chuanx@cse.unsw.edu.au; J. X. Yu,
Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong,
Hong Kong; G. Wang, Faculty of Information Science and Technology, Northeastern University, China.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0362-5915/2011/08-ART15 $10.00

DOI 10.1145/2000824.2000825 http://doi.acm.org/10.1145/2000824.2000825

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:2 C. Xiao et al.

Identifying all the near-duplicate objects benefits many applications. For example,

— For Web search engines, identifying near-duplicate Web pages helps to perform
focused crawling, increase the quality and diversity of query results, and identify
spams [Fetterly et al. 2003; Conrad et al. 2003; Henzinger 2006].

— Many Web mining applications rely on the ability to accurately and efficiently iden-
tify near-duplicate objects. They include document clustering [Broder et al. 1997],
finding replicated Web collections [Cho et al. 2000], detecting plagiarism [Hoad and
Zobel 2003], community mining in a social network site [Spertus et al. 2005], collab-
orative filtering [Bayardo et al. 2007], and discovering large dense graphs [Gibson
et al. 2005].

A quantitative way to define two objects as near duplicates is to use a similarity
function. The similarity function measures degree of similarity between two objects
and will return a value in [0, 1]. A higher similarity value indicates that the objects
are more similar. Thus we can treat pairs of objects with high similarity value as
near duplicates. A similarity join will find all pairs of objects whose similarities are
no less than a given threshold. Throughout this article, we will mainly focus on the
Jaccard similarity; extensions to other similarity measures such as Overlap and cosine
similarities are given in Section 6.1.

An algorithmic challenge is how to perform the similarity join in an efficient and
scalable way. A naı̈ve algorithm is to compare every pair of objects, thus bearing a
prohibitively O(n2) time complexity. In view of such challenges, the prevalent approach
in the past is to solve an approximate version of the problem, that is, finding most of, if
not all, similar objects. Several synopsis-based schemes have been proposed and widely
adopted [Broder 1997; Charikar 2002; Chowdhury et al. 2002].

Recently, researchers started to investigate algorithms that compute the similarity
join for some common similarity/distance functions exactly. Proposed methods include
inverted index-based methods [Sarawagi and Kirpal 2004], prefix filtering-based meth-
ods [Chaudhuri et al. 2006; Bayardo et al. 2007], and signature-based methods [Arasu
et al. 2006]. Among them, the All-Pairs algorithm [Bayardo et al. 2007] was demon-
strated highly efficient and scalable to tens of millions of records. Nevertheless, we
show that the All-Pairs algorithm, as well as other prefix filtering-based methods, usu-
ally generates a huge amount of candidate pairs, all of which need to be verified by
the similarity function. Empirical evidence on several real datasets shows that its can-
didate size grows at a fast quadratic rate with the size of the data. Another inherent
problem is that it hinges on the hypothesis that similar objects are likely to share
rare “features” (e.g., rare words in a collection of documents). This hypothesis might
be weakened for problems with a low similarity threshold or with a restricted feature
domain.

In this article, we propose new exact similarity join algorithms that work for several
commonly used similarity or distance functions, such as Jaccard, cosine similarities,
Hamming and edit distances. We propose a positional filtering principle which exploits
the ordering of tokens in a record and leads to upper bound estimates of similarity
scores. We show that it is complementary to the existing prefix filtering method and
can work on tokens both in the prefixes and the suffixes. We discuss several implemen-
tation alternatives of the proposed similarity join algorithms on relational database
systems. We conduct an extensive experimental study using several real datasets on
both stand-alone and DBMS implementation, and demonstrate that the proposed al-
gorithms outperform previous algorithms. We also show that the new algorithms can
be adapted or combined with existing approaches to produce better-quality results or
improve the runtime efficiency in detecting near-duplicate Web pages.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:3

The rest of the article is organized as follows: Section 2 presents the problem def-
inition and preliminaries. Section 3 summarizes the existing prefix filtering-based
approaches. Sections 4 and 5 give our proposed algorithms by integrating a positional
filtering method on the prefixes and suffixes of the records. Generalization to other
similarity measures is presented in Section 6. Several alternative implementations
of similarity join algorithms on relational databases are discussed in Section 7. We
present our experimental results in Section 8. Related work is covered in Section 9 and
Section 10 concludes.

2. PROBLEM DEFINITION AND PRELIMINARIES

2.1. Problem Definition

We define a record as a set of tokens drawn from a finite universe U = { w1, w2, . . . }.
A similarity function, sim, returns a similarity value in [0, 1] for two records. Given
a collection of records, a similarity function sim(), and a similarity threshold t, the
similarity join problem is to find all pairs of records, 〈x, y〉, such that their similarities
are no smaller than the given threshold t, that is, sim(x, y) ≥ t.

Consider the task of identifying near-duplicate Web pages for example. Each Web
page is parsed, cleaned, and transformed into a multiset of tokens: tokens could be
stemmed words, q-grams, or shingles [Broder 1997]. Since tokens may occur multiple
times in a record, we will convert a multiset of tokens into a set of tokens by treating
each subsequent occurrence of the same token as a new token [Chaudhuri et al. 2006].
This conversion enables us to perform multiset intersections and capture the similarity
between multisets with commonly used similarity functions such as Jaccard [Theobald
et al. 2008]. We can evaluate the similarity of two Web pages as the Jaccard similarity
between their corresponding sets of tokens.

We denote the size of a record x as |x|, which is the number of tokens in x. The
document frequency of a token is the number of records that contain the token. We can
canonicalize a record by sorting its tokens according to a global ordering O defined on
U . A document frequency ordering Odf arranges tokens in U according to the increasing
order of tokens’ document frequencies. Sorting tokens in this order is a heuristic to
speed up similarity joins [Chaudhuri et al. 2006]. A record x can also be represented
as a |U |-dimensional vector, �x, where xi = 1 if wi ∈ x and xi = 0 otherwise.

The choice of the similarity function is highly dependent on the application domain
and thus is out of the scope of this article. We do consider several widely used similarity
functions. Consider two records x and y.

— Jaccard similarity is defined as J(x, y) = |x∩y|
|x∪y| .

— Cosine similarity is defined as C(x, y) = �x·�y
‖�x‖·‖�y‖ =

∑
i xi yi√|x|·√|y| .

— Overlap similarity is defined as O(x, y) = |x ∩ y|.1

A closely related concept is the notion of distance, which can be evaluated by a
distance function. Intuitively, a pair of records with high similarity score should have
a small distance between them. The follong distance functions are considered in this
work.

— Hamming distance between x and y is defined as the size of their symmetric differ-
ence: H(x, y) = |(x − y) ∪ (y − x)|.

1For the ease of illustration, we do not normalize the overlap similarity to [0, 1].

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:4 C. Xiao et al.

— Edit distance, also known as Levenshtein distance, is defined between two strings. It
measures the minimum number of edit operations needed to transform one string
into the other, where an edit operation is an insertion, deletion, or substitution of
a single character. It can be calculated via dynamic programming [Ukkonen 1983].
It is usually converted into aweaker constraint on the overlap between the q-gram
sets of the two strings [Gravano et al. 2001; Li et al. 2008; Xiao et al. 2008a].

Note that the preceding similarity and distance functions are interrelated. We discuss
some important relationships in Section 2.2, and others in Section 6.1.

In this article, we will focus on the Jaccard similarity, a common function for defining
similarity between sets. Extension of our algorithms to handle other similarity or
distance functions appears in Section 6.1. Therefore, in the rest of the article, sim(x, y)
defaults to J(x, y), unless otherwise stated. In addition, we will focus on in-memory
implementation when describing algorithms. The disk-based implementation using
database systems will be presented in Section 7.

Example 2.1. Consider two text documents, Dx and Dy as follows.

Dx = “yes as soon as possible”
Dy = “as soon as possible please”

They can be transformed into the following two records

x = { A, B, C, D, E }
y = { B, C, D, E, F }

with the following word-to-token mapping table.

Word yes as soon as1 possible please
Token A B C D E F
Doc. Freq. 1 2 2 2 2 1

Note that the second “as” has been transformed into a token “as1” in both records, as
we convert each subsequent occurrence of the same token as a new token. Records can
be canonicalized according to the document frequency ordering Odf into the following
ordered sequences (denoted as [. . .]).

x = [A, B, C, D, E]
y = [F, B, C, D, E]

The Jaccard similarity of x and y is 4
6 = 0.67, and the cosine similarity is 4√

5·√5
= 0.80.

2.2. Properties of Jaccard Similarity Constraints

Similarity joins essentially evaluate every pair of records against a similarity con-
straint of J(x, y) ≥ t. This constraint can be transformed into several equivalent forms
based on the overlap similarity or the Hamming distance as follows.

J(x, y) ≥ t ⇐⇒ O(x, y) ≥ α = t
1 + t

· (|x| + |y|). (1)

PROOF. By definition,

J(x, y) = |x ∩ y|
|x ∪ y| = O(x, y)

|x| + |y| − O(x, y)
.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:5

Since J(x, y) ≥ t, we know

O(x, y)
|x| + |y| − O(x, y)

≥ t ⇐⇒ (1 + t)O(x, y) ≥ t(|x| + |y|),

⇐⇒ O(x, y) ≥ t
1 + t

· (|x| + |y|).

O(x, y) ≥ α ⇐⇒ H(x, y) ≤ |x| + |y| − 2α. (2)

PROOF. By definition,

H(x, y) = |(x − y) ∪ (y − x)| = |x| − O(x, y) + |y| − O(x, y).

Since O(x, y) ≥ α, we know

O(x, y) ≥ α ⇐⇒ |x| − O(x, y) + |y| − O(x, y) ≤ |x| + |y| − 2α,

⇐⇒ H(x, y) ≤ |x| + |y| − 2α.

We can also infer the following constraint on the relative sizes of a pair of records
that meet a Jaccard constraint:

J(x, y) ≥ t =⇒ t · |x| ≤ |y|, (3)

and by applying Eq. (1),

J(x, y) ≥ t =⇒ O(x, y) ≥ t · |x|. (4)

3. PREFIX FILTERING-BASED METHODS

A naı̈ve algorithm to compute similarity join results is to enumerate and compare every
pair of records. This method is obviously prohibitively expensive for large datasets, as
the total number of comparisons is O(n2), where n is the number of records.

Efficient algorithms exist by converting the Jaccard similarity constraint into an
equivalent overlap constraint due to Eq. (1). An efficient way to find records that over-
lap with a given record is to use inverted indexes [Baeza-Yates and Ribeiro-Neto 1999].
An inverted index maps a token w to a list of record identifiers that contain w. After
inverted indexes for all tokens in the record set are built, we can scan each record
x, probing the index using every token in x, and obtain a set of candidates; merging
these candidates together gives us their actual overlap with the current record x; fi-
nal results can be extracted by removing records whose overlap with x is less than
� t

1+t · (|x| + |y|)� (Eq. (1)). The main problem of this approach is that the inverted lists
of some tokens, often known as “stop words”, can be very long. These long inverted
lists incur significant overhead for building and accessing them. In addition, comput-
ing the actual overlap by probing indexes essentially requires keeping the state for
all pairs of records that share at least one token, a number that is often prohibitively
large. Several existing works take this approach with optimization by pushing the
overlap constraint into the similarity value calculation phase. For example, Sarawagi
and Kirpal [2004] employ sequential access on short inverted lists but switch to bi-
nary search on the α − 1 longest inverted lists, where α is the Overlap similarity
threshold.

Another approach is based on the intuition that if two canonicalized records are
similar, some fragments of them should overlap with each other, as otherwise the two
records won’t have enough overlap. This intuition can be formally captured by the
prefix-filtering principle [Chaudhuri et al. 2006, Lemma 1] rephrased next.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:6 C. Xiao et al.

LEMMA 3.1 ((PREFIX FILTERING PRINCIPLE)[CHAUDHURI ET AL. 2006]). Given an ordering
O of the token universe U and a set of records, each with tokens sorted in the order
of O. Let the p-prefix of a record x be the first p tokens of x. If O(x, y) ≥ α, then the
(|x| − α + 1)-prefix of x and the (|y| − α + 1)-prefix of y must share at least one token.

Since prefix filtering is a necessary but not sufficient condition for the corresponding
overlap constraint, we can design an algorithm accordingly as: we first build inverted
indexes on tokens that appear in the prefix of each record in an indexing phase. We
then generate a set of candidate pairs by merging record identifiers returned by probing
the inverted indexes for tokens in the prefix of each record in a candidate generation
phase. The candidate pairs are those that have the potential of meeting the similarity
threshold and are guaranteed to be a superset of the final answer due to the prefix
filtering principle. Finally, in a verification phase, we evaluate the similarity of each
candidate pair and add it to the final result if it meets the similarity threshold.

A subtle technical issue is that the prefix of a record depends on the sizes of the other
records to be compared and thus cannot be determined beforehand. The solution is to
index the longest possible prefixes for a record x. From Eq. (4), it can be shown that we
only need to index a prefix of length |x| − �t · |x|� + 1 for every record x to ensure the
prefix filtering-based method does not miss any similarity join result.

The major benefit of this approach is that only smaller inverted indexes need to be
built and accessed (by an approximately (1 − t) reduction). Of course, if the filtering
is not effective and a large number of candidates are generated, the efficiency of this
approach might be diluted. We later show that this is indeed the case and propose
additional filtering methods to alleviate this problem.

There are several enhancements on the basic prefix filtering scheme. Chaudhuri
et al. [2006] consider implementing the prefix filtering method on top of a commercial
database system, while Bayardo et al. [2007] further improve the method by utilizing
several other filtering techniques in the candidate generation phase and verification
phase.

Example 3.2. Consider a collection of four canonicalized records based on the docu-
ment frequency ordering, and the Jaccard similarity threshold of t = 0.8.

w = [C, D, F]
z = [G, A, B, E, F]

y = [A, B, C, D, E]

x = [B, C, D, E, F]

Prefix length of each record u is calculated as |u| − �t · |u|� + 1. Tokens in the prefixes
are underlined and are indexed. For example, the inverted list for token C is [w, x].

Consider the record x. To generate its candidates, we need to pair x with all records
returned by inverted lists of tokens B and C. Hence, candidate pairs formed for x are
{ 〈x, y〉, 〈x, w〉 }.

The All-Pairs algorithm [Bayardo et al. 2007] also includes several other filtering
techniques to further reduce the candidate size. For example, it won’t consider 〈x, w〉
as a candidate pair, as |w| < 4 and can be pruned due to Eq. (3). This filtering method
is known as length filtering [Arasu et al. 2006].

4. POSITIONAL FILTERING

We now describe our proposal to solve the exact similarity join problem. We first intro-
duce the positional filtering, and then propose a new algorithm, ppjoin, that combines
positional filtering with the prefix filtering-based algorithm.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:7

4.1. Positional Filtering

Although a global ordering is a prerequisite of prefix filtering, no existing algorithm
fully exploits it when generating the candidate pairs. We observe that positional infor-
mation can be utilized in several ways to further reduce the candidate size. By positional
information, we mean the position of a token in a canonicalized record (starting from
1). We illustrate the observation in the following example.

Example 4.1. Consider x and y from the previous example and the same similarity
threshold t = 0.8.

y = [A, B, C, D, E]

x = [B, C, D, E, F]

The pair, 〈x, y〉, does not meet the equivalent overlap constraint of O(x, y) ≥ 5, hence is
not in the final result. However, since they share a common token, B, in their prefixes,
prefix filtering-based methods will select y as a candidate for x.

However, if we look at the positions of the common token B in the prefixes of x
and y, we can obtain an estimate of the maximum possible overlap as the sum of
current overlap amount and the minimum number of unseen tokens in x and y, that
is, 1 + min(3, 4) = 4. Since this upper bound of the overlap is already smaller than the
threshold of 5, we can safely prune 〈x, y〉.

We now formally state the positional filtering principle in Lemma 4.2.

LEMMA 4.2 (POSITIONAL FILTERING PRINCIPLE). Given an ordering O of the token uni-
verse U and a set of records, each with tokens sorted in the order of O. Let token
w = x[i], w partitions the record into the left partition xl(w) = x[1 . . i] and the right
partition xr(w) = x[(i + 1) . . |x|]. If O(x, y) ≥ α, then for every token w ∈ x ∩ y,
O(xl(w), yl(w)) + min(|xr(w)|, |yr(w)|) ≥ α.

4.2. Positional Filtering-Based Algorithm

A natural idea to utilize the positional filtering principle is to combine it with the
existing prefix filtering method, which already keeps tracks of the current overlap of
candidate pairs and thus gives us O(xl(w), yl(w)).

Algorithm 1 describes our ppjoin algorithm, an extension to the All-Pairs algo-
rithm [Bayardo et al. 2007], to combine positional filtering and prefix filtering. Like
the All-Pairs algorithm, the ppjoin algorithm takes as input a collection of canonicalized
records already sorted in the ascending order of their sizes. It then sequentially scans
each record x, finds candidates that intersects x’s prefix (x[1 . . p], line 5), and accumu-
lates the overlap in a hash map A (line 12). It makes use of an inverted index built
on-the-fly, that is, Iw returns the postings list associated with w, and each element in
the list is of the form rid, indicating that the record rid’s prefix contains w. The gener-
ated candidates are further verified against the similarity threshold (line 16) to return
the correct join result. Note that the internal threshold used in the algorithm is an
equivalent overlap threshold α computed from the given Jaccard similarity threshold
t. The document frequency ordering Odf is often used to canonicalize the records. It
favors rare tokens in the prefixes and hence results in a small candidate size and fast
execution speed. Readers are referred to Bayardo et al. [2007] for further details on the
All-Pairs algorithm.

Now we will elaborate on several novel aspects of our extension: (i) the inverted
indexes used (Algorithm 1, line 15), and (ii) the use of positional filtering (Algorithm 1,
lines 9–14), and (iii) the optimized verification algorithm (Algorithm 2).

In line 15, we index both tokens and their positions for tokens in the prefixes so
that our positional filtering can utilize the positional information. Each element in the

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:8 C. Xiao et al.

postings list of w (i.e., Iw) is of the form (rid, pos), indicating that the pos-th token in
record rid’s prefix is w. In lines 9–14, we consider the positions of the common token in
both x and y (denoted i and j), compute an upper bound of the overlap between x and
y, and only admit this pair as a candidate pair if its upper bound is no less than the
threshold α. Specifically, α is computed according to Eq. (1); ubound is an upper bound
of the overlap between right partitions of x and y with respect to the current token
w, which is derived from the number of unseen tokens in x and y with the help of the
positional information in the index Iw; A[y] is the current overlap for left partitions of
x and y. It is then obvious that if A[y] + ubound is smaller than α, we can prune the
current candidate y (line 14).

ALGORITHM 1: ppjoin (R, t)
Input : R is a multiset of records sorted by the increasing order of their sizes;

each record has been canonicalized by a global ordering O; a Jaccard
similarity threshold t

Output: S is the set of all pairs of records 〈x, y〉, such that x ∈ R, y ∈ R,
x.rid > y.rid, and sim(x, y) ≥ t

S ← ∅;1

Iw ← ∅ (1 ≤ w ≤ |U |); /* initialize inverted index */;2

for each x ∈ R do3

A ← empty map from record id to int;4

p ← |x| − �t · |x|� + 1;5

for i = 1 to p do6

w ← x[i];7

for each (y, j) ∈ Iw such that |y| ≥ t · |x| do /* size filtering on |y| */8

α ← � t
1+t (|x| + |y|)�;9

ubound ← 1 + min(|x| − i, |y| − j);10

if A[y] + ubound ≥ α then11

A[y] ← A[y] + 1;12

else13

A[y] ← 0; /* prune y */;14

Iw ← Iw ∪ {(x, i)}; /* index the current prefix */;15

Verify(x, A, α);16

return S17

Algorithm 2 is designed to verify whether the actual overlap between x and candi-
dates y in the current candidate set, { y | A[y] > 0 }, meets the threshold α. Notice that
we’ve already accumulated in A[y] the amount of overlaps that occur in the prefixes
of x and y. An optimization is to first compare the last token in both prefixes, and only
the suffix of the record with the smaller token (denoted the record as u) needs to be
intersected with the entire other record (denoted as v). This is because the prefix of u
consists of tokens that are smaller than wu (the last token in u’s prefix) in the global
ordering and v’s suffix consists of tokens that are larger than wv. Since wu ≺ wv, u’s
prefix won’t intersect with v’s suffix. In fact, the workload can still be reduced: we can
skip the first A[y] number of tokens in v since at least A[y] tokens have overlapped
with u’s prefix and hence won’t contribute to any overlap with u’s suffix. The preceding
method is implemented through lines 4, 5, 8, and 12 in Algorithm 2. This optimization
in calculating the actual overlap immediate gives rise to a pruning method. We can

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:9

ALGORITHM 2: Verify(x, A, α)
Input : px is the prefix length of x and py is the prefix length of y
for each y such that A[y] > 0 do1

wx ← the last token in the prefix of x;2

wy ← the last token in the prefix of y;3

O ← A[y];4

if wx < wy then5

ubound ← A[y] + |x| − px;6

if ubound ≥ α then7

O ← O + ∣∣x[(px + 1) . . |x|] ⋂
y[(A[y] + 1) . . |y|]∣∣;8

else9

ubound ← A[y] + |y| − py;10

if ubound ≥ α then11

O ← O + ∣∣x[(A[y] + 1) . . |x|] ⋂
y[(py + 1) . . |y|]∣∣;12

if O ≥ α then13

S ← S ∪ (x, y);14

Table I. Candidate Size (DBLP, Jaccard)

t All-Pairs ppjoin ppjoin+ (MAXDEPTH = 2) Join Result
0.95 135,470 132,190 1,492 90
0.90 756,323 571,147 5,053 1,530
0.85 2,686,012 1,286,909 12,505 4,158
0.80 7,362,912 3,040,972 30,443 8,112

estimate the upper bound of the overlap as the length of the suffix of u (which is either
|x| − px or |y| − py). Lines 6 and 10 in the algorithm perform the estimation and the
subsequent lines test whether the upper bound will meet the threshold α and prune
away unpromising candidate pairs directly.

As shown in Algorithm 1, the ppjoin algorithm can be implemented as a batch join,
that is, loading inputs and building indexes on-the-fly. It can be also implemented as an
indexed join, where the inverted indexes for prefixes are precomputed. Since prefixes
under lower similarity thresholds always subsume prefixes under higher similarity
thresholds, we can precompute and index prefixes under a similarity threshold tmin,
and use it for all similarity joins with threshold t ≥ tmin. Section 7 discuss this option
in more detail.

It is worth mentioning that positional filtering will benefit Jaccard and cosine simi-
larities, but won’t be useful for the Overlap similarity. We will show how to extend the
positional filtering condition to other similarity measures in Section 6.1.

Experimental results show that utilizing positional information can achieve substan-
tial pruning effects on real datasets. For example, we show the sizes of the candidates
generated by ppjoin algorithm and All-Pairs algorithm for the DBLP dataset in Table I.

4.3. The Indexing Prefix and the Probing Prefix

Another significant optimization is the introduction of an index reduction technique.
We illustrate the basic idea in the following example.

Example 4.3. Consider the following two records x and y, and the similarity thresh-
old of 0.8. Tokens “?” indicate that we have not accessed those tokens and do not know

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:10 C. Xiao et al.

prefix suffix

y

x

j

i

Fig. 1. Indexing prefix and probing prefix.

their contents yet.

x = [A, B, ?, ?, ?]
y = [B, ?, ?, ?, ?]

The prefix length of x is 2. If y contains the token B but not A, the maximum possible
similarity of the pair 〈x, y〉 is at most 4

5+5−4 = 0.67. Therefore this pair cannot meet the
similarity threshold though they share a common token B in their prefix.

This suggests that we do not need to index token B for x. It was first used implicitly
in Bayardo et al. [2007] for the cosine similarity function, and was extended to other
similarity functions in Xiao et al. [2009]. We formally state this observation in the
following lemma that can further reduce the number of tokens to be indexed and hence
accessed.

LEMMA 4.4. Given a record x, we only need to index its li = |x| − � 2t
1+t · |x|� + 1-prefix

(and use lp = |x|−�t|x|�+1 prefix for inverted index probing) for Algorithm 1 to produce
correct join result.

PROOF. Based on the definition of the Jaccard similarity, we know that the Jaccard
similarity increases when O(x, y) increases, as follows.

J(x, y) = |x ∩ y|
|x ∪ y| = O(x, y)

|x| + |y| − O(x, y)

We will find an upper bound for O(x, y) in Figure 1, which in turn induces an upper
bound on the Jaccard similarity.

Consider two records x and y, and |x| ≥ |y|. We also know that t · |x| ≤ |y| based on
Eq. (3).

Suppose we use the first j tokens of y as its prefix and use the first i tokens of x as
its prefix. If there is no common token in x[1 . . i] and y[1 . . j], then the only overlap
comes from the suffix of one record with another record.

We distinguish two possible cases, based on the ordering of the last tokens in x’s and
y’s prefixes.

Case 1 when x[i] ≤ y[j]. In this case, O(x, y) ≤ min(|x| − i, |y|).
(a) If |x| − i ≤ |y|, O(x, y) ≤ |x| − i. We then have

J(x, y) ≤ |x| − i
|x| + |y| − |x| + i

≤ |x| − i
t|x| + i

.

Let the right-hand side be less than t, we have

|x| − i
|x| + i

< t ⇐⇒ i > (1 − t)|x|.

It can be verified that |x| − i is indeed less than |y|.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:11

(b) If |x| − i > |y|, O(x, y) ≤ |y|. We then have

J(x, y) ≤ |y|
|x| + |y| − |y| = |y|

|x| .

In this subcase, if i ≥ |x| − |y| + 1, we have J(x, y) < t. This gives a same lower
bound on the choice of i.

Therefore, in this case, when i ≥ |x|− �t|x|�+ 1, J(x, y) < t if there is no intersection
in x’s and y’s prefixes (regardless of j’s value).

Case 2 when x[i] > y[j]. In this case, O(x, y) ≤ min(|y| − j, |x|) = |y| − j.
We then have

J(x, y) ≤ |y| − j
|x| + |y| − |y| + j

≤ |y| − j
|y| + j

.

Let the right-hand side less than t, we have

|y| − j
t|y| + j

< t ⇐⇒ j >
1 − t
1 + t

|y|.

Therefore, in this case, when j ≥ |y|−� 2t
1+t |y|�+1, J(x, y) < t if there is no intersection

in x’s and y’s prefixes (regardless of i’s value).

Remark 4.5. The root of this improvement comes from: (1) the fact that records are
sorted in increasing order of lengths (thus we can only use the indexing prefix for short
records and probing prefix for longer records) and (2) the fact that Jaccard similarity
is relative to the sizes of both records.

Remark 4.6. The preceding prefixes’ lengths are for the worst-case scenario and
are not tight otherwise, however, our positional filtering effectively removes all the
spurious candidates by taking the actual value of x and y (and is thus optimal if only
this information is given).

We may extend the prefix length by k tokens, and then require a candidate pair
having no less than k + 1 common tokens.

COROLLARY 4.7. Consider using a li + k indexing prefix and lp + k probing prefix. If
two records do not have at least k + 1 common tokens in their respective prefixes, the
Jaccard similarity between them is less than t.

This optimization requires us to change line 15 in Algorithm 1 such that it only
indexes the current token w if the current token position i is no larger than |x| − � 2t

1+t ·
|x|� + 1.

In order not to abuse the term “prefix”, we denote “prefix” by default probing prefix
in later sections unless otherwise specified. We also exclude the the optimization using
indexing prefixes for the ease of illustration in later sections, but integrate it into the
implementations in our experiments.

5. SUFFIX FILTERING

In this section, we first motivate the need of additional filtering method, and then
introduce a divide-and-conquer-based suffix filtering method, which is a generalization
of the positional filtering to the suffixes of the records.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:12 C. Xiao et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.2 0.4 0.6 0.8 1

S
q
u
a
re

 R
o
o
t
o
f
C

a
n
d
id

a
te

 S
iz

e

Scale Factor

DBLP, Jaccard Similarity, t = 0.80

All-Pairs
PPJoin

PPJoin+
LSH-95%

Result

Fig. 2. Quadratic growth of candidate size.

5.1. Quick Growth of the Candidates

Let’s consider the asymptotic behavior of the size of the candidate size generated
by the prefix filtering-based methods. The candidate size is O(n2) in the worst case.
Our empirical evidence on several real datasets suggests that the growth is indeed
quadratic. For example, we show the square root of query result size and candidate
sizes of the All-Pairs algorithm and our ppjoin algorithm in Figure 2. It can be observed
that while positional filtering helps to further reduce the size of the candidates, it is
still growing quadratically (albeit with a much slower rate than All-Pairs).

5.2. Generalization of Positional Filtering to Suffixes

Given the empirical observation about the quadratic growth rate of the candidate size,
it is desirable to find an additional pruning method in order to alleviate the problem
and tackle really large datasets.

Our goal is to develop an additional filtering method that prunes candidates that
survive the prefix and positional filtering. Our basic idea is to generalize the positional
filtering principle to work on the suffixes of candidate pairs that survive after positional
filtering, where the term “suffix” denotes the tokens not included in the prefix of a
record. However, the challenge is that the suffixes of records are not indexed nor their
partial overlap has been calculated. Therefore, we face the following two technical
issues: (i) how to establish an upper bound in the absence of indexes or partial overlap
results? (ii) how to find position of a token without tokens being indexed?

We solve the first issue by converting an overlap constraint to an equivalent Ham-
ming distance constraint, according to Eq. (2). We then lower bound the Hamming
distance by partitioning the suffixes in a coordinated way. We denote the suffix of a
record x as xs. Consider a pair of records, 〈x, y〉, that meets the Jaccard similarity
threshold t, and without loss of generality, |y| ≤ |x|. We can derive the following upper
bound in terms of the Hamming distance of their suffixes.

H(xs, ys) ≤ Hmax = 2|y| − 2
⌈

t
1 + t

· (|x| + |y|)
⌉

− (�t · |y|� − �t · |x|�) (5)

PROOF. According to Jaccard similarity, the overlap between x and y is at least
t

1+t · (|x| + |y|). Therefore the Hamming distance of x and y

H(x, y) ≤ |x| + |y| − 2
⌈

t
1 + t

· (|x| + |y|)
⌉
.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:13

The Hamming distance between x’s and y’s prefixes is at least the difference of the
lengths of the two prefixes, that is,

H(xp, yp) ≥ �((1 − t) · |x| + 1)� − �((1 − t) · |y| + 1)�,
= �(1 − t) · |x|� − �(1 − t) · |y|�.

Therefore, we have

H(xs, ys) ≤ H(x, y) − H(xp, yp), = 2|y| − 2
⌈

t
1 + t

· (|x| + |y|)
⌉

− (�t · |y|� − �t · |x|�).

In order to check whether H(xs, ys) exceeds the maximum allowable value, we provide
an estimate of the lower bound of H(xs, ys) next. First we choose an arbitrary token w
from ys, and divide ys into two partitions: the left partition yl and the right partition
yr. The criterion for the partitioning is that the left partition contains all the tokens in
ys that precede w in the global ordering and the right partition contains w (if any) and
tokens in ys that succeed w in the global ordering. Similarly, we divide xs into xl and
xr using w too (even though w might not occur in x). Since xl (xr) shares no common
token with yr (yl), H(xs, ys) = H(xl, yl) + H(xr, yr). The lower bound of H(xl, yl) can be
estimated as the difference between |xl| and |yl|, and similarly for the right partitions.
Therefore,

H(xs, ys) ≥ abs(|xl| − |yl|) + abs(|xr| − |yr|).
Finally, we can safely prune away candidates whose lower bound Hamming distance

is already larger than the allowable threshold Hmax.
We can generalize the previous method to more than one probing token and repeat

the test several times independently to improve the filtering rate. However, we will
show that if the probings are arranged in a more coordinated way, results from for-
mer probings can be taken into account and make later probings more effective. We
illustrate this idea in the example that follows.

Example 5.1. Consider the following two suffixes of length 6. Cells marked with “?”
indicate that we have not accessed those cells and do not know their contents yet.

1 2 3 4 5 6pos

? D ? ? F ?xs

xll xlr xr

? ? D F ? ?ys

yll ylr yr

Assume the allowable Hamming distance is 2. If we probe the 4th token in ys (“F”),
we have the following two partitions of ys: yl = ys[1 . . 3] and yr = ys[4 . . 6]. Assuming
a magical “partition” function, we can partition xs into xs[1 . . 4] and xs[5 . . 6] using F.
The lower bound of Hamming distance is abs(3 − 4) + abs(3 − 2) = 2.

If we perform the same test independently, say, using the 3rd token of ys (“D”), the
lower bound of Hamming distance is still 2. Therefore, 〈x, y〉 is not pruned away.

However, we can actually utilize the previous test result. The result of the second
probing can be viewed as a recursive partitioning of xl and yl into xll, xlr, yll, and ylr.
Obviously the total absolute differences of the sizes of the three partitions from two

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:14 C. Xiao et al.

suffixes is a lower bound of their Hamming distance, which is

abs(|xll| − |yll|) + abs(|xlr| − |ylr|) + abs(|xr| − |yr|)
= abs(1 − 2) + abs(3 − 1) + abs(2 − 3) = 4.

Therefore, 〈x, y〉 can be safely pruned.

The algorithm we designed to utilize the preceding observations is a divide-and-
conquer one (Algorithm 3). First, the token in the middle of y is chosen, and x and
y are partitioned into two parts respectively. The lower bounds of Hamming distance
on both left and right partitions are computed and summed up to judge if the overall
hamming distance is within the allowable threshold (lines 9–10). Then we call the
SuffixFilter function recursively first on the left and then on the right partitions (lines
13–19). Probing results in the previous tests are used to help reduce the maximum
allowable Hamming distance (line 16) and to break the recursion if the Hamming
distance lower bound has exceeded the threshold Hmax (lines 14–15 and 19). Finally,
only those pairs such that their lower bounding Hamming distance meets the threshold
will be considered as candidate pairs. We also use a parameter MAXDEPTH to limit the
maximum level of recursion (line 1); this is aimed to strike a balance between filtering
power and filtering overhead.

The second technical issue is how to perform the partition efficiently, especially for
xs. A straight-forward approach is to perform binary search on the whole suffix, an
idea which was also adopted by the ProbeCount algorithm [Sarawagi and Kirpal 2004].
The partitioning cost will be O(log |xs|). Instead, we found that the search only needs
to be performed in a much smaller area approximately centered around the position
of partition token w in y, due to the Hamming distance constraint. We illustrate this
using the following example.

Example 5.2. Continuing the previous example, consider partitioning xs according
to the probing token F. The only possible area where F (for simplicity, assume F exists
in xs) can occur is within xs[3 . . 5], as otherwise, the Hamming distance between xs and
ys will exceed 2. We only need to perform binary search within xs[3 . . 5] to find the first
token that is no smaller than F.

The preceding method can be generalized to the general case where xs and ys have
different lengths. This is described in lines 4–6 in Algorithm 3. The size of the search
range is bounded by Hmax, and is likely to be smaller within the subsequent recursive
calls.

Algorithm 4 implements the partitioning process using a partitioning token w. One
thing that deviates from Example 5.1 is that the right partition now does not include
the partitioning token, if any (line 7). This is mainly to simplify the pseudocode while
still ensuring a tight bound on the Hamming distance when the token w cannot be
found in xs.

Finally, we can integrate the suffix filtering into the ppjoin algorithm and we name
the new algorithm ppjoin+. To that end, we only need to replace the original line 12 in
Algorithm 1 with the lines shown in Algorithm 5. We choose to perform suffix filtering
only once for each candidate pair on the first occasion that it is formed, and put it
after the first invocation of positional filtering for this pair. This is because: (1) suffix
filtering probes the unindexed part of the records, and is relatively expensive to carry
out; (2) candidate sizes after applying suffix filtering are usually drastically reduced,
and in the same order of magnitude as the sizes of join result for a wide range of
similarity thresholds (see Table I, Figure 2, and the experiment report in Section 8).
An additional optimization opportunity enabled by this design is that we can further
reduce the initial allowable Hamming distance threshold to |x| + |y| − 2� t

1+t · (|x| +

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:15

ALGORITHM 3: SuffixFilter(x, y, Hmax, d)
Input : Two set of tokens x and y, the maximum allowable hamming distance

Hmax between x and y, and current recursive depth d
Output: The lower bound of hamming distance between x and y
if d > MAXDEPTH then return abs(|x| − |y|) ;1

mid ← �|y|
2 �; w ← y[mid];2

o ← Hmax−abs(|x|−|y|)
2 ; /* always divisible */;3

if |x| < |y| then ol ← 1, or ← 0 else ol ← 0, or ← 1;4

(yl, yr, f, diff) ← Partition(y, w, mid, mid);5

(xl, xr, f, diff) ← Partition(x, w, mid−o −abs(|x|− |y|) · ol, mid+o +abs(|x|− |y|) · or);6

if f = 0 then7

return Hmax + 18

H ← abs(|xl| − |yl|) + abs(|xr| − |yr|) + diff;9

if H > Hmax then10

return H11

else12

Hl ← SuffixFilter(xl, yl, Hmax − abs(|xr| − |yr|) − diff, d + 1) ;13

H ← Hl + abs(|xr| − |yr|) + diff;14

if H ≤ Hmax then15

Hr ← SuffixFilter(xr, yr, Hmax − Hl − diff, d + 1) ;16

return Hl + Hr + diff17

else18

return H19

ALGORITHM 4: Partition(s, w, l, r)
Input : An array of tokens s, a token w, left and right bounds of searching range

l, r
Output: Two partitions of s: sl and sr, a flag f indicating whether w is in the

searching range, and a flag diff indicating whether the probing token w
is not found in y

sl ← ∅; sr ← ∅;1

if s[l] > w or s[r] < w then2

return (∅,∅, 0, 1)3

p ← binary search for the position of the first token in s that is no larger than w4

in the global ordering within s[l . . r];
sl ← s[1 . . p − 1];5

if s[p] = w then6

sr ← s[(p + 1) . . |s|]; diff ← 0; /* skip the token w */;7

else8

sr ← s[p . . |s|]; diff ← 1;9

return (sl, sr, 1, diff)10

|y|)� − (i + j − 2), where i and j stand for the positions of the first common token w
in x and y, respectively (line 2). Intuitively, this improvement is due to the fact that
x[1 . . (i−1)]∩y[1 . . (j−1)] = ∅ since the current token is the first common token between
them.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:16 C. Xiao et al.

ALGORITHM 5: Replacement of Line 12 in Algorithm 1
if A[y] = 0 then /* only true if y first becomes a candidate for x */1

Hmax ← |x| + |y| − 2 · � t
1+t · (|x| + |y|)� − (i + j − 2);2

H ← SuffixFilter(x[(i + 1) . . |x|], y[(j + 1) . . |y|], Hmax, 1);3

if H ≤ Hmax then4

A[y] ← A[y] + 1;5

else6

A[y] ← −∞; /* avoid considering y again */;7

The suffix filtering employed by the ppjoin+ algorithm is orthogonal and complemen-
tary to the prefix and positional filtering, and thus helps further reduce the candidate
size. Its effect on the DBLP dataset can be seen in Table I and Figure 2.

It is worth mentioning that the reduction of candidate size won’t equally contribute
to the reduction on the running time of similarity join. This is because suffix filtering
performs binary searches to find tokens in the suffix, and the overhead increases with
the level of recursion. Currently, the maximum level of recursion, MAXDEPTH, is deter-
mined heuristically, as it depends on the data distribution and similarity threshold.
We determine its optimal value by running the algorithm on a sample of the dataset
with different values and choosing the one giving the best performance. A larger value
of MAXDEPTH reduces the size of the candidates to be verified, yet incurs overhead for
the pruning. For all the datasets we have tested, the optimal MAXDEPTH value ranges
from 2 to 5. In Section 8.1.6, we will study the effect of the parameter MAXDEPTH using
experimental evaluation to find the overall most efficient algorithm.

6. EXTENSIONS

6.1. Extension to Other Similarity Measures

In this section, we briefly comment on necessary modifications to adapt both ppjoin and
ppjoin+ algorithms to other commonly used similarity measures. The major changes are
related to the length of the prefixes used for indexing (line 15, Algorithm 1) and used for
probing (line 5, Algorithm 1), the threshold used by size filtering (line 8, Algorithm 1)
and positional filtering (line 9, Algorithm 1), and the Hamming distance threshold
calculation (line 2, Algorithm 5).

Overlap Similarity. O(x, y) ≥ α is inherently supported in our algorithms. The prefix
length for a record x will be x−α+1. The size filtering threshold is α. It can be shown that
positional filtering will not help pruning candidates, but suffix filtering is still useful.
The Hamming distance threshold, Hmax, for suffix filtering will be |x|+|y|−2α−(i+ j−2).

Edit Distance. Edit distance is a common distance measure for strings. An edit
distance constraint can be converted into weaker constraints on the overlap between
the q-gram sets of the two strings. Specifically, let |u| be the length of the string
u, a necessary condition for two strings to have less than δ edit distance is that their
corresponding q-gram sets must have overlap no less than α = (max(|u|, |v|)+q−1)−qδ
[Gravano et al. 2001].

The prefix length of a record x (which is now a set of q-grams) is qδ + 1. The size
filtering threshold is |x|−δ. Positional filtering will use an overlap threshold α = |x|−qδ.
The Hamming distance threshold, Hmax, for suffix filtering will be |y| − |x| + 2qδ − (i +
j − 2).

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:17

Cosine Similarity. We can convert a constraint on cosine similarity to an equivalent
overlap constraint as follows.

C(x, y) ≥ t ⇐⇒ O(x, y) ≥
⌈

t ·
√

|x| · |y|
⌉

The length of the prefix for a record x is |x|−�t2 ·|x|�+1, yet the length of the tokens to
be indexed can be optimized to |x| − �t · |x|� + 1. The size filtering threshold is �t2 · |x|�.2
Positional filtering will use an overlap threshold α = ⌈

t · √|x| · |y|⌉. The Hamming
distance threshold, Hmax, for suffix filtering will be |x|+|y|−2

⌈
t · √|x| · |y|⌉− (i + j −2).

6.2. Generalization to the Weighted Case

To adapt the ppjoin and ppjoin+ algorithms to the weighted case, we mainly need to
modify the computation of the prefix length. In the following, we use weighted Jaccard
similarity (defined shortly)as the example, and illustrate important changes.

Jw(x, y) =
∑

w∈|x∩y| weight(w)∑
w∈|x∪y| weight(w)

The binary Jaccard similarity we discussed before is just a special case when all the
weights are 1.0.

Reconsider Example 2.1 and assume the weights of the tokens as follows.

Word yes as soon as1 possible please
Token A B C D E F
Weight 0.3 0.2 0.6 0.5 0.7 0.4

Then the weighted Jaccard similarity between x and y is as follows.

Jw(x, y) = 0.2 + 0.6 + 0.5 + 0.7
0.3 + 0.2 + 0.6 + 0.5 + 0.7 + 0.4

= 0.74

To choose the global ordering of tokens, one option is to sort the tokens by decreasing
order of weight. In addition, records can be sorted to the total weight of each record
(denoted as σx) rather than its length, that is, σx = ∑|x|

i=1 weight(x[i]).
The probing prefix length of a record x is given next.

lp = min

{
j

∣∣∣∣∣σx − ∑ j
i=1 weight(x[i])

σx
< t

}

It can be shown that if there is no overlap within the prefix, the maximum weighted
Jaccard similarity value that can be achieved will be less than t.

The indexing prefix length for x is as follows.

li = min

{
j

∣∣∣∣∣σx − ∑ j
i=1 weight(x[i])

σx + ∑ j
i=1 weight(x[i])

< t

}

In order to apply the positional filtering, we index the sum of the weights of unseen
tokens in the inverted list, instead of the token’s position. Formally, if a token x[i]
is indexed, then σx[i ..|x|] = ∑|x|

j=i weight(x[j]) is calculated and stored as if it is the
positional information. The positional filtering test in lines 9 – 14 in Algorithm 1 is
replaced by Algorithm 6.

2These are the same bounds obtained in Bayardo et al. [2007].

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:18 C. Xiao et al.

ALGORITHM 6: Replacement of Lines 9 – 14 in Algorithm 1
α ← � t

1+t (σx + σy)�;1

ubound ← min(σx[i ..|x|], σy[j ..|y|]);2

if A[y] + ubound ≥ α then3

A[y] ← A[y] + weight(w); /* A[y] is the current weighted overlap of x4

and y */;
else5

A[y] ← 0; /* prune y */;6

ALGORITHM 7: SuffixFilterWeighted(x, y, Hw
max, d)

Input : Two set of tokens x and y, the maximum allowable weighted hamming
distance Hw

max between x and y, and current recursive depth d
Output: The lower bound of weighted hamming distance between x and y
if d > MAXDEPTH then1

if |x| ≥ |y| then2

return weight(x[|x|]) · (|x| − |y|)3

else4

return weight(y[|y|]) · (|y| − |x|)5

mid ← �|y|
2 �; w ← y[mid];6

o ← � Hw
max

weight(w)�;7

(yl, yr, f, diff) ← Partition(y, w, mid, mid);8

(xl, xr, f, diff) ← Partition(x, w, mid − o, mid + o);9

if f = 0 then10

return Hw
max + 111

if |xl| ≥ |yl| then12

Hw
l ← weight(xl[|xl|]) · (|xl| − |yl|);13

else14

Hw
l ← weight(yl[|yl|]) · (|yl| − |xl|);15

if |xr| ≥ |yr| then16

Hw
r ← weight(xr[|xr|]) · (|xr| − |yr|);17

else18

Hw
r ← weight(yr[|yr|]) · (|yr| − |xr|);19

Hw ← Hw
l + Hw

r + diff · weight(w);20

if Hw > Hw
max then21

return Hw22

else23

Hw
l ← SuffixFilterWeighted(xl, yl, Hw

max − Hw
r − diff · weight(w), d + 1) ;24

Hw ← Hw
l + Hw

r + diff · weight(w);25

if Hw ≤ Hw
max then26

Hw
r ← SuffixFilterWeighted(xr, yr, Hw

max − Hw
l − diff · weight(w), d + 1) ;27

return Hw
l + Hw

r + diff · weight(w)28

else29

return Hw30

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:19

Next, we develop the suffix filtering for the weighted Jaccard similarity function.
The algorithm framework is the same as the binary version, except that some of the
values need to be converted to weighted forms. The Hamming distance threshold Hmax
is replaced by the weighted Hamming distance threshold.

Hw
max = σx + σy − 2

⌈
t

1 + t
· (σx + σy)

⌉
− (σx[1 ..i−1] + σy[1 .. j−1])

The pseudocode of suffix filtering for weighted Jaccard similarity is given in Algo-
rithm 7. It has the following major modifications.

—Lines 1 – 5. If the recursive depth d is greater than MAXDEPTH, we compare the length
of x and y, and select the longer one. Its last token has the least weight. The weight
is multiplied by the length difference of x and y, and then returned as a lower bound
of weighted hamming distance. Note that the inputs to the algorithm x and y can
be not only records but also partitions, therefore we are unable to obtain the exact
value of the weighted sum of x’s or y’s tokens unless it is calculated on-the-fly or is
calculated beforehand. We choose to return the lower bound as this will save time
and space costs, though the bound is generally not as tight as the exact value.

—Lines 7 – 9. New search ranges are used to perform binary search efficiently for
weighted cases.

—Lines 12 – 20. We estimate the lower bound within the left (or right) partition by
multiplying the weight of the last token in the longer partition and the length differ-
ence.

7. IMPLEMENTING SIMILARITY JOINS ON RELATIONAL DATABASE SYSTEMS

In this section, we discuss and compare several alternatives to implement the sim-
ilarity join algorithms (All-Pairs, ppjoin, and ppjoin+) on relational database manage-
ment systems. Such implementations are disk based, and of interest to both academia
[Gravano et al. 2001] and industry [Chaudhuri et al. 2006]. We focus on the case of
self-join and discuss necessary modifications to accommodate nonself-join at the end of
this section.

We consider an input relation R with the schema
CREATE TABLE R (

rid INTEGER PRIMARY KEY ,
len INTEGER ,
toks VARRAY (2048)

);

where rid is the identifier of a record, len is the length of this record, and toks is a
variable-length array of token identifiers sorted in the increasing df order.3

The naı̈ve scheme can be implemented as the following SQL query. We have
SELECT R1.rid , R2.rid
FROM R R1 , R R2
WHERE R1.rid1 < R2.rid

AND SIM(R1.text , R2.text) >= t

where SIM is the similarity function implemented in UDF.
It is prohibitively expensive for large datasets, partly because the query entails

(almost half of) a cross self-join on R. Although this scheme can be improved by keeping
track of the lengths of each record and imposing a length difference constraint in the
query, it still has prohibitively high cost in practice.

3The maximum capacity of VARRAY can be adjusted accordingly or other appropriate attribute type for strings
can be used.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:20 C. Xiao et al.

In order to implement the prefix filtering in SQL, there are few alternatives which
will be discussed next.

7.1. All-Pairs

In order to incorporate the prefix filtering, a prefix table, PrefixR, is generated from
relation R, with the schema

CREATE TABLE PrefixR (
rid INTEGER ,
len INTEGER ,
tid INTEGER ,
PRIMARY KEY (tid , rid)

);

where rid is the identifier of a record, len is the length of a record, and tid is a
token that appears in the record identified by rid. Note that all tokens in a record are
ordered by increasing df values and the prefix of appropriate length are recorded in
the PrefixR table. Note that, unlike our non-DBMS implementation, we do not require
the input records sorted on their lengths. Instead, length filtering in the SQL query
automatically enforces such a constraint.

If the similarity threshold is known in advance, we can have a precise prefix table,
where the (probing) prefix of length |x| − �t|x|� + 1 is record in Table PrefixR. We
consider the generic version in Section 8.2.

The SQL queries can be conceptually divided into two parts: (a) generating the
candidate pairs and (b) verifying them.

CREATE VIEW CANDSET AS
SELECT DISTINCT PR1.rid AS rid1 , PR2.rid As rid2
FROM PrefixR PR1 , PrefixR PR2
WHERE PR1.rid < PR2.rid

AND PR1.tid = PR2.tid
AND PR1.len >= CEIL(t * PR2.len)

SELECT R1.rid , R2.rid
FROM R R1 , R R2 , CANDSET C
WHERE C.rid1 = R1.rid

AND C.rid2 = R2.rid
AND VERIFY(R1.toks , R2.toks , t) = 1

This scheme results in significant improvement over the naı̈ve scheme for two main
reasons: the reduction of candidate set due to the prefix filtering, and the use of length
filtering that reduces the complexity of generating the candidates.

We note that this scheme is similar to the scheme proposed in Chaudhuri et al. [2006]
with the following difference.

—The main difference is the use of length filtering, which is not possible in Chaudhuri
et al. [2006] as they mainly consider the overlap constraint.

—The rid order in our scheme implies the length order.

7.2. Implementing ppjoin and ppjoin+

To achieve the best performance, we need an enhanced version of the PrefixR table by
including an additional attribute pos. The SQL is listed as follows.

CREATE TABLE PrefixR (
rid INTEGER ,
len INTEGER ,
tid INTEGER ,
pos INTEGER ,
PRIMARY KEY (tid , rid)

);

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:21

ppjoin can be implemented as follows.
1 CREATE VIEW CANDSET AS
2 SELECT DISTINCT PR1.rid AS rid1 , PR2.rid As rid2
3 FROM PrefixR PR1 , PrefixR PR2
4 WHERE PR1.rid < PR2.rid
5 AND PR1.tid = PR2.tid
6 AND PR1.len >= CEIL(t * PR2.len)
7 AND PR1.len - PR1.pos >= CEIL(PR1.len * 2 * t / (1+t))
8 AND DECODE(SIGN((PR1.len - PR1.pos) - (PR2.len - PR2.pos)),
9 -1,

10 (PR1.len - PR1.pos),
11 (PR2.len - PR2.pos)
12) >=
13 CEIL((PR1.len + PR2.len) * t / (1+t));

SELECT R1.rid , R2.rid
FROM R R1 , R R2 , CANDSET C
WHERE C.rid1 = R1.rid

AND C.rid2 = R2.rid
AND VERIFY(R1.len , R1.toks , R2.len , R2.toks , t) = 1

Note that

—The positional filtering is implemented in lines 8–13. A subtlty is that the positional
filtering is only correct on the first common token in a candidate pair’s prefixes.
However, this implementation does not affect the correctness of the algorithm.

—Line 7 imposes the restriction the tokens in the shorter record must be from the
indexing prefix. Therefore, we only consider joins between indexing prefixes and
probing prefixes.

For ppjoin+, the only difference is in the second SQL statement, where SUFFIX FILTER
is the PL/SQL code implementing the suffix filtering.

SELECT R1.rid , R2.rid
FROM R R1 , R R2 , CANDSET C
WHERE C.rid1 = R1.rid

AND C.rid2 = R2.rid
AND SUFFIX_FILTER (R1.toks , R2.toks , R1.len , R2.len , t) = 1
AND VERIFY(R1.len , R1.toks , R2.len , R2.toks , t) = 1

7.2.1. Generic Prefix Table. The preceding scheme requires a prefix table for every simi-
larity threshold. Observing that the prefixes under lower similarity thresholds always
subsume the prefixes under higher similarity thresholds, we can use only one prefix
table built for similarity threshold tmin and use it for all similarity joins with threshold
t ≥ tmin. With the generic prefix table, we use the following SQL statement to generate
the candidate pairs.

1 CREATE VIEW CANDSET AS
2 SELECT DISTINCT PR1.rid AS rid1 , PR2.rid As rid2
3 FROM PrefixR PR1 , PrefixR PR2
4 WHERE PR1.rid < PR2.rid
5 AND PR1.tid = PR2.tid
6 AND PR1.len >= CEIL(t * PR2.len)
7 AND DECODE(SIGN((PR1.len - PR1.pos) - (PR2.len - PR2.pos)),
8 -1,
9 (PR1.len - PR1.pos),

10 (PR2.len - PR2.pos)
11) >=
12 CEIL((PR1.len + PR2.len) * t / (1+t));
13 AND PR1.len - PR1.pos >= CEIL(PR1.len * 2 * t / (1+t))
14 AND PR2.len - PR2.pos >= CEIL(PR2.len * t)

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:22 C. Xiao et al.

The main difference when compared to the specific prefix table version is that we use
an additional predicates (lines 14) to calculate and use only the appropriate probing
indexing prefixes to produce the candidates.

7.3. An Alternative Implementation Using GROUP BYs

In this scheme, we requires the basic records stored in a normalized table. This elim-
inates the need of a dedicated prefix table and the verification can be computed using
SQL statements without UDFs.

The schema for table R is as follows.
CREATE TABLE R (

rid INTEGER ,
len INTEGER ,
tid INTEGER ,
pos INTEGER ,
PRIMARY KEY (tid , rid)

);

The previous schema is identical to the PrefixR table in the dedicated prefix version
of implementation, except that all the tokens of the records are stored in the R table
here.

The SQL statements are given next.
CREATE VIEW CANDSET AS

SELECT PR1.rid AS rid1 , PR2.rid AS rid2 , MAX(PR1.pos) AS maxPosX ,
MAX(PR2.pos) AS maxPosY , COUNT (*) AS prefixOverlap

FROM R PR1 , R PR2
WHERE PR1.rid < PR2.rid

AND PR1.tid = PR2.tid
AND PR1.len >= CEIL(t * PR2.len)
AND PR1.len - PR1.pos >= CEIL(PR1.len * 2 * t / (1+t))
AND PR2.len - PR2.pos >= CEIL(PR2.len * t)
AND DECODE(SIGN((PR1.len - PR1.pos) - (PR2.len - PR2.pos)),

-1,
(PR1.len - PR1.pos),
(PR2.len - PR2.pos)

) >=
CEIL((PR1.len + PR2.len) * t / (1+t))

GROUP BY PR1.rid , PR2.rid;

SELECT R1.rid , R2.rid
FROM R R1 , R R2 , CANDSET C
WHERE C.rid1 = R1.rid

AND C.rid2 = R2.rid
AND R1.tid = R2.tid
AND R1.pos > maxPosX
AND R2.pos > maxPosY

GROUP BY R1.rid , R2.rid
HAVING COUNT (*) + prefixOverlap >=

(R1.len + R2.len) * t / (1+t) - C.cnt

Compared with the non-GROUP-BY implementation of the similarity join algo-
rithms, the GROUP-BY implementation suffers from the fact that

—Positional filtering can only be applied after the GROUP BY operator.
—The GROUP BY operator potentially has more overhead than the DISTINCT

operator.

7.3.1. Using Longer Prefixes. We now consider using longer prefixes in the GROUP BY
scheme. However, we use dedicated table to store longer prefixes here, but calculate
the overlap within the prefixes using GROUP BY clause. According to Corollary 4.7,

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:23

we can index extra k tokens in the PrefixR table, and then require a candidate pair
having no less than k + 1 common tokens.

For example, we implement ppjoin as follows.

1 CREATE VIEW CANDSET AS
2 SELECT PR1.rid AS rid1 , PR2.rid As rid2
3 FROM PrefixR PR1 , PrefixR PR2
4 WHERE PR1.rid < PR2.rid
5 AND PR1.tid = PR2.tid
6 AND PR1.len >= CEIL(t * PR2.len)
7 AND PR1.len - PR1.pos >= CEIL(PR1.len * 2 * t / (1+t)) - k
8 AND PR2.len - PR2.pos >= CEIL(PR2.len * t) - k
9 AND DECODE(SIGN((PR1.len - PR1.pos) - (PR2.len - PR2.pos)),

10 -1,
11 (PR1.len - PR1.pos),
12 (PR2.len - PR2.pos)
13) >=
14 CEIL((PR1.len + PR2.len) * t / (1+t)) - k;
15 GROUP BY PR1.rid , PR2.rid
16 HAVING COUNT (*) >= k + 1;

SELECT R1.rid , R2.rid
FROM R R1 , R R2 , CANDSET C
WHERE C.rid1 = R1.rid

AND C.rid2 = R2.rid
AND VERIFY(R1.len , R1.toks , R2.len , R2.toks , t) = 1

7.4. Further Discussions

7.4.1. Implementation Details. For the group-by version of implementation, Chaudhuri
et al. [2006] proposed an inline implementation that carries the content for the records
selected as candidates when generating pairs. This avoids joining the candidate set
with the R relation, but requires an additional attribute in the schema to store the
tokens for the record in each tuple. We do not use the inline option because it will incur
high space and time overheads when records are not short.

We tried using two inequalities to replace the DECODE function as the positional
filtering. Another option is to LEAST function to calculate the less value of two records’
lengths. Our experiment shows similar running time for all these three implementation
alternatives, and thus we use DECODE function in the experimental evaluation.

Our implementation of the VERIFY function exploits the possibility to terminate
earlier if the upper bound of the overlap between two records is below the required
threshold.

7.4.2. Extending to Nonself-Join. One way to reduce the similarity join between two
relations, R and S, to self-join is as follows.

—Concatenate the two relations together, and create an additional attribute src.
—Add the following predicate to the SQL statement.

PR1.src = ’R’ AND PR2.src = ’S’

To determine the global ordering of the tokens in both relations, the goal is to min-
imize the number of candidate sizes. For each token, we calculate the product of its
document frequency in both R and S, and then sort the tokens in each record by in-
creasing order of the product. This is a heuristic to replace the increasing df order used
for the self-join case. When using prefix tables, we only need to extract the appropriate
indexing prefixes for records in R and probing prefixes for records in S. To choose one
relation as R, we should minimize the total number of tokens in the indexing prefix,

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:24 C. Xiao et al.

Table II. Distributions of Token Frequencies and Record Sizes

Dataset n avg len |U | Comment
DBLP 861,567 14.3 580,026 author, title
ENRON 517,386 142.4 1,180,186 email
DBLP-5GRAM 863,516 100.8 1,581,808 author, title
TREC-8GRAM 347,978 864.2 19,767,130 author, title, abstract
TREC-Shingle 347,978 32.0 4,226,495 author, title, abstract

Table III. k Parameters for LSH (recall = 95%)

Dataset Jaccard Cosine Weighted Cosine
DBLP 4 5 5
ENRON 5 6 5
DBLP-5GRAM 5 5 5
TREC-8GRAM 3 4 4

thus minimizing the candidate size. One heuristic is to calculate total number of non-
widow tokens in the indexing prefixes from both set and choose a smaller one as R. A
widow token is the one that only appears in one of the relations.

8. EXPERIMENTAL EVALUATION

In this section, we present our experimental results on stand-alone and RDBMS-based
implementations, respectively.

8.1. Experiments on the Stand-Alone Implementation

We first report the experimental results on a stand-alone implementation.

8.1.1. Experiment Setup. We implemented and used the following algorithms in this set
of experiments.

—All-Pairs is an efficient prefix filtering-based algorithm capable of scaling up to tens
of millions of records [Bayardo et al. 2007].

—ppjoin, ppjoin+ are our proposed algorithms. ppjoin integrates positional filtering into
the All-Pairs algorithm, while ppjoin+ further employes suffix filtering.

—LSH is an algorithm to retrieve approximate answers to the problem [Gionis et al.
1999]. Its basic idea is to hash the records using several hash functions so as to
ensure that similar records have much higher probability of collision than dissimilar
records. We adopt the LSH algorithm in Theobald et al. [2008]. We concatenate k min-
hash signatures from each record into a single signature, and repeat this for a total
l times using independent hash functions. Therefore there are k · l hash functions in
all, and two records will be regarded as a candidate pair if one of their l signatures
is the same. Larger k benefits the selectivity of a signature, while more real results
will be missed. Hence larger l is required to keep the recall when k is increasing,
and this will increase the preprocessing time to generate min-hash signatures as
we have more signatures for a record. Suppose the probability that two min-hashes
from two records collide equals to the Jaccard similarity of the two records, we can
compute the l value for a given similarity threshold t, the number of min-hashes for
a signature k, and a recall rate r: l = �log(1−tk)(1 − r)�. We set the value of recall as
95%, that is, LSH reports about 95% of the real results, and choose the parameters
k that yield the best runtime performance for these datasets, as given in Table III.
Note that we do not choose the random projection-based LSH as was used in Bayardo
et al. [2007]. This is because the records are usually sparse vectors, as shown in
Table II. The random projection-based method will generate many “zero” signatures
such that the values on the projected dimensions of a record are all zero, and hence
reduce the selectivity of signatures.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:25

All algorithms were implemented in C++. To make fair comparisons, all algorithms use
Google’s dense_hash_map class for accumulating overlap values for candidates, as sug-
gested in Bayardo et al. [2007]. The index reduction technique proposed in Section 4.3
is applied to All-Pairs, ppjoin, and ppjoin+. All-Pairs has been shown to consistently out-
perform alternative algorithms such as ProbeCount-Sort [Sarawagi and Kirpal 2004],
PartEnum [Arasu et al. 2006], and therefore we didn’t consider them here.

All experiments were carried out on a PC with Intel Xeon X3220 @ 2.40 GHz CPU and
4GB RAM. The operating system is Debian 4.1.1-21. All algorithms were implemented
in C++ and compiled using GCC 4.1.2 with -O3 flag.

We measured both the size of the candidate pairs and the running time for all
the experiments. The running time does not include loading, tokenizing, or signature
generating time of datasets, but includes the time for computing prefixes and building
indexes. We report preprocessing time of the algorithms in Section 8.1.7.

Our experiments covered the following similarity measures: Jaccard similarity, co-
sine similarity, and weighted cosine similarity. Tokens are weighted using idf weight,
that is, weight(w) = log |R|

|{ r:w∈r }| .
We used several publicly available real datasets in the experiment. They were se-

lected to cover a wide spectrum of different characteristics.

—DBLP. This dataset is a snapshot of the bibliography records from the DBLP Web site.
It contains almost 0.9M records; each record is a concatenation of author name(s)
and the title of a publication. We tokenized each record using white spaces and
punctuations. The same DBLP dataset (with smaller size) was also used in previous
studies [Arasu et al. 2006; Bayardo et al. 2007; Xiao et al. 2008b].

—ENRON. This dataset is from the Enron email collection4. It contains about 0.5M
emails from about 150 users, mostly senior management of Enron. We tokenize the
email title and body into words using the same tokenization procedure as DBLP.

—DBLP-5GRAM. This is the same DBLP dataset, but further tokenized into 5-grams.
Specifically, tokens in a record are concatenated with a single whitespace, and then
every 5 consecutive letters is extracted as a 5-gram.5

—TREC-8GRAM. This dataset is from TREC-9 Filtering Track Collections.6 It con-
tains 0.35M references from the MEDLINE database. We extracted author, title,
and abstract fields to from records. Every 8 consecutive letters is considered as an
8-gram.

—TREC-Shingle. We applied Broder’s shingling method [Broder 1997] on TREC-
8GRAM to generate 32 shingles of 4 bytes per record, using min-wise independent
permutations. TREC-8GRAM and TREC-Shingle are dedicated to experiment on
near-duplicate Web page detection (Section 8.1.8).

Exact duplicates in the datasets are removed after tokenizing. The records are sorted
into increasing length, and the tokens within each record are sorted into increasing
document frequency. Some important statistics about the datasets are listed in Table II.

8.1.2. Jaccard Similarity.
Candidate Size. Figures 3(a), 3(c), and 3(e) show the sizes of candidate pairs generated
by the algorithms and the size of the join result on the DBLP, Enron, and DBLP-

4Available at http://www.cs.cmu.edu/∼enron/
5According to Xiao et al. [2008a], long q-grams yield better performance than short q-grams on joining long
English text strings. Hence we use 5-grams on DBLP and 8-grams on TREC instead of 3-grams and 4-grams,
as were used in Xiao et al. [2008b].
6Available at http://trec.nist.gov/data/t9 filtering.html.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:26 C. Xiao et al.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0.8 0.85 0.9 0.95

C
a
n
d
id

a
te

 S
iz

e

Jaccard Similarity

DBLP

All-Pairs
PPJoin

PPJoin+
LSH-95%

Result

(a) Jaccard, DBLP, Candidate Size

 0

 1

 2

 3

 4

 5

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e
c
o
n
d
s
)

Jaccard Similarity

DBLP

All-Pairs
PPJoin

PPJoin+
LSH-95%

(b) Jaccard, DBLP, Time

10
6

10
7

10
8

 0.8 0.85 0.9 0.95

C
a
n
d
id

a
te

 S
iz

e

Jaccard Similarity

ENRON

All-Pairs
PPJoin

PPJoin+
LSH-95%

Result

(c) Jaccard, Enron, Candidate Size

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.8 0.85 0.9 0.95
T

im
e
 (

s
e
c
o
n
d
s
)

Jaccard Similarity

ENRON

All-Pairs
PPJoin

PPJoin+
LSH-95%

(d) Jaccard, Enron, Time

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0.8 0.85 0.9 0.95

C
a
n
d
id

a
te

 S
iz

e

Jaccard Similarity

DBLP-5GRAM

All-Pairs
PPJoin

PPJoin+
LSH-95%

Result

(e) Jaccard, DBLP-5GRAM, Candidate Size

 0

 5

 10

 15

 20

 25

 30

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e
c
o
n
d
s
)

Jaccard Similarity

DBLP-5GRAM

All-Pairs
PPJoin

PPJoin+
LSH-95%

(f) Jaccard, DBLP-5GRAM, Time

Fig. 3. Experimental results - stand-alone implementation (Jaccard).

5GRAM datasets, with varying similarity thresholds from 0.80 to 0.95. Note that the
y-axis is in logarithm scale.

Several observations can be made.

—The size of the join result grows modestly when the similarity threshold decreases.
—All algorithms generate more candidate pairs with the decrease of the similarity

threshold. Obviously, the candidate size of All-Pairs grows the fastest. ppjoin has a
decent reduction on the candidate size of All-Pairs, as the positional filtering prunes
many candidates. ppjoin+ produces the fewest candidates among the three exact
algorithms thanks to the additional suffix filtering.

—The candidate sizes of ppjoin+ are usually in the same order of magnitude as the
sizes of the join result for a wide range of similarity thresholds. The only outlier
is the Enron dataset, where ppjoin+ only produces modestly smaller candidate sets
than ppjoin. There are at least two reasons: (a) the average record size of the Enron
dataset is large; this allows for a larger initial Hamming distance threshold Hmax
for the suffix filtering. Yet we only use MAXDEPTH = 2 (for efficiency reasons; also see
the Enron’s true positive rate in the following). (b) Unlike other datasets used, an
extraordinary high percentage of candidates of ppjoin is join results. At the threshold

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:27

of 0.8, the ratio of sizes of query result over candidate size by the ppjoin algorithm is
15.5%, 2.7%, and 0.02% for Enron, DBLP, and DBLP-5GRAM, respectively. In other
words, ppjoin has already removed the majority of false positive candidate pairs on
Enron and hence it is hard for suffix filtering to further reduce the candidate set.

—LSH generates more candidates than All-Pairs and ppjoin under large threshold set-
tings, but fewer candidates than All-Pairs and ppjoin when small thresholds are ap-
plied. This is because when the threshold decreases, the tokens in the prefixes become
more frequent, and thus the candidate sizes rapidly increase for algorithms based on
prefix filtering. For LSH, smaller thresholds only introduce more signatures while the
selectivity remains almost the same, and thus the candidate sizes do not increase as
fast as All-Pairs and ppjoin. On DBLP-5GRAM, LSH produces much fewer candidates
than ppjoin. The main reason is that the q-grams are less selective then English
words and even the rarest q-gram of a record tends to be fairly frequent.
Running Time. Figures 3(b), 3(d), and 3(f) show the running time of all algorithms

on the three datasets with varying Jaccard similarity thresholds.
In all the settings, ppjoin+ is the most efficient exact algorithm7, followed by ppjoin.

Both algorithms outperform the All-Pairs algorithm. The general trend is that the speed-
up increases with the decrease of the similarity threshold. This is because: (a) index
construction, probing, and other overheads are more noticeable with a high similarity
threshold, as the result is small and easy to compute, (b) inverted lists in the indexes
are longer for a lower similarity threshold; this increases the candidate size which
in turn slows down the All-Pairs algorithm as it does not have any other additional
filtering mechanism. In contrast, many candidates are quickly discarded by failing the
positional or suffix filtering used in ppjoin and ppjoin+ algorithms.

The speed-up that our algorithms can achieve against the All-Pairs algorithm is
also dependent on the dataset. At the 0.8 threshold, ppjoin can achieve 1.7× speed-up
against All-Pairs on Enron, 1.4× on DBLP and DBLP-5GRAM. At the same threshold,
ppjoin+ can achieve 1.8× speed-up on DBLP-5GRAM, 2× on DBLP, and 1.6× on Enron.

The performance between ppjoin and ppjoin+ is most substantial on DBLP-5GRAM,
where filtering on the suffixes helps to improve the performance drastically. The reason
why ppjoin+ has only modest performance gain over ppjoin on Enron is because 16%
of the candidates are final results, hence the additional filtering employed in ppjoin+
won’t contribute to much runtime reduction. The difference of the two is also moderate
on DBLP. This is mainly because the average size of DBLP records is only 14 and even
a brute-force verification using the entire suffix is likely to be fast, especially in modern
computer architectures.

Another important observation is that the improvement of positional filtering and
suffix filtering in overall running time is not so significant as the improvement in
candidate size. There are two main factors: (a) The running time includes construct-
ing inverted index and accessing inverted lists to find candidates. ppjoin and ppjoin+
have no improvement in these two procedures. (b) ppjoin+ prunes candidates with bi-
nary searches, and this overhead will increase with the level of recursion, though the
candidate size will be reduced.

When compared with the approximate algorithm, ppjoin+ is 1.7× faster than LSH on
DBLP, and 3.2× faster on ENRON. LSH performs better on DBLP-5GRAM, and the
speed-up can be up to 7.8×, as expected from the candidate sizes. This is again due to
the poor selectivity of the q-grams.

8.1.3. Cosine Similarity. We ran all the algorithms on the DBLP, ENRON, and DBLP-
5GRAM datasets using the cosine similarity function, and plot the candidate sizes in

7Note that LSH is an approximate algorithm.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:28 C. Xiao et al.

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0.8 0.85 0.9 0.95

C
a
n
d
id

a
te

 S
iz

e

Cosine Similarity

DBLP

All-Pairs
PPJoin

PPJoin+
LSH-95%

Result

(a) Cosine, DBLP, Candidate Size

 0

 5

 10

 15

 20

 25

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e
c
o
n
d
s
)

Cosine Similarity

DBLP

All-Pairs
PPJoin

PPJoin+
LSH-95%

(b) Cosine, DBLP, Time

10
6

10
7

10
8

10
9

 0.8 0.85 0.9 0.95

C
a
n
d
id

a
te

 S
iz

e

Cosine Similarity

ENRON

All-Pairs
PPJoin

PPJoin+
LSH-95%

Result

(c) Cosine, Enron, Candidate Size

 0

 50

 100

 150

 200

 0.8 0.85 0.9 0.95
T

im
e
 (

s
e
c
o
n
d
s
)

Cosine Similarity

ENRON

All-Pairs
PPJoin

PPJoin+
LSH-95%

(d) Cosine, Enron, Time

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 0.8 0.85 0.9 0.95

C
a
n
d
id

a
te

 S
iz

e

Cosine Similarity

DBLP-5GRAM

All-Pairs
PPJoin

PPJoin+
LSH-95%

Result

(e) Cosine, DBLP-5GRAM, Candidate Size

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e
c
o
n
d
s
)

Cosine Similarity

DBLP-5GRAM

All-Pairs
PPJoin

PPJoin+
LSH-95%

(f) Cosine, DBLP-5GRAM, Time

Fig. 4. Experimental results - stand-alone implementation (cosine).

Figures 4(a), 4(c), and 4(e) and running times in Figures 4(b), 4(d), and 4(f). For both
metrics, the general trends are similar to those using Jaccard similarity. A major dif-
ference is that all algorithms now run slower for the same similarity threshold, mainly
because a cosine similarity constraint is inherently looser than the corresponding Jac-
card similarity constraint. The speed-ups of the ppjoin and ppjoin+ algorithms can be
up to 1.6× and 2.7× on DBLP, respectively; on Enron, the speed-ups are 1.5× and
1.6×, respectively; on DBLP-5GRAM, the speed-ups are 1.5× and 1.8×, respectively.
On DBLP and ENRON, ppjoin+ is faster than LSH under high similarity thresholds,
but slower when threshold is as low as 0.8. On DBLP-5GRAM, LSH is always the most
efficient algorithm, and gap is more significant than that on Jaccard similarity due
to a looser constraint. This result demonstrates that LSH is a good choice under low
threshold settings if not all the join results need to be reported.

8.1.4. Weighted Cosine Similarity. We run the four algorithms with weighted cosine sim-
ilarity function on DBLP, ENRON, and DBLP-5RAM datasets. The candidate sizes are
shown in Figures 5(a), 5(c), and 5(e); and the running times are shown in Figures 5(b),
5(d), and 5(f). Similar trends can be observed as those with Jaccard and cosine similar-
ity functions. All the algorithms now run faster for the same similarity threshold than

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:29

10
3

10
4

10
5

10
6

10
7

10
8

 0.8 0.85 0.9 0.95

C
a

n
d

id
a

te
 S

iz
e

Weighted Cosine Similarity

DBLP

All-Pairs
PPJoin

PPJoin+
LSH-95%

Result

(a) Weighted Cosine, DBLP, Candidate Size

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e

c
o

n
d

s
)

Weighted Cosine Similarity

DBLP

All-Pairs
PPJoin

PPJoin+
LSH-95%

(b) Weighted Cosine, DBLP, Time

10
6

10
7

10
8

 0.8 0.85 0.9 0.95

C
a

n
d

id
a

te
 S

iz
e

Weighted Cosine Similarity

ENRON

All-Pairs
PPJoin

PPJoin+
LSH-95%

Result

(c) Weighted Cosine, Enron, Candidate Size

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.8 0.85 0.9 0.95
T

im
e

 (
s
e

c
o

n
d

s
)

Weighted Cosine Similarity

ENRON

All-Pairs
PPJoin

PPJoin+
LSH-95%

(d) Weighted Cosine, Enron, Time

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0.8 0.85 0.9 0.95

C
a
n
d
id

a
te

 S
iz

e

Weighted Cosine Similarity

DBLP-5GRAM

All-Pairs
PPJoin

PPJoin+
LSH-95%

Result

(e) Weighted Cosine, DBLP-5GRAM, Candidate Size

 0

 20

 40

 60

 80

 100

 120

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e
c
o
n
d
s
)

Weighted Cosine Similarity

DBLP-5GRAM

All-Pairs
PPJoin

PPJoin+
LSH-95%

(f) Weighted Cosine, DBLP-5GRAM, Time

Fig. 5. Experimental results - stand-alone implementation (weighted cosine).

unweighted cosine similarity, since the tokens in the prefixes have more weights than
those in the suffixes. Another important observation is that the speed-ups over the
All-Pairs algorithm are not as remarkable as with Jaccard or cosine similarity. This is
because the tokens in prefixes are usually rare and assigned more weights; a candidate
pair is then more likely to be a real result, hence the problem itself becomes easier.
For example, at the threshold of 0.8, the ratio of real result size over candidate size by
the All-Pairs algorithm increases by 4 times on all the three datasets when compared
with unweighted case. With respect to the running time, ppjoin and ppjoin+ perform
better than All-Pairs by a small margin, with a speed-up of 1.2× and 1.3× on the three
datasets, respectively. LSH is still slower than ppjoin+ on DBLP, but faster on DBLP-
5GRAM. Like the unweighted case, LSH is faster than ppjoin+ under low thresholds on
ENRON, but slower under high thresholds.

8.1.5. Varying Data Sizes. We performed the similarity join using Jaccard similarity on
subsets of the DBLP dataset and measured running times.8 We randomly sampled
about 20% to 100% of the records. We scaled down the data so that the data and result
distribution could remain approximately the same. We show the square root of the

8We also measured the candidate sizes (e.g., see Figure 2).

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:30 C. Xiao et al.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.2 0.4 0.6 0.8 1

S
q
u
a
re

 R
o
o
t
o
f
T

im
e
 (

s
e
c
o
n
d
s
)

Scale Factor

DBLP, Jaccard Similarity, t = 0.80

All-Pairs
PPJoin

PPJoin+
LSH-95%

(a) Jaccard, DBLP, Time

 0

 2

 4

 6

 8

 10

 12

 14

 0.2 0.4 0.6 0.8 1

S
q
u
a
re

 R
o
o
t
o
f
T

im
e
 (

s
e
c
o
n
d
s
)

Scale Factor

ENRON, Cosine Similarity, t = 0.80

All-Pairs
PPJoin

PPJoin+
LSH-95%

(b) Cosine, Enron, Time

Fig. 6. Experimental results - stand-alone implementation (scalability).

Table IV. Impact of MAXDEPTH (DBLP-5GRAM, Jaccard, t = 0.8, Join Result Size = 9,041)

MAXDEPTH Candidate Size Time (secs)
0 16,268,451 21.429
1 4,198,756 18.011
2 557,258 16.699
3 45,871 16.157
4 16,404 16.219
5 11,306 16.307
6 9,675 16.419
7 9,091 16.520

running time with Jaccard similarity for the DLBP dataset and cosine similarity for
the Enron dataset in Figures 6(a) and 6(b) (both thresholds are fixed at 0.8).

It is clear that the runnings times of all the four algorithms grow quadratically. This
is not surprising given the fact that the actual result sizes already grow quadratically
(e.g., See Figure 2). Our proposed algorithms have demonstrated a slower growth rate
than the All-Pairs algorithm for both similarity functions and datasets.

8.1.6. Impacts ofMAXDEPTH. An important tuning parameter of the ppjoin+ algorithm is
MAXDEPTH, the maximum allowable recursion level while performing the suffix filtering.
We found the following settings on MAXDEPTH work well empirically.

Dataset sim() MAXDEPTH
ANY Jaccard 2
ANY Cosine 3

DBLP-5GRAM ANY 3 or 4

A possible explanation is that with a looser similarity function (e.g., cosine similarity)
and/or longer records (e.g., DBLP-5GRAM), more probings are needed to achieve good
candidate pruning effects, hence a larger MAXDEPTH works better.

The reason why we do not use a large MAXDEPTH value is because the suffix filtering
is most effective in the initial several rounds of recursions. For example, we measured
the candidate sizes and running times of ppjoin + and list the result for DBLP-5GRAM
using Jaccard similarity of 0.80 in Table IV.

8.1.7. Preprocessing Time. We measured preprocessing cost for the algorithms. For var-
ious algorithms, the preprocessing time includes:

—All-Pairs, ppjoin, and ppjoin+ extracting tokens and sorting by decreasing idf ;
—LSH extracting tokens and generating min-hash signatures.

Note that All-Pairs and ppjoin+ have the same amount of preprocessing time as ppjoin.
The preprocessing time for different algorithms is given in Table V.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:31

Table V. Preprocessing Time (Jaccard, t = 0.8, in secs)

Dataset All-Pairs, ppjoin, ppjoin+ LSH
DBLP 1.41 15.02
ENRON 8.87 54.26
DBLP-5GRAM 11.43 68.96
TREC-8GRAM 61.69 72.14

Table VI. Overall Running Time (Jaccard, t = 0.8, in secs)

Dataset All-Pairs ppjoin ppjoin+ LSH
DBLP 5.71 4.45 3.59 17.55
ENRON 40.14 33.45 28.56 78.78
DBLP-5GRAM 40.53 32.87 27.58 71.04
TREC-8GRAM 119.32 90.76 88.70 74.37

We observe that the preprocessing cost of ppjoin is lower than LSH on DBLP and EN-
RON, but higher on the two q-gram datasets. Two factors may affect the preprocessing
time of ppjoin: (a) the number of distinct tokens; (b) the average number of tokens in
a record. The first factor affects the time to compute the global ordering of tokens,
and the second factor affects the time to sort the array of token in each record. The
preprocessing time of LSH is determined by the choosing of parameters k and l. Larger
k or l will bring higher preprocessing cost since there will be more min-hash signatures
for a record. The preprocessing time of ppjoin is 6.0 to 10.7 times less than that of LSH
on DBLP, ENRON, and DBLP-5GRAM, as they have either small token universe or
small average record size (Table II). The advantage of ppjoin on TREC-8GRAM is not
as substantial due to larger token universe and longer records. Nevertheless, ppjoin is
still more efficient than LSH in terms of preprocessing time.

Considering both preprocessing and join, the overall running time is shown in
Table VI. It can be observed that ppjoin and ppjoin+ outperform LSH on the first three
datasets. Even on TREC-8GRAM, LSH is marginally faster then ppjoin and ppjoin+.

8.1.8. Near-Duplicate Web Page Detection. We also investigate a specific application of the
similarity join: near-duplicate Web page detection. A traditional method is based on
performing approximate similarity join on shingles computed from each record [Broder
et al. 1997]. Later work proposed further approximations mainly to gain more efficiency
at the cost of result quality.

Instead, we designed and tested four algorithms that perform exact similarity join
on q-grams or shingles: (a) qp algorithm where we use the ppjoin+ algorithm to join
directly on the set of 8-grams of each record; (b) qa algorithm is similar to qp except
that the All-Pairs algorithm is used as the exact similarity join algorithm; (c) ql algo-
rithm where we use LSH algorithm to join on the set of 8-grams with 95% of recall;
(d) sp algorithm where we use the ppjoin+ algorithm to join on the set of shingles.
We use Broder’s shingling method [Broder 1997] to generate shingles with min-wise
independent permutations. Each record has 32 shingles represented in 4-byte integers.

The metrics we measured are: running times, precision and recall of the join result.
Since algorithm qp returns an exact answer based on the q-grams of the records, its
result is a good candidate for the correct set of near-duplicate documents. Hence, we
define precision and recall as

Precision = |Rsp ∩ Rqp|
|Rsp| Recall = |Rsp ∩ Rqp|

|Rqp| ,

where Rx is the set of result returned by algorithm x.
We show the results in Table VII with varying Jaccard similarity threshold values.
Several observations can be made.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:32 C. Xiao et al.

Table VII. Quality vs. Time Trade-Off of Approximate and Exact Similarity Join

t Precision Recall timeqa timeqp timesp timeql
0.95 0.04 0.28 4.15 3.09 0.22 0.57
0.90 0.09 0.25 13.02 8.00 0.32 1.16
0.85 0.20 0.30 28.16 15.95 0.49 1.72
0.80 0.29 0.26 57.63 27.01 0.82 2.23

—Shingling-based methods will mainly suffer low recalls in the result, meaning that
only a small fraction of truly similar Web pages will be returned. We manually
examined some similar pairs missing from Rsp (t = 0.95), and most of the sampled
pairs are likely to be near duplicates (e.g., they differ only by typos, punctuations,
or additional annotations). Note that other variants of the basic shingling method,
for example, systematic sampling of shingles or supershingling [Broder et al. 1997]
were designed to trade result quality for efficiency, and are most likely to have even
worse precision and recall values.
In contrast, exact similarity join algorithms (qp or qa) have the appealing advantage
of finding all the near duplicates given a similarity function.

—qp, while enjoying good result quality, requires longer running time. However, with
reasonably high similarity threshold (0.90+), qp can finish the join in less than 8
seconds. On the other hand, qa takes substantially longer time to perform the same
join.

—ql is very efficient to find the approximate answers to detect near-duplicate Web
pages. The speed-up over exact algorithms is more substantial under low similarity
threshold settings.

—sp combines the shingling and ppjoin+ together and is extremely fast even for modest
similarity threshold of 0.80. This method is likely to offer better result quality than,
for example, supershingling, while still offering high efficiency.

In summary, the ppjoin+ algorithm can be combined with q-grams or shingles to
provide appealing alternative solutions to tackle near-duplicate Web page detection
tasks. We also recommend users to choose LSH rather than shingling as an approximate
solution for high recall purposes.

8.2. Experiments on the RDBMS-Based Implementation

The main goal of this set of experiments is to compare the performance of various im-
plementation alternatives of similarity join algorithms on RDBMSs. We implemented
the algorithms discussed in Section 7 using a popular RDBMS.

8.2.1. Experiment Setup. The similarity measures used in the experiments are Jaccard
similarity and cosine similarity.

We used the following publicly available real datasets in the experiment.

—DBLP. This dataset is a snapshot of the bibliography records from the DBLP Web
site, as has been used in the experiment on stand-alone implementation in Sec-
tion 8.1.

—ENRON. This dataset is from the Enron email collection, as has been used in the
experiment on stand-alone implementation in Section 8.1.

—UNIREF-4GRAM. It is the UniRef90 protein sequence data from the UniProt
project.9 We sampled 58K protein sequences from the original dataset; each se-
quence is an array of amino acids coded as uppercase letters. Every 4 consecutive
letters is then extracted as a 4-gram.

9http://beta.uniprot.org/ (downloaded in March, 2008).

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:33

Table VIII. Statistics of Datasets

Dataset n avg len |U | Comment
DBLP 861,567 14.3 580,026 author, title
ENRON 517,386 142.4 1,180,186 email
UNIREF-4GRAM 54,819 164.5 302,847 protein sequence

Table IX. Running Time (in secs) on DBLP

t Prefix Table Generic Prefix Table
0.95 22.793 23.876
0.90 66.025 68.773
0.85 143.657 146.148
0.80 296.450 302.544

The records are sorted into increasing length, and the tokens within each record
are sorted into increasing document frequency. Some important statistics about the
datasets are listed in Table VIII.

8.2.2. Using the Generic Prefix Table. We first study the effect of using the generic prefix
table. We set tmin as 0.8 and use it for all similarity joins with threshold t ≥ tmin.

Table IX shows the running time of the ppjoin algorithm on the DBLP dataset with
varying Jaccard similarity thresholds. Results for other datasets or algorithms are
similar.

With respect to the running time, we observe that the implementation using the
generic prefix table exhibits similar performance as that using the specific prefix table,
though the latter has a slight edge over the former under all the threshold settings. This
suggests that the additional predicate that selects probing index prefixes from generic
prefix table is not expensive to compute when compared with the overall algorithm.

Compared with specific prefix tables, generic prefix tables are more practical for
many applications. Hence we use generic prefix tables in the rest of the experiment.

8.2.3. Comparison with All-Pairs. We compare three algorithms, All-Pairs, ppjoin, and
ppjoin+, on the three datasets. We use Jaccard similarity function for the DBLP and
Enron datasets, and cosine similarity function for UNIREF dataset.

Figures 7(a)–7(c) show the running time of the three algorithms on the three datasets
with varying thresholds, where AP denotes All-Pairs, PP ppjoin, and PP+ ppjoin+.

ppjoin algorithm is the most efficient of the three for all the settings. ppjoin+ is the
runner-up on DBLP and UNIREF-4GRAM, but the slowest on ENRON. The three
algorithms exhibit similar performance when t is high, but the gap becomes significant
when t decreases. ppjoin achieves a speed-up of approximately 2× against All-Pairs
on all the three datasets. The reason why ppjoin+ performs worse than ppjoin is that
suffix filtering is not so efficient under the RDBMS-based implementation, as the suffix
filtering test is implemented using a UDF. Another observation is that ppjoin+ is even
slower than All-Pairs on the Enron dataset. This is because 38.1% of the candidate
pairs are join results on Enron, whereas the percentage on DBLP and UNIREF is 4.9%
and 0.002%. All-Pairs has already removed a majority of false positive candidates, and
additional filtering is not helpful.

For the All-Pairs algorithm, the verification phase takes most of the running time, and
the percentage grows when t is decreasing. This is due to the large number of candidates
produced by the All-Pairs algorithm, and the lack of any additional filtering technique
to deal with the increase of candidate pairs when t decreases. For the ppjoin algorithm,
most running time is spent on generating candidate pairs when t is high, and the
percentage reduces when t decreases. For example, generating candidate pairs takes
70% of the total running time when t is 0.95 on DBLP, while the percentage drops to 40%
when t is 0.8. The ppjoin+ algorithm spends most running time on generating candidate

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:34 C. Xiao et al.

 0

 100

 200

 300

 400

 500

 600

AP PPPP+ AP PPPP+ AP PPPP+ AP PPPP+

 0.8 0.85 0.9 0.95
T

im
e

 (
s
e

c
o

n
d

s
)

Jaccard

DBLP

Verification
Candidate Pair

(a) Jaccard, DBLP, Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

AP PPPP+ AP PPPP+ AP PPPP+ AP PPPP+

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e

c
o

n
d

s
)

Jaccard

ENRON

Verification
Candidate Pair

(b) Jaccard, Enron, Time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

AP PPPP+ AP PPPP+ AP PPPP+ AP PPPP+

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e

c
o

n
d

s
)

Cosine

UNIREF-4GRAM

Verification
Candidate Pair

(c) Cosine, UNIREF-4GRAM, Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

GB DI GB DI GB DI GB DI

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e

c
o

n
d

s
)

Jaccard

DBLP

Verification
Candidate Pair

(d) Jaccard, DBLP, Time

10
3

10
4

10
5

10
6

10
7

 0.8 0.85 0.9 0.95

C
a

n
d

id
a

te
 S

iz
e

Jaccard

DBLP

k = 0
k = 1
k = 2
k = 3

(e) Jaccard, DBLP, Candidate Size

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

k=0k=1k=2k=3 k=0k=1k=2k=3 k=0k=1k=2k=3 k=0k=1k=2k=3

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e

c
o

n
d

s
)

Jaccard

DBLP

Verification
Candidate Pair

(f) Jaccard, DBLP, Time

Fig. 7. Experimental results - DBMS implementation (I).

pairs, even when t is as low as 0.8. This is because: (1) the number of candidates
generated by the ppjoin+ algorithm is close to the number of real results, and thus
the verification time is not as significant as for All-Pairs or ppjoin; (2) unlike under the
stand-alone implementation, suffix filtering is not performed efficiently under DBMS
implementations, and this contributes to the candidate pair generation time.

On the Enron dataset, the candidate pair generating time of the ppjoin+ algorithm
is not as dominant as on DBLP and UNIREF-4GRAM dataset. This is because a high
percentage of candidate pairs are final results and the total number is quite large, and
therefore the verification phase takes more running time.

8.2.4. Comparison with the Implementation Using GROUP BYs. We compare two versions of
ppjoin algorithm implementations using DISTINCT and GROUP BY operator, respec-
tively. In addition, we also consider the implementation with longer prefixes. We report
the results on the DBLP dataset with the Jaccard similarity function.

Figure 7(d) shows the running time of the algorithm implemented using distinct and
using group-by, where GB denotes GROUP-BY, and DI denotes DISTINCT.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:35

Table X. Using Longer Prefixes

k Number of Rows
0 2,956,679
1 3,811,945
2 4,667,211
3 5,521,234

For the implementation using distinct, we use the generic prefix table, while the
normalized table is used for the implementation using group-by. The former is always
faster than the latter, and the time ratio remains a steady value of 1.4 times.

The implementation using group-by employs a normalized table rather than a generic
prefix table, and therefore the table for the join operator to generate candidate pairs
has much more number of rows than a dedicated prefix table. This increases the
overhead of the candidate pair generation, and hence affects the total running time.
The implementation using distinct also benefits from faster verification because the
VERIFY function would return early as soon as the unseen part of the two records is
unable to contribute enough overlap. In contrast, the implementation using group-
by has to perform an expensive group-by operation, with no early stop technique to
facilitate the verification.

To study the effect of longer prefixes, we perform an experiment on the DBLP dataset
using the Jaccard similarity function and report the candidate size and running time
in Figures 7(e) and 7(f).

The candidate size is significantly reduced when we extend the standard prefix length
by one more token, but the reduction is less remarkable for further extending. This
indicates that most candidate pairs that share only one token within the prefixes are
not final results, but those sharing at least two common tokens within the extended
prefixes have much more chance to become final results and are not easily to pruned
by even longer prefixes.

With respect to the running time, longer prefixes give worse overall performance.
Extending prefix by one token is 1.8 times slower than using standard prefix, and the
slow-down increases to 4× and 11× when k = 2 and 3, respectively. The main reason
is that the index size, that is, the number of rows within the prefix table, increases
with longer prefixes. Table X shows the number of rows within the extended prefix
table. For longer prefixes, we need to perform the join on a large table in order to
generate candidate pairs, and hence more time during the candidate generation phase.
Moreover, longer prefixes admit more frequent tokens to the join operation, as the
tokens within each record are sorted in the increasing document frequency order. This
results in more pairs satisfying the join predicates before calling GROUP BY to filter
them. The effect is more obvious when we further increase k, as can be seen from the
drastically increase of the running time when we extend the prefix length.

8.2.5. Comparison with PartEnum and LSH. We perform experiments to compare three
algorithms, ppjoin, PartEnum, and LSH, and report the result on the DBLP dataset
using Jaccard similarity. For PartEnum and LSH we use signature tables with respect
to specific similarity thresholds, and choose the optimal parameter settings under
various t. The number of index entries,10 candidate size, and running time of the two
algorithms are shown in Figures 8(a)–8(c), where PartEnum is denoted as PE, and ppjoin
as PP.

ppjoin outperforms PartEnum and LSH under all the threshold settings, and the
speed-up is increasing with the decrease of similarity threshold. When t = 0.8, ppjoin

10As for the number of index entries for ppjoin algorithm, we mean the number of entries within the probing
prefix with respect to specific t.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:36 C. Xiao et al.

10
5

10
6

10
7

10
8

 0.8 0.85 0.9 0.95

In
d

e
x
 E

n
tr

ie
s

Jaccard

DBLP

PartEnum
LSH-95%

PPJoin

(a) Jaccard, DBLP, Index Entries

10
5

10
6

10
7

10
8

 0.8 0.85 0.9 0.95

C
a

n
d

id
a

te
 S

iz
e

Jaccard

DBLP

PartEnum
LSH-95%

PPJoin

(b) Jaccard, DBLP, Candidate Size

 0

 200

 400

 600

 800

 1000

PE LSH PP PE LSH PP PE LSH PP PE LSH PP

 0.8 0.85 0.9 0.95

T
im

e
 (

s
e
c
o
n
d
s
)

Jaccard

DBLP

787.4, 8689.0 Verification
Candidate Pair

(c) Jaccard, DBLP, Time

Fig. 8. Experimental results - DBMS implementation (II).

is 29 times faster than the PartEnum algorithm, and 2.4 times faster than LSH. There
are two main factors contributing to this result. First, ppjoin is smaller than the other
two in index size. When t is 0.8, ppjoin’s generic prefix table contains 3M rows, whereas
LSH’s and PartEnum’s signature tables have 4.3M and 15.6M rows, respectively. In
spite of the fact that ppjoin has an additional attribute of position included in the prefix
to perform positional filtering, ppjoin still has the lowest cost in self-joining the prefix
table. This explains why ppjoin is more efficient than PartEnum and LSH in candidate
generation. Second, the candidate size of PartEnum increases rapidly with the decrease
of t, while ppjoin can achieve a moderate increase, hence resulting in faster verification
time. For example, the ratio of candidate size between the two algorithms is 11.2 when
t is 0.8. LSH also exhibits a moderate increase in the candidate size when t decreases,
but still produces more candidates than ppjoin, and hence is less efficient.

To sum up, we have the following findings after experimenting on DBMS.

—The implementations using the generic prefix table can achieve a comparable per-
formance with the implementations using a specific prefix table. It is applicable and
more practical to choose the generic prefix table for most applications.

—ppjoin+ is inferior to ppjoin over DBMS implementations. Suffix filtering is rendered
less efficient by the expensive computation of UDF.

—We suggest the user choose DISTINCT operator rather than GROUP BY. In addition,
using a longer prefix is not promising on DBMS. The prefix table with large size
inhibits the efficiency of the algorithm in spite of a smaller candidate size.

9. RELATED WORK

9.1. Near-Duplicate Object Detection

Near-duplicate object detection has been studied under different names in several
areas, including record linkage [Winkler 1999], merge-purge [Hernández and Stolfo
1998], data deduplication [Sarawagi and Bhamidipaty 2002], name matching [Bilenko

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:37

et al. 2003], just to name a few. Elmagarmid et al. [2007] is a recent survey on this
topic.

Similarity functions are the key to the near-duplicate detection task. For text doc-
uments, edit distance [Ukkonen 1983] and Jaccard similarity on q-grams [Gravano
et al. 2001] are commonly used. Due to the huge size of Web documents, similarity
among documents is evaluated by Jaccard or overlap similarity on small or fix sized
sketches [Broder 1997; Chowdhury et al. 2002]. Soundex is a commonly used phonetic
similarity measures for names [Russell 1918].

9.2. Exact Similarity Join and Near-Duplicate Detection Algorithm

Existing methods for exact near-duplicate detection usually convert constraints defined
using one similarity function into equivalent or weaker constraints defined on another
similarity measure. Gravano et al. [2001] convert edit distance constraints to overlap
constraints on q-grams. Jaccard similarity constraints and 1/2-sided normalized over-
lap constraints can be converted to overlap constraints [Sarawagi and Kirpal 2004;
Chaudhuri et al. 2006; Xiao et al. 2008b]. Constraints on overlap, dice, and Jaccard
similarity measures can be converted to constraints on cosine similarity [Bayardo et al.
2007]. Arasu et al. [2006] transform Jaccard and edit distance constraints to Hamming
distance constraints.

The techniques proposed in previous work fall into two categories. In the first cat-
egory, exact near-duplicate detection problems are addressed by inverted list-based
approaches [Bayardo et al. 2007; Chaudhuri et al. 2006; Sarawagi and Kirpal 2004],
as discussed before. The second category of work [Arasu et al. 2006] is based on the
pigeon hole principle. The records are carefully divided into partitions and then hashed
into signatures, with which candidate pairs are generated, followed by a postfiltering
step to eliminate false positives. Arasu et al. [2008] design a novel framework to iden-
tify similar records with some token transformations. In Lieberman et al. [2008], an
LSS algorithm is proposed to perform similarity join using the Graphics Processing
Unit (GPU).

Compared with Xiao et al. [2008b], we have made substantial improvements.

—We introduced an index reduction technique by illustrating the idea of using indexing
prefixes.

—We analyzed the prefix filtering technique.
—We generalized ppjoin and ppjoin+ algorithms to several common similarity measures.
—We proposed an optimized global ordering over the token universe to replace the

original increasing document frequency ordering.
—We discussed and compared several alternatives to implement the similarity join

algorithms over relational database systems.

9.3. Approximate Near-Duplicate Object Detection

Several previous works [Broder et al. 1997; Charikar 2002; Chowdhury et al. 2002;
Gionis et al. 1999] have concentrated on the problem of retrieving approximate an-
swers to similarity functions. LSH (Locality Sensitive Hashing) [Gionis et al. 1999]
is a well-known approximate algorithm for the problem. Its basic idea is to hash the
records so that similar records are mapped to the same buckets with high probability.
Broder et al. [1997] addressed the problem of identifying near-duplicate Web pages
approximately by compressing document records with a sketching function based on
min-wise independent permutations. The near-duplicate object detection problem is
also a generalization of the well-known nearest neighbor problem, which is studied by
a wide body of work, with many approximation techniques considered by recent work
[Charikar 2002; Fagin et al. 2003a; Gionis et al. 1999; Indyk and Motwani 1998].

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:38 C. Xiao et al.

9.4. Similarity Join on Strings

The problem of similarity join on strings has been studied by several work [Gravano
et al. 2001; Xiao et al. 2008a; Li et al. 2007; Yang et al. 2008].

q-grams are widely used for approximate string match [Gravano et al. 2001]. It is
especially useful for edit distance constraints due to its ability to prune candidates with
the count filtering on q-grams. Together with prefix-filtering [Chaudhuri et al. 2006],
the count filtering can also be implemented efficiently. Filters based on mismatching
q-grams are proposed to further speed up the query processing [Xiao et al. 2008a].

Gapped q-gram is shown to have better filtering powers than standard q-gram, but
is only suitable for edit distance threshold of 1 [Burkhardt and Kärkkäinen 2002]. A
variable length q-gram was proposed in Li et al. [2007] and Yang et al. [2008] and was
shown to speed up many computation tasks originally based on q-gram.

Similarity join on strings is also closely related to approximate string matching, an
extensively studied topic in algorithm and pattern matching communities. We refer
readers to Navarro [2001] and Gusfield [1997].

9.5. Top-k Similarity Joins

The problem of top-k query processing has been studied by Fagin [1999] and Fagin
et al. [2003b]. Much work builds upon Fagin’s work for different application scenarios,
for example, ranking query results from structured databases [Agrawal et al. 2003],
processing distributed preference queries [Chang and won Hwang 2002] and keyword
queries [Luo et al. 2007].

Xiao et al. [2009] study the top-k similarity join problem, which retrieves pairs of
objects that have the highest similarity score among the data collection. Several opti-
mizing techniques are proposed by exploiting the monotonicity of similarity function
and the order by which data are sorted. The indexing prefix was proposed to reduce
both index and candidate sizes.

9.6. Similarity Search

Several existing works study the similarity search problem [Chaudhuri et al. 2003;
Gravano et al. 2001; Li et al. 2008; Hadjieleftheriou et al. 2008; Behm et al. 2009], which
returns the records in a collection whose similarity with the query exceeds a given
threshold. Based on the inverted list framework, Li et al. [2008] propose an efficient
principle to skip records when accessing inverted lists. For Information Retrieval (IR)
purposes, Hadjieleftheriou et al. [2008] design efficient techniques for indexing and
processing similarity queries under IR-style similarity functions. Behm et al. [2009]
propose a method to omitting some of the frequent tokens while ensuring no true
results are missed.

9.7. Document Fingerprinting

Another body of related work is document fingerprinting methods, mostly studied in
the area of document retrieval and World Wide Web.

Shingling is a well-known document fingerprinting method [Broder 1997]. Shingles
are nothing but fixed length q-grams. All the shingles of a document are generated
and only k shingles with the smallest hash values are kept. This process is repeated
several times using min-wise independent hash functions. An alternative method is to
use every l-th shingle or shingles that satisfy certain properties [Brin et al. 1995].

Manber considered finding similar files in a file system [Manber 1994]. The scheme
was improved by Winnowing [Schleimer et al. 2003], which selects the q-gram whose
hash value is the minimum within a sliding window of q-grams. The Hailstorm method
was proposed in Hamid et al. [2009] which features the total coverage property, that

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:39

is, each token in the document is covered by at least one shingle. Another scheme
based on DCT (Discrete Cosine Transformation) was proposed in Seo and Croft [2008].
Hamid et al. [2009] performed a comprehensive experimental comparison of some
aforementioned schemes.

Charikar’s simhash [Charikar 2002] has been employed to detect near duplicates for
Web crawling [Manku et al. 2007]. After converting Web pages to high-dimensional
vectors, it maps the vectors to small-sized fingerprints. Near duplicates are identified
by collecting the fingerprints that differ by only a few bits.

There are also non-q-gram-based document fingerprinting methods. For example,
I-Match [Chowdhury et al. 2002] uses medium-document-frequency tokens as signa-
tures. SpotSigs [Theobald et al. 2008] selects tokens around stopwords as signatures.

10. CONCLUSIONS

In this article, we propose efficient similarity join algorithms by exploiting the ordering
of tokens in the records. The algorithms provide efficient solutions for an array of
applications, such as duplicate Web page detection on the Web. We show that positional
filtering and suffix filtering are complementary to the existing prefix filtering technique.
They successfully alleviate the problem of quadratic growth of candidate pairs when
the size of data grows. We demonstrate the superior performance of our proposed
algorithms to the existing prefix filtering-based algorithms on several real datasets
under a wide range of parameter settings. Experiments are also taken on relational
databases to study several alternatives of algorithm implementation. The proposed
methods can also be adapted or integrated with existing near-duplicate Web page
detection methods to improve the result quality or accelerate the execution speed.

REFERENCES

AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003. Automated ranking of database query results. In
Proceedings of the Conference on Innovative Data Systems Research (CIDR’03).

ARASU, A., CHAUDHURI, S., AND KAUSHIK, R. 2008. Transformation-Based framework for record matching. In
Proceedings of the International Conference on Data Engineering (ICDE’08). 40–49.

ARASU, A., GANTI, V., AND KAUSHIK, R. 2006. Efficient exact set-similarity joins. In Proceedings of the Interna-
tional Conference on Very Large Databases (VLDB’06).

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval 1st Ed. Addison Wesley.
BAYARDO, R. J., MA, Y., AND SRIKANT, R. 2007. Scaling up all pairs similarity search. In Proceedings of the

International World Wide Web Conference (WWW’07).
BEHM, A., JI, S., LI, C., AND LU, J. 2009. Space-Constrained gram-based indexing for efficient approximate

string search. In Proceedings of the International Conference on Data Engineering (ICDE’09). 604–615.
BILENKO, M., MOONEY, R. J., COHEN, W. W., RAVIKUMAR, P., AND FIENBERG, S. E. 2003. Adaptive name matching

in information integration. IEEE Intell. Syst. 18, 5, 16–23.
BRIN, S., DAVIS, J., AND GARCIA-MOLINA, H. 1995. Copy detection mechanisms for digital documents. In Pro-

ceedings of the ACM SIGMOD International Conference on Management of Data. 398–409.
BRODER, A. Z. 1997. On the resemblance and containment of documents. In Proceedings of the SEQS Confer-

ence.
BRODER, A. Z., GLASSMAN, S. C., MANASSE, M. S., AND ZWEIG, G. 1997. Syntactic clustering of the web. Comput.

Netw. 29, 8-13, 1157–1166.
BURKHARDT, S. AND KARKKAINEN, J. 2002. One-Gapped q-gram filtersfor levenshtein distance. In Proceedings

of the Annual Symposium on Combinatorial Pattern Matching (CPM’02). 225–234.
CHANG, K. C.-C. AND WON HWANG, S. 2002. Minimal probing: Supporting expensive predicates for top-k queries.

In Proceedings of the ACM SIGMOD International Conference on Management of Data. 346–357.
CHARIKAR, M. 2002. Similarity estimation techniques from rounding algorithms. In Proceedings of the Annual

ACM Symposium on Theory of Computing (STOC’02).
CHAUDHURI, S., GANJAM, K., GANTI, V., AND MOTWANI, R. 2003. Robust and efficient fuzzy match for online

data cleaning. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
313–324.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

15:40 C. Xiao et al.

CHAUDHURI, S., GANTI, V., AND KAUSHIK, R. 2006. A primitive operator for similarity joins in data cleaning. In
Proceedings of the International Conference on Data Engineering (ICDE’06).

CHO, J., SHIVAKUMAR, N., AND GARCIA-MOLINA, H. 2000. Finding replicated web collections. In Proceedings of
the ACM SIGMOD International Conference on Management of Data.

CHOWDHURY, A., FRIEDER, O., GROSSMAN, D. A., AND MCCABE, M. C. 2002. Collection statistics for fast duplicate
document detection. ACM Trans. Inf. Syst. 20, 2, 171–191.

CONRAD, J. G., GUO, X. S., AND SCHRIBER, C. P. 2003. Online duplicate document detection: Signature reliability
in a dynamic retrieval environment. In Proceedings of the ACM International Conference on Information
and Knowledge Management (CIKM’03).

ELMAGARMID, A. K., IPEIROTIS, P. G., AND VERYKIOS, V. S. 2007. Duplicate record detection: A survey. Trans.
Knowl. Data Engin.19, 1, 1–16.

FAGIN, R. 1999. Combining fuzzy information from multiple systems. J. Comput. Syst. Sci. 58, 1, 83–99.
FAGIN, R., KUMAR, R., AND SIVAKUMAR, D. 2003a. Efficient similarity search and classification via rank aggre-

gation. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
FAGIN, R., LOTEM, A., AND NAOR, M. 2003b. Optimal aggregation algorithms for middleware. J. Comput. Syst.

Sci. 66, 4, 614–656.
FETTERLY, D., MANASSE, M., AND NAJORK, M. 2003. On the evolution of clusters of near-duplicate web pages. In

Proceedings of the Latin American Web Congress (LAWEB’03).
GIBSON, D., KUMAR, R., AND TOMKINS, A. 2005. Discovering large dense subgraphs in massive graphs. In

Proceedings of the International Conference on Very Large Databases (VLDB’05).
GIONIS, A., INDYK, P., AND MOTWANI, R. 1999. Similarity search in high dimensions via hashing. In Proceedings

of the International Conference on Very Large Databases (VLDB’99).
GRAVANO, L., IPEIROTIS, P. G., JAGADISH, H. V., KOUDAS, N., MUTHUKRISHNAN, S., AND SRIVASTAVA, D. 2001. Approx-

imate string joins in a database (almost) for free. In Proceedings of the International Conference on Very
Large Databases (VLDB’01).

GUSFIELD, D. 1997. Algorithms on Strings, Trees, and Sequences. Computer Science and Computational Biol-
ogy. Cambridge University Press.

HADJIELEFTHERIOU, M., CHANDEL, A., KOUDAS, N., AND SRIVASTAVA, D. 2008. Fast indexes and algorithms for
set similarity selection queries. In Proceedings of the International Conference on Data Engineering
(ICDE’08). 267–276.

HAMID, O. A., BEHZADI, B., CHRISTOPH, S., AND HENZINGER, M. R. 2009. Detecting the origin of text segments
efficiently. In Proceedings of the International World Wide Web Conference (WWW’09). 61–70.

HENZINGER, M. R. 2006. Finding near-duplicate web pages: A large-scale evaluation of algorithms. In Pro-
ceedings of the Annual ACM SIGIR Conference on Research and Development in Information Retrieval.

HERNANDEZ, M. A. AND STOLFO, S. J. 1998. Real-World data is dirty: Data cleansing and the merge/purge
problem. Data Min. Knowl. Discov. 2, 1, 9–37.

HOAD, T. C. AND ZOBEL, J. 2003. Methods for identifying versioned and plagiarized documents. J. Amer. Soc.
Inf. Sci. Technol. 54, 3, 203–215.

INDYK, P. AND MOTWANI, R. 1998. Approximate nearest neighbors: Towards removing the curse of dimension-
ality. In Proceedings of the Annual ACM Symposium on Theory of Computing (STOC’98).

LI, C., LU, J., AND LU, Y. 2008. Efficient merging and filtering algorithms for approximate string searches. In
Proceedings of the International Conference on Data Engineering (ICDE’08). 257–266.

LI, C., WANG, B., AND YANG, X. 2007. VGRAM: Improving performance of approximate queries on string
collections using variable-length grams. In Proceedings of the International Conference on Very Large
Databases (VLDB’07).

LIEBERMAN, M. D., SANKARANARAYANAN, J., AND SAMET, H. 2008. A fast similarity join algorithm using graphics
processing units. In Proceedings of the International Conference on Data Engineering (ICDE’08). 1111–
1120.

LUO, Y., LIN, X., WANG, W., AND ZHOU, X. 2007. SPARK: Top-k keyword query in relational databases. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. 115–126.

MANBER, U. 1994. Finding similar files in a large file system. In Proceedings of the USENIX Winter Conference.
1–10.

MANKU, G. S., JAIN, A., AND SARMA, A. D. 2007. Detecting near-duplicates for web crawling. In Proceedings of
the International World Wide Web Conference (WWW’07). 141–150.

NAVARRO, G. 2001. A guided tour to approximate string matching. ACM Comput. Surv. 33, 1, 31–88.
RUSSELL, R. C. 1918. Index. U.S. patent 1,261,167.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

Efficient Similarity Joins for Near-Duplicate Detection 15:41

SARAWAGI, S. AND BHAMIDIPATY, A. 2002. Interactive deduplication using active learning. In Proceedings of the
International SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’02).

SARAWAGI, S. AND KIRPAL, A. 2004. Efficient set joins on similarity predicates. In Proceedings of the ACM
SIGMOD International Conference on Management of Data.

SCHLEIMER, S., WILKERSON, D. S., AND AIKEN, A. 2003. Winnowing: Local algorithms for document fingerprinting.
In Proceedings of the ACM SIGMOD International Conference on Management of Data. 76–85.

SEO, J. AND CROFT, W. B. 2008. Local text reuse detection. In Proceedings of the Annual ACM SIGIR Conference
on Research and Development in Information Retrieval. 571–578.

SPERTUS, E., SAHAMI, M., AND BUYUKKOKTEN, O. 2005. Evaluating similarity measures: A large-scale study
in the orkut social network. In Proceedings of the International SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD’05).

THEOBALD, M., SIDDHARTH, J., AND PAEPCKE, A. 2008. Spotsigs: Robust and efficient near duplicate detection in
large web collections. In Proceedings of the Annual ACM SIGIR Conference on Research and Development
in Information Retrieval. 563–570.

UKKONEN, E. 1983. On approximate string matching. In Proceedings of the International Symposium on
Foundations of Computation Theory (FCT’83).

WINKLER, W. E. 1999. The state of record linkage and current research problems. Tech. rep., U.S. Bureau of
the Census.

XIAO, C., WANG, W., AND LIN, X. 2008a. Ed-Join: An efficient algorithm for similarity joins with edit distance
constraints. Proc. VLDB 1, 1, 933–944.

XIAO, C., WANG, W., LIN, X., AND SHANG, H. 2009. Top-k set similarity joins. In Proceedings of the International
Conference on Data Engineering (ICDE’09). 916–927.

XIAO, C., WANG, W., LIN, X., AND YU, J. X. 2008b. Efficient similarity joins for near duplicate detection. In
Proceedings of the International World Wide Web Conference (WWW’08).

YANG, X., WANG, B., AND LI, C. 2008. Cost-Based variable-length-gram selection for string collections to
support approximate queries efficiently. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 353–364.

Received May 2010; revised January 2011; accepted April 2011

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 15, Publication date: August 2011.

