ABOUT LOW DFR FOR QC-MDPC DECODING

NICOLAS SENDRIER

INRIA

VALENTIN VASSEUR

Inria Université de Paris

Wednesday 23rd September, 2020

- Code-based Key Encapsulation Mechanism (KEM)
- Niederreiter framework (BIKE-2)
 - \Rightarrow Half bandwidth compared to a McEliece scheme
- Quasi-cyclic structure
 - \Rightarrow Reduced key sizes
- Moderate Density Parity Check (MDPC) codes [MTSB13]
 - \Rightarrow Reduction to generic hard problems over quasi-cyclic codes
- Efficient implementation
 - Fast encapsulation/decapsulation [DG19]
 - Fast key generation [DGK20]
- NIST post-quantum cryptography standardization process
 - 3rd round alternate candidate

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier and Paulo S. L. M. Barreto. 'MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes'. In: Proc. IEEE Int. Symposium Inf. Theory - ISIT. 2013.

Nir Drucker and Shay Gueron. 'A toolbox for software optimization of QC-MDPC code-based cryptosystems'. In: Journal of Cryptographic Engineering 4 (Nov. 2019).

Nir Drucker, Shay Gueron and Dusan Kostic. 'Fast Polynomial Inversion for Post Quantum QC-MDPC Cryptography'. In: CSCML. 2020. https://bikesuite.org

$$\begin{array}{c} h_{0}, h_{1} \leftarrow \mathcal{H}_{w} & & h_{pub} \\ h_{pub} = h_{0}^{-1} h_{1} \in \mathcal{R} & & & (e_{0}, e_{1}) \leftarrow \mathcal{E}_{1} \\ (e_{0}, e_{1}) = \mathsf{Decode}(h_{0}s, (h_{0}, h_{1})) & & \leftarrow s = e_{0} + h_{pub} e_{1} \end{array}$$

• \mathcal{R} : Cyclic polynomial ring $\mathbb{F}_2[X]/(X^r-1)$.

■ \mathcal{H}_{w} : Private key space $\{(h_0, h_1) \in \mathcal{R}^2 \mid |h_0| = |h_1| = w/2\}$

•
$$\mathcal{E}_t$$
: Error space $\{(e_0, e_1) \in \mathcal{R}^2 \mid |e_0| + |e_1| = t\}$

Parameters:
$$n = 2r$$
, $w \sim t \sim \sqrt{n}$

λ	r _{CPA}	W	t
$128 \\ 192 \\ 256$	$10163\\19853\\32749$	$142 \\ 206 \\ 274$	134 199 264

https://bikesuite.org/

QC Syndrome Decoding – QCSD

Instance: $(h, s) \in \mathcal{R} \times \mathcal{R}$, an integer t > 0. **Property:** There exists $(e_0, e_1) \in \mathcal{E}_t$ such that $e_0 + e_1h = s$.

QC Codeword Finding – QCCF

Instance: $h \in \mathcal{R}$, an even integer w > 0, with w/2 odd. **Property:** There exists $(h_0, h_1) \in \mathcal{H}_w$ such that $h_1 + h_0 h = 0$.

Asymptotically [CS16] with the multi-target variant [Sen11], the best know attacks cost:

■ for QCSD, $\frac{2^{t(1+o(1))}}{\sqrt{r}}$ operations, ■ for QCCF, $\frac{2^{w(1+o(1))}}{r}$ operations.

Rodolfo Canto-Torres and Nicolas Sendrier. 'Analysis of Information Set Decoding for a Sub-linear Error Weight'. In: Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016. 2016.

Nicolas Sendrier. 'Decoding One Out of Many'. In: Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011. Nov. 2011.

δ -correctness [HHK17]

A public-key encryption scheme is δ -correct if:

$$\mathbf{E}_{\substack{(\mathbf{h}_{0},\mathbf{h}_{1})\in\mathcal{H}_{w},\\\mathbf{h}_{pub}\in\mathcal{R}}}\left[\max_{\substack{(\mathbf{e}_{0},\mathbf{e}_{1})\in\mathcal{M}}}\Pr(\operatorname{Dec}(\operatorname{Enc}((\mathbf{e}_{0},\mathbf{e}_{1}),\mathbf{h}_{pub}),(\mathbf{h}_{0},\mathbf{h}_{1}))\neq(\mathbf{e}_{0},\mathbf{e}_{1}))}_{\mathsf{DFR}_{(\mathbf{h}_{0},\mathbf{h}_{1}),\mathbf{h}_{pub}}(\mathcal{D})}\right] < \delta.$$

For λ bits of security, we want $\delta < 2^{-\lambda}$.

Dennis Hofheinz, Kathrin Hövelmanns and Eike Kiltz. 'A Modular Analysis of the Fujisaki-Okamoto Transformation'. In: TCC 2017, Part I. Nov. 2017.

Requirements [FO99; HHK17]			
1. QCSD offers λ bits of security 2. QCCF offers λ bits of security 3. DFR _r (\mathcal{D}) $\leq 2^{-\lambda}$.	HIND-CPA	ND-CCA	

- 1, 2 marginally depend on *r*,
- 3 depends mainly on *r*,
- [GJS16] shows a practical attack if 3 is not true.

Eiichiro Fujisaki and Tatsuaki Okamoto. 'Secure Integration of Asymmetric and Symmetric Encryption Schemes'. In: CRYPTO'99. Aug. 1999. Dennis Hofheinz, Kathrin Hövelmanns and Eike Kiltz. 'A Modular Analysis of the Fujisaki-Okamoto Transformation'. In: TCC 2017, Part I. Nov. 2017.

Qian Guo, Thomas Johansson and Paul Stankovski. 'A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors'. In: Advances in Cryptology - ASIACRYPT 2016. 2016.

 Step-by-step algorithm [SV19] Simple sequential bitflipping algoritm Modeled with a Markov chain allowing to predict its DFR Small difference between the DFR predicted and with simulation In the model, at worst r → log(DFR_r(D)) is an affine function 	fixed (<i>w</i> , <i>t</i>), varying <i>r</i>
Simulation of several variants of decoding algorithm $r \mapsto \log(\text{DFR}_r(\mathcal{D}))$ is a concave function	fixed (w, t) , varying r
Asymptotic result [Til18] $r \mapsto \log(\text{DFR}_r(\mathcal{D}))$ is upper bounded by a concave function of r	$w = \Theta(\sqrt{n}), t = \Theta(\sqrt{n})$

Jean-Pierre Tillich. The decoding failure probability of MDPC codes. preprint. Sept. 2018.

Nicolas Sendrier and Valentin Vasseur. 'On the Decoding Failure Rate of QC-MDPC Bit-Flipping Decoders'. In: Post-Quantum Cryptography - 10th International Conference, PQCrypto 2019. 2019.

Assumption

For a given decoder \mathcal{D} , and a given security level λ , the function $r \mapsto \log(\mathsf{DFR}_r(\mathcal{D}))$ is decreasing and is concave if $\mathsf{DFR}_r(\mathcal{D}) \ge 2^{-\lambda}$.

Error floors from low weight codewords

For a given error e of weight t, and two codewords c_0 and c_1 at distance w from one another, the decoding will fail if $|c_0 + e - c_1| \le |e|$

$$P_{\mathsf{W}}(r) = \sum_{i=w/2}^{\mathsf{W}} \frac{\binom{\mathsf{W}}{i}\binom{2r-\mathsf{W}}{t-i}}{\binom{2r}{t}}.$$

For BIKE,

$$\begin{array}{lll} \lambda = 128, & \log_2 P_{\sf W}(r_{\sf CPA}) = -396.8, & \text{and} & \log_2 P_{\sf W}(r) \approx 535.0 - 70 \log_2 r \\ \lambda = 192, & \log_2 P_{\sf W}(r_{\sf CPA}) = -618.5, & \text{and} & \log_2 P_{\sf W}(r) \approx 837.8 - 102 \log_2 r \\ \lambda = 256, & \log_2 P_{\sf W}(r_{\sf CPA}) = -868.7, & \text{and} & \log_2 P_{\sf W}(r) \approx 1171.2 - 136 \log_2 r \end{array}$$

Further ongoing work on error floors and weak keys do not invalidate the assumption

Input

```
 \begin{aligned} \mathsf{H} &\in \mathbb{F}_2^{r \times n} \\ \mathsf{s} &= \mathsf{e} \mathsf{H}^T \in \mathbb{F}_2^r \text{ with } |\mathsf{e}| \leq t \end{aligned}
```

Output

```
e \in \mathbb{F}_2^n
e \leftarrow 0
while |s - eH^T| \neq 0 do
s' \leftarrow s - eH^T
T \leftarrow \text{threshold}(context)
for j \in \{0, \dots, n-1\} do
if |s' \star h_j| \geq T then
e_j \leftarrow 1 - e_j
return e
```

- H : QC matrix whose first row is h_0, h_1
- h_j : *j*-th column of H
- $|s' \star h_j|$: counter of position j
 - *i.e.* # unverified equations involving *j*

Problem of the original algorithm

Algorithm sometimes takes **bad decisions** (adding errors instead of removing them)

- Bad flips are not always easy to detect
- Too many bad flips hinder progress of the algorithm and can block it

Soft decision decoder

A soft decision decoder handles probabilities rather than bits

- \Rightarrow better decoding performance,
- \Rightarrow not computationally efficient.

Ideas of our variant

- Approach soft decoding
 - counters give a reliability information for each position
 - use this reliability information to limit the duration of a flip
- Each flip has a **time-to-live** (from 1 to 5 iterations)
 - regularly and systematically revert least reliable flips to avoid locking
 - most reliable flips (higher counters) live longer
- Threshold selection rule should be adapted

Input

```
\mathsf{H} \in \mathbb{F}_{2}^{r \times n}
     s = eH^T \in \mathbb{F}_2^r with |e| < t
Output
     \mathbf{e} \in \mathbb{F}_2^n
e \leftarrow 0: F \leftarrow 0: now \leftarrow 1
while |\mathbf{s} - \mathbf{e}\mathbf{H}^T| \neq 0 do
     for each j such that F_i = \text{now do}
           e_i \leftarrow 1 - e_i; \quad F_i \leftarrow 0
      now \leftarrow now + 1
     s' \leftarrow s - eH^T
      T \leftarrow \text{threshold}(context)
     for j \in \{0, ..., n-1\} do
           if |s' \star h_i| \geq T then
                 e_i \leftarrow 1 - e_i
                 if F_i \ge \text{now then}
                       F_i \leftarrow 0
                  else
                       F_i \leftarrow \text{now} + \text{ttl}(|s' \star h_i| - T)
```

- H : QC matrix whose first row is h_0, h_1
- h_i : *j*-th column of H
- $|\mathbf{s}' \star \mathbf{h}_j|$: counter of position j
 - *i.e.* # unverified equations involving *j*

Low additional cost of our variant

- For each flip, a time-to-live is computed
- Need some memory to store the time-of-death of each flipped position
- At the beginning of every iteration, obsolete flips are reverted

Time-to-live: $ttl(\delta)$

- $\blacksquare~\delta$ is the difference between the counter and the threshold
- $\blacksquare \ \operatorname{ttl}(\delta)$ is an increasing function of δ

Empirical choices

u $ttl(\delta)$ is a saturating affine function in δ :

$$\mathsf{ttl}(\delta) = \mathsf{max}(1, \mathsf{min}(\mathsf{max_ttl}, \lfloor A \, \delta + B \rfloor))$$

Determine A and B with an optimization method on the DFR obtained by simulation Obtained values

security	max_ttl	А	В
128	5	0.45	1.1
192	5	0.36	1.41
256	5	0.45	1

Threshold: threshold(|s|, |e|) (see [Cha17])

Smallest T such that

$$\mathbf{e}|f_{d,\pi_1}(T) \ge (n - |\mathbf{e}|)f_{d,\pi_0}(T)$$
.

with

$$\pi_0 = \frac{\bar{\sigma}_{\mathsf{corr}}}{d} = \frac{(\mathsf{w}-1)\,|\mathsf{s}| - \mathsf{X}}{d(n-|\mathsf{e}|)} \quad \mathsf{and} \quad \pi_1 = \frac{\bar{\sigma}_{\mathsf{err}}}{d} = \frac{|\mathsf{s}| + \mathsf{X}}{d\,|\mathsf{e}|}$$

and $f_{d,\pi}$ is the binomial distribution probability mass function for parameters d and π

 π_0 and π_1 depend on

- |s| which is known,
- |e| which is not known.

Assume that |e| = t - #flips

- true if no error was added,
- otherwise, gives a more conservative threshold.

Julia Chaulet. 'Étude de cryptosystèmes à clé publique basés sur les codes MDPC quasi-cycliques'. PhD thesis. University Pierre et Marie Curie, Mar. 2017.

#iter	λ	<i>r</i> ₁	r ₂	$\log_2 DFR_{r_1}(\mathcal{D})$	$\log_2 DFR_{r_2}(\mathcal{D})$	$r_{\mathcal{D},\lambda}$	r _{CPA}	$r_{\mathcal{D},\lambda}/r_{\mathrm{CPA}}$
100	128	9200	9350	-21.4	-27.7	11717	10163	1.15
	192	18200	18300	-23.0	-25.6	24665	19853	1.24
	256	30250	30400	-23.3	-26.2	42418	32749	1.30
10	128	10000	10050	-22.7	-24.6	12816	10163	1.26
	192	19550	19650	-23.5	-25.7	26939	19853	1.36
	256	32250	32450	-22.9	-26.6	44638	32749	1.36
11	128	10000	10050	-25.1	-27.1	12573	10163	1.24
	192	19550	19650	-25.9	-28.6	25580	19853	1.29
	256	32250	32450	-25.1	-29.5	42706	32749	1.30

- Explain the status of the DFR in the security analysis
- Justify the DFR extrapolation technique with previous works
- Introduce a new security assumption related to the decoder
- Explain the rationale of the Backflip decoder
- Show the decoding performance of the Backflip decoder