# **ON WEAK KEYS IN QC-MDPC SCHEMES**

NICOLAS SENDRIER

INRIA

VALENTIN VASSEUR

Inria Université de Paris

# QC-MDPC [MTSB13]<sup>1</sup>

#### McEliece-like public-key encryption scheme with a quasi-cyclic structure

- Reasonable key sizes
- Reduction to generic hard problems over quasi-cyclic codes
- 2nd round candidate to the NIST post-quantum cryptography standardization process

BIKE

<sup>&</sup>lt;sup>1</sup>Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier and Paulo S. L. M. Barreto. 'MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes'. In: *Proc. IEEE Int. Symposium Inf. Theory - ISIT.* 2013.

## BIKE-2<sup>2</sup>

$$\begin{split} \mathbf{H} &= (\mathbf{H}_0 | \mathbf{H}_1) \leftarrow \mathbb{F}_2^{r \times n} \\ \mathbf{H}_{\mathsf{pub}} &= (I_r | \mathbf{H}_0^{-1} \mathbf{H}_1) \in \mathbb{F}_2^{r \times n} \\ \mathbf{H}_0, \, \mathbf{H}_1 \text{ circulant matrices with row weight } d \end{split}$$

$$\mathbf{e} \leftarrow \{0, 1\}^n$$
$$|\mathbf{e}| = t$$

**Parameters**: *r*, *d*,  $t \in \mathbb{N}$ , n = 2r,  $w = 2d \sim t \sim \sqrt{n}$ 

H<sub>pub</sub>

| λ   | r <sub>cpa</sub> | r <sub>CCA</sub> | d   | t   |
|-----|------------------|------------------|-----|-----|
| 128 | 10163            | 11779            | 71  | 134 |
| 192 | 19853            | 24821            | 103 | 199 |
| 256 | 32749            | 40597            | 137 | 264 |

<sup>2</sup>https://bikesuite.org/

# Circulant matrix

A circulant matrix is a matrix where each row vector is rotated one element to the right relative to the preceding row vector

$$H = \begin{pmatrix} h_0 & h_{r-1} & \dots & h_2 & h_1 \\ h_1 & h_0 & h_{r-1} & & h_2 \\ \vdots & h_1 & h_0 & \ddots & \vdots \\ h_{r-2} & & \ddots & \ddots & h_{r-1} \\ h_{r-1} & h_{r-2} & \dots & h_1 & h_0 \end{pmatrix}$$

#### Truncated polynomial

$$H \mapsto h_0 + h_1 x + \dots + h_{r-2} x^{r-2} + h_{r-1} x^{r-1}$$

is an isomorphism between the circulant  $r \times r$  matrices and the quotient  $\mathbb{F}_2[\mathbf{x}]/(\mathbf{x}^r-1)$ .

# BIKE-2<sup>3</sup>

$$\begin{array}{ll} \mathsf{h}_0, \mathsf{h}_1 \leftarrow \mathbb{F}_2[x]/(x^r-1) & \mathsf{h}_{\mathsf{pub}} \\ \mathsf{h}_{\mathsf{pub}} = \mathsf{h}_0^{-1} \mathsf{h}_1 \in \mathbb{F}_2[x]/(x^r-1) & \xrightarrow{} \\ |\mathsf{h}_0| = |\mathsf{h}_1| = \mathsf{d} \end{array}$$

$$\mathbf{e}_0, \mathbf{e}_1 \leftarrow \mathbb{F}_2[\mathbf{X}]/(\mathbf{X}^r - 1)$$
$$|\mathbf{e}_0| + |\mathbf{e}_1| = t$$

$$c = e_0 + h_{pub} e_1$$

 $\mathsf{e} = \mathsf{Decode}(\mathsf{h}_0\mathsf{c}, \mathsf{h}_0, \mathsf{h}_1)$ 

Parameters: r, d, 
$$t \in \mathbb{N}$$
,  $n = 2r$ ,  $w = 2d \sim t \sim \sqrt{n}$ 

| $\lambda$ | r <sub>cpa</sub> | r <sub>CCA</sub> | d   | t   |
|-----------|------------------|------------------|-----|-----|
| 128       | 10163            | 11779            | 71  | 134 |
| 192       | 19853            | 24821            | 103 | 199 |
| 256       | 32749            | 40597            | 137 | 264 |

<sup>3</sup>https://bikesuite.org/

## IDEA OF THE DECODING ALGORITHM

$$\begin{split} \mathsf{s} &= \mathsf{h}_0 \mathsf{c} = \mathsf{h}_0 (\mathsf{e}_0 + \mathsf{h}_{\mathsf{pub}} \mathsf{e}_1) \\ &= \mathsf{h}_0 \mathsf{e}_0 + \mathsf{h}_1 \mathsf{e}_1 \end{split}$$

 $e_0, e_1$ : error pattern

s: syndrome

 $x^{j}h_{i} \star s$  : counter

 $\textbf{Input}: \mathsf{s}, \textbf{h}_0, \textbf{h}_1$ 

 $\textbf{Output} : e_0, e_1$ 

Idea : 
$$s = \sum_{j,e_{0j}=1} x^{j} h_{0} + \sum_{j,e_{1j}=1} x^{j} h_{1}$$

$$\begin{aligned} x^{j}\mathbf{h}_{i}\star\mathbf{s} &\approx \begin{cases} x^{j}\mathbf{h}_{i} + \text{Noise} & \text{if } e_{ij} = 1\\ \text{Noise} & \text{if } e_{ij} = 0 \end{cases} \\ &\Rightarrow \left|x^{j}\mathbf{h}_{i}\star\mathbf{s}\right| &\approx \begin{cases} \text{Big value} & \text{if } e_{ij} = 1\\ \text{Small value} & \text{if } e_{ij} = 0 \end{cases} \end{aligned}$$

 $x^{j'}h_{i'} \star x^{j}h_{i}$  is small if  $(i,j) \neq (i',j')$ 

## **COUNTERS DISTRIBUTIONS**

#### Counters

$$\forall i \in \{0, 1\}, \forall j \in \{0, \dots, r-1\}, \sigma_{i,j} = \left| \mathbf{x}^{j} \mathbf{h}_{i} \star \mathbf{s} \right|$$



## **COUNTERS DISTRIBUTIONS**

#### Counters

$$\forall i \in \{0,1\}, \forall j \in \{0,\ldots,r-1\}, \sigma_{i,j} = \left| \mathbf{x}^{j} \mathbf{h}_{i} \star \mathbf{s} \right|$$



Goal:

Show that the DFR is less than  $2^{-\lambda}$  ( $\lambda$  security parameter)

Motivations:

- Security reasons
  - Needed for the IND-CCA proof [HHK17]<sup>4</sup>
  - [GJS16]<sup>5</sup> shows a practical attack using decoding failures

<sup>&</sup>lt;sup>4</sup>Dennis Hofheinz, Kathrin Hövelmanns and Eike Kiltz. <sup>4</sup>A modular analysis of the Fujisaki-Okamoto transformation<sup>7</sup>. In: *Theory of Cryptography Conference*. Springer. 2017.

<sup>&</sup>lt;sup>5</sup>Qian Guo, Thomas Johansson and Paul Stankovski. 'A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors'. In: *Advances in Cryptology - ASIACRYPT 2016*. 2016. URL: http://dx.doi.org/10.1007/978-3-662-53887-6\_29.

# $\delta$ -correctness [HHK17]<sup>6</sup>

A public-key encryption scheme is  $\delta\text{-correct}$  if:

$$\mathbf{E}_{(\mathsf{sk},\mathsf{pk})}\left[\underbrace{\max_{m\in\mathcal{M}}\Pr(\operatorname{Dec}(\operatorname{Enc}(m,\mathsf{pk}),\mathsf{sk})\neq m)}_{\mathsf{DFR}_{(\mathsf{sk},\mathsf{pk})}}\right] < \delta$$

For  $\lambda$  bits of security, we want  $\delta < 2^{-\lambda}$ .

#### Weak keys

We say that  $\mathcal{W}$  is a set of weak keys if  $\mathbf{E}_{(sk,pk)\in\mathcal{W}}\left[\mathsf{DFR}_{(sk,pk)}\right]$  is high.

We want to make sure that

$$\mathbf{E}_{(\mathsf{sk},\mathsf{pk})\in\mathcal{W}}\left[\mathsf{DFR}_{(\mathsf{sk},\mathsf{pk})}\right]\times\Pr((\mathsf{sk},\mathsf{pk})\in\mathcal{W})<2^{-\lambda}\,.$$

<sup>&</sup>lt;sup>6</sup>Dennis Hofheinz, Kathrin Hövelmanns and Eike Kiltz. 'A modular analysis of the Fujisaki-Okamoto transformation'. In: *Theory of Cryptography Conference*. Springer. 2017.

#### Assumption

For a given decoder  $\mathcal{D}$ , and a given security level  $\lambda$ , the function  $r \mapsto \log(\mathsf{DFR}_{\mathcal{D},\lambda}(r))$  is decreasing and is concave if  $\mathsf{DFR}_{\mathcal{D},\lambda}(r) \ge 2^{-\lambda}$ .



This assumption is backed by [Til18]<sup>7</sup> and [SV19]<sup>8</sup>.

<sup>7</sup>Jean-Pierre Tillich. 'The Decoding Failure Probability of MDPC Codes'. In: 2018 IEEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018. 2018. URL: https://doi.org/10.1109/ISIT.2018.8437843.

<sup>8</sup>Nicolas Sendrier and Valentin Vasseur. 'On the Decoding Failure Rate of QC-MDPC Bit-Flipping Decoders'. In: *Post-Quantum Cryptography 2019.* May 2019.

[DGK19]<sup>9</sup>: "Instead of generating a random  $h_0$ , we start by setting the first f = 0, 20, 30, 40 bits, and then select randomly the positions of the additional (d-f) bits."



<sup>&</sup>lt;sup>9</sup>Nir Drucker, Shay Gueron and Dusan Kostic. *On constant-time QC-MDPC decoding with negligible failure rate.* Cryptology ePrint Archive, Report 2019/1289. 2019.

# Counting Type I weak keys (r = 11779)

| f  | $\log_2 N_f^l$ |
|----|----------------|
| 4  | -29.620        |
| 5  | -37.077        |
| 6  | -44.556        |
| 7  | -52.057        |
| 8  | -59.580        |
| 9  | -67.126        |
| 10 | -74.694        |
| 11 | -82.286        |
| 12 | -89.902        |
| 13 | -97.542        |
| 14 | -105.206       |
| 15 | -112.896       |
| 16 | -120.610       |
| 17 | -128.351       |
| 18 | -136.118       |
| 19 | -143.912       |
| 20 | -151.733       |
| 21 | -159.582       |

$$N_f^{\mathsf{l}} = \frac{\binom{r-f}{d-f}}{\binom{r}{d}}$$

| f      | $\log_2 N_f^l$ | $\log_2 DFR$ | $\log_2(N_f' 	imes DFR)$ |
|--------|----------------|--------------|--------------------------|
| Random |                | -83.300      |                          |
| 6      | -44.556        | -83.363      | -127.919                 |
| 8      | -59.580        | -84.245      | -143.825                 |
| 10     | -74.694        | -85.535      | -160.229                 |
| 12     | -89.902        | -83.547      | -173.449                 |
| 14     | -105.206       | -83.267      | -188.473                 |
| 16     | -120.610       | -81.392      | -202.002                 |
| 18     | -136.118       | -78.701      | -214.819                 |
| 20     | -151.733       | -75.291      | -227.024                 |
| 22     | -167.459       | -67.365      | -234.824                 |

A weak key of Type I has a parity check matrix as follows:



#### **EFFECT ON COUNTERS OF IMMEDIATE NEIGHBOURS**

- In blue, average case
- In red, *f* = 20



# Cyclic distance

$$\forall i, j, \quad 0 \leq i < j < r, \quad \mathrm{d}(i, j) = \min(j - i, r + i - j) \,.$$

# Spectrum

Define 
$$S_{\delta}(h) = \left\{ (i,j) \mid 0 \le i < j < r, h_i = h_j = 1 \text{ and } d(i,j) = \delta \right\}.$$
  

$$\operatorname{Sp}(h) = \left\{ (\delta, |S_{\delta}(h)|) \mid \delta \in \{1, \dots, \lfloor r/2 \rfloor\} \right\}$$

$$h = (0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0)$$
  
Sp(h) = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 2)]



## Neighbours

 $(\delta, m) \in Sp(h)$  if and only if h and its  $\delta$ -shift  $x^{\delta}h$  intersect in m equations.

$$\left|\mathbf{h} \star \mathbf{x}^{\delta} \mathbf{h}\right| = m$$

$$h = (0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0)$$
$$x^{5}h = (0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1)$$

$$Sp(\mathsf{h}) = \{(1,1), (2,1), (3,1), (4,1), (5,2)\}$$



Fix a number of bits f.

- Choose a starting point  $i_0 \in \{0, \ldots, r-1\}$ .
- Choose a distance  $\delta \in \{1, \ldots, \lfloor r/2 \rfloor\}$ .
- Set f bits regularly spaced by a distance  $\delta$ .



• Complete the error pattern to obtain a vector of weight *d*.

(Previous construction corresponds to  $i_0 = 0$  and  $\delta = 1$ .)

# Counting Type I weak keys (rev.) (r = 11779)

| f  | $\log_2 N_f^l$ | was      |
|----|----------------|----------|
| 6  | -18.509        | -44.556  |
| 7  | -26.009        | -52.057  |
| 8  | -33.532        | -59.580  |
| 9  | -41.078        | -67.126  |
| 10 | -48.647        | -74.694  |
| 11 | -56.239        | -82.286  |
| 12 | -63.854        | -89.902  |
| 13 | -71.494        | -97.542  |
| 14 | -79.159        | -105.206 |
| 15 | -86.848        | -112.896 |
| 16 | -94.563        | -120.610 |
| 17 | -102.303       | -128.351 |
| 18 | -110.070       | -136.118 |
| 19 | -117.864       | -143.912 |
| 20 | -125.685       | -151.733 |
| 21 | -133.534       | -159.582 |

$$N_f^{\mathsf{l}} = \frac{\mathsf{r}(\mathsf{r}-1)}{2} \frac{\binom{r-f}{d-f}}{\binom{r}{d}}$$

| f      | $\log_2 N_f^l$ | $\log_2 DFR$ | $\log_2(N_f^l 	imes DFR)$ |
|--------|----------------|--------------|---------------------------|
| Random |                | -83.300      |                           |
| 6      | -18.509        | -83.363      | -101.872                  |
| 8      | -33.532        | -84.245      | -117.777                  |
| 10     | -48.647        | -85.535      | -134.182                  |
| 12     | -63.854        | -83.547      | -147.401                  |
| 14     | -79.159        | -83.267      | -162.426                  |
| 16     | -94.563        | -81.392      | -175.955                  |
| 18     | -110.070       | -78.701      | -188.771                  |
| 20     | -125.685       | -75.291      | -200.976                  |
| 22     | -141.412       | -67.365      | -208.777                  |

#### Idea

Generate h such that  $\max\{m \mid (\delta, m) \in \text{Sp}(h)\}$  is high ( $\gtrsim 10$ ).

Fix a multiplicity *m*.

- Choose a distance  $\delta \in \{1, \ldots, \lfloor r/2 \rfloor\}$ .
- Generate a pattern h of weight d such that  $(\delta, m) \in Sp(h)$ .

#### Isomorphism

If  $\delta \in \mathbb{Z}_r^{\times}$  , then

$$\begin{split} \phi_{\delta} \colon (\mathbb{F}_{2}[\mathbf{X}]/(\mathbf{X}^{r}-1),+,\times) &\to (\mathbb{F}_{2}[\mathbf{X}]/(\mathbf{X}^{r}-1),+,\times) \\ \mathbf{h} = \sum_{i \in \mathrm{Supp}(\mathbf{h})} \mathbf{X}^{i} \mapsto \sum_{i \in \mathrm{Supp}(\mathbf{h})} \mathbf{X}^{\delta \cdot i} \end{split}$$

is an ring isomorphism.

In BIKE, by construction *r* is always a prime number and the decoder is such that

 $\mathsf{Decode}(\phi_{\delta}(\mathsf{s}), \phi_{\delta}(\mathsf{h}_0), \phi_{\delta}(\mathsf{h}_1)) = \phi_{\delta}(\mathsf{Decode}(\mathsf{s}, \mathsf{h}_0, \mathsf{h}_1)) \ .$ 

#### Reduction to $\delta = 1$

 $(\delta, m) \in \mathrm{Sp}(\mathsf{h})$  if and only if  $(1, m) \in \mathrm{Sp}(\phi_{\delta^{-1}}(\mathsf{h}))$ .

#### Idea

Generate h such that  $\max\{m \mid (\delta, m) \in \operatorname{Sp}(h)\}$  is high ( $\gtrsim 10$ ).

Fix a multiplicity *m*.

- Choose a distance  $\delta \in \{1, \ldots, \lfloor r/2 \rfloor\}$ .
- Generate a pattern h' of weight d such that  $(1, m) \in Sp(h')$ .
- **Take h** =  $\phi_{\delta}(\mathbf{h}')$ .

#### First, suppose h' starts with a 0 and ends with a 1.

We have

$$\begin{cases} o_1 + o_2 + \dots + o_s = d ; \\ z_1 + z_2 + \dots + z_s = r - d . \end{cases}$$

A block of k successive 1 adds (k - 1) to the multiplicity of  $\delta = 1$ .

So h' has multiplicity  $m = \sum_{i=1}^{s} o_i - 1 = d - s$ .

Fix s = d - m.

- There are  $\binom{d-1}{s-1}$  tuples  $(o_1, o_2, \dots, o_s)$  such that  $o_1 + o_2 + \dots + o_s = d$ .
- There are  $\binom{r-d-1}{s-1}$  tuples  $(z_1, z_2, \dots, z_s)$  such that  $z_1 + z_2 + \dots + z_s = r d$ .

 $\Rightarrow$  There are  $\binom{d-1}{s-1}\binom{r-d-1}{s-1}$  patterns h' that start with a 0 and end with a 1.

Let  $\ell$  be the smallest integer such that  $x^{-\ell}h'$  starts with a 0 and ends with a 1.  $x^{-\ell}h'$  follows a pattern  $(z_1, o_1, \dots, z_{s-1}, o_{s-1}, z_s, o_s)$ 

#### **Bijection**

For all  $s \in \{1, ..., d\}$ , there is a bijection between the pairs  $(\ell, (z_1, o_1, ..., z_{s-1}, o_{s-1}, z_s, o_s))$  such that

$$\begin{cases} \ell \in \{0, \dots, z_1 + o_1 - 1\}; \\ o_1 + o_2 + \dots + o_s = d; \\ z_1 + z_2 + \dots + z_s = r - d \end{cases}$$

and the patterns h' of weight d and length r where 1 has multiplicity m = d - s.

If m = d - 1, r patterns possible.

If  $m < d - 1 \Rightarrow s > 1$ 

Fix  $z_1$  and  $o_1$ , then

• there are  $\binom{d-1-o_1}{s-2}$  tuples  $(o_2, \ldots, o_s)$  such that  $o_1 + o_2 + \cdots + o_s = d$ ;

there are  $\binom{r-d-1-z_1}{s-2}$  tuples  $(z_2, \ldots, z_s)$  such that  $z_1 + z_2 + \cdots + z_s = r - d$ .  $\rightarrow$  In general, there are

$$\sum_{z_1=1}^{r-d-s+1} \sum_{o_1=1}^{d-s+1} (z_1+o_1) \binom{d-o_1-1}{s-2} \binom{r-d-z_1-1}{s-2}$$

patterns.

Considering all the values for  $\delta \in \{1, \ldots, \lfloor r/2 \rfloor\}$ .

• If m = d - 1,  $N''_m = \frac{r(r-1)}{2}$ .

• If 
$$m < d - 1 \Rightarrow s > 1$$
,

$$N_m^{\prime\prime} = \frac{r-1}{2} \sum_{z_1=1}^{r-d-s+1} \sum_{o_1=1}^{d-s+1} (z_1+o_1) \binom{d-o_1-1}{s-2} \binom{r-d-z_1-1}{s-2} \,.$$

# Comparing Type I and Type II weak keys frequencies (r = 11779)

| f  | $\log_2 N_f^l$ | т  | $\log_2 N_m^{\prime\prime}$ |
|----|----------------|----|-----------------------------|
| 8  | -33.532        | 12 | -34.524                     |
| 9  | -41.078        | 13 | -39.992                     |
| 10 | -48.647        | 14 | -45.617                     |
| 11 | -56.239        | 15 | -51.392                     |
| 12 | -63.854        | 16 | -57.311                     |
| 13 | -71.494        | 17 | -63.371                     |
| 14 | -79.159        | 18 | -69.567                     |
| 15 | -86.848        | 19 | -75.895                     |
| 16 | -94.563        | 20 | -82.353                     |
| 17 | -102.303       | 21 | -88.938                     |
| 18 | -110.070       | 22 | -95.648                     |
| 19 | -117.864       | 23 | -102.481                    |
| 20 | -125.685       | 24 | -109.436                    |
| 21 | -133.534       | 25 | -116.511                    |
| 22 | -141.412       | 26 | -123.706                    |
| 23 | -149.318       | 27 | -131.019                    |
|    | Туре І         |    | Type II                     |

28

| т      | $\log_2 N_f^{II}$ | $\log_2 DFR$ | $\log_2(\textit{N}_{f}^{\prime\prime} 	imes DFR)$ |
|--------|-------------------|--------------|---------------------------------------------------|
| Random |                   | -83.300      |                                                   |
| 8      | -13.677           | -84.210      | -97.887                                           |
| 10     | -23.411           | -83.790      | -107.201                                          |
| 12     | -33.886           | -83.665      | -117.551                                          |
| 14     | -45.020           | -83.749      | -128.769                                          |
| 16     | -56.753           | -83.600      | -140.353                                          |
| 18     | -69.047           | -83.086      | -152.133                                          |
| 20     | -81.869           | -82.437      | -164.306                                          |
| 22     | -95.199           | -81.466      | -176.665                                          |
| 24     | -109.020          | -80.218      | -189.238                                          |
| 26     | -123.322          | -79.186      | -202.508                                          |
| 28     | -138.097          | -77.643      | -215.740                                          |

# Type III: Intersections between two different blocks in a QC-MDPC

#### Column intersection

The block  $h_0$  and  $x^j h_1$  for any  $j \in \{0, \dots, r-1\}$  intersect on m equations with probability

$$N_m^{III} = r \frac{\binom{d}{m}\binom{r-d}{d-m}}{\binom{r}{d}}$$

| т  | $\log_2 N_m^{II}$ | $\log_2 N_m^{III}$ |
|----|-------------------|--------------------|
| 6  | -5.578            | -4.459             |
| 7  | -9.870            | -8.729             |
| 8  | -14.400           | -13.237            |
| 9  | -19.146           | -17.960            |
| 10 | -24.091           | -22.881            |
| 11 | -29.221           | -27.986            |
| 12 | -34.524           | -33.266            |
| 13 | -39.992           | -38.709            |
| 14 | -45.617           | -44.308            |
| 15 | -51.392           | -50.058            |
| 16 | -57.311           | -55.951            |
| 17 | -63.371           | -61.985            |
| 18 | -69.567           | -68.154            |
| 19 | -75.895           | -74.454            |

| т      | $\log_2 N_f^{III}$ | $\log_2 DFR$ | $\log_2(N_f^{III} 	imes DFR)$ |
|--------|--------------------|--------------|-------------------------------|
| Random |                    | -83.300      |                               |
| 8      | -13.237            | -84.014      | -97.251                       |
| 10     | -22.881            | -84.146      | -107.027                      |
| 12     | -33.266            | -84.198      | -117.464                      |
| 14     | -44.308            | -83.988      | -128.296                      |
| 18     | -68.154            | -82.938      | -151.092                      |
| 20     | -80.884            | -82.982      | -163.866                      |
| 24     | -107.850           | -81.333      | -189.183                      |
| 26     | -122.057           | -79.567      | -201.624                      |
| 28     | -136.736           | -76.028      | -212.764                      |

- Type I keys are weak because they increase a multiplicity in a block
- Type II keys generalize the construction as much as possible
- Type III considers the two blocks of the QC-MDPC
- Simulation show that these keys have small contribution in the DFR
- $\rightarrow\,$  These weak keys do not break the decoder properties needed for the IND-CCA conversion

(Filtering keys is also a possibility)