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Abstract. We introduce a mixed-effects model to learn spatiotemporal
patterns on a network by considering longitudinal measures distributed
on a fixed graph. The data come from repeated observations of subjects
at different time points which take the form of measurement maps dis-
tributed on a graph such as an image or a mesh. The model learns a typ-
ical group-average trajectory characterizing the propagation of measure-
ment changes at the graph nodes. The subject-specific trajectories are de-
fined via spatial and temporal transformations of the group-average sce-
nario, thus estimating the variability of spatiotemporal patterns within
the group. To estimate population and individual model parameters, we
adapted a stochastic version of the Expectation-Maximization algorithm,
the MCMC-SAEM. The model is used to describe the cortical atrophy
propagation during the course of Alzheimer’s Disease. Model parameters
show the variability of this average scheme of atrophy in terms of age
at atrophy onset, pace of propagation and trajectories of propagation
across brain regions. It provides a description of the patterns of cortical
atrophy at the individual level, paving the way to individual predictions.

1 Introduction

Intensive investigations have been conducted to understand the progression of
Alzheimer’s Disease (AD) especially before the clinical symptoms. During this
silent phase, neuroimaging reveals the disease effects on brain structure and func-
tion, such as the atrophy of the cortex due to neuronal loss. However, the precise
dynamics of the lesions in the brain remains unclear at the group level and even
more at the individual level. Personalized models of lesion propagation would
enable to relate structural or metabolic alterations to the disease clinical signs,
offering ways to estimate stage of the disease progression in the pre-symptomatic
phase. Numerical models have been introduced to describe the temporal and the
spatial evolution of these alterations, defining a spatiotemporal trajectory of the
dementia, i.e. a description of the spatial modifications of the brain over time.
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Statistical models are well suited to estimate distributions of spatiotemporal
patterns of propagation out of series of short-term longitudinal observations.
However, the absence of time correspondence between the patients is a clear
obstacle for these types of approaches. Using data series of several individuals
requires to reposition the series of observations in a common time-line and to
adjust to a standardized pace of progression. Current models either consider
a sequential propagation, [4, 11], without taking into account the dynamics of
changes, or develop average scenarios [5, 6]. Recently, a generic approach to
align patients has been proposed in [10] for unstructured data: the temporal
inter-subject variability results from individual variations of a common time-
line granting each patient a unique age at onset and pace of progression. On top
of the time-alignment of the observations, there exists a spatial variability of the
signal propagation that characterizes a distribution of trajectories.

In order to exhibit a spatial representation of the alterations, we study med-
ical images or image-derived features, taking the form of a signal discretized
at the vertices of a mesh. It includes the cortical thickness distributed on the
mesh of the pial surface or SUVR distributed on a regular voxel grid associated
to a PET scan. The spatial distribution of the signal is encoded in a distance
matrix, giving the physical distance between the graph nodes. A sensible prior
to include in the model is to enforce smooth variations of the pattern of signal
changes across neighbouring nodes, highlighting a propagation pattern across
the network as in [9]. Extending the model in [10] for data distributed on a net-
work is not straightforward, as the number of model parameters, defined at each
node of the network, may explode with the resolution of the mesh. At infinite
resolution, the parameters take the form of a smooth continuous map defined
on the image mesh. In this paper, we propose to constrain these maps to belong
to a finite-dimensional RKHS to ensure smooth spatial variation of model pa-
rameters. In practice, these maps are generated by the convolution of parameter
values at a sparse set of control nodes on the network. The number of control
nodes, whose distribution is determined by the bandwidth of the kernel, controls
the complexity of the model regardless of the mesh resolution. Furthermore, the
propagation of non-normalized signal could not adequately be modeled by the
same curve shifted in time as in [10]. We introduce new parameters to account
for smooth changes in the profiles of changes at neighbouring spatial locations.

To this end, we introduce a mixed-effect generative model that specifies a
spatial distribution of the propagation, allowing to learn a group-average spa-
tiotemporal trajectory from series of repeated observations. The model evaluates
individual parameters (time reparametrization and spatial adjustment of the
propagation) that enables the reconstruction of individual disease propagation
through time. This highly non-linear problem is tackled by a stochastic version
of the EM algorithm, specifically the MCMC-SAEM, introduced in [1, 7], with
a high-dimensional setting. It considers fixed-effects describing a group-average
trajectory and random effects characterizing individual trajectories as adjust-
ment of the mean scenario. It is used to detect the cortical thickness variations
in MRI data of a population of MCI converters from the ADNI database.
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Fig. 1: Manifold representation of the mesh observations (left). Orange dots are
patient real observations. The blue line is the reconstruction of the mean prop-
agation. The signal value at each node (right), parametrized by (p, t, v), allows
the reconstruction of the propagation over the network (orange lines)

2 Manifold-valued networks

In the following, we consider a longitudinal dataset y = (yi,j)1ip, 1jkiof p
individuals, such that the ith individual is observed at ki repeated time points
ti,1 < . . . < ti,ki . We assume that each observation yij takes the form of Nv 2 N⇤

scalar measures
�
(yi,j)1, ..., (yi,j)Nv

�
referred to as a measurement map.

Manifold-valued measurements distributed on a fixed graph

Let d 2 {2, 3} and V = (x1, ...,xNv ) be a set of Nv distinct points in Rd. The
elements of V are called vertices. Let E be a subset of pairs of vertices which is
assumed to be symmetric : (xi,xj) 2 E if and only if (xj ,xj) 2 E . The pair (V, E)
forms a non-oriented graph in Rd. We assume that there exists a common fixed-
graph G = (V, E), where V = (x1, ...,xNv ), such that for each k 2 {1, .., Nv},
the coordinate (yi,j)k is a measurement at node k. As the graph corresponds to
spatial related measurements distributed on a mesh, the edges embed a spatial
configuration. Therefore any edge (xi,xj) is valued with respect to the geodesic
distance between xi and xj defined on the underlying mesh. Given a graph
distance d, we define a distance matrix D such that for all i, j 2 {1, .., Nv},
Di,j = d(xi,xj). Each measurement map yi,j produces a network (G,D,yi,j),
i.e. a fixed graph with one-dimensional values associated to each vertex and
with distances associated to each edge. The collection {(G,D,yi,j)1ip, 1jki}
is considered as a family of networks, distributed on the same underlying graph
G, associated to a unique spatial distribution defined by the matrix distance D.

We assume that measurement map yi,j 2 y lies in a space defined by smooth
constraints as expected for bounded or normalized observations (eg. volume ra-
tios, thickness measures). Therefore, the space of measurements is best described
as a Riemannian manifold [3,8]. We assume that there exists a one-dimensional
geodesically complete Riemannian manifold (M, gM ) such that, for all i, j, the
observation yi,j is a point in the product manifold MNv , equipped with a Rie-
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mannnian product metric. It follows that for each i, j, (G,D,yi,j) is a manifold-
valued network. It leads to consider any geodesic � on M as the product of
one-dimensional geodesics �(t) = (�1(t), ..., �Nv (t)) where �k(t) encodes for the
propagation of the signal at the kth node of the network.

Smoothness of the propagation

For network models, we need to ensure that the progression of the signal com-
plies with the temporal and spatial smoothness of the signal propagation. We
expect the signal to be continuous at each node. The temporal constraint is
handled by the continuous form of the one-dimensional geodesic t 7! �k(t). On
the other hand, we expect the signal to be similar for neighbour nodes. More-
over, we consider that each node k is described by Np parameters (pk1 , ..., p

k
Np

)

that parametrize the signal trajectory. In order to ensure smooth variations
of the parameters values at neighbouring nodes, we assume that they result
from the interpolation of the parameter values at a sparse sub-set of uniformly
distributed nodes VC = (xd1 , ...,xdNc

), called control nodes. They define a pa-
rameter evaluation pj(x) encoding for all the nodes (pkj )1kNv : for all x 2 V,
pj(x) =

PNC

i=1 K(x,xdi)�
i
j and for all i 2 {1, . . . , Nc}, pj(xdi) = pdi

j where K is a
Gaussian Kernel and the (�i

j)1iNc,1jNp are the new model parameters. This
convolution guarantees the spatial regularity of the signal propagation. Moreover
this smooth spatial constraint enables a reduction of the number of parameters,
reducing the dimensional complexity from Np independent parameters at each
node, to Np parameters only at the control nodes.

3 The statistical model

A propagation model

Given a collection of manifold-valued networks (G,D,y), we wish to model
the propagation of a signal through the vertices of the common fixed-graph G.
In [10], the authors introduced a hierarchical model, to learn trajectories of
changes from manifold-valued longitudinal observations. The model describes a
group-average trajectory in the space of measurements, defined by a geodesic �
on a geodesically complete Riemannian manifold (M, gM), that allows to estimate
a typical scenario of progression. Individual trajectories derive from the group-
average scenario through spatiotemporal transformations: the parallel shifting

and the time reparametrization.
First, to describe disease pace and onset specific of each subject, we intro-

duced a temporal transformation, called the time-warp, that is defined, for the
subject i, by  i(t) = ↵i(ti,j � ⌧i � t0) + t0 where t0 is the average disease onset
related to the mean trajectory. The parameter ⌧i corresponds to the time-shift
between the mean and the individual disease onset and ↵i is the acceleration
factor that describes the pace of an individual, being faster or slower than the
average. This time reparametrization allows to align the patients on the same
disease time-line in order to reconstruct a group-average propagation.
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The parallel shifting is handled by a family of individual tangent vector
(wi)1ip, called space-shifts. It encodes the modification of the mean signal
propagation on the network. The spatial and temporal parametrization allow to
generate an individual scenario of lesion propagation. As shown on Figure 1 (left),
the orange dots refer to individual observations in the space of measurements.
The group-average trajectory estimated from the longitudinal measurements cor-
responds to the blue line. The parameters (↵i, ⌧i,wi) allow to reconstruct the
individual trajectories (orange lines) from the mean scenario of propagation.

Given a noise "i,j
i.i.d.⇠ N (0,�2

IdNv ), the model defines a mixed-effect model

(yi,j)k = �k
⇣
(wi)k

�̇k(t0)
+ ↵i(ti,j � t0 � ⌧i) + t0

⌘
+ ("i,j)k (1)

Parameters estimation with the MCMC-SAEM algorithm

To reconstruct the long-term scenario of the disease propagation, we would like to
estimate the parameters of the group-average trajectory ✓ = ((�i

j)1iNc,1jNp ,�)
using a maximum likelihood estimator. The random-effects z = (zi)1ip =

(wi,↵i, ⌧i)1ip are considered as latent variables, whose distributions charac-
terize the variability of the individual trajectories. Due to the non-linearity of
the equation (1), we use a Stochastic Approximation Expectation Maximization
coupled with a Monte-Carlo Markov Chain sampler (MCMC-SAEM) introduced
in [1,7]. It alternates between a simulation step, a stochastic approximation step
and a maximization step until convergence.

We denote ✓(k) the current estimation of the parameters and z

(k) the cur-
rent iterate of the Markov chain of the latent variables. The simulation uses an
adaptive version [2] of the Hasting Metropolis within Gibbs sampler to draw
z

(k+1) from (z

(k),y,✓(k)
). As we consider models in the exponential family, for

which the convergence of the algorithm has been proven, the second step cor-
responds to a stochastic approximation of the sufficient statistics of the model.
The maximization step is straightforward given this stochastic approximation.

Model instantiation

As many measurements correspond to positive values (eg. the cortical thickness,
volume ratios), we consider in the following the open interval M =]0,+1[ as
a one-dimensional Riemannian manifold equipped with a Riemannian metric g
such that for all p 2 M and for all (u, v) 2 TpM , gp(u, v) = uv/p2. With this
metric and given k 2 {1, . . . , Nv}, M is a geodesically complete Riemannian
manifold whose geodesics are of the form t 7! pk exp(

vk
pk
(t� tk)) where pk 2 M ,

tk 2 R, vk 2 TpkM . These parameters are represented on Figure 1 (right) at two
nodes where the signal decrease through time vary spatially. For identifiability
reasons, we choose to fix the parameters tk among the nodes, leading to a shared
parameter t00 such that for all k 2 {1, . . . , Nv} tk = t00. As t00 can be arbitrarily
chosen in R, we fix t00 = t0 defined in section 3. Considering the interpolation
functions introduced in 2 and the fact that the parameters (pkj ) are (pk, vk), it
leads to define p(x) =

PNC

i=1 K(x,xdi)�
i
p and v(x) =

PNC

i=1 K(x,xdi)�
i
v
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Finally, the model defined in (1) rewrites:

(yi,j)k = p(xk) exp

⇣
(wi)k

p(xk)
+

v(xk)

p(xk)
↵i(ti,j � t0 � ⌧i)

⌘
+ ("i,j)k (2)

such that ✓ = (t0, (�i
p)1iNc , (�

i
v)1iNc ,�) and z = (wi,↵i, ⌧i)1ip

4 Experimental results

Fig. 2: Cortical thickness at 65, 68, 71 and 74 years old of the mean propaga-
tion (first lines). Effect of the space-shift wi (fourth line), then with temporal
reparametrization ↵i, ⌧i (fifth line) on the cortical thickness.

Data

We used this model to highlight typical spatiotemporal patterns of cortical at-
rophy during the course of Alzheimer’s Disease from longitudinal MRI of MCI
converters from the ADNI database. This 154 MCI converters correspond to
787 observations, each subject being observed 5 times on average. We aligned
the measures on a common atlas with FreeSurfer 4 in order to distribute the
measurement maps on the same common fixed-graph G. The later is constituted
4 Software available here : http://surfer.nmr.mgh.harvard.edu
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of 1827 nodes that map entirely the surface of the brain left hemisphere, more
precisely its pial surface. Out of these vertices, we selected 258 control nodes
uniformly distributed over the surface. They encode the spatial interpolation of
the propagation. The distance matrix D is defined by a geodesic distance on G.

(a) Real observation of the cortical thick-
ness (right) and its model reconstruction
(left)

(b) Relative error between the observation
and its reconstruction plotted on the mesh
(left) and its histogram (right)

Fig. 3: Comparison of an observation and its reconstruction by the model

Cortical thickness measurements

We used the model instantiation defined in 3 to characterize the cortical
thickness decrease. Multiple runs of 30.000 iterations (⇠4hours) of this MCMC-
SAEM lead to a noise standard deviation � ' 0.27 with 90% of the data included
in [1.5, 3.6] mm. The mean spatiotemporal propagation, described on the first
three lines of the Figure 2 as the cortical thickness at respectively 65, 68, 71 and
74 years old shows that the most affected area is the medial-temporal lobe, fol-
lowed by the temporal neocortex. The parietal association cortex and the frontal
lobe are also subject to important alterations. On the other side, the sensory-
motor cortex and the visual cortex are less involved in the lesion propagation.
These results are highly consistent with previous knowledge of the Alzheimer’s
Disease effects on the brain structure. As the model is able to exhibit individual
spatiotemporal patterns with their associated pace of progression, the fourth
and fifth lines of the Figure 2 represent consecutively the effect of the parallel
shifting and of the time reparametrization on the cortical thickness atrophy.

The figure 3a shows a real observation of the cortical thickness and the re-
construction done by the model with the individual parameters (wi,↵i, ⌧i). The
relative error and its histogram are represented on Figure 3b. It should be men-
tioned that the input data are noisy due to the acquisition and pre-processes,
and, due to the alignment of all the individuals on the same network. The tem-
poral and spatial smoothness introduced by the control nodes and the form of
the geodesics smooth the signal propagation over the surface.

5 Discussion and perspectives

We proposed a mixed-effect model which is able to evaluate a group-average
spatiotemporal propagation of a signal at the nodes of a mesh thanks to lon-
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gitudinal neuroimaging data distributed on a common network. The network
vertices describe the evolution of the signal whereas its edges encode a distance
between the nodes via a distance matrix. The high dimensionality of the prob-
lem is tackled by the introduction of control nodes: they allow to evaluate a
smaller number of parameters while ensuring the smoothness of the signal prop-
agation through neighbour nodes. Moreover, individual parameters characterize
personalized patterns of propagation as variations of the mean scenario.

The evaluation of this non-linear high dimensional model is made with the
MCMC-SAEM algorithm that leads to convincing results: we were able to high-
light areas affected by considerable neuronal loss such as the medial-temporal
lobe or the temporal neocortex.

The distance matrix, which encodes here the geodesic distance on the cortical
mesh, may be changed to account for the structural or functional connectivity
information. In this case, signal changes may propagate not only across neigh-
bouring locations, but also at nodes far apart in space but close to each other
in the connectome. The model can be used with multimodal data, such as PET
scans, introducing numerical models of neurodegenerative diseases that could in-
form about the disease evolution at a population level while being customizable
to fit individual data, predicting stage of the disease or time to symptom onset.
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