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ABSTRACT

The Hamiltonian formalism plays a central role in classical and quantum physics.
Hamiltonians are the main tool for modelling the continuous time evolution of
systems with conserved quantities, and they come equipped with many useful prop-
erties, like time reversibility and smooth interpolation in time. These properties are
important for many machine learning problems —from sequence prediction to rein-
forcement learning and density modelling —but are not typically provided out of the
box by standard tools such as recurrent neural networks. In this paper, we introduce
the Hamiltonian Generative Network (HGN), the first approach capable of consis-
tently learning Hamiltonian dynamics from high-dimensional observations (such
as images) without restrictive domain assumptions. Once trained, we can use HGN
to sample new trajectories, perform rollouts both forward and backward in time and
even speed up or slow down the learned dynamics. 1 We demonstrate how a simple
modification of the network architecture turns HGN into a powerful normalising flow
model, called Neural Hamiltonian Flow (NHF), that uses Hamiltonian dynamics to
model expressive densities. We hope that our work serves as a first practical demon-
stration of the value that the Hamiltonian formalism can bring to deep learning.

1 INTRODUCTION

Image manifold

Path on manifold 
induced by 
Hamiltonian

Figure 1: The Hamiltonian manifold hypothesis:
natural images lie on a low-dimensional manifold
in pixel space, and natural image sequences (such
as one produced by watching a two-body system,
as shown in red) correspond to movement on the
manifold according to Hamiltonian dynamics.

Any system capable of a wide range of intelli-
gent behaviours within a dynamic environment
requires a good predictive model of the environ-
ment’s dynamics. This is true for intelligence
in both biological (Friston, 2009; 2010; Clark,
2013) and artificial (Hafner et al., 2019; Battaglia
et al., 2013; Watter et al., 2015; Watters et al.,
2019) systems. Predicting environmental dynam-
ics is also of fundamental importance in physics,
where Hamiltonian dynamics and the structure-
preserving transformations it provides have been
used to unify, categorise and discover new phys-
ical entities (Noether, 1915; Livio, 2012).

Hamilton’s fundamental result was a system of
two first-order differential equations that, in a
stroke, unified the predictions made by prior
Newtonian and Lagrangian mechanics (Hamil-
ton, 1834). After well over a century of devel-
opment, it has proven to be essential for parsi-
monious descriptions of nearly all of physics.

∗Equal contribution.
1More results and video evaluations are available at: http://tiny.cc/hgn
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Figure 2: Hamiltonian Generative Network schematic. The encoder takes a stacked sequence of images
and infers the posterior over the initial state. The state is rolled out using the learnt Hamiltonian. Note
that we depict Euler updates of the state for schematic simplicity, while in practice this is done using a
leapfrog integrator. For each unroll step we reconstruct the image from the position q state variables
only and calculate the reconstruction error.

Hamilton’s equations provide a way to predict a system’s future behavior from its current state in
phase space (that is, its position and momentum for classical Newtonian systems, and its generalized
position and momentum more broadly). Hamiltonian mechanics induce dynamics with several nice
properties: they are smooth, they include paths along which certain physical quantities are conserved
(symmetries) and their time evolution is fully reversible. These properties are also useful for machine
learning systems. For example, capturing the time-reversible dynamics of the world state might be
useful for agents attempting to account for how their actions led to effects in the world; recovering an
abstract low-dimensional manifold with paths that conserve various properties is tightly connected to
outstanding problems in representation learning (see e.g. Higgins et al. (2018) for more discussion);
and the ability to conserve energy is related to expressive density modelling in generative approaches
(Rezende & Mohamed, 2015). Hence, we propose a reformulation of the well-known image manifold
hypothesis by extending it with a Hamiltonian assumption (illustrated in Fig. 1): natural images lie on a
low-dimensional manifold embedded within a high-dimensional pixel space and natural sequences of
images trace out paths on this manifold that follow the equations of an abstract Hamiltonian.

Given the rich set of established tools provided by Hamiltonian descriptions of system dynamics,
can we adapt these to solve outstanding machine learning problems? When it comes to adapting the
Hamiltonian formalism to contemporary machine learning, two questions need to be addressed: 1)
how should a system’s Hamiltonian be learned from data; and 2) how should a system’s abstract phase
space be inferred from the high-dimensional observations typically available to machine learning
systems? Note that the inferred state may need to include information about properties that play no
physical role in classical mechanics but which can still affect their behavior or function, like the colour
or shape of an object. The first question was recently addressed by the Hamiltonian Neural Network
(HNN) (Greydanus et al., 2019) approach, which was able to learn the Hamiltonian of three simple
physical systems from noisy phase space observations. However, to address the second question, HNN
makes assumptions that restrict it to Newtonian systems and appear to limit its ability to scale to more
challenging video datasets.

In this paper we introduce the first model that answers both of these questions without relying on re-
strictive domain assumptions. Our model, the Hamiltonian Generative Network (HGN), is a generative
model that infers the abstract state from pixels and then unrolls the learned Hamiltonian following the
Hamiltonian equations (Goldstein, 1980). We demonstrate that HGN is able to reliably learn the Hamil-
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tonian dynamics from noisy pixel observations on four simulated physical systems: a pendulum, a
mass-spring and two- and three- body systems. Our approach outperforms HNN by a significant margin.
After training, we demonstrate that HGN produces meaningful samples with reversible dynamics and
that the speed of rollouts can be controlled by changing the time derivative of the integrator at test time.
Finally, we show that a small modification of our architecture yields a flexible, normalising flow-based
generative model that respects Hamiltonian dynamics. We show that this model, which we call Neural
Hamiltonian Flow (NHF), inherits the beneficial properties of the Hamiltonian formalism (including
volume preservation) and is capable of expressive density modelling, while offering computational
benefits over standard flow-based models.

2 RELATED WORK

Most machine learning approaches to modeling dynamics use discrete time steps, which often results
in an accumulation of the approximation errors when producing rollouts and, therefore, to a fast drop
in accuracy. Our approach, on the other hand, does not discretise continuous dynamics and models
them directly using the Hamiltonian differential equations, which leads to slower divergence for longer
rollouts. The density model version of HGN (NHF) uses the Hamiltonian dynamics as normalising flows
along with a numerical integrator, making our approach somewhat related to the recently published
neural ODE work (Chen et al., 2018; Grathwohl et al., 2018). What makes our approach different is
that Hamiltonian dynamics are both invertible and volume-preserving (as discussed in Sec. 3.3), which
makes our approach computationally cheaper than the alternatives and more suitable as a model of
physical systems and other processes that have these properties.

2.1 HAMILTONIAN NEURAL NETWORK

One of the most comparable approaches to ours is the Hamiltonian Neural Network (HNN) (Greydanus
et al., 2019). This work, done concurrently to ours, proposes a way to learn Hamiltonian dynamics from
data by training the gradients of a neural network (obtained by backpropagation) to match the time
derivative of a target system in a supervised fashion. In particular, HNN learns a differentiable function
H(q,p) that maps a system’s state (its position, q, and momentum, p) to a scalar quantity interpreted as
the system’s Hamiltonian. This model is trained so thatH(p,q) satisfies the Hamiltonian equation by
minimizing

LHNN=
1

2
[(
∂H
∂p
− dq
dt

)2+(
∂H
∂q

+
dp

dt
)2], (1)

where the derivatives ∂H∂q and ∂H
∂p are computed by backpropagation. Hence, this learning procedure is

most directly applicable when the true state space (in canonical coordinates) and its time derivatives
are known. Accordingly, in the majority of the experiments presented by the authors, the Hamiltonian
was learned from the ground truth state space directly, rather than from pixel observations. The
single experiment with pixel observations required a modification of the model. First, the input to
the model became a concatenated, flattened pair of images ot=[xt,xt+1], which was then mapped
to a low-dimensional embedding space zt= [qt,pt] using an encoder neural network. Note that the
dimensionality of this embedding (z∈R2 in the case of the pendulum system presented in the paper)
was chosen to perfectly match the ground truth dimensionality of the phase space, which was assumed
to be known a priori. This, however, is not always possible. The latent embedding was then treated
as an estimate of the position and the momentum of the system depicted in the images, where the
momentum was assumed to be equal to the velocity of the system – an assumption enforced by the
additional constraint found necessary to encourage learning, which encouraged the time derivative of
the position latent to equal the momentum latent using finite differences on the split latents:

LCC=(pt−(qt+1−qt))2. (2)

This assumption is appropriate in the case of the simple pendulum system presented in the paper,
however it does not hold more generally. Note that our approach does not make any assumptions on the
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Figure 3: A: standard normalising flow, where the invertible function fi is implemented by a neural
network. B: Hamiltonian flows, where the initial density is transformed using the learned Hamiltonian
dynamics. Note that we depict Euler updates of the state for schematic simplicity, while in practice this
is done using a leapfrog integrator.

dimensionality of the learned phase space, or the form of the momenta coordinates, which makes our
approach more general and allows it to perform well on a wider range of image domains as presented in
Sec. 4.

3 METHODS

3.1 THE HAMILTONIAN FORMALISM

The Hamiltonian formalism describes the continuous time evolution of a system in an abstract phase
space s = (q,p) ∈ R2n, where q ∈ Rn is a vector of position coordinates, and p ∈ Rn is the
corresponding vector of momenta. The time evolution of the system in phase space is given by the
Hamiltonian equations:

∂q

∂t
=
∂H
∂p

,
∂p

∂t
=−∂H

∂q
(3)

where the HamiltonianH :R2n→R maps the state s=(q,p) to a scalar representing the energy of
the system. The Hamiltonian specifies a vector field over the phase space that describes all possible
dynamics of the system. For example, the Hamiltonian for an undamped mass-spring system is
H(q,p)= 1

2kq
2+ p2

2m , wherem is the mass, q∈R1 is its position, p∈R1 is its momentum and k is the
spring stiffness coefficient. The Hamiltonian can often be expressed as the sum of the kinetic T and po-
tential V energiesH=T (p)+V (q), as is the case for the mass-spring example. Identifying a system’s
Hamiltonian is in general a very difficult problem, requiring carefully instrumented experiments and
researcher insight produced by years of training. In what follows, we describe a method for modeling
a system’s Hamiltonian from raw observations (such as pixels) by inferring a system’s state with a
generative model and rolling it out with the Hamiltonian equations.

3.2 LEARNING HAMILTONIANS WITH THE HAMILTONIAN GENERATIVE NETWORK

Our goal is to build a model that can learn a Hamiltonian from observations. We assume that the data
X={(x1

0,...,x
1
T ),...,(x

K
0 ,...,x

K
T )} comes in the form of high-dimensional noisy observations, where

each xi=G(si)=G(qi) is a non-deterministic function of the generalised position in the phase space,
and the full state is a non-deterministic function of a sequence of images si=(qi,pi)=D(xi0,...,x

i
t),

since the momentum (and hence the full state) cannot in general be recovered from a single observation.
Our goal is to infer the abstract state and learn the Hamiltonian dynamics in phase space by observing
K motion sequences, discretised into T+1 time steps each. In the process, we also want to learn an
approximation to the generative process G(s) in order to be able to move in both directions between
the high dimensional observations and the low-dimensional abstract phase space.

Although the Hamiltonian formalism is general and does not depend on the form of the observations,
we present our model in terms of visual observations, since many known physical Hamiltonian systems,
like a mass-spring system, can be easily observed visually. In this section we introduce the Hamiltonian
Generative Network (HGN), a generative model that is trained to behave according to the Hamiltonian
dynamics in an abstract phase space learned from raw observations of image sequences. HGN consists
of three parts (see Fig. 2): an inference network, a Hamiltonian network and a decoder network, which
are discussed next.
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Figure 4: A schematic representation of NHF which can perform expressive density modelling by
using the learned Hamiltonians as normalising flows. Note that we depict Euler updates of the state for
schematic simplicity, while in practice this is done using a leapfrog integrator.

The inference network takes in a sequence of images (xi0,...x
i
T ), concatenated along the channel

dimension, and outputs a posterior over the initial state z ∼ qφ(·|x0, ...xT ), corresponding to the
system’s coordinates in phase space at the first frame of the sequence. We parametrise qφ(z) as
a diagonal Gaussian with a unit Gaussian prior p(z) = N (0, I) and optimise it using the usual
reparametrisation trick (Kingma & Welling, 2014). To increase the expressivity of the abstract phase
space s0, we map samples from the posterior with another function s0=fψ(z) to obtain the system’s
initial state. As mentioned in Sec. 3.1, the Hamiltonian function expects the state to be of the form
s= (q,p), hence we initialise s0 ∈R2n and arbitrarily assign the first half of the units to represent
abstract position q and the other half to represent abstract momentum p.

The Hamiltonian network is parametrised as a neural network with parameters γ that takes in the
inferred abstract state and maps it to a scalarHγ(st)∈R. We can use this function to do rollouts in
the abstract state space using the Hamiltonian equations (Eq. 3), for example by Euler integration:
st+1=(qt+1,pt+1)=(qt+

∂H
∂pt

dt, pt− ∂H
∂qt

dt). In this work we assume a separable Hamiltonian, so
in practice we use a more sophisticated leapfrog integrator to roll out the system, since it has better
theoretical properties and results in better performance in practice (see Sec. A.5 in Supplementary
Materials for more details).

The decoder network is a standard deconvolutional network (we use the architecture from Karras
et al. (2018)) that takes in a low-dimensional representation vector and produces a high-dimensional
pixel reconstruction. Given that each instantaneous image does not depend on the momentum in-
formation, we restrict the decoder to take only the position coordinates of the abstract state as input:
pθ(xt)=dθ(qt).

The objective function. Given a sequence of T+1 images, HGN is trained to optimise the following
objective:

L(φ,ψ,γ,θ; x0,...xT )=
1

T+1

T∑
t=0

[Eqφ(z|x1,...xT ) [ log pψ,γ,θ(xt | qt) ] ]− KL( qφ(z) || p(z) ),

(4)

which can be seen as a temporally extended variational autoencoder (VAE) (Kingma & Welling, 2014;
Rezende et al., 2014) objective, consisting of a reconstruction term for each frame, and an additional
term that encourages the inferred posterior to match a prior. The key difference with a standard VAE
lies in how we generate rollouts – these are produced using the Hamiltonian equations of motion in
learned Hamiltonian phase space.

3.3 LEARNING HAMILTONIAN FLOWS

In this section, we describe how the architecture described above can be modified to produce a model
for flexible density estimation. Learning computationally feasible and accurate estimates of complex
densities is an open problem in generative modelling. A common idea to address this problem is to
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Pendulum 2- & 3-Body ProblemMass-spring

Figure 5: Ground truth Hamiltonians and samples from generated datasets for the ideal pendulum,
mass-spring, and two- and three-body systems used to train HGN.

start with a simple prior distribution π(u) and then transform it into a more expressive form p(x)
through a series of composable invertible transformations fi(u) called normalising flows (Rezende &
Mohamed, 2015) (see Fig. 3A). Sampling can then be done according to x= fT ◦ ...◦f1(u), where
u∼π(·). Density evaluation, however, requires more expensive computations of both inverting the
flows and calculating the determinants of their Jacobians. For a single flow step, this equates to the
following: p(x)=π(f−1(x))

∣∣∣det
(
∂f−1

∂x

)∣∣∣. While a lot of work has been done recently into proposing
better alternatives for flow-based generative models in machine learning (Rezende & Mohamed, 2015;
Kingma et al., 2016; Papamakarios et al., 2017; Dinh et al., 2017; Huang et al., 2018; Kingma &
Dhariwal, 2018; Hoogeboom et al., 2019; Chen et al., 2019; Grathwohl et al., 2018), none of the
approaches manage to produce both sampling and density evaluation steps that are computationally
scalable.

The two requirements for normalising flows are that they are invertible and volume preserving, which
are exactly the two properties that Hamiltonian dynamics possess. This can be seen by computing the
determinant of the Jacobian of the infinitesimal transformation induced by the HamiltonianH:

det

[
I+dt

(
∂2H
∂qi∂pj

− ∂2H
∂qi∂qj

∂2H
∂pi∂pj

− ∂2H
∂pi∂qj

)]
=1+dt Tr

(
∂2H
∂qi∂pj

− ∂2H
∂qi∂qj

∂2H
∂pi∂pj

− ∂2H
∂pi∂qj

)
+O(dt2)=1+O(dt2) (5)

where i 6=j are the off-diagonal entries of the determinant of the Jacobian. Hence, in this section we
describe a simple modification of HGN that allows it to act as a normalising flow. We will refer to this
modification as the Neural Hamiltonian Flow (NHF) model. First, we assume that the initial state s0 is a
sample from a simple prior s0∼π0(·). We then chain several HamiltoniansHi to transform the sample
to a new state sT =HT ◦ ...◦H1(s0) which corresponds to a sample from the more expressive final
density sT ∼p(x) (see Fig. 3B for an illustration of a single Hamiltonian flow). Note that unlike HGN,
where the Hamiltonian dynamics are shared across time steps (a single Hamiltonian is learned and its
parameters are shared across time steps of a rollout), in NHF each step of the flow (corresponding to
a single time step of a rollout) can be parametrised by a different Hamiltonian. The inverse of such
a Hamiltonian flow can be easily obtained by replacing dt by−dt in the Hamiltonian equations and
reversing the order of the transformations, s0=H−dt1 ◦...◦H−dtT (sT ) (we will use the appropriate dt
or−dt superscript from now on to make the direction of integration of the Hamiltonian dynamics more
explicit). The resulting density p(sT ) is given by the following equation:

ln p(sT )=ln π(s0)=ln π(H−dt1 ◦...◦H−dtT (sT ))+O(dt2)

Our proposed NHF is more computationally efficient that many other flow-based approaches, because
it does not require the expensive step of calculating the trace of the Jacobian. Hence, the NHF model
constitutes a more structured form of a Neural ODE flow (Chen et al., 2018), but with a few notable
differences: (i) The Hamiltonian ODE is volume-preserving, which makes the computation of log-
likelihood cheaper than for a general ODE flow. (ii) General ODE flows are only invertible in the limit
dt→ 0, whereas for some Hamiltonians we can use more complex integrators (like the symplectic
leapfrog integrator described in Sec. A.5) that are both invertible and volume-preserving for any dt>0.
The structure s=(q,p) on the state-space imposed by the Hamiltonian dynamics can be constraining
from the point of view of density estimation. We choose to use the trick proposed in the Hamiltonian
Monte Carlo (HMC) literature (Neal et al., 2011; Salimans et al., 2015; Levy et al., 2017), which treats
the momentum p as a latent variable (see Fig. 4). This is an elegant solution which avoids having to
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Figure 6: Average pixel MSE for each step of a single train and test unroll on four physical systems.
All versions of HGN outperform HNN, which learned to reconstruct a constant average image. The
label includes values forE=µ±(σ2∗1e+4) for each model. This refers to the inferred energy by the
learned Hamiltonian for the rollout shown. HNN Hamiltonians have collapsed to 0. HGN Hamiltonians
are meaningful, and different versions of HGN conserve energy to varying degrees (lower σ2 is better).

artificially split the density into two disjoint sets. As a result, the data density that our Hamiltonian
flows are modelling becomes exclusively parametrised by p(qT ), which takes the following form:
p(qT )=

∫
p(qT ,pT )dpT =

∫
π(H−dt1 ◦ ...◦H−dtT (qT ,pT ))dpT . This integral is intractable, but the

model can still be trained via variational methods where we introduce a variational density fψ(pT |qT )
with parameters ψ and instead optimise the following ELBO:

ELBO(qT )=Efψ(pT |qT )[ ln π(H
−dt
1 ◦...◦H−dtT (qT ,pT ))−ln fψ(pT |qT ) ] ≤ ln p(qT ), (6)

Note that, in contrast to VAEs (Kingma & Welling, 2014; Rezende et al., 2014), the ELBO in Eq. 6 is
not explicitly in the form of a reconstruction error term plus a KL term.

4 RESULTS

In order to directly compare the performance of HGN to that of its closest baseline, HNN, we generated
four datasets analogous to the data used in Greydanus et al. (2019). The datasets contained observations
of the time evolution of four physical systems: mass-spring, pendulum, two- and three-body (see
Fig. 5). In order to generate each trajectory, we first randomly sampled an initial state, then produced a
30 step rollout following the ground truth Hamiltonian dynamics, before adding Gaussian noise with
standard deviation σ2=0.1 to each phase-space coordinate, and rendering a corresponding 64x64 pixel
observation. We generated 50 000 train and 10 000 test trajectories for each dataset. When sampling
initial states, we start by first sampling the total energy of the system denoted as a radius r in the phase
space, before sampling the initial state (q,p) uniformly on the circle of radius r. Note that our pendulum
dataset is more challenging than the one described in Greydanus et al. (2019), where the pendulum had
a fixed radius and was initialized at a maximum angle of 30◦ from the central axis.

7



Preprint. Under review.

Mass-spring. The dynamics of a frictionless mass-spring system are modeled by the Hamiltonian
H= 1

2kq
2+ p2

2m , where k is the spring constant and m is the mass. We fix k=2 and m=0.5, then
sample a radius from a uniform distribution r∼U(0.1,1.0).

Pendulum. The dynamics of a frictionless pendulum are modeled by the HamiltonianH=2mgl(1−
cos (q))+ p2

2ml2 , where g is the gravitational constant and l is the length of the pendulum. We fix g=3,
m=0.5, l=1, then sample a radius from a uniform distribution r∼U(1.3,2.3).

Two- and three- body problems. In an n-body problem, particles interact with each other through
an attractive force, like gravity. The dynamics are represented by the following Hamiltonian H=∑n
i
||pi||2
2mi
−
∑

1≤i<j≤n
gmimj
||qj−qi|| . We setm=1 and g=1 for both systems. For the two-body problem,

we set r ∼U(0.5,1.5), and we also change the observation noise to σ2 = 0.05. For the three-body
problem, we set r∼U(0.9,1.2), and set the observation noise to σ2=0.2.

Learning the Hamiltonian We tested whether HGN and the HNN baseline could learn the dynamics
of the four systems described above. To ensure that our re-implementation of HNN was correct, we
replicated all the results presented in the original paper (Greydanus et al., 2019) by verifying that it could
learn the dynamics of the mass-spring, pendulum and two-body systems well from the ground truth
state, and the dynamics of a restricted pendulum from pixels. We also compared different modifications
of HGN: a version trained and tested with an Euler rather than a leapfrog integrator (HGN Euler), a
version trained with no additional function between the posterior and the prior (HGN no fψ) and a
deterministic version (HGN determ).

MODEL MASS-SPRING PENDULUM TWO-BODY THREE-BODY
TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

HNN 50.38±1.75 104.37±52.51 69.39±0.89 64.62±0.87 80.52±1.79 78.9±1.93 61.63±3.31 57.54±2.39
HNN (CONV) 18.97±0.77 119.09±69.17 13.14±0.66 106.07±41.94 7.3±0.38 120.71±44.48 15.22±1.99 62.77±37.57

HGN (EULER) 3.67±1.09 6.2±2.69 5.43±2.53 10.93±4.32 6.62±3.93 15.06±7.01 7.51±3.49 9.4±3.92
HGN (DETERM) 0.23±0.23 3.07±1.06 0.79±1.24 10.68±3.19 2.34±2.3 14.47±5.24 4.1±2.05 5.17±1.96
HGN (NO fψ ) 4.95±1.71 7.04±2.55 6.83±3.29 13.98±4.94 6.35±3.86 16.49±6.6 8.37±3.13 10.41±3.72
HGN (LEAPFROG) 3.84±1.07 6.23±2.03 4.9±1.86 11.72±4.14 6.36±3.29 16.47±7.15 7.88±3.55 9.8±3.72

Table 1: Average pixel MSE over a 30 step unroll on the train and test data on four physical systems. All
values are multiplied by 1e+4. We evaluate two versions of the Hamiltonian Neural Network (HNN)
(Greydanus et al., 2019): the original architecture and a convolutional version closely matched to the
architecture of HGN. We also compare four versions of our proposed Hamiltonian Generative Network
(HGN): the full version, a version trained and tested with an Euler rather than a leapfrog integrator, a
deterministic rather than a generative version, and a version of HGN with no extra network between the
posterior and the initial state.

Tbl. 1 and Fig. 6 demonstrate that HGN and its modifications learned well on all four datasets. However,
when we attempted to train HNN on the four datasets described above, its Hamiltonian often collapsed
to 0 and the model failed to reproduce any dynamics, defaulting to a static single image. We were unable
to improve on this performance despite our best efforts, including a modification of the architecture to
closely match ours (referred to as HNN Conv) (see Sec. A.3 of the appendix for details). Tbl. 1 shows
that the average mean squared error (MSE) of the pixel reconstructions on both the train and test data
is an order of magnitude better for HGN compared to both versions of HNN. The same holds when
visualising the average per-frame MSE of a single train and test rollout for each dataset shown in Fig. 6.

Note that the different versions of HGN have different trade-offs. The deterministic version produces
more accurate reconstructions but it does not allow sampling. This effect is equivalent to a similar
distinction between autoencoders (Hinton & Salakhutdinov, 2006) and VAEs. Using the simpler Euler
integrator rather than the more involved leapfrog one might be conceptually more appealing, however
it does not provide the same energy conservation and reversibility properties as the leapfrog integrator,
as evidenced by the increase by an order of magnitude of the variance of the learned Hamiltonian
throughout a sequence rollout as shown in Fig. 6). The full version of HGN, on the other hand, is
capable of reproducing the dynamics well, is capable of producing diverse yet plausible rollout samples
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Figure 7: Example of a train and a test sequence from the dataset of a three-body system, its inferred
forward, backward, double speed and half speed rollouts in time from HGN, and a forward rollout from
HNN. HNN did not learn the dynamics of the system and instead learned to reconstruct an average
image.
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Figure 8: Examples of sample rollouts for all four datasets from a trained HGN.

Target density Learned density Kinetic energy Potential energy Single step Integrated flow

Figure 9: Multimodal density learning using Hamiltonian flows. From left to right: KDE estimators
of the target and learned densities; learned kinetic energy K(p) and potential energy V (q); single
leapfrog step and an integrated flow. The potential energy learned multiple attractors, also clearly
visible in the integrated flow plot. The basins of attraction are centred at the modes of the data.

(Fig. 8) and its rollouts can be reversed it time, sped up or slowed down by either changing the value or
the sign of dt used in the integrator (Figs. 7).

Expressive density modelling using learned Hamiltonian flows We evaluate whether NHF is
capable of expressive density modelling by stacking learned Hamiltonians into a series of normalising
flows. Fig. 9 demonstrates that NHF can transform a simple soft-uniform prior distribution π(s0;σ,β)
into significantly more complex densities with arbitrary numbers of modes. The soft-uniform density,
π(s0;σ,β) ∝ f(β(s+ σ 1

2 ))f(−β(s− σ
1
2 )), where f is the sigmoid function and β is a constant,
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was chosen to make it easier to visualise the learned attractors. The model also performed well with
other priors, including a Normal distribution. It is interesting to note that the trained model is very
interpretable. When decomposed into the equivalents of the kinetic and potential energies, it can be
seen that the learned potential energy V (q) learned to have several local minima, one for each mode of
the data. As a consequence, the trajectory of the initial samples through the flow has attractors at the
modes of the data.

5 CONCLUSIONS

We have presented HGN, the first deep learning approach capable of reliably learning Hamiltonian
dynamics from pixel observations. We have evaluated our approach on four classical physical systems
and demonstrated that it outperformed the only relevant baseline by a large margin. Hamiltonian
dynamics have a number of useful properties that can be exploited more widely by the machine learning
community. For example, the Hamiltonian induces a smooth manifold and a vector field in the abstract
phase space along which certain physical quantities are conserved. The time evolution along these
paths is also completely reversible. These properties can have wide implications in such areas of
machine learning as reinforcement learning, representation learning and generative modelling. We
have demonstrated the first step towards applying the learnt Hamiltonian dynamics as normalising flows
for more expressive yet computationally efficient density modelling. We hope that this work serves as
the first step towards a wider adoption of the rich body of physics literature around the Hamiltonian
principles in the machine learning community.
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A SUPPLEMENTARY MATERIALS

A.1 HAMILTONIAN GENERATIVE NETWORK

The Hamiltonian Generative Network (HGN) consists of three major parts, an encoder, the Hamiltonian
transition network and a decoder. During training the encoder starts with a sequence

(x1,x2,...,xn)∈R32×32×3 (7)

of raw training images and encodes it into a probabilistic prior representation transformed with an
additional network on top

q=q(z|x1,x2,...,xn)∼p=N (s0|(0,1)) (8)
into a start state

s0∈R4×4×(2×16) (9)
consisting of a downsized spatial representation in latent space (4×4), where each abstract pixel is the
the concatenation of abstract position (q) and momentum (p) (each of dimension 16). The encoder
network is a convolutional neural network with 8 layers, with 32 filters on the first layer, then 64 filters
on each subsequent layer, while in the last layer we have 48 filters. The final encoder transformer
network is a convolutional neural network with 3 layers and 64 filters on each layer. Starting from
this initial embedded state, the Hamiltonian transition network generates subsequent states using a
symplectic integrator approximating the Hamiltonian equations. The Hamiltonian transition network
represents the Hamiltonian function

H :st∈R4×4×(2×16)→R (10)
as a function from the abstract position and momentum space to the real numbers at any time step t.
The Hamiltonian transition network is a convolutional neural network of 6 layers, each consisting of 64
filters. The discrete timestep we use for the symplectic integrator update step is dt=0.125.

At each time step t the decoder network dθ takes only the abstract position part qt of the state st and
decodes it back to an output image x̃t∈R32×32×3 of the same shape as the input images.

dθ :qt→ x̃t. (11)
The decoder network is a progressive network consisting of 3 residual blocks, where each residual
block resizes the current input image by a factor of 2 using the nearest neighbor method (at the end we
have to upscale our latent spatial dimension of 4 to the desired output image dimension of 32 in these
steps), followed by 2 blocks of a one layer convolutional neural network with 64 filters and a leaky
ReLU activation function, closing by a sigmoid activation in each block. After the 3 blocks a final one
layer convolutional neural network outputs the output image with the right number of channels.

We use Adam optimisier (Kingma & Ba, 2014) with learning rate 1.5e-4. When optimising the
loss, in practice we do not learn the variance of the decoder pθ(x|s) and fix it to 1, which makes
the reconstruction objective equivalent to a scaled L2 loss. Furthermore, we introduce a Lagrange
multiplier in front of the KL term and optimise it using the same method as in Rezende & Viola (2018).

A.2 NEURAL HAMILTONIAN FLOW

For all NHF experiments the Hamiltonian was of the form H(q,p) = K(p) + V (q). The kinetic
energy term K and the potential energy term V are soft-plus MLPs with layer-sizes [d,128,128,1]
where d is the dimension of the data. Soft-plus non-linearities were chosen because the optimisation
of Hamiltonian flows involves second-order derivatives of the MLPs used for parametrising the
Hamiltonians. This makes ReLU non-linearities unsuitable. The encoder network was parametrized as
fψ(p|q)=N (p;µ(q),σ(q)), whereµ andσ are ReLU MLPs with size [d,128,128,d]. The Hamiltonian
flowHdt, was approximated using a leapfrog integrator (Neal et al., 2011) since it preserves volume
and is invertible for any dt (see also section A.5). We found that only two leapfrog steps where sufficient
for all our examples. Parameters were optimised using Adam (Kingma & Ba, 2014) (learning rate 3e-4)
and Lagrange multipliers were optimised using the same method as in Rezende & Viola (2018). All
shown kernel density estimate (KDE) plots used 1000 samples and isotropic Gaussian kernel bandwidth
of 0.3.
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A.3 HAMILTONIAN NEURAL NETWORK

The Hamiltonian Neural Network (HNN) (Greydanus et al., 2019) learns a differentiable function
H(q,p) that maps a system’s state in phase space (its position q and momentum p) to a scalar quantity
interpreted as the system’s Hamiltonian. This model is trained so thatH(q,p) satisfies the Hamiltonian
equation by minimizing

LHNN=
1

2
[(
∂H
∂p
− dq
dt

)2+(
∂H
∂q

+
dp

dt
)2], (12)

where the derivatives ∂H∂q and ∂H
∂p are computed by backpropagation. In the original paper, these targets

are either assumed to be known or are estimated by finite differences using the state at times t and t+1.
Accordingly, in the majority of the experiments presented by the authors, the Hamiltonian was learned
from the ground truth state space directly, rather than from pixel observations.

The original HNN model is trained in a supervised fashion on the ground truth state of a physical
system and its time derivatives. As such, it is not directly comparable to our method, which learns a
Hamiltonian directly from pixels. Instead, we compare to the PixelHNN variant of the HNN, which is
introduced in the same paper, and which is able to learn a Hamiltonian from images and in the absence
of true state or time derivative in some settings.

This required a modification of the model. First, the input to the model became a concatenated, flattened
pair of images Xt = (xt,xt+1), which was then mapped to a low-dimensional embedding space
zt=(qt,pt) using an encoder neural network. Note that the dimensionality of this embedding (z∈R2

in the case of the pendulum system presented in the paper) is chosen to perfectly match the ground
truth dimensionality of the phase space, which was assumed to be known a priori. This, however, is
not always possible, as when a system has not yet been identified. The latent embedding was then
treated as an estimate of the position and the momentum of the system depicted in the images, where
the momentum was assumed to be equal to the velocity of the system – an assumption enforced by the
additional constraint found necessary to encourage learning, which encouraged the time derivative of
the position latent to equal the momentum latent using finite differences on the split latents:

LCC=(pt−(qt+1−qt))2. (13)

This loss is motivated by the observation that in simple Newtonian systems with unit mass, the system’s
state is fully described by the position and its time derivative (the system’s velocity). An image
embedding that corresponds to the position and velocity of the system will minimize this loss. This
assumption is appropriate in the case of the simple pendulum system presented in the paper, however it
does not hold more generally.

As mentioned earlier, PixelHNN takes as input a concatenated, flattened pair of images and maps them
to an embedding space zt=(qt,pt), which is treated as an estimate of the position and momentum of
the system depicted in the images. Note thatXt always consists of two images in order to make the
momentum observable. This embedding space is used as the input to an HNN, which is trained to learn
the Hamiltonian of the system as before, but using the embedding instead of the true system state.

To enable stable learning in this configuration, the PixelHNN uses a standard mean-squared error
autoencoding loss:

LAE=
1

N

N∑
i=1

(Xi
t−X̂i

t)
2, (14)

where X̂t is the autoencoder output andXi
t is the value of pixel i ofN total pixels inXt. 2 This loss

encourages the network embedding to reflect the content of the input images and to avoid the trivial
solution to (12).

2In our experiments, which use RGB images, this expectation is taken over color channels as well as pixels.
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The full PixelHNN loss is:

LPixelHNN=LAE+LCC+λHNNLHNN+λWDLWD, (15)

whereLHNN is computed using the finite difference estimate of the time derivative of the embedding.
λHNN is a Lagrange multiplier, which is set to 0.1, as in the original paper. LWD is a standard L2 weight
decay and its Lagrange multiplier λWD is set to 1e-5, as in the original paper.

In the experiments presented here, we reimplemented the PixelHNN architecture as described in
Greydanus et al. (2019) and trained it using the full loss (15). As in the original paper, we used
a PixelHNN with HNN, encoder, and decoder subnetworks each parameterized by a multi-layer
perceptron (MLP). The encoder and decoder MLPs use ReLU nonlinearities. Each consists of 4
layers, with 200 units in each hidden layer and an embedding of the same size as the true position
and momentum of the system depicted (2 for mass-spring and pendulum, 8 for two-body, and 12 for
3-body). The HNN MLP uses tanh nonlinearities and consists of two hidden layers with 200 units and
a one-dimensional output.

To ensure the difference in performance between the PixelHNN and HGN are not due primarily
to archiectural choices, we also compare to a variant of the PixelHNN architecture using the same
convolutional encoder and decoder as used in HGN. We used identical hyperparameters to those
described in section A.1. We map between the convolutional latent space used by the encoder and
decoder and the vector-valued latent required by the HNN using one additional linear layer for the
encoder and decoder.

In the original paper, the PixelHNN model is trained using full-batch gradient descent. To make it more
comparable to our approach, we train it here using stochastic gradient descent using minibatches of
size 64 and around 15000 training steps. As in the original paper, we train the model using the Adam
optimizer (Kingma & Ba, 2014) and a learning rate of 1e-3. As in the original paper, we produce
rollouts of the model using a Runge-Kutta integrator (RK4). See Section A.5 for a description of RK4.
Note that, as in the original paper, we use the more sophisticated algorithm implemented in scipy
(scipy.integrate.solve_ivp) (Jones et al., 2001).

A.4 DATASETS

The datasets for the experiments described in 4 were generated in a similar manner to Greydanus et al.
(2019) for comparative purposes. All of the datasets simulate the exact Hamiltonian dynamics of the
underlying differential equation using the default scipy initial value problem solver Jones et al. (2001).
After creating a dataset of trajectories for each system, we render those into a sequence of images. The
system depicted in each dataset can be visualized by rendering circular objects:

• For the mass-spring the mass object is rendered as a circle and the spring and pivot are
invisible.

• For the pendulum only the weight (the bob) is rendered as a circle, while the massless rod and
pivot are invisible.

• For the two and three body problem we render each point mass as a circle in a different color.

Additionally, we smooth out the circles such that they do not have hard edges, as can be seen in Fig. 7.

A.5 INTEGRATORS

Throughout this paper, we estimate the future state of systems from inferred values of the system
position and momentum by numerically integrated the Hamiltonian. We explore three methods of
numerical integration: (i) Euler integration, (ii) Runge-Kutta integration and (iii) leapfrog integration.

Euler integration estimates the value of a function at time t+dt by incrementing the function’s value
with the value accumulated by the function’s derivative, assuming it stays constant in the interval
[t,t+dt]. In the Hamiltonian framework, Euler integration takes the form:
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Non-symplectic Symplectic

q

p

dt

A

B

Figure 10: A: example of using a symplectic (leapfrog) and a non-symplectic (Euler) integrators on
the Hamiltonian of a harmonic oscillator. The blue quadrilaterals depict a volume in phase space over
the course of integration. While the symplectic integrator conserves the volume of this region, but the
non-symplectic integrator causes it to increase in volume with each integration step. The symplectic
integrator clearly introduces less divergence in the phase space than the non-symplectic alternative
over the same integration window. B: an illustration of the leapfrog updates in the phase space, where q
is position and p is momentum.

qt+dt=qt+dt
∂H
∂p

∣∣∣∣
p=pt

(16)

pt+dt=pt−dt
∂H
∂q

∣∣∣∣
q=qt

(17)

Because Euler integration estimates a function’s future value by extrapolating along its first derivative,
the method ignores the contribution of higher-order derivatives to the function’s change in time.
Accordingly, while Euler integration can reasonably estimate a function’s value over short periods, its
errors accumulate rapidly as it is integrated over longer periods or when it is applied multiple times.
This limitation motivates the use of methods that are stable over more steps and longer integration
times.

One such method is four-step Runge-Kutta integration (RK4), the most widely used member of the
Runge-Kutta family of integrators. Whereas Euler integration estimates the value of a function at
time t+dt using only the function’s derivative at time t, RK4 accumulates multiple estimates of the
function’s value in the interval [t,t+ dt]. This integral more correctly reflects the behavior of the
function in the interval, resulting in a more stable estimate of the function’s value.
RK4 estimates the state at time t+dt as:

xt+dt=xt+dt(
1

6
k1+

1

3
k2+

1

3
k3+

1

6
k4), (18)

where, for compactness, we write the full system state as xt=[qt,pt] and the Hamiltonian asH(x). In
the Hamiltonian framework, k1,k2,k3,k4 are obtained by evaluating the derivative at four points in the
interval [t,t+dt]:
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k1=
dH(x)
dt

∣∣∣∣
x=xt

(19)

k2=
dH(x)
dt

∣∣∣∣
x=xt+

dt
2 k1

(20)

k3=
dH(x)
dt

∣∣∣∣
x=xt+

dt
2 k2

(21)

k4=
dH(x)
dt

∣∣∣∣
x=xt+dt·k3

(22)

While RK4 may produce reasonably stable estimates over short periods of time, it is not guaranteed to
behave stably indefinitely. Neither RK4 nor Euler integration is guaranteed to preserve the energy of
the system being integrated, and in practice both will produce estimates that drift away from the true
system dynamics over timescales that are relevant for simulating real systems.

Fortunately, there are well-known methods for numerical integration that preserve energy and can be
applied to Hamiltonian systems, like the one we propose here. One such method is leapfrog integration,
which is a special method for integrating differential equations of the form:

dy

dt
=F (x),

dx

dt
=y. (23)

If we assume that the Hamiltonian equations take this form, we can integrate them using the leapfrog
integrator, which in essence updates the position and momentum variables at interleaved time points in
a way that resembles the updates “leapfrogging” over each other (see Fig. 10B for an illustration).

In particular, the following updates can be applied to a Hamiltonian of the formH= V (q)+T (p),
where V is the potential energy and T is the kinetic energy of the system:

pt+dt 12 =pt−
dt

2

∂V

∂q

∣∣∣∣
q=qt

(24)

qt+dt=qt+dtpt+ dt
2
. (25)

As discussed above, leapfrog integration is more stable and accurate over long rollouts than integrators
like Euler or RK4. This is because the leapfrog integrator is an example of a symplectic integrator,
which means it is guaranteed to preserve the special form of the Hamiltonian even after repeated
application. An example visual comparison between a symplectic (leapfrog) and non-symplectic
(Euler) integrator applied over the Hamiltonian for a harmonic oscilator is shown in Fig. 10A. For a
more thorough discussion of the properties of leapfrog integration, see (Neal et al., 2011).
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