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1 Introduction

Our participation in the MICCAI 2014 CADDementia challenge aims at evalu-
ating the performance of morphometric descriptors in multi-class classification
tasks for the prediction of Alzheimer’s disease and Mild Cognitive Impairment
from structural Magnetic Resonance Images (MRIs).

We used the method for the construction of population-specific atlases that is
described in [6, 5]. The method takes as input a set of segmented brain structures,
which take the form of the union of labelled 3D surface meshes, called shape
complexes. The method estimates an anatomical model, called template, which is
representative of the shape complexes within a group of subjects. The variability
in shape within the group is captured by 3D space deformations of the ambient
space, which warps the anatomical model to the anatomical shape complex of
each subject. The method estimates the anatomical model together with the
deformation parameters.

The method requires to use the same set of homologous structures for all
subjects. We choose a subset of 12 deep brain structures that were segmented
from MRIs: caudate nucleus, putamen, pallidum, thalamus, hippocampus and
amygdala of each hemisphere. We do not include the lateral ventricles because of
a large variability in the segmentation of the horns of the ventricles, which could
have masked other patterns of shape variability in the statistical analysis. We
do not include the cortical surface because of the subject-specific gyrification.

Deformation parameters are seen as a multi-variate descriptor, which encodes
the differences in shape between each subject’s anatomical configuration and the
anatomical model. This descriptor encodes different patterns such as the shift
of the caudate nucleus due to the ventricular enlargement and the hippocampal
atrophy, for instance. The residual shape, namely the difference between the



deformed template and the subject’s shape complex, is considered as noise. The
combination of the two terms gives the likelihood of a given anatomical shape
complex, which will be used in classification.

We use a sub-set of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database to build the anatomical models. We build three anatomical models
considering a group of Cognitively Normal (CN) subjects, subjects with Mild
Cognitive Impairment (MCI) and patients with Alzheimer’s disease (AD). Once
the models are built, we test any new subject by registering each model to the
shape complex of this subject and computing its likelihood. We then classify
according to the maximum likelihood. We test our classifiers on another sub-set
of the ADNI database and the CADDementia database.

The method is fully automatic. The atlas construction method uses the con-
cept of varifolds [3] for mesh comparison and therefore does not require specific
mesh pre-processing. The method is indeed robust with respect to changes in
topology between meshes, small holes, spikes, irregular sampling and inconsis-
tency in normal orientations. We do not perform quality control of the segmen-
tations as small errors in the position of the boundaries are likely to be averaged
out in this kind of shape analysis. The use of smooth 3D deformations also
acts as low-pass filter which smoothes out irregularities in the boundaries of the
structures. Few important failures in segmentations are likely to be considered
as outliers in the statistical analysis. We use the implementation of the method
in the software Deformetrica, which is freely available at www.deformetrica.org.

Building the anatomical models took 3 days, 15 hours on average (with a
parallelization on 40 threads). Registering the anatomical models to test subjects
took 10 hours and 20 minutes on average, with a standard deviation of about
1 hour and 30 minutes. The computations were made on a computer cluster
wich is composed of two types of machines. The first one (with 32 computing
nodes) is running on an Intel R©Xeon R©Processor X5650 (2x6 Cores, 2.66 GHz)
and 12x4GB 1333MHz DDR3 Memory and the second one (with 2 computing
nodes) is running on an Octo-processor Intel R©Xeon R©Processor X7550 (8x2x8
Cores, 2 GHz) and 128x2GB 1066MHz DDR3 Memory.

2 Material and Methods

2.1 Data sets

We use the baseline images from the ADNI database to build the statistical
models. We choose the same set of 509 subjects as the ones selected in [4], de-
composed into 162 cognitively normal controls (CN), 210 patients with Mild
Cognitive Impairment (MCI) and 137 patients diagnosed with Alzheimer’s dis-
ease (AD) at baseline. We split the data set into a training set of 50 CN, 50 MCI
and 50 AD, the rest being our test set.

We perform the same pre-processing to all ADNI and CADDementia data.
The atlas construction is performed only on the training sub-set of the ADNI
data. Classification are performed on the test set of the ADNI data and the
CADDementia data.



2.2 Data pre-processing

The data pre-processing consists of the following steps:

– We run FreeSurfer1 on the T1 MRI data [7] with default parameters. The
output is volumetric segmentation of various structures. At this stage, we
exclude from the ADNI dataset, 2 subjects for which the FreeSurfer pipeline
failed.

– We run a marching cube algorithm (as implemented in FreeSurfer) to re-
construct 3D triangular meshes from the volumetric segmentation of the 12
selected structures on the RAS coordinate system (Right, Anterior, Supe-
rior). We do not perform any other processing on the meshes, although they
have holes, spikes and irregular meshing.

– We register all images to the image of a control young adult from the ADNI
training data set (126 S 0405 S14635 I38828) using FSL software2 [9]. We
use rigid and scaling transformation with 7 degrees of freedom. The trans-
formations are then applied to the meshes. The transformed meshes are the
inputs given to the software Deformetrica.

Additionally, we build a naive prototype initialization for the anatomical
models to give as input of Deformetrica. We build this prototype by mapping a
sphere to each structure of the reference subject with very smooth parameters.
The corresponding initial anatomical model is shown in Fig. 1-left.

2.3 Atlas construction on ADNI training data

We use the Deformetrica software to build the anatomical models and esti-
mate the deformation parameters. The method minimizes the following criterion
(see [5] for details):
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where

– X0 = {X0,k}k=1,...,12 denotes the position of the vertices of the anatomical
model with 12 components, one for each anatomical structure,

– c denotes a set of control points which are supposed to move to the most
variable parts of the anatomical model,

– {αi}i=1,...,N denotes momentum vectors attached to the control points which
parameterize the deformations of the anatomical model to each subject’s
anatomical configuration (among N the number of subjects),

– Si
k denotes the mesh of the k-th structure of the i-th subject,

1 http://surfer.nmr.mgh.harvard.edu
2 http://fsl.fmrib.ox.ac.uk



– {φαi}i=1,...,N denotes the smooth 3D deformation from the anatomical model
to the i-th subject,

– ‖.‖W denotes the varifold norm,
– σ2

k denotes the variance of the noise of the k-th structure in the space of
varifolds,

– KV is the deformation kernel matrix, so that αT
i KV αi measures the squared

norm of the initial velocity of the deformation

We choose the following parameters, using the rationale detailed in [5]:

– deformation kernel width: σV = 10 mm,
– varifold kernel width: σW = 5 mm,
– variance of noise: σ2

k = 16 for all structures,
– template kernel width 0.5σV ,

other parameters being the ones by default in Deformetrica.

2.4 Classification of ADNI test data and CADDementia data

Any test image is transformed into a set of sub-cortical structures after the pre-
processing steps explained in 2.2. We then register each atlas to this subject’s
shape complex. The registration is performed by minimizing the following crite-
rion, which is essentially (1) for N = 1 and keeping fixed the atlas parameters:
the template shape X0 and the control points c:

E(α) =

12∑
k=1

1

2σ2
k

‖φα(X0,k)− Sk‖2W + αTKV α, (2)

where the Sk’s denotes the test subject shapes.
The value of the criterion E at convergence is an approximation of the log-

likelihood of the test data [1, 2]. In order to take into account the covariance
of the deformation parameters, we replace the matrix KV by the inverse of
the regularized empirical covariance matrix of the momentum vectors αi. This
corrected value of the criterion is used in classification.

3 Results

3.1 Results on the ADNI data

In Fig. 2, the 3 estimated template shape complexes are shown. The template
of the MCI class falls in-between the template of the CN and AD classes. These
shapes show the shift of the caudate nucleus toward the lateral parts of the brain
due to a larger and larger ventricular enlargement. We notice also a greater and
greater atrophy of the hippocampus.

The confusion matrix of the classification performed on the test sub-set of
the ADNI database is shown in Table 1. The accuracy, assuming the probability
of 1/3 for each class, is 51% (i.e. 1

3

∑3
k=1 nk,k/nk where nk =

∑3
i=1 ni,k is the



total number of samples of the class k). We notice that our classifier tends
to empty the MCI class, and to classify MCI subjects as either CN or AD with
equal probability. This may be explained by the fact that our descriptors of MCI
subjects overlap the descriptors of CN and AD classes, as if there is a continuum
between the three classes. In other words, our classifier does not detect shape
patterns that are specific to MCI subjects. This conclusion is corroborated by
the visualization of the 3 template shapes complexes in Fig. 2.

The ROC curves of pairwise classification are shown in Fig. 3. As expected,
the AD versus CN classification has overall better performance than classification
of AD or CN against MCI.

Fig. 1. Initial prototype given as input of Deformetrica (left) and an instance of esti-
mated atlas given as output (right): template shapes are representative of the group
and momenta arrows parameterize template-to-subject deformations.

Fig. 2. Superimposition of the 3 template shapes for the CN, MCI and AD classes in
green, blue and red respectively. Anterior view (left) and posterior view (right)
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AD 66 83 28
MCI 6 13 5
CN 14 64 78

Table 1. Confusion matrix on ADNI test data set.
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EC vs AD (AUC = 0.818)
MCI vs EC (AUC = 0.651)
MCI vs AD (AUC = 0.615)

Fig. 3. ROC curves of pairwise classification on the ADNI database.

3.2 Results on the CADDementia training data

We test our classifier on the 30 subjects of the training database of CADDe-
mentia. Table 2 shows the confusion matrix using the thresholds that maximize
the accuracy of the classifier on the ADNI data set, for which the accuracy is
50%. These two thresholds determine the position of the boundaries between the
three classes. The optimization of these two thresholds on the given 30 subjects
of the CADDementia database yields the confusion matrix in Table 3 and an
accuracy of 73%. Differences in optimum thresholds between the two databases
may come from differences in patients, differences in age distribution, differences
in clinical practice for the diagnosis of mild cognitive impairment and dementia.
Optimizing the thresholds on only 30 subjects is also not ideal, as they might
not generalize well to the rest of the data set. For these reasons, we decided to
submit two predictions for each subject: one using the thresholds estimated from



the ADNI data set and the other one using the thresholds estimated from the
CADDementia training data set.
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AD 4 3 0
MCI 3 0 1
CN 2 6 11

Table 2. Confusion matrix for the classi-
fication of the CADDementia training set,
using the thresholds that are optimum for
the ADNI data set.
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AD 9 5 2
MCI 0 4 1
CN 0 0 9

Table 3. Confusion matrix for the clas-
sification of the CADDementia training
set after optimizing the thresholds for this
data set.

4 Discussion and conclusion

This work evaluates the performance of the Deformetrica software in classi-
fication tasks. The software computes shape descriptors for anatomical shape
complex of sub-cortical structures that are known to be markers of disease pro-
gression. The approach is essentially multi-variate and combine different shape
patterns such as the effect of hippocampal atrophy and ventricular enlargement
on the shape of the sub-cortical structures. Our results suggest that the method
does not find shape features that are characteristic of MCI subjects. The method
tends to position the anatomy of MCI subjects, as an intermediate stage of dis-
ease progression. This fact may come from the method itself, which does not
capture characteristics of such non-demented subjects. It may also come from
the heterogeneity of the MCI group.

Our goal was to use the software Deformetrica “out of the box” as a test
case, whereas several improvements could be made such as the estimation of
the covariance of deformation parameters and noise variance during the training
phase along the lines of [1, 8]. We could have determined also the best thresholds
using cross-validation on the ADNI database. Correction for age and sex could
also have improved classification performance.
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