ON THE DECODING FAILURE RATE OF QC-MDPC BIT-FLIPPING DECODERS

NICOLAS SENDRIER VALENTIN VASSEUR Inria Inria Université Paris Descartes, Sorbonne Paris Cité

■ McEliece-like public-key encryption scheme with a quasi-cyclic structure

- Reasonable key sizes
- Reduction to generic hard problems over quasi-cyclic codes
- 2nd round candidate to the NIST post-quantum cryptography standardization process
 - BIKE

¹Rafael Misoczki et al. 'MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes'. In: *Proc. IEEE Int. Symposium Inf. Theory - ISIT.* 2013, pp. 2069–2073.

Methodology:

- Prove that the Decoding Failure Rate is negligible in an ideal model
- Study the validity of the model

Motivations:

- Security reasons
 - [GJS16]²: correlation between faulty error patterns and the secret key
 - \rightarrow Scheme is not IND-CCA
- Engineering reasons
 - Avoid re-execution of the protocol in case of failure
 - Misuse resilience

²Qian Guo, Thomas Johansson and Paul Stankovski. 'A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors'. In: *Advances in Cryptology* - *ASIACRYPT* 2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. 2016, pp. 789–815. ISBN: 978-3-662-53886-9. DOI: 10.1007/978-3-662-53887-6_29. URL: http://dx.doi.org/10.1007/978-3-662-53887-6_29.

Original

Input $\mathsf{H} \in \{0,1\}^{r \times n}$ $\mathbf{y} \in \{0, 1\}^n$ Output $\mathbf{c} \in \{0, 1\}^n$ while $\mathbf{y}\mathbf{H}^{T} \neq 0$ do $s \leftarrow vH^T$ $T \leftarrow \text{threshold}(context)$ for $j \in \{0, ..., n-1\}$ do if $|s \cap h_i| > T$ then $y_i \leftarrow 1 - y_i$ return y

H: moderately sparse parity check matrix

 $\mathbf{y} = \mathbf{c} + \mathbf{e}$

y: noisy codeword c: codeword e: error

$$s = yH^T = \underbrace{cH^T}_{=0} + eH^T$$

s: syndrome

 $|s \cap h_j|$: counter

Counters distributions: $|s| = 14\,608$, |e| = 264

Counters distributions: |S| = 14608, |E| = 264

DECODING ALGORITHM (BIT-FLIPPING)

Original

 $\begin{array}{l} \text{Input} \\ \mathsf{H} \in \{0,1\}^{r \times n} \\ \mathsf{y} \in \{0,1\}^n \end{array} \\ \begin{array}{l} \text{Output} \\ \mathsf{c} \in \{0,1\}^n \end{array} \\ \text{while } \mathsf{yH}^T \neq 0 \text{ do} \\ \mathsf{s} \leftarrow \mathsf{yH}^T \\ \mathsf{T} \leftarrow \mathsf{threshold}(\textit{context}) \\ \mathsf{for } j \in \{0,\ldots,n-1\} \text{ do} \\ \quad \mathsf{if } |\mathsf{s} \cap \mathsf{h}_j| \geq T \text{ then} \\ y_j \leftarrow 1 - y_j \end{array}$

return y

Step-by-step

Input $H \in \{0, 1\}^{r \times n}$ $y \in \{0, 1\}^n$ Output $c \in \{0, 1\}^n$ while $yH^T \neq 0$ do $s \leftarrow yH^T$ $j \leftarrow sample(context)$ $T \leftarrow threshold(context)$ if $|s \cap h_j| \ge T$ then $y_j \leftarrow 1 - y_j$

return y

MODEL FOR A DECODER

- Finite State Machine
- Stochastic process
- Suppose it is a memoryless process
- \rightarrow Markov chain

State space:

- all the possible combinations of (*S*, *t*) with
 - $S = |eH^T|$: the syndrome weight
 - $t = |\mathbf{e}|$: the error weight

Transitions:

Defined by the algorithm

For a specific starting syndrome weight |s| = S and error weight |e| = t:

 $\mathsf{P}_{\mathsf{success}}(S,t) = \Pr[(S,t) \xrightarrow{\infty} (0,0)] \qquad \mathsf{P}_{\mathsf{failure}}(S,t) = 1 - \mathsf{P}_{\mathsf{success}}(S,t)$ Finally

$$\mathsf{DFR}(t) = \sum_{S} \Pr(|\mathsf{S}| = S | |\mathsf{e}| = t) \cdot \mathsf{P}_{\mathsf{failure}}(S, t)$$

ASSUMPTIONS

- Error positions are always independent
- Infinite number of iterations
- Counters distributions [Cha17]³:

•
$$\Pr\left[\left|\mathbf{s} \cap \mathbf{h}_{j}\right| = \sigma | \mathbf{e}_{j} = 0\right] = {d \choose \sigma} \pi_{0}^{\sigma} (1 - \pi_{0})^{d - \sigma}$$
 with

$$\pi_0 = \frac{\bar{\sigma}_{\text{corr}}}{d} = \frac{(w-1)|\mathsf{s}| - X}{d(n-|\mathsf{e}|)}$$

•
$$\Pr\left[\left|\mathbf{S} \cap \mathbf{h}_{j}\right| = \sigma | \mathbf{e}_{j} = 1\right] = {d \choose \sigma} \pi_{1}^{\sigma} (1 - \pi_{1})^{d - \sigma}$$
 with $\bar{\sigma}_{\operatorname{err}} = |\mathbf{S}| + X$

$$\pi_1 = \frac{\bar{\sigma}_{\text{err}}}{d} = \frac{|\mathbf{s}| + X}{d|\mathbf{e}|}$$

• Additional term X is not dominant and is approximated by its expected value for a given |s| and |e| $E_{\ell} = |\{\text{equations with } \ell \text{ errors}\}|$ $X = 2E_3 + 4E_5 + \cdots$

³Julia Chaulet. 'Étude de cryptosystèmes à clé publique basés sur les codes MDPC quasi-cycliques'. PhD thesis. University Pierre et Marie Curie, Mar. 2017. URL: https://tel.archives-ouvertes.fr/tel-01599347.

```
Require: H \in \{0, 1\}^{r \times n}, y \in \{0, 1\}^n

while (s \leftarrow yH^T) \neq 0 do

j \leftarrow sample(context)

T \leftarrow threshold(context)

if |s \cap h_j| \ge T then

y_j \leftarrow 1 - y_j

return y
```

- Thresholds defined by the algorithm
- Distributions known from [Cha17]⁴

⁴Julia Chaulet. 'Étude de cryptosystèmes à clé publique basés sur les codes MDPC quasi-cycliques'. PhD thesis. University Pierre et Marie Curie, Mar. 2017. URL: https://tel.archives-ouvertes.fr/tel-01599347

TRANSITIONS

Finite number of iterations

Infinite number of iterations

$$(S,t) \xrightarrow{p_{\sigma}^{\prime-}} (S+d-2\sigma,t-1) \qquad \qquad p_{\sigma}^{\prime-} = \frac{p_{\sigma}}{1-p}$$

$$p_{\sigma}^{\prime+} \xrightarrow{(S+d-2\sigma,t+1)} \qquad \qquad p_{\sigma}^{\prime+} = \frac{p_{\sigma}^{+}}{1-p}$$

Infinite number of iterations considering the possibility of locking

$$(S,t) \xrightarrow{p_{\sigma}^{\prime\prime-}} (S+d-2\sigma,t-1) \qquad \qquad p_{\sigma}^{\prime\prime-} = p_{\sigma}^{\prime-}(1-p_L) \\ p_{L} \downarrow \qquad \qquad p_{\sigma}^{\prime\prime+} \xrightarrow{p_{\sigma}^{\prime\prime+}} (S+d-2\sigma,t+1) \qquad \qquad p_{\sigma}^{\prime\prime+} = p_{\sigma}^{\prime+}(1-p_L)$$

For a fixed rate R:

- cost of an attack on the key: $\sim 2^{\rm cw}$
- cost of an attack on the message: $\sim 2^{ct}$

for some constant c

Changing *r*:

- $\rightarrow\,$ same costs for these attacks
- $\rightarrow \,\, \text{different DFR}$

r: block sizen: code lengthR: code ratew: row weightt: error weight

DFR of the step-by-step algorithm (∞ iterations)

DFR of the step-by-step algorithm (∞ iterations)

DFR of other algorithms

	r = 32749		2^{-128}		2^{-256}	
	(a)	(b)	(c)	(d)	(e)	(f)
SBS (model)	-13.6		41 872		50 333	
SBS (simulation)	-11.5		40 952	48 6 10	45772	66 0 2 0
Original	-21.7		36950	39766	39837	48215
BIKE	-47.5	-57.0	34712	37450	37159	44 924

(a): linearly extrapolated value for $\log_2(p_{\text{fail}}(32749))$;

(b): quadratically extrapolated value for $\log_2(p_{\text{fail}}(32749))$; (c): minimal r such that $p_{\text{fail}}(r) < 2^{-128}$ assuming a quadratic evolution; (d): minimal r such that $p_{\text{fail}}(r) < 2^{-128}$ assuming a linear evolution; (e): minimal r such that $p_{\text{fail}}(r) < 2^{-256}$ assuming a quadratic evolution; (f): minimal r such that $p_{\text{fail}}(r) < 2^{-256}$ assuming a linear evolution.

- Defined a simpler decoding algorithm
- Modeled this algorithm
- Derived a theoretical DFR from that model
- Assumed a similar behavior for other bitflipping algorithms
- $\rightarrow\,$ Framework to estimate the DFR of other bitflipping algorithms for MDPC