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Résumé

Notre travail au cours des dix dernières années s’est concentré sur le développement
d’un cadre théorique et computationnel pour l’apprentissage statistique à partir de données
structurées, et notamment des données de forme.

Nous avons défini des modèles statistiques à effets mixtes sur des variétés Riemanniennes.
L’utilisation d’un tel cadre géométrique nous permet de décrire des changements dans les
données par l’intégration de changements infinitésimaux pénalisés, codant ainsi les a priori
sur la structure des données. Ces modèles étendent les concepts habituels de moyenne et
de variance et fournissent un cadre efficace pour définir des distributions statistiques de
trajectoires.

Nous avons montré comment ces outils permettent la construction de modèles per-
sonnalisés du cerveau humain, qui mettent en évidence les motifs typiques des variations
de l’anatomie cérébrale entre les patients atteints de diverses pathologies. Ces modèles
peuvent devenir dynamiques, pour produire des modèles de progression de maladies neu-
rodégénératives. Ils montrent comment la structure et la fonction cérébrale s’altèrent et les
symptômes comportementaux et cognitifs apparaissent à la fois au niveau de la population
et de l’individu.





Chapter 1

Introduction

This introduction is a modified version of an article published in Pan European Net-
works1.
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algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1.1 When computational sciences meet neurology

As scientific fields, nothing can be more different than computer science and neurology.
Computer science is a blooming young science that has led to spectacular achievements in
recent decades. During the exact same time, research in neurodegenerative diseases, and
in Alzheimer’s disease in particular, has been found to be extremely frustrating despite an
unprecedented investment effort: clinical trials have failed repeatedly; no drugs have been
shown to at least slow down the progression of the disease; and, 20 years ago, at the time
we were sending the first emails, the first hypotheses about the disease mechanism were
put forth and they have not yet been confirmed beyond doubt.

Such repeated failures are likely to be due in part to the strong focus on the clinical
phase of the disease that starts once the symptoms are manifest. However, there is clear
evidence that the disease starts several decades earlier than the onset of the symptoms.
During this silent phase of the disease, the brain experiences a complex interplay between
the aggregation of neurotoxic proteins, neuronal loss, and alterations of brain structure,
yielding to functional impairment. These effects affect several brain regions in a specific
sequence. The ordering, timing and spatial organisation of these events in the brain are not
yet fully understood. However, it is crucial to have much deeper insights into this silent
phase in order to better understand the disease and identify therapeutic targets, to detect
subjects at risk of developing it, identify those who will develop it, and select the patients
at the stage of the disease where drugs have the highest chance of success.

Our ambition is to address this problem by the construction of digital models of the
ageing brain. Such digital avatars of the brain are designed to display how the brain
structure, metabolism and function change during the progression of the disease. They aim
to deepen our understanding of the disease mechanisms and to help predict the future state
of a given subject.

1
http://www.paneuropeannetworkspublications.com/Health1/

http://www.paneuropeannetworkspublications.com/Health1/
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1.2 A statistical learning approach

Some believe that the construction of such digital models is not possible, precisely
because our understanding of the brain and disease mechanisms is so poor. However, let us
take an example: we do not teach grammar and conjugation to a child who is learning how to
speak. A child learns how to speak by the repetition and combination of what they hear. It
is only when the child masters the language that they understand its structures and rules.
We want to apply the same principle here: algorithms will learn how the brain changes
during disease progression by recombining the repeated observations of many individuals
who have developed the disease in the past. The resulting model can then be interpreted to
put forward new hypotheses about the disease, and can be used to make predictions about
the future of the next patients.

Clinical research has generated a great amount of data that may now be recycled to feed
such algorithms. Multimodal clinical and imaging data inform us about the brain structure,
metabolism and function at a given time in the life of an individual. The observations of
the same subjects at multiple time points tell us about the how brain changes over a certain
period of their lives. The observations of such short periods of disease progression in several
individuals are then used to reconstruct the natural history of the disease across all stages.

1.3 The need to develop the next generation of statistical
learning algorithms

It appears that the current state-of-the-art in machine learning literature does not pro-
vide relevant solutions to this problem.

A first difficulty resides in the fact that we do not know the stage of disease progression
of the observed subjects. There is therefore no obvious way to re-align the individual
sequences into a common scenario of disease progression. The algorithm should then learn
how to re-align the sequences by the careful analysis of the temporal patterns of changes in
the data. This is even more difficult as the comparison of the dynamics of change should
also account for the trajectory and pace of changes that are specific to every individual.

Another difficulty is that one needs to deal with images of the brain that have a very
specific structure. The model that has to be estimated needs to keep a similar structure.
This fact prevents us from using the vast majority of machine learning techniques, which
deal with an unstructured set of features extracted from the data.

Another fundamental difference is the ratio between the size of the observations and the
number of samples. In the usual paradigm, the size of the observations is no bigger than
a tweet of 140 characters but is available for millions of individuals. Here, we need to deal
with several image data sizing up to several gigabytes for one observation, whilst we have
rarely more than a few thousand subjects.

Image processing and mathematical modelling are used to find digital representations of
structured data in high dimensional mathematical spaces, geometry and numerical analysis
are called upon to compare trajectories of data changes, and eventually computational
statistics and machine learning will serve to detect spatiotemporal patterns within a group
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and make predictions at the individual level.

1.4 A multidisciplinary research project

We built a strong multidisciplinary team to tackle these challenges, allowing mathe-
maticians, computer scientists and statisticians to work alongside neurologists and neuro-
radiologists.

We build decision support systems so that tomorrow a neurologist will not allow a
patient with mild subjective complaints to go without having a reliable prognosis at six
months or a year. Such systems also open new possibilities for the pharmaceutical industry
to select patients in clinical trials at the disease stage when treatments are likely to have
the highest chance of success.

We therefore contribute to making precision medicine a reality in the field of neurode-
generative diseases.





Part I

Summary of past research





Chapter 2

Statistical and geometrical
approaches for the construction of

digital brain models

This chapter synthetizes the contributions published in [Allassonnière 2015b,
Durrleman 2014b, Durrleman 2013a, Durrleman 2012b, Durrleman 2011b,
Fishbaugh 2017, Fishbaugh 2013b, Fishbaugh 2013a, Fishbaugh 2013c, Fishbaugh 2012,
Fishbaugh 2011, Gori 2017a, Gori 2016, Gori 2015, Gori 2014, Gori 2013, Gris 2017,
Gris 2016, Gris 2015].
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2.1 Introduction: a flexible and comprehensive frame-
work for statistical shape analysis

The overarching goal of this chapter is to learn a personalized shape model from a set
of observations of an object, tissue or organ in different individuals. We assume that the
variations in shape across different observations essentially result from a deformation of the
object under study, or following D’Arcy Thompson, that the interesting shape variations
may be well captured by simple mathematical deformations that approximately put shapes
into correspondence.

We aim therefore to define the following generative mixed effects statistical model:

Oi = �i ? Ō + "i , (2.1.1)

where the Oi’s, for 1  i  n, are the observations, Ō the shape model seen as an unknown
fixed (i.e. population) effect of the model, �i a deformation of the model, typically belonging
to a group of deformations, seen as unknown random (i.e. individual) effect of the model,
"i an independent additive noise.

The rigorous definition of this model requires therefore:

• the definition of sets of deformable objects M, on which a group action ? may be
defined,

• the definition of a group of deformations,

• the definition of a noise on a set of deformable objects.

To this regards, we have contributed notably to:

• the definition of generic groups of diffeomorphisms, whose parameterization is in-
dependent of the type of objects considered: images, point sets or sub-manifolds
embedded in R3, in particular:

– parameterization combining singular momenta located at a finite set of control
points defining a Riemannian manifold of diffeomorphisms [Durrleman 2011b,
Durrleman 2013a],

– parameterization combining more complex local deformation modules yielding a
sub-Riemannian manifold of diffeomorphisms [Gris 2015, Gris 2017],

• the definition of noise model on sub-manifolds embedded in R3 whose log-likelihood
is proportional to the norm on currents or varifolds, namely metrics on sub-manifolds
that do not rely on point correspondence [Durrleman 2014b, Gori 2013, Gori 2017a]

• inference algorithms to estimate the parameters of the statistical model, namely the
digital model Ō and the parameters of the distribution of deformations:

– using a deterministic optimization of an approximation of the log-
likelihood, which may be seen as a Bayesian extension of the con-
cept of “Fréchet mean” [Durrleman 2008, Durrleman 2011a, Durrleman 2014b,
Gori 2013, Gori 2017a],
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– using a stochastic approximation of the Expectation-Maximization algorithm to
optimize the observed likelihood [Allassonnière 2015b]

• numerical approximation methods to deal with large data sets, notably white matter
fiber bundles [Durrleman 2011a, Gori 2013, Gori 2016],

• extension of the model to study the co-variation of two sets of objects in a shape
complex [Gori 2015, Gori 2016].

The approach we have followed allows us to include into the statistical analysis shape
complexes that combine shapes of different kinds: curves, surface meshes, point sets, and
images, thus giving a way to account for the complex anatomy of the brain. Relying on the
metric on currents or varifolds enables the construction of complex brain models in realistic
situations by avoiding data pre-processing like point labelling, mesh smoothing, or topology
correction, in contrast to the more standard approaches in statistical shape or appearance
models [Cootes 1995, Cootes 2008]. The absence of point correspondence allows us to take
into account the homology between labelled anatomical structures when putting into cor-
respondence the model with the observations, without enforcing an arbitrary homology at
the point level as in the usual geometric morphometric approach [Bookstein 1991]. Even-
tually, the parameterization of shape variability encoded by the deformations is controlled
when the number of shapes in the model increases thanks to the decoupling between the
parameterization of the deformation and of the data to be included in the model in contrast
to the standard approach in diffeomorphometry [Miller 2015, Vaillant 2005, Glaunès 2008].

We made here the choice to define diffeomorphic deformations as the combination of
local deformation patterns. This finite-dimensional approach breaks down the group struc-
ture of the set of admissible deformations, but defines a Riemannian or sub-Riemmannian
framework which brings new geometrical tools, such as parallel transport, without the need
to extend them in infinite dimension. It also opens up the possibility to use the stochastic
inference algorithms introduced in the small deformation setting in [Allassonnière 2007] in
a large deformation framework. This approach allows us to have locally controllable and
interpretable deformations. The alternative approach is to (i) introduce a finite-dimensional
set of deformations built on a relaxed parameterization of diffeomorphisms for image match-
ing instead of the parameterization for point set matching, and (ii) use truncated Fourier
decomposition to localize deformation in frequency instead of in space. This is the approach
followed in [Zhang 2015] where the resulting set of deformations is a Lie group instead of a
Riemannian manifold.

All in one, the proposed approach is modular in the sense that each object may take
various forms (images, point sets, curves, surface meshes) with a large array of different
metrics, deformations may be parameterized in a very flexible way, and several optimiza-
tion strategies are available to estimate the model. All these choices can be made now
independently of each other. This modularity is reflected in the implementation of these
approaches in the publicly available software Deformetrica, which contains now more than
20,000 lines of codes in C++ gathering the contributions of more than ten developers. The
software offers today too many possibilities to have explored them all.
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2.2 Shape spaces induced by diffeomorphisms

2.2.1 A Riemannian approach to diffeomorphisms

Groups of diffeomorphisms in the LDDMM framework have often been used in opti-
mization problems with shapes [Miller 2015].

The main idea is to construct 3D-diffeomorphisms via the integration of time-varying
vector fields. For vt a vector field (i.e. a mapping from R3 to R3) for every time t 2 [0, T ],
the following flow equation: (

@�t(x)
@t

= vt(�t(x))

�0(x) = x
(2.2.1)

defines a flow of diffeomorphisms under mild conditions on the spatial and temporal reg-
ularity of the velocity field [Trouvé 1998, Miller 2015]. A convenient choice is to consider
(vt)t2[0,1] 2 L2

([0, 1], V ) where V is a Reproducible Kernel Hilbert Space (RKHS). This
choice offers a control on the spatial smoothness of the driving velocity field, and allows
the derivation of solutions of optimization problems in terms of the kernel K, which is the
inverse of a differential self-adjoint operator [Glaunès 2005, Durrleman 2010].

We defined then GV the set of diffeomorphisms that can be reached from identity:

GV =
�
�v

1 ; v 2 L2
([0, 1], V ) , @t�t = vt � �t ,�0 = id

 
(2.2.2)

GV is an infinite-dimensional Lie group, where V plays the role of the Lie algebra at identity.
For particular optimization problems, a reduction principle is shown to yield a particular

parameterization of the diffeomorphisms. For instance, one can show that the optimum
solution of a criterion of the form E(v) =

R 1
0 kvtk2V dt + f(I � �v

1) for v 2 L2
([0, 1], V )

writes vt(x) = K(↵t(x)rxI) where the optimal velocity field is parameterized by a scalar
image ↵t. Similarly, the optimum solution of a criterion of the form E(v) =

R 1
0 kvtk2V dt +

f(�v

1(c0,1), . . . ,�v

1(c0,Ncp)) for a set of points c0 writes vt(x) =
P

N

k=1 K(x, ck(t))↵k(t), where
the point trajectories ck(t) are given by the diffeomorphic flow, namely solution of ċk(t) =

vt(ck(t)) for ck(0) = c0,k. In this case, the optimal velocity field is driven by a set of vector
momenta ↵k(t).

In particular, one can solve the geodesics equations by finding the v minimizingR 1
0 kvtk2V dt such that �1(c0,k) = c1,k for two sets of points c0 and c1, or in a relaxed

version the critical points of
R 1
0 kvtk2V dt + �

PNcp

k=1 k�1(c0,k)� c1,kk2. The optimal momen-
tum vectors then satisfy the Hamiltonian equations [Miller 2006]:

8
>>>>><

>>>>>:

ċk(t) =

NcpX

p=1

K(ck(t), cp(t))↵p(t)

↵̇k(t) = �
NcpX

p=1

↵k(t)T↵p(t)r1K(ck(t), cp(t))

(2.2.3)

Denoting S(t) =

 
c(t)

↵(t)

!
the state of the system at time t consisting in the point

positions c(t) and the momentum vectors ↵(t) attached to them, (2.2.3) could be written
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in short as

Ṡ(t) = F (S(t)), S(0) =

 
c0

↵0

!
. (2.2.4)

In [Durrleman 2011b, Durrleman 2014b], we proposed to decouple the parameteriza-
tion of the deformation from the optimization problem. We defined a set of points, called
control points c0, which are independent of any particular data and optimization prob-
lem. We defined Vc0 = Span

�
K(c0,k, .)↵k ; ↵k 2 Rd

�
, which forms a finite-dimensional

RKHS [Durrleman 2010]. We defined then GVc0
the set of diffeomorphisms:

GVc0
=

(
�v

1 2 GV ; vt 2 Vc(t) ,

 
ċ(t)

↵̇(t)

!
= S

 
c(t)

↵(t)

!
, c(0) = c0 ,↵(0) = ↵0 2 RdNcp

)

(2.2.5)
GVc0

is no more a group, since �v

1 2 GVc0
could only be composed with a diffeomorphism

in GVc(1)
and not in GVc0

. Nevertheless, it is important to notice that the composition of
�v

1 2 GVc0
with �v

0

1 2 GVc(1)
stays in GVc0

, i.e. �v
0

1 � �v

1 2 GVc0
. Indeed, the composition of

the two diffeomorphisms make sense in GV . In this space, there is a flow of diffeomorphisms
connecting c0 to c(1), and then c(1) = c00 to c0(1), therefore connecting c0 to c0(1). Among
all the paths connecting c0 to c0(1) in GV , there is a geodesic one. By definition of the
geodesic in GV , this path satisfies the Hamiltonian equations (2.2.3) starting at c0, and
therefore belongs to GVc0

by definition of this set.
GVc0

is a Riemannian manifold of finite-dimension. The tangent-space of GVc0
at point

�v

t
is Vc(t) and its metric is given by the dNcp-by-dNcp block matrix K(c(t)) where the

(p, q)th block is given by K(cp(t), cq(t)), and the links between velocity in the tangent
bundle and the momenta in the co-tangent bundle writes simply v = ċ = K(c)↵ (note that
not only �v

1 is in GVc0
, but also all �v

t
by scaling the initial velocity).

As we will see in the sequel, the main advantage of this formulation is that we can write
statistical model and optimization problem in finite dimension without the need to specify
beforehand the type of data one will deal with. This opens up the possibility to build digital
models combining different data types, without exploding the number of parameters of the
deformations. We will see also in the next chapter that we can now take advantage of tools
from the Riemannian geometry, such as parallel transport.

2.2.2 A sub-Riemannian approach to modular diffeomorphisms

We can see the set of control points introduced previously as a way to decompose
diffeomorphisms into a dictionary of infinitesimal translations, which are then combined
and integrated to yield a diffeomorphic deformation. Given a particular training data set,
we will aim to adapt the position of the control points to find the set of dictionary elements
that allows the best description of the variability observed in the data.

To go one step further, we can think of building a larger dictionary by including more
complex local deformation patterns, such as local torque, dilation, or shearing in addition
to translation. In [Gris 2015, Gris 2016, Gris 2017], we proposed to approximate such
patterns by a particular combination of control points and momentum vectors with specific
constraints on control point positions and directions of the momentum vector for each
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desired deformation pattern, as illustrated in Fig. 2.1. We formalize this idea by introducing
the concept of deformation modules. The constraints make the possible velocity fields
generated by a module to lie within a sub-set of Vc0 , so that the approach naturally falls
within a sub-Riemannian framework. The main difficulty is to define a cost associated with
a combination of local deformation patterns, and then to derive the geodesic equations that
will give the equations of motion for all local deformation modules, and then for any object
embedded in the ambient space.

z1o
z2

z3 d1

d2

d3

z1o
z2

z3

d1d2

d3

Figure 2.1: Construction of two sorts of modules: local torque (left) and local scaling
(right).

The concept of deformation modules is illustrated in Fig. 2.2-left. The module is defined
by:

• a manifold of geometrical descriptors O usually an open sub-set of Rn, such as the
scale of the module and its center,

• a set of controls H, allowing the adjustment of the magnitude of the local torque or
dilatation, or the direction of a translation for instance

• a mapping ⇣, called field generator, which maps a set of geometrical descriptors and
controls to a vector field in a space V ,

• a positive quadratic form on H, co(h) = hCoh, hi
H

, which associates a cost to every
value of the controls,

• a mapping ⇠, called infinitesimal action, which defines how the generated vector field
acts back on the geometrical descriptors, so that the module is updated by the gen-
erated deformation.

For instance, a local torque is defined as follows. Geometrical descriptors are given by
the center of the module c0 of a scale �. The set of controls is reduced to a single scalar
h, so that the field generator writes: v(x) = h

P3
k=1 K�(x, zk)dk where the intermediate

tools, namely control points zk and unit vector dk, are entirely determined by the position
of the center of the module as illustrated in Fig. 2.1. The cost is given by the norm of v in
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the RKHS defined by the Gaussian kernel K� with bandwidth �. The infinitesimal action
acts on the center of c as ⇠(c) = v(c), so that the center follows the flow of the generated
deformation. Note that in this framework, it is not possible to update the scale � during
the integration of the flow.

The main interest of modules lies in the possibility to combine them, so that the de-
formations result from the interaction of several modules acting on different regions of the
space and at different scales. Figure 2.2-right illustrates how modules may be combined by
adding the individual generated vector fields to give a single global velocity field, which in
turn acts back on the geometrical descriptors of every module. This combination is possible
by assuming that all spaces V are continuously embedded into the set of vector fields that
are differentiable with differentials vanishing at infinity up to a certain order. Another cru-
cial assumption is that the cost of each module satisfies a uniform embedding condition, i.e.
k⇣(o, h)k2

V
< Cco(h) namely that the cost is an upper-bound of the norm of the generated

vector field ⇣(o, h) in V . We can easily show then that a combination of modules defines a
module, which in turn satisfy the uniform embedding condition.

Figure 2.2: Scheme of the definition of modules (left) and their combination (right).

The cost of the combined module is the sum of the cost of the local modules. This
natural definition is in strong contrast with previous multi-scale or higher-order approaches
in the large diffeomorphic deformation setting [Bruveris 2012, Sommer 2013, Jacobs 2013,
Younes 2012], where the cost is usually defined as the norm of the velocity field generated
by all contributions (i.e. norm of the sum of vector fields instead of the sum of the norms of
the vector fields). In such approaches, the derivation of the geodesic equations is similar to
the Hamiltonian equations in (2.2.3). Here, our cost offers a much finer control on the local
deformation patterns, to favor some modules over others for instance. The counterpart is
a more complex structure for the geodesic equations.

In [Gris 2015, Gris 2016, Gris 2017], an optimal control formulation allows the derivation
of the cost-minimizing trajectories. The controls along optimal trajectories are given by
h(o, ⌘) = C�1

o
(⇠o � ⇣o)†(⌘) where ⇢† is defined for any map ⇢ from H to TO as ⇢(h)

T u =⌦
h, ⇢†(u)

↵
H

for u 2 TO. ⌘ is the adjoint variable of the geometrical descriptors which
together satisfy the coupled Hamiltonian equations:

8
<

:

ȯ = ⇠o (⇣o (h(o, ⌘))

⌘̇ = �1

2
ro hh(o, ⌘), ⌘i

H

(2.2.6)

In this sub-Riemannian framework, the adjoint variable ⌘ is of the same size of the geomet-
rical descriptors, which is different from the dimension of the controls h. In the previous
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t=0 t=0.5 t=1

Figure 2.3: Example of a geodesic flow of modular diffeomorphisms combining a large scale
scaling with a small scale torque for a given initial value of controls.

Riemanian case, the controls equal the adjoint variable ↵ for the geometrica descriptors
being the control points. Here the rectangle matrix C�1

o
(⇠o � ⇣o)† maps adjoint variables to

controls.
An example of geodesic path generated for a combination of a large scale dilatation and

small scale torque for a given initial value of adjoint variables is shown in Fig. 2.3.
This approach defines a set of diffeomorphic deformations that are parameterized by

a set of local modules. As previously, it can be used to define statistical models and
optimization problems independently of the types of data involved.

2.3 Sets of deformable objects

Shape data may take various forms: grey-level images, point sets or sub-manifolds em-
bedded in R3. We need to precise here how these data are embedded in mathematical spaces,
how these spaces allowed to defined a metric between such shapes and the related question
about how to define a noise distribution on such spaces, and how flow of diffeomorphisms
may continuously deform such shapes.

2.3.1 Shape embeddings

2.3.1.1 Images

Images can be naturally embedded in the space of L2 maps from the image domain
⌦ 2 R3 to R. As such, an image maps any spatial location x in the image domain ⌦ to
a grey-value (also called intensity) I0(x). The natural L2 metric may be used to compare
images. Other metrics, which are less sensitive to contrast changes have been proposed, such
as Local Correlation Coefficient (LCC) or Mutual Information [Wells 1996, Cachier 2003].
However, it is more difficult to see such metrics as the log-likelihood of a probability density
function, a fact that is needed in statistical models.

From a numerical point of view, an image I is discretized on a regular lattice of voxels
⇤ = {xijk}i,j,k=1,...,N and the continuous map is reconstructed by interpolation. The metric
on the discretized image amount to the usual sum of squared intensities. One may define a
white noise distribution on the lattice " ⇠ ⌦i,j,k=1,...,NN (0,�2

), so that the log-likelihood
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is proportional to the metric:

� log(p(")) =
1

2�2

Nr,Nc,NvX

i,j,k=1

|"i,j,k|2 + ⇤ log(�) + Cste , (2.3.1)

where ⇤ = NrNcNv is number of voxels in the image.
Another approach is to consider a parametric family of images. Such images reconstruct

intensity via the interpolation of a photometric kernel Kph at a pre-selected set of control
points cph:

I(x) =

NphX

p=1

Kph(x, cphp
)�p , (2.3.2)

where Kph is typically a Gaussian kernel with bandwith of the same order as the spacing
between control points. There are several advantages of this approach: it is parameterized
by a smallest number of parameters (number of control points as compared to the number
of voxels), it allows the reconstruction of the image at any resolution thus allowing the
comparison of images at various resolution, and guarantee that a statistical model with
such an image as parameter belongs to the exponential family, a fact that is needed in some
stochastic inference methods.

2.3.1.2 Labelled point sets

Shapes may take the form of a labelled point sets, also called “landmarks”. Points in
different instances of the shape are then in correspondence with each other. These shapes
may be encoded as a 3N vector for N labelled points in 3D (or 2N in 2D) embedded
in R3N . The natural metric is the Euclidean norm in R3N . The noise distribution is an
independent Gaussian noise on each coordinate of each point: " ⇠ N (0,�2

Id3N ), so that
the log-likelihood of " writes:

� log(p(")) =
1

2�2
k"k2 + ⇤ log(�) + Cste , (2.3.3)

where ⇤ = 3N or 2N .
If such points sets are not labelled, or if different instances of the shape contain different

number of points, this embedding is no more valid. They may be embedded in a function
space of measure, which can be see as a 0-current [Glaunès 2005, Durrleman 2010].

2.3.1.3 Sub-manifolds

Several metrics between sub-manifolds of R2 or R3 have been introduced recently,
based on the concepts of the geometric measure theory [Federer 1969]: currents, vari-
folds, functional currents, functional varifolds, normal cycles [Vaillant 2005, Glaunès 2008,
Durrleman 2010, Charon 2013, Charon 2014, Roussillon 2016, Charlier 2017]. Their con-
struction follows the same steps: these objects are defined as linear forms on a test functional
space with enough regularity. This test space is chosen to be a Reproducible Kernel Hilbert
Space (RKHS), so that the test space and its dual space are provided with a scalar product
which is expressed in terms of a double integral of the kernel over the sub-manifolds. In
a discrete setting, this integration amounts to a double sum over the faces of the meshes.
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The main advantage of this construction is that the norm between two sub-manifolds does
not require a correspondence between the vertices of the meshes, or the parameterization of
the sub-manifolds. We refer the reader to [Vaillant 2005, Glaunès 2008, Durrleman 2010,
Charon 2013, Roussillon 2016, Charlier 2017] for further details, and illustration of the use
of such metrics in the context of shape registration.

In this work, we will use:

• the metric on currents for curves in 2D and 3D and surfaces in 3D

• the metric on varifolds for curves in 2D and 3D and surfaces in 3D

• the metric on weighted currents, which is a particular case of functional currents for
curves that allows giving special importance to the location of the extremities of the
curves.

The metric on currents writes [Vaillant 2005]:

kCk2
W⇤ =

Z

C

Z

C

K(x, y)n(x)
T n(y)dxdy , (2.3.4)

where n(x) is either the tangent (resp. the normal) to the curve (resp. the surface).
The metric on varifolds writes [Charon 2013]:

kCk2
W⇤ =

Z

C

Z

C

Kv ((x, n(x)), (y, n(y))) kn(x)k kn(y)k dxdy , (2.3.5)

where Kv is a kernel on the tensor product between R3 and the Grassmannian. For
a linear kernel on the Grassmannian part, one may write: Kv ((x, n(x)), (y, n(y)) =

K(x, y)

⇣
n(x)T n(y)
kn(x)kkn(y)k

⌘2
.

The metric on weighted currents for a curve C writes [Gori 2013, Gori 2016]:

kCk2
W⇤ =

Z

C

Z

C

K(x, y)n(x)
T n(y)dxdy (2.3.6)

and the inner-product

hC, C 0i
W⇤ = Kc(f

c, tc)Kb(f
b, tb)

Z

C

Z

C0
K(x, y)n(x)

T n0(y)dxdy , (2.3.7)

where (f c, f b
) (resp. (tc, tb)) are the coordinates of the two extremities of the curve C (resp.

C 0). This metric will be used to select white matter fibers extracted from diffusion imaging
which connect similar areas of the cortex with similar areas of the basal ganglia.

From a numerical point of view, the sub-manifolds are encoded as meshes, which are
still rectifiable manifolds. Integrals in the previous equations are replaced by Riemann sum
over the faces of the mesh. It has been shown that under some conditions the current or
varifold converges to the continuous limit as the sampling of the mesh becomes finer and
finer [Durrleman 2010, Charon 2013].

Even a mesh with a finite number of vertices is embedded in a space of currents or
varifolds of infinite dimension. It is therefore not possible to define a probability measure
with density function on such spaces. In [Durrleman 2010], one addressed this problem
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by defining the finite-dimensional projection of the currents on a fixed grid of arbitrary
resolution, so that the log-likelihood of the probability density function is proportional to
the norm of the projected current, which converges to the norm of the current as the step
of the grid tend to zero. In [Gori 2013, Gori 2017a], we followed the same approach for
varifolds and weighted currents.

We define a random Gaussian varifold as a linear map between every test field ! 2
W to a real random Gaussian variable G(!) such that, given two test fields !1 and !2,
E[G(!1)] = 0 and E[G(!1), G(!2)] = h!1,!2iW . This shows that the kernel KW of the
space W completely defines the covariance matrix of the Gaussian varifold. However, since
it is infinite-dimensional, it has no probability density function. To tackle this problem,
we define a finite-dimensional space W ⇤

⇤ on which we project any varifolds. This space is
defined as the span of the delta Dirac varifolds: Span{�

(xu,
 !
�k)

} where both the points {xu}

and the non-oriented unit vectors {
 !
�k } are constrained to belong to two predefined grids,

respectively ⌥x and ⌥� . The first one is a linearly spaced grid in the ambient space and
⌥� is a regular sampling of the half unit sphere in R3. The number of points of the two
grids is respectively ⇤x and ⇤� .

We define a block matrix K⇤ whose blocks are the RKHS kernel
KW

⇣
(xu,
 !
�k ), (·, ·)

⌘
u=1,...,⇤x

k=1,...,⇤�

between every possible combination of the couples {xu,
 !
�k }.

To project a delta Dirac varifold �(y,
 !
↵ )|↵| onto W ⇤

⇤, using for instance the closest neighbour
projection, we look for the closest point to y of the grid ⌥x and for the closest direction
to  !↵ among the ones given in ⌥� and we assign the scalar |↵| to that particular couple
of grid points. The projection is therefore completely parametrized by the vector {|↵|}
whose dimension equals the one of the grid. Using this scheme, the squared norm of
a projected varifold ||

P
L

l=1 �(yl,
 !
↵l

|↵l|)||2W⇤
⇤

is equal to
P

u2⌥x

P
p2⌥x

P
k2⌥�

P
q2⌥�

cukKW,⇤

⇣
(xu,
 !
�k ), (xp,

 !
�q )

⌘
cpq where the scalars cuk and cpq refer to the values obtained

at the end of the projection of the varifold in {xu,
 !
�k } and {xp,

 !
�q } respectively.

Scaling the matrix K⇤ with a scalar �2, we can define the likelihood of a random varifold
" as:

p("|�2
) / 1

�3⇤x+2⇤�
exp

 
�k"k

2
W⇤

2�2

!
, (2.3.8)

where it is important to notice that K⇤ of dimension (3⇤x + 2⇤�)
2 is a fixed matrix

that is computed only once. In practice, depending on the number of Delta currents to
project, we either compute the norm of the projection, i.e. || · ||2

W
⇤
⇤
, using Fast Fourier

Transform [Durrleman 2010], or alternatively compute the exact expression ||(·)||2
W⇤ , the

latter being seen as an approximated value of the former. Note that we can compute the
grid size ⇤x and ⇤� given the size of a bounding box including a mesh and the spacing given
to the grid, usually taken as �W . We showed in [Gori 2013, Gori 2017a] that the choice of
such parameters does not affect much statistical estimates.

2.3.1.4 Shape complexes

A shape complex is an arbitrary collection of images, labelled point sets, sub-manifolds:
O = (O1, . . . , ON ). A shape complex may be embedded in a tensor product of the em-
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•S	and	T:	Meshes
(several	connected	components,	different	
number	of	them)

•S	and	T:	Mesh	with	N	connected	
components	
S	=	(S_1,…,S_N),	T	=	(T_1,…,T_N)

•Plus	M	Points	in	S	and	M	points	in	T
S	=	(x_p)			T	=	(y_p)

NX

k=1

k�(Sk) � Tkk2

k�(S) � Tk2

NX

k=1

k�(Sk) � Tkk2

+

MX

p=1

k�(xp) � ypk2

•Geometric	morphometrics /	Statistical	
Shape	Models +

MX

p=1

k�(xp) � ypk2

Figure 2.4: Hierarchical correspondence in shape complexes that allows one to adjust the
metric to the right level of homology. It may be used for instance as a criterion to optimize
and find the optimal deformation putting into correspondence the two instances of the
shape.

bedding spaces of each individual shape. The log-likelihood of the noise distribution is
then a weighted sum of the norm of each component within the complex. This approach is
relevant for comparing anatomical configurations, in that it allows to adjust to the level at
which homology can be defined. As illustrated in Fig. 2.4, it makes more sense to define the
homology at the level of individual curves (for the skull, mouth, jaw, etc.), but not at the
coarser level of sets of curves, neither at the finest level of individual points. Nonetheless,
one may still add landmarks in places where homology between samples may be defined,
like the brow in this example.

2.3.2 Action of diffeomorphisms

2.3.2.1 Images

Images seen as L2 maps from the image domain ⌦ to R are deformable objects thanks
to the group action: � ? I = I � ��1 for � a diffeomorphism of ⌦, such that the intensity at
location x of the deformed image is given by I0(��1

(x)).
In the construction of our manifold of diffeomorphisms, � is the end-point of a flow of

diffeomorphisms, which results in a continuously deformed image: I0 � ��1
t

. To reconstruct
the deformed image, one need to find the trajectories of the vertices of the lattice ⇤ on
which the image is discretized under the inverse flow ��1

t
. If we denote Y (t, x) = ��1

t
(x)

the position of the vertex x at t, one can show that Y satisfy the following differential
equation [Fishbaugh 2013a]:

@Y (t, x)

@t
= �dxY (t, x)vt(Y (t, x)) with Y (0, x) = x . (2.3.9)

This equation may be integrated thanks to a numerical scheme both in space and time.
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Remark 2.1. If one is only interested in the final value I0 � �1, a more straightforward
way is to integrate the flipped velocity backward in time. Simple computations show indeed
that the location ��1

1 (y0), for any point y0 is the solution at time t = 1 of the differential
equation ẏ(t) = �v1�t(y(t)), with initial condition y(0) = y0. However, note that this
integration computes the flow �1�t ���1

1 , and therefore at intermediate time point the flow
does not equal ��1

t
. It avoids the computation of spatial derivatives. ⇤

2.3.2.2 Labelled point sets and sub-manifolds

Point sets S = {x1, . . . , xN} are also deformable thanks to the group action � ? S =

{�(x1), . . . ,�(xN )}. A mesh M given by a set of vertices X = {xp}p=1,...,N and a set
of edges E is a deformable object thanks to the action � ? M = (�(X), E), where �(X)

denotes the set of vertices �(xp). An action of the group of diffeomorphisms on the space of
currents and varifolds may be defined also [Vaillant 2005, Charon 2013]. By slight abuse of
notation, we still denote this action by ?, as it has been shown that the two actions coincide
if the sampling of the meshes becomes finer and finer. The length of the edges should
be small compared to the bandwidth of the deformation kernel, so that the action of the
deformation on the tangent of, or the normal to the face of the mesh is well approximated
by the displacement of the vertices of the edge.

A mesh or point set is simply encoded by the concatenation of the coordinates of all
vertices X0. The action of a flow of diffeomorphisms �t on X is simply given by �t?X = X(t)

which is the integral curve of:

Ẋ(t) = vt(X(t)) = G(X(t), S(t)) with Ṡ(t) = F (S(t)) . (2.3.10)

2.3.2.3 Shape complexes

The action of a flow of diffeomorphisms �t on a shape complex O = (O1, . . . , ON ) is
simply defined as:�t ?O = (�t ?O1, . . . ,�t ?ON ).

We denote Y0(x) the position of the vertices of the discretization lattice of all shapes of
image type (or the concatenation of the vertices of different lattices if images are discretized
on different lattice). We concatenate the points of all vertices in point sets or meshes in a
single vector X0 = (X0,1, . . . , X0,Np

). Then, we solve the differential equation
8
>><

>>:

Ṡ(t) = F (S(t)) S(0) = S0

Ẋ(t) = G(X(t), S(t)) X(0) = X0

Ẏ (t, .) = H(Y (t, .), S(t)) Y (0) = Y0 .

(2.3.11)

Then at time t = 1, the coordinate position in Y (1, .) are used to reconstruct the
deformed images by interpolation, and the coordinate position in X(1) gives the position
of the vertices in the deformed point sets of meshes.

2.3.3 Approximation schemes

Shape embeddings into a space of currents and varifolds have another advantage. In the
RKHS framework, currents or varifolds could not see the shape at a finer scale than the
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kernel, which acts similarly to a point spread function [Durrleman 2010]. The consequence
is that the metric is not sensitive to noise or small protrusion at a scale smaller than the
kernel bandwidth. Another consequence is that mesh sampling is often way too fine for
the scale at which one assumes interesting shape changes to occur, thus offering the way
to considerably reduce the computational complexity of our algorithm by approximating
meshes seen as currents or varifolds. We have proposed in [Durrleman 2010] a matching
pursuit algorithm to approximate any currents, but at the cost of breaking down the mesh
structure, and therefore all topological properties. Here, we present another approximation
scheme tailored to the specific goal of reducing the number of white matter fibers resulting
from tractography algorithms, without losing the connectivity, namely the areas of the grey
matter that the fibers connect. Details can be found in [Gori 2013, Gori 2016].

A fiber bundle is seen as a collection of individual fibers. Each fiber is embedded into
a space of weighted currents introduced in Sec. 2.3.1.3, which gives a particular emphasis
in the position of the two extremities of the fiber (see Fig. 2.5). In currents space, the
union translating into a sum, the whole bundle write: CB =

P
N

i
CFi

. Taking advantage of
the Hilbert structure of the space of currents, we can compute the mean of a fiber bundle:
F̄ =

1
N

P
N

i
Fi, and the Gram matrix � = {hFi, FjiW⇤}i,j=1,...,N . The approximation

scheme consists in two parts: first, a clustering of the bundle into groups of fibers with
similar geometry and having extremities in the same areas (i.e. with small distance in the
sense of weighted currents), and second the selection of a small set of prototype fibers within
each cluster, so that the weighted sum of these prototypes gives an approximation of the
whole cluster in the space of weighted currents with a given tolerance.

Figure 2.5: Tracts that have an angle smaller than 45 degrees with the red one using
currents (green, #118) and weighted currents (blue, #8). Fibers belong to a thalamo-
cortico bundle of the right hemisphere resulting from a probabilistic tractography. There
are more green tracts than blue ones. They also spread a larger area, and thus connecting
anatomical locations far from the ones of the red fiber. This shows why weighted currents are
more suitable for clustering and approximating fiber bundles while preserving connectivity
information.

Modularity Optimization Clustering Each fiber within the bundle is a point in space
of weighted currents. One may see therefore a fiber bundle as a weighted graph where each
fiber is a vertex, and the weighted edges are the inner products between every couple of
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fibers. We use a clustering algorithm based on the maximization of a quality function Q

called Modularity [Blondel 2008]:

Q =

NCX

c=1

8
><

>:

�����
X

i2c

Fi

�����

2

W⇤

������

X

j /2c

Fj

������

2

W⇤

�

0

@
X

i2c

X

j /2c

hFi, FjiW⇤

1

A
2
9
>=

>;
, (2.3.12)

where NC is the number of clusters. This equation can be easily rewritten in terms of the
Gram matrix � as: Q=

P
NC

c=1(s
T

c
�sc)((1 � sc)

T
�(1 � sc)) � (sT

c
�(1 � sc))

2 where sc(k)=1
if Fk belongs to cluster c and 0 otherwise. In the simple case of NC = 2 this equation can
be rewritten as: Q = kF̄1k2W⇤kF̄2k2W⇤ �

⌦
F̄1, F̄2

↵2
W⇤ where F̄1 and F̄2 are the means of the

two clusters. Maximizing Q means therefore looking for two clusters whose means are as
orthogonal as possible and at the same time their norms should be as close as possible. This
can be generalized to NC clusters by saying that the goal of modularity is to create clusters
with balanced norms characterised by fibers orthogonal to the fibers in the other clusters
and parallel to the fibers in their own cluster. The Louvain algorithm [Blondel 2008] is
a greedy solution divided into two steps which are repeated iteratively. At the beginning
every tract forms a different cluster. The first part consists of associating every tract to
all its neighbour clusters finding the one that leads to the largest increase in Q. This step
is repeated until no change would produce an increase in Q. The second part consists in
merging all the tracts of one cluster in one single supervertex. Two supervertices have a
weighted edge equal to the sum of all the inner products between the fibers of the initial
clusters. The two steps are repeated until no change would produce an increase in Q. At
the end of this process the fiber bundle is separated into different clusters without fixing in
advance neither the number of clusters nor their size.

Prototype Fiber Selection The goal of the Prototype Fiber Selection (PFS) process
is to concisely represent the fiber bundle B with a set of weighted prototypes {⌧iMi}
chosen among the fibers. If we wanted only one weighted prototype ⌧1M1 which minimizes
||B � ⌧1M1||2W⇤

, it would be: M1 = arg max
Fz
hB, Fz

||Fz|| i
2
W⇤

= arg max
Fz

N2hF̄ , Fz

||Fz|| i
2
W⇤

with ⌧1 =
hB,M1i
||M1||2 . This means that we would look for the fiber most similar to the average

of the bundle. This scheme works fine only in a uni-modal setting (i.e. gaussian) but
not in a multi-modal one since the chosen fiber would be the one closest to the center of
the different modes. If the modes are far from each other the chosen fiber could be also
considered as an outlier. This is why it is fundamental to find the main modes of the
distribution of the fibers using the previous clustering step. Once defined the main modes,
a PFS is performed independently on each one of them. One prototype is not sufficient
to explain the whole cluster. So, as for instance in PCA, we remove from each fiber (Fi)
its orthogonal projection onto the prototype (⇡(Fi) =

hFi,M1iM1

||M1||2 ) and we select, in this
new representation (r(Fi) = Fi � ⇡(Fi)), the fiber most similar to the new average as
second prototype (M2 = arg max

r(Fz) N2hr(F̄ ), r(Fz)
||r(Fz)|| i

2). We iterate this process for each
cluster Cj until: ||Cj �

PKj

i=1 ⌧iMi||W⇤  �||Cj ||W⇤ for a given tolerance �. At iteration
k, the k weights {⌧i} are computed by the orthogonal projection of the cluster Cj to the
space spanned by the selected k prototypes {Mi}. It is important to notice that all these
computations are based on the Gram matrix � of the fiber bundle, also when computing a
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Figure 2.6: Weighted prototype approximations of two probabilistic bundles: a cortico-
putamen and a cortico-thalamus. As it is possible to notice, our approximation alters
neither the global shape of the bundle nor the densities of the endpoints onto the cortical
surface. We use: �=0.13, �g=7mm, �a=5mm and �b=10mm.

Figure 2.7: Evolution of the average number of prototypes and compression ratio at different
approximation levels for 5 deterministic and 5 probabilistic cortico-putamen bundles. Bars
represent one standard deviation.

new prototype: hr(Fi), r(Fj)i = hFi, Fji � hFi,MihFj ,Mi
||M ||2 =�ij � �iM�jM

||�MM ||2 . After selecting the
prototypes in each cluster, the weights are recomputed by the orthogonal projection of the
whole bundle B to the entire set of prototypes in order to retrieve the correct values also
for the prototypes close to the boundary between two different clusters.

In [Gori 2016], we applied the method on three distinct fiber bundles connecting the left
hemisphere of the cortical surface to the left thalamus, putamen and caudate respectively.
We extract them from both the deterministic and probabilistic whole brain tractography as
explained in [Worbe 2015]. The approximation method requires the bandwidths of the three
kernels of weighted currents �g for the currents part, �c for the end-points on the cortical
surface, �b for the end-points on the basal ganglia and the approximation level �. Fig. 2.6
shows that our approximation scheme applied on the data of a given subject allows a good
preservation of the connectivity while drastically reducing the number of fibers within the
bundle. Fig. 2.7 shows that the application of the method on the 3 bundles from 25 subjects
may lead to high compression ration even with small approximation level, thus opening the
possibility to use such fiber bundles into statistical analyses.
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2.4 Learning digital anatomical models

2.4.1 Bayesian mixed-effects model for deformable objects

We are now in position to define rigorously the statistical model for learning shape
models from observations Oi for i = 1, . . . , N . Each observation takes the form a shape
complex Oi = {Oi,1, . . . , Oi,K} where for each k the shape Oi,k is of a given type among
images, point sets, curves or surface meshes. The statistical model writes:

Oi,k = �
c0,↵0,i

1 ?O0,k + "i,k , (2.4.1)

where

• O0 is a shape complex of the same composition as the observations for which one fixes
the topology of the non-image components, namely the number of vertices and the
edges of the meshes,

• �
c0,↵0,i

1 ? O0,k = O0,k � Yi(1, .) if O0,k is of image type, or �c0,↵0,i

1 ? O0,k = Xi,k(1)

otherwise,

• Yi(1, .) and Xi(1) are solution at time t = 1 of the set of differential equations:
8
>><

>>:

Ṡi(t) = F (Si(t)) Si(0) = (c0,↵0,i)

Ẋi(t) = G(Xi(t), Si(t)) Xi(0) = X0

Ẏi(t, .) = H(Yi(t, .), Si(t)) Yi(0) = Y0 ,

(2.4.2)

• X0 concatenates the position of all the vertices in O0, Y0 is the map of coordinates of
the image domain,

• c0 is a set of control points distributed on the image domain whose number is fixed,

• "i,k are independent and identically distributed (i.i.d.) random variables following a
Gaussian noise distribution as defined in Sec. 2.3.1 for images, labelled point sets,
currents, varifolds or weighted currents with unknown scalar variance �2

k
,

• ↵0,i ⇠ (0,�↵) are i.i.d. multivariate Gaussian random variables in TidG⇤
Vc0

.

This is a mixed effect model where the fixed effects are the position of the control points
c0, the position of the vertices in the point-based component in O0, the intensities of the
images in the component of image type in O0 (or the photometric weights in the case of
a parametric image). The random effects are the momentum vector ↵0,i. The parameters
of the model are the fixed effects together with the noise variance �2

k
and the covariance

matrix of the momentum vectors �↵.
One can easily turn this model Bayesian by adding priors on the model parameters. Fol-

lowing [Allassonnière 2007], we could add degenerate priors (but leading to non-degenerate
posterior) which ensure the variance/covariance to be well defined:

�2
k
⇠W�1
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k
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, (2.4.4)
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where the scalars wj , Pj and w↵ are strictly positive and P↵ is a positive symmetric matrix.
The estimation of this model is illustrated in Fig. 2.8.

2.4.2 Deterministic inference without priors

2.4.2.1 Fréchet mean

The first proposed strategy to infer the parameter of the model is to optimize the
complete likelihood of the data p(O1, . . . , ON ,↵1, . . .↵N |✓) where we denote ✓ the pa-
rameters of the model. Without priors and taking the covariance matrix equals to the
inverse of the metric in TGVc0

, i.e. �↵ = K(c0)
�1, this complete likelihood writes

p(O1, . . . , ON ||↵1, . . .↵N , ✓)p(↵1, . . .↵N |✓) where the first term equals the likelihood of the
noise distribution

Q
N

i=1 p"(�c0,↵0,i ?O0 �Oi), therefore leading to:

�log(p(O1, . . . , ON ,↵1, . . .↵N |✓)) =

NX

i=1

(
KX

k=1

1

2�2
k

k�c0,↵0,i ?O0,k �Oi,kk2 +
1

2
↵T

0,i
K(c0)↵0,i

)
+Cste ,

(2.4.5)
where the norm in the first term is the one matching the object’s type. Note that the norm
on the projected currents or varifolds is well approximated by the currents in the continuous
domain, which may be simpler to compute.

This cost function has been used extensively to compute so-called “Fréchet mean”
(see [Pennec 2006b, Allassonnière 2007, Durrleman 2014b]), which defines the template
O0 as the minimizer of the squared geodesic distance to all observations. This writes
P

N

i=1 ↵
T

0,i
K(c0)↵0,i where the values of ↵i,0 are such that �c0,↵0,i ?O0,k = Oi,k, hence the

first term in (2.4.5) in a relaxed formulation where �k is then interpreted as a Lagrange
multiplier.

Recent works have shown that the optimization of this criterion leads to biased estimates
even if the number of observations tends to infinity [Devilliers 2017, Miolane 2017], and
that the algorithm does not converge to the true value in situations with low signal to
noise ratio [Allassonnière 2007]. Another problem is that replacing the metric K(c0)

�1

by a generic covariance matrix �↵ to be estimated leads to �↵ as the empirical variance-
covariance matrix of the estimates ↵0,i. This matrix is non definite if the number of samples
is smaller than its dimension, namely the number of control points times the dimension.

Nevertheless this criterion has still some interest as its optimization may be done with
simple gradient descent schemes. Furthermore, once the digital model is built, namely
the template shape complex O0 and the covariance of the deformation parameters, one
may want to personalize the model to new unseen data Onew. In this case, one want
to optimize the posterior p(↵|Onew, ✓) over the momentum ↵, which proportional to the
complete likelihood p(↵, Onew, ✓), which is precisely given in (2.4.5) for a single index i. In
other words, the proposed optimization algorithm will be used in any case to personalize a
model learnt on a training data set to test data.

2.4.2.2 Optimization by gradient descent

The optimization of the objective function E = � log(p(O1, . . . , ON ,↵1, . . .↵N |✓))
amounts to optimizing the initial condition S0,i, X0 of N mechanical systems
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Figure 2.8: Illustrative example of the estimation of a shape model. From 5 observations
consisting of several meshes and an initial template shape that determines its topology, the
inference of the model leads to a template with updated vertex position, updated position of
control points near the most variable parts of the template and a distribution of momentum
vectors, for which estimates of the individual parameters ↵0,i parameterize the matching of
the template to each of the sample shape.
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(Si(t), Xi(t), Yi(t)) so that their trajectories end as close as possible to the observations.
The error is measured by the data attachment terms, noted D in a generic manner whether
this distance denotes a L2 metric on image intensities, positions of landmark points or a
kernel metric for currents, varifolds or weighted currents. Such optimization naturally falls
within the field of optimal control.

We denote ⌫S,i(t), ⌫X,i(t) and ⌫Y,i(t) the adjoint variables of the variables Si(t), Yi(t) and
Xi(t) respectively, and build the following Hamiltonian: Hi = ⌫T

S,i
F (Si) + ⌫T

X,i
G(Si, Xi) +

⌫T

Y,i
H(Si, Yi). A formal application of the Pontryagin maximum principle (we refer the

reader to [Miller 2015] for a rigorous proof) leads to the gradient of the objective function
in terms of the values of at time t = 0 of the adjoint variables:

rc0E =

NX

i=1

⌫Sc,i(0) +
1

2
rc0↵

T

0,i
K(c0)↵0,i

rX0E =

NX

i=1

⌫X,i(0)

r↵0,iE = ⌫S↵,i(0) + K(c0)↵0,i ,

(2.4.6)

where ⌫Sc,i and ⌫S↵,i represent the coordinates in ⌫S,i corresponding to control points and
momenta respectively, and where the adjoint variables follow the linear set of coupled linear
differential equations ⌫̇S,i(t) = �@H

@S
, ⌫̇X,i(t) = � @H

@X
and ⌫̇Y (t) = �@H

@Y
. These equations

write, omitting the index i for clarity purposes:

⌫̇S =� (dSF (S))
T ⌫S

� (dSG(S, X))
T ⌫X

� (dSH(S, Y ))
T ⌫Y

⌫S(1) = 0

⌫̇X = � (dXG(S, X))
T ⌫X ⌫X,k(1) = rXk(1)D(Xk(1), Ok)

2

⌫̇Y = � (dY H(S, Y ))
T ⌫Y ⌫Y (1) =

X

k;Ok is image

rY (1)D(I0(Y (1)), Ok)
2

(2.4.7)

and are integrated backward from t = 1 to t = 0. The expressions of the differentials and
the gradient of the similarity metrics with respect to the final position of vertices and voxels
positions are given in [Durrleman 2013a, Durrleman 2014b].

The last parameter to be updated is the intensities of the template image I0. The optimal
values of the intensities could be computed in closed form for a given values of Yi(1). As
shown in [Durrleman 2011b] the gradient with respect to image intensities of the (i, k)th
term in the sum of squared differences between warped templates and the observations (i.e.
the data fidelity term) at the voxel position yj writes:

rI0Ai,k(yj) =

X

{p;9q,⇡q(yp(1))=yj}

⇢p(yi(1))Ri,k(yq), (2.4.8)

where Ri,k denotes the (i, k)-th residual image �c0,↵0,i ? O0,k � Oi,k, ⇡p(y) the set of 8
neighbouring voxels around position y, and ⇢p(y) the weights of the trilinear interpolation
within the cube defined by the 8 neighbouring voxels. If one uses a parametric template
image model, the expression of the gradient is given in [Durrleman 2013a].
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By construction, only the positions of the vertices of the template meshes are updated
during optimization. The edges remain the ones of the initial mesh given as input, so that
no shearing or tearing could occur along the iterations. However, the method does not
guarantee that the template meshes do not self-intersect after an iteration of the gradient
descent. To prevent such self-intersection, we propose to use a Sobolev gradient instead of
the current gradient, which was computed for the L2 metric on template points X0. The
Sobolev gradient for the metric given by a Gaussian kernel KX with width �X , is simply
computed from the L2 gradient as:

rX

x0,k
E =

NX

i=1

NxX

p=1

KX
(x0,k, x0,p)⌫X,ip

(0) , (2.4.9)

where x0,k for k = 1, . . . , Nx denote the vertices of the template mesh, and ⌫X,ip
the pth

coordinate of ⌫X,i. We showed in [Durrleman 2014b] that this new gradient rXE is the
restriction to X0 of a smooth vector field us. Denoting X0(s) the positions of the vertices of
the template meshes at iteration s of the gradient descent, we have that X0(s) =  s(X0(0))

where  s is the flow of diffeomorphisms integrating the flow of us. At convergence, the
template meshes, therefore, have the same topology as the initial meshes.

The model parameters are optimized using a gradient descent with a line search with
adaptive step size. For the current value of the parameters S0,i, X0,i, one integrates forward
the deformation equations in (2.4.2) to compute the deformed image and meshes. One
computes then the gradient of the similarity measures between the deformed data and the
target data. These gradients are used as final condition in the equations (2.4.7). Once
integrated backward, the values at time t = 0 are used to update the values of the initial
deformation parameters (positions of control points and momentum vectors) S0,i and the
position of the vertices in the template meshes while keeping fixed the edges. The intensities
of the template images are updated in closed-form. One initializes the control points at
the nodes of a regular lattice with spacing equal to the deformation kernel size �V , and
momentum vectors to 0 (i.e. no deformation). At the end of the optimization, the algorithm
returns the optimal template shape complex, the optimal position of control points in the
ambient space and the values of the momentum vectors attached to them, which give the
deformation that best aligns source with target data.

This gradient may be used in several gradient-based optimization methods: gradi-
ent descent with line search, or Nesterov scheme as in [Durrleman 2013a], or l-bfgs like
in [Roussillon 2016], or Levenberg-Marquardt method with constant velocity field like
in [Ashburner 2007].

The variables are usually initialized as follows. The control points are placed on a regu-
lar lattice enclosing the shapes with step equal to the deformation kernel bandwidth. The
momentum vectors are set to 0 (i.e. no deformation). For images, the template is the mean
image (or the image closest to this mean image in case of parametric template) ; for surface
meshes, the template is an ellipsoid or an heavily smoothed version of an observation to
remove any shape details that may be specific to this particular observation ; for sets of
fibers, the template is an approximated version of the corresponding mean current or vari-
fold, where the approximation scheme may be a matching pursuit scheme [Durrleman 2009a]
or a greedy selection of specific fibers as detailed in [Gori 2017a].
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2.4.2.3 Digital brain models with surface meshes

We evaluate the method on a dataset of 3 anatomical structures segmented from Mag-
netic Resonance Images (MRI) of 8 Down syndrome (DS) subjects and 8 control cases. The
hippocampus, amygdala and putamen of the right hemisphere (respectively in green, cyan
and orange in figures) form a complex of grey matter nuclei in the medial temporal lobe of
the brain.

Whereas our sample size is small in view of standard neuroimaging studies, the previous
findings in neuroimaging of DS suggest large morphometric differences. We investigate
here whether differences are reflected in the shapes of anatomical structures, whether the
proposed method could demonstrate its strength to differentiate intra-group variability from
inter-group differences in this small sample size setting. To discard any linear differences,
including size, we co-register all shape complexes using affine transforms.

Initial Atlas Final Atlas Initial Atlas Final Atlas 

a - Atlas construction with 105 control points b- Atlas construction with 8 control points

Figure 2.9: Atlas estimated from different initial conditions. Left: 105 control points with
initial spacing equal to the deformation kernel width �V = 10 mm, Right: 8 control points.
Arrows are the momentum vectors of DS subjects (red) and controls (blue). Control points
that were initially on a regular lattice move to the most variable place of the shape complex
during optimization. Arrows parameterize space deformations and are used as a shape
descriptor of each subject in the statistical analysis.

The resulting template shape complex (Fig. 2.9-a) averages the shape characteristics of
every individual in the dataset. The position of each subject’s anatomical configuration
(either DS or controls) with respect to the template configuration is given by initial mo-
mentum vectors located at control point positions (arrows in Fig. 2.9). These momentum
vectors lie in a finite-dimensional vector space, whose dimension is 3 times the number of
control points.

We can manually change the number of control points in the initial condition to decrease
the size of the dictionary on which deformations can be decomposed. With only 8 points, the
number of deformation parameters is decreased by more than one order of magnitude and
the initial ellipsoidal shapes still converge to a similar template shape complex (Fig. 2.9-b).
The main reason for it is that control points are able to move to the most strategic places,
noticeably at the tail of the hippocampus and the anterior part of the amygdala where the
variability is the greatest.

We increase the number of control points to 650 and notice that the estimated template
shapes are the same as with 105 control points (results not shown), and that the atlas
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Anterior Right 

Figure 2.10: Template complex deformed using the mean deformation of controls (transpar-
ent shapes) and DS subjects (opaque shapes), which illustrates the anatomical differences
that were found between both groups.

explains the same proportion of the initial data term. Therefore, increasing the number of
control points does not allow us to capture more information, which is essentially determined
by the deformation kernel width, but distributes this information over a larger number of
parameters. This conclusion is in line with [Durrleman 2009a], which shows that such high
dimensional parameterizations are very redundant.

To highlight anatomical differences between healthy controls (HC) and DS subjects,
we compute the sample mean of the momenta for each group separately and then de-
form the template complex in the direction of both means, thus showing anatomical con-
figurations that are typical of each group (Fig. 2.10). A multivariate permutation test
shows that the means of the two sets of momenta are statistically significant at the 5%

level [Durrleman 2014b].

We then evaluate the ability of the model to classify DS patients from control subjects
using a cross-validation setting. We compute an atlas with the same parameter setting
and initial conditions but with one control and one DS subject data out, yielding 8

2
=

64 atlases. For each experiment, we personalized the digital model to each of the left-
out shape complex by maximizing the conditional likelihood, namely the criterion (2.4.5)
for one index i and keeping the template and the control points of the atlas fixed. The
resulting momentum vectors are compared with those of the atlas. We classify them based
on Maximum Likelihood (ML) ratios and LDA. Specificity and sensitivity are of 98% and
100% respectively using LDA classification, and 100% for both using ML classification.
These results show that the anatomical differences between DS and controls that were
captured by the model are not specific to this particular dataset, but are likely to generalize
well to independent datasets.

Specificity and sensitivity are reported in Table 2.1 for several atlases with different
number of control points using the hippocampus shape only, as they are always of 100%

for the ML classification using the whole shape complex regardless of the number of con-
trol points used. It is difficult to see in this experiment a clear increase of classification
performance when the dimension is decreased.
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# Control Points 48 18 12 8 4

LDA
specificity 97 (62/64) 91 (58/64) 92 (59/64) 95 (61/64) 78 (50/64)

sensitivity 87 (56/64) 89 (57/64) 89 (57/64) 89 (57/64) 81 (52/64)

ML
specificity 92 (59/64) 92 (59/64) 97 (69/64) 97 (62/64) 84 (54/64)
sensitivity 100 (64/64) 100 (64/64) 98 (63/64) 100 (64/64) 97 (62/64)

Table 2.1: Classification ratios based solely on hippocampus shape. LDA and ML clas-
sification are performed with a varying number of control points in the atlas. Ratios are
in percentages. Reducing the number of control points to 12 or 8 may increase statistical
performance.

2.4.2.4 Digital models with images

We evaluated the proposed approach to build digital image models. For images, there
are often control points in the background of the image, which do not carry momenta and
plays litte role. This fact raises the need for an automatic selection of a sub-set of control
points that will optimally capture the variability of a given training data set.

To this end, we proposed in [Durrleman 2013a] to add a LASSO penalty in the optimiza-
tion of the criterion (2.4.5) of the form �sp

P
N

i=1 k↵0,ik. The criterion may be optimized
using a Fast Iterative Shrinkage Thresholding Algorithm (FISTA) which tends to zero-out
momenta with small magnitude [Beck 2009]. Control point carrying no momenta could be
then removed to decompose deformation on a dictionary of smaller size.

In [Durrleman 2013a], we evaluated the method with the USPS data set, by using only
20 training samples, as shown in Fig. 2.11. We show in Fig. 2.12 the digital model built for
each digit with a varying weight for the sparsity prior inducing therefore a different number
of “active” control point, namely control points carrying at least one non-zero momentum.

For each digit (from 0 to 9), we estimated a digital model from a training set of 20
images. Then, we personalize the model to a set of 10 test images (different from the
training samples) using the set of control points that has been selected and placed during
the estimation of the model. We repeated the experiment for 26 different training sets with
no intersection between the training sets. We also randomized the test sets in a similar
fashion. Eventually, we had 26 different models and 260 personalizations to test data for
each digit. We repeated the whole cross-validation procedure for a value of the sparsity
parameter �g varying between 0 and 1000 by a step of 50. In Fig. 2.12, we show the decrease
profile of the number of control points in the atlas with respect to the sparsity parameter.
It shows in particular the relative low variance of this number when the training samples
are varied, thus showing the robustness of the model construction. We used the residual
data term after personalization to the test samples as a measure of capability of the atlas
to capture the variability of the shapes of the digits. The variation of this measure with
respect to the sparsity parameter �g (Fig. 2.12) shows a sigmoid-like curve for digits 2, 4, 5
and 8 or an exponential-like curve for digit 0, 1, 3, and to a lesser extent for digits 6, 7 and
9. In the most obvious cases, the graph shows that there is likely to be an optimal value of
the sparsity parameter for which the number of control points is significantly decreased and
the capability of the atlas to capture shape variability has not been dramatically altered.
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This is confirmed by computing the Wilcoxon test between distribution of the residual data
term at two consecutive values of the sparsity parameters (red segments in Fig. 2.12 denote
intervals of statistically significant increase, p-value < 1%). In almost every case, there is
an interval from �g = 100 onwards, for which the residual data term does not significantly
increase (no red segments in Fig. 2.12): this is the range of values for which one can decrease
the number of control points, without significantly altering the variability captured by the
model. Once one reaches the red zone, there is a risk that we loose significant information.
Note that the extent of the red zone depends on the threshold used for the test, here 1%.

For the largest sparsity priors, the template image is very fuzzy (it is the mean image)
and there are no control points to capture the variability. In this case, the residual term
measures the variance of the image set, and this measure itself has a large variance across
the cross-validation tests (Fig. 2.12). For the smallest values of the sparsity parameter, the
variance of the residual term is smaller, thus suggesting that the atlas captured most of
the image ensemble variability and that the residual term captures mostly noise that does
not vary much when randomizing the training and test sets. This is also confirmed by the
Wilcoxon tests that take into account both the median and the variance of the distribution
of the residual data term.

The images in Fig. 2.12 show a template image and the corresponding distribution of
control points for the sparsity parameter that seems to be a good balance between sparsity
and atlas sharpness.

Figure 2.11: Training set of the USPS database (20 images per digit - inverse video)

In [Durrleman 2011b], we built a brain anatomical model from 5 MRI slices for various
number of control points, as shown in Fig. 2.13. We can notice that the control points
move towards the most variable parts of the image during the optimization. Optimizing the
control point position is key for the adaptation of the parameterization of the deformations
to a specific training data set, and for the reduction of the dimension of the model.

2.4.3 Deterministic inference with modular diffeomorphisms

The same approach may be followed by replacing the manifold of diffeomorphisms GVc

by the sub-Riemannian manifold of modular diffeomorphisms presented in Sec. 2.2.2. The
gradient of the complete log-likelihood with respect to template shape, geometrical descrip-
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Figure 2.12: Digital digit models from the US postal database. Blue curves plot the number
of geometric control points versus the sparsity prior �g. Mean and standard deviation is
indicated when randomizing the training dataset of 20 images (26 training sets without
intersection). Green curves plot the residual data term measured when personalizing the
model to one test sample. Mean and standard deviation is shown for 260 of such tests for
each value of the sparsity parameter �g. This shows that the sharpness of the template
image decreases with the dimension of the model parameterization while the sparsity prior
is increased. The shape of the green curves (a plateau phase followed by rapid increase)
suggests that there is an optimal value of the sparsity parameter �g where the dimension of
the model could be reduced without sacrificing much of the template image sharpness. The
red intervals indicate when the residual data term is significantly increased between two
consecutive values of the sparsity parameter (Wilcoxon test with p-value < 1%) The left
panels shows a selected template image for a given value of the sparsity parameter along
with the position of the geometric control points (red asterisks).
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Figure 2.13: Digital anatomical model. Top row: estimated atlas without sparsity enforced.
Bottom row: with enforced sparsity, control points focus on the skull, the ventricles and
the major sulci. The graph shows that we can achieve an equivalent description of the
variability with 40.8% to 27.1% of the original 468 momenta for �sp 2]0, 0.1].

tors, and controls may also be derived using Hamiltonian formulation and results in the
backward integration of adjoint equations as shown in [Gris 2015, Gris 2016, Gris 2017].
We show in the next sections two examples of such digital model construction.

2.4.3.1 Controlling the description of shape variability

We aim to build a model from the series of 5 geometric curves shown in Fig. 2.14. The
variability observed in these data may be interpreted in two ways: either bumps appear
and disappear at different location, or bumps slides on the side. The modular approach
offers the user the possibility to choose or to favor one solution over the other depending
on the context, application or prior knowledge.

To this end, we designed modules that are translation with fixed direction. In this
module, the direction of the translation is fixed, only the the magnitude of the translation
is a control. For this specific problem, we will use horizontal and vertical translations where
the direction is constrained initially to be along the x and y axis respectively.

In [Gris 2015, Gris 2016], the choice is made to estimate model with horizontal transla-
tion only, or vertical translation only. In [Gris 2017], we show here that we use both types
of modules simultaneously, and adjust the cost to favor one solution over the other one.

In Fig. 2.15 is presented the model estimated for a cost, which is simply the sum of
the individual module cost. In this configuration, the model estimated that bumps slide
along the horizontal axis. Controls associated to the vertical translations are nearly zero.
By contrast, in Fig. 2.16, the model is estimated by penalizing by a factor 200 the cost
associated to the horizontal translation. In this case, the model estimated that the bumps
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Figure 2.14: Training samples for the construction of a digital model. The variability in
shape may explained by the folding/unfolding a bump at different locations, or by sliding
a bump on the side.

have to fold and unfold. The controls associated to the horizontal translation vanishes.
This experiment shows how the modular diffeomorphic framework gives an unprece-

dented control to the user to drive the model estimation towards a particular solution.
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Figure 2.15: Model constructed with horizontal and vertical translations with cost c =

ch
+ cv. Template is in magenta, geometrical descriptors are blue (horizontal) and cyan

(vertical) crosses, with initial configuration given as input of the algorithm (left) and after
optimization (right). The model explains the observed variability by sliding the bump on
the side.

2.4.3.2 Modular model of skull variability

In this example we compute digital models from five shapes presented in 2.17. In absence
of strong priors on the variability, we combine 7 modules of different kinds: a translation at
large scale (� = 200), a torque at large scale (� = 200), a module generating two torques
at intermediate scale (� = 100), a module generating a sum of two scalings at intermediate
scale (� = 100), a module generating a sum of four torques at small scale (� = 50), a
module generating a sum of four scalings at small scale (� = 50) and a module generating
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Figure 2.16: Model constructed with horizontal and vertical translations with cost c =

2000 ⇤ ch
+ cv. Template is in magenta, geometrical descriptors are blue (horizontal) and

cyan (vertical) crosses, with initial configuration given as input of the algorithm (left) and
after optimization (right). The model explains the variability by folding and unfolding the
bump.

a sum of nine translations at small scale (� = 50). The first two deformation modules
at large scale enable to perform nearly rigid registration simultaneously with non-linear
deformations generated by modules at smaller scales.

In this case, the direction of the translations as small scale is considered as a geometric
descriptor, and therefore is transported by the flow. This is in contrast to the previous
case where the direction was considered as a fixed parameter, and to the control point
formulation of diffeomorphisms where the direction is considered as a control.

In figure 2.18 can be seen template and geometrical descriptors before and after opti-
misation. Geometrical descriptors are initialized on regular latices and move, during the
optimisation, to regions where they explain the greatest part of the variability observed in
the data. For example, one can see that the size of the cranium is a feature that varies
importantly amongst the population as one center of the two local scalings at scale 100 has
moved to this area during optimisation. Fig. 2.19 is shown the modular deformation of the
template to three sample shapes.

This experiment shows how the modular approach allows the description of the shape
variability as a multi-scale combination of local deformation patterns.

2.4.4 Deterministic inference with Bayesian priors

2.4.4.1 Criterion optimization

As explained in Sec. 2.4.1, we may add priors to the random effects of the model. Adding
priors to the noise parameters �2

k
aims to have a procedure to automatically estimate them.

Setting these variance becomes intractable when the number of shape components is in-
creased in the shape complex. Adding priors to the covariance matrix of the momentum
vectors aims to have non-degenerate covariance matrices if the number of observations is
smaller than the dimension of the matrix. An alternative to adding priors is the estimation
of only few vectors instead of a full covariance matrix in the spirit of Independent Compo-
nent Analysis, as shown in [Allassonnière 2012] and in the next chapter, or in the spirit of
truncated Principal Component Analysis, as shown in [Zhang 2014].

The conjugate priors presented in Sec. 2.4.1 have been designed in order to add only a
small computational overhead cost at each iteration of the gradient descent. Indeed, the
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Figure 2.17: Five skull profiles used as training samples for the estimation of a modular
model.

−100 0

Initialisation

−100 0

−50

50

Optimisation

Figure 2.18: Construction of modular model: initial configuration given as input of the algo-
rithm (left) and estimated model (right), with template (magenta), geometrical descriptors
(square for translations with fixed direction, circles for torques, triangles for scalings and
green vectors attached to diamonds for translations with direction transported by the flow.
The color and size of markers represent the scale (200 in cyan, 100 in magenta and 50 in
blue). Training samples are superimposed in black.
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Figure 2.19: Deformation of the modular model estimated in Fig. 2.18 to three samples.
Initial adjoint variable (also called momenta) (left column), controls and deformed template
at three different time-points (three most right columns)
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log-likelihood to be minimized with priors writes up to an additive constant:
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(2.4.10)

where ⇤k is the normalizing constant in the Gaussian distribution that depends on the
object’s type.

If we fix �2
k

and �↵, the gradient of this criterion over the template O0, control point
position c0 and momentum vectors ↵0,i is the same as in the previous case. If we fix O0, c0

and the ↵0,i’s, the optimal value of the criterion with respect to �2
k

and �↵ can be computed
in closed form:
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(2.4.11)
The optimization of the criterion may be done therefore by the same gradient descent
scheme as previously, where at each iteration the values of the covariance matrix and noise
variance are updated by the equations given in Eq. (2.4.11).

We see that the optimal covariance matrix is a regularized version of the empirical
covariance matrix where the weight of the prior decreases as the number of observations is
increased. The prior is usually taken as the matrix K(c0)

�1 which was used previously as
covariance matrix in absence of priors. The optimal variance of the noise is also a regularized
version of the sum of squared residuals, which allows the automatically adjustment of the
weight of each shape component in the global criterion. We will see in the next section that
the hyper-parameters are much easier to set than the parameters, in the sense that they
have much less influence on the output of the optimization.

2.4.4.2 Variability of cortico-striato-thalamic circuits

We evaluate the method using a data set of 20 patients subject to Gilles de la Tourette
syndrome and 20 controls. This neurodevelopmental disorder is thought to be associated
with dysfunctions of the cortico-striato-thalamic circuits which are composed of sub-cortical
structures linked to the cortical surface by fiber bundles.

For each subject, we consider three sub-cortical structures (left caudate, left putamen
and left thalamus) and the fiber bundles connecting them to the left hemisphere of the
cortical surface (see[Gori 2017a] for details).

Robustness with respect to parameter choices We evaluate the robustness of the
proposed algorithm with respect to the hyperparameters {wk, Pk, w↵} while keeping P↵ =

K�1
V

. We compute 18 different atlases changing every time only one of the hyperparameters
and keeping fixed the others at a certain value. We normalize wk and w↵ as w✏ = w0

✏
N⇤

and w↵ = w0
↵
N in order to use the same range of values of all parameters. To assess

the robustness of the results, we compute the norm of the difference between the resulting
template complex of all 18 atlases and a reference template complex. Moreover, we also
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measure the norm of the residuals obtained at the end of the atlas constructions. Finally, we
compare these results with the ones obtained using a previous atlas procedure (called here
Fixed) where �2

k
is fixed within the same range of values as the hyperparameters. This means

building 6 other atlases changing only the value of �2
k
. Results using only left caudates or

left caudate bundles of the 20 controls are shown in Fig.2.20 where we have used as reference
template the one obtained using the Fixed method with �2

k
=10

�1. These results show that
setting the hyperparameters at reasonable value for all shape components is relatively easy
and do not impact results as compared with setting the variance parameters. It opens up
the possibility to use this approach with shape complexes with several components. Further
evaluations for multiple shape components are shown in [Gori 2013, Gori 2017a], as well as
the evaluation of the robustness of the proposed approach with respect to the choice of the
initial template, size of the sampling grid for varifold noise distribution.

Figure 2.20: Analysis of the robustness of the results when changing the hyper-parameters
of the proposed algorithm (Bayesian) and the value of �2

k
in an atlas without automatic

estimates (Fixed). Every dot represents the result of an atlas construction. In all Bayesian
estimations, it has been changed only one of the hyperparameters, fixing the others to 0.01.
Surfaces are the left caudates and Bundles are the left-caudate bundles. Figures on the left
represent the norms of the differences between the templates obtained at the end of the
atlas constructions and a reference template (Fixed method with �2

k
= 0.01). Figures on

the right refer to the norms of the residuals obtained at the end of the atlas procedures.

Detection and interpretation of group differences We evaluate here the ability of
the proposed approach to detect and test differences between the anatomical configura-
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tions of the patients as compared to the ones of the control subjects. We slightly adapt
the construction of the digital model to test whether the two groups have different means
assuming equal variance. We build a digital model by assuming that the template and con-
trol points are shared among both groups, but that momentum vectors follow two Gaussian
distribution with means µ and �µ respectively with equal variance �↵, as illustrated in
Fig. 2.21. The varifold parameter �W was set to 3mm for the caudate and 2mm for the
other structures. The bandwidth of the deformation kernel was set to 7mm yielding 1080
control points. We refer the reader to [Gori 2017a] for more implementation details.

In Fig. 2.21, we show the final common template complex deformed according to es-
timated group mean momentum vectors Bµ and �Bµ. The two complexes represent the
anatomical configurations typical of each group and they can be directly compared since
they stem from the same template complex and set of control points. We compute then
the absolute value of the difference between the displacements from the common template
complex along the two average directions as shown in Fig.2.22 for sub-cortical structures
and Fig.2.23 for fiber bundles. From the first figure, it is clear that the main differences are
in the dorso-lateral part of the three sub-cortical structures, especially for the caudate. In
the white matter, the differences are mainly in the central part of the caudate-cortico and
putamen-cortico bundles.

To assess statistical significance of these differences, we compute two statistical tests: a
global and a local one. The former is a permutation test where we employ as statistics the
Mahalanobis norm of the difference between the average initial momenta of the two groups.
The resulting p-value is lower than 0.05 using 10,000 permutations. This shows that the
average anatomical complexes of the two groups have a statistically significantly different
global shape. In addition to a multivariate test, we also perform mass univariate tests to
produce local maps of significance. First, we compute the initial velocities at each vertex of
the template complex using the estimated initial momenta of both groups. For each vertex
and for each group, we obtain 20 3D vectors which are assumed to be normally distributed.
At each vertex, we use a Hotelling’s two-sample T-squared test for assessing the statistical
significance of the difference between the average initial velocities of the two groups. The
ensemble of resulting p-values, one for each vertex, is corrected for multiple comparisons
using a false discovery rate (FDR) method [Benjamini 1995]. Results are shown in Fig. 2.24
and in Fig. 2.23 for sub-cortical structures and fiber bundles respectively. After the FDR
correction, the only structures which still have statistically significant differences at the 5%
level are the caudate (dorsal part), the thalamus (ventral and dorsal part) and the caudate
bundle (central part).

2.4.5 Stochastic inference with a MCMC-SAEM approach

2.4.5.1 MCMC-SAEM algorithms

In the previous sections, we have optimized the complete likelihood
p(O1, . . . , ON ,↵0,1, . . . ,↵0,N |✓) or the posterior p(✓|O1, . . . , ON ,↵0,1, . . . ,↵0,N ) in case of
Bayesian framework, where ✓ = {O0, c0,�↵,�1, . . . ,�K}.

However, a true maximum likelihood, or maximum a posteriori would involve the ob-
served likelihood which writes as the integration of the previous function over the random
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Figure 2.21: Atlas construction procedure. From left to right, we present first the initial
template complex and the initial set of control points. Then, we show the final template
complex obtained at the end of the atlas construction. The top and bottom arrows point to
the final template complex deformed accordingly to the average initial momenta of controls
µ (top) and patients -µ (bottom). The averages of initial momenta (µ and -µ) are shown
respectively above and below the two arrows.

effects:

p(✓|O1, . . . , ON ) / p(✓)
NY

i=1

Z

R3

p(Oi|↵0,i, ✓)d↵0,i . (2.4.12)

This integration is intractable due to the non-linearity between ↵0,i and �c0,↵0,i

1 that ap-
pears in p(Oi|↵0,i, ✓). The Expectation-Maximisation algorithm [Dempster 1977] proposes
to reach a critical point of this likelihood by implementing the following iterative program:
given ✓0,

✓p+1 = arg max
✓

NX

i=1

Z

R3

log (p(Oi,↵0,i)|✓) p(↵0,i|Oi, ✓p)d↵0,i , (2.4.13)

where we omitted the prior distribution p(✓) for simplicity purposes. The problem is slightly
simpler in the sense that the second term within the integral is computed for the value of
the parameter at the current iteration p and should not be optimized over ✓. Two main
difficulties remain: the computation of the integral, and the maximization over ✓. The
second difficulty may be disentangled by assuming that the complete likelihood belongs to
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Figure 2.22: Shape dissimilarities of the sub-cortical structures between the two groups.
Colors refer to the absolute value of the difference between the displacements from the final
template complex to the average configurations of patients and controls. The four frames
represent the same three structures from different points of view. Letters {c, p, t} refer to
caudate, putamen and thalamus respectively.

the curved exponential family, namely can be written in the form:

p(Oi,↵0,i|✓) = �(✓)T S(Oi,↵0,i)� log (C(✓)) , (2.4.14)

where the functions S which does not depend on ✓ anymore are called sufficient statistics.
The complete likelihood has this form for the parameters �↵ and �k, for the template
O0 only if it is a parametric image, and not for the set of control points c0. For the latter
parameters, a usual workaround is to consider them as random variables following Gaussian
distribution with small variance, which leads to additional sufficient statistics.

Consequently, the EM program may be re-written as:

✓p+1 = arg max
✓

(
�(✓)T

NX

i=1

Z

R3

S(Oi,↵0,i)p(↵0,i|Oi, ✓p)d↵0,i �N log (C(✓))

)
. (2.4.15)

Now, if one knows how to compute the integral, the maximization over ✓ is a simple
low-dimensional convex optimization problem, which may be solved in most cases in closed
form.

The integral is the expectation of the sufficient statistics under the conditional distri-
bution. We may rely on a Monte Carlo scheme to compute it via a step called stochastic
approximation: for ↵0,i,q a series sampled from the posterior distribution p(↵0,i|Oi, ✓p), the
series

Sq+1 = (1��q)Sq +�q

 
1

N

NX

i=1

S(Oi,↵0,i,q+1)

!
(2.4.16)

converges to the set of critical points of the observed likelihood as a function of the sufficient
statistics if

P
q
�q =1 and

P
q
�

2
q

<1 [Delyon 1999].
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Figure 2.23: Shape dissimilarities of the fiber bundles between the two groups. Colors refer
to the absolute value of the difference between the displacements from the final template
complex to the average configurations of patients and controls.

Figure 2.24: Statistically significant differences between the average initial velocities of
the two groups (controls and patients) computed at each vertex of the templates of the
sub-cortical structures using a Hotelling’s two-sample T-squared test. In the second row,
p-values are corrected using a false discovery rate (FDR) method. Letters A and P refer
to the Anterior and Posterior part of the brain respectively.

The last difficulty is that one does not know how to sample from the conditional distri-
bution. The strategy is then to draw samples from a geometrically ergodic Markov Chain
whose stationary distribution is the conditional distribution. This can be achieved be-
cause this conditional distribution is known up to a normalizing constant. We have indeed
p(↵0,i|Oi, ✓p) =

p(Oi,↵0,i|✓p)p(↵0,i|✓p)
p(Oi|✓p) where the denominator is exactly the untractable like-

lihood one wants to optimize, but where the numerator can be easily computed for a given
value of the parameters ✓p using the integration of the ODEs. Sampling strategies may
include then Metropolis-Hasting methods or Gibbs samplers [Cappé 2005].

The whole algorithm relies then on Markov Chain Monte Carlo method within a Stochas-
tic Approximation of the EM algorithm, hence its acronym MCMC-SAEM.

This approach is interesting because it has been shown under mild conditions that only
one step of the Markov Chain and one step of Monte Carlo simulation at each step of the
EM algorithm is enough to ensure almost sure convergence of the algorithm to a critical
point of the likelihood [Kuhn 2004, Allassonnière 2010b].

Eventually, the algorithm iterates the following steps:

1. [Markov Chain] sample ↵0,i,p+1 from ↵0,i,p using an ergodic Markov Chain whose
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Figure 2.25: Statistically significant differences between the average initial velocities of the
two groups (controls and patients) computed at each vertex of the templates of fiber bundles
using a Hotelling’s two-sample T-squared test. In the second row, p-values are corrected
using a false discovery rate (FDR) method. Letters A and P refer to the Anterior and
Posterior part of the brain respectively.

stationary distribution is p(↵0,i|Oi, ✓p),

2. [Stochastic Approximation] compute Sp+1 = (1��p)Sp+
�p

N

P
N

i=1 S(Oi,↵0,i,p+1)

3. [Maximization] ✓p+1 = arg max
✓

�
�(✓)T Sp+1 � log (C(✓))

�
.

One of the advantage of this algorithm is that it may not require the computation of a
gradient depending on the choice of the MCMC method.

2.4.5.2 Sampling strategies

A critical aspect of the MCMC-SAEM algorithm is then the choice of the sampler to
generate samples that asymptotically follow the conditional distribution p(↵0,i|Oi, ✓p) for
a fixed valued of the parameter ✓p.

The Metropolis-Hasting sampler draws a candidate value � using a proposal distribution
q(.|↵i,0,p), which may be any distribution depending only on the parameters ✓p. We accept
this candidate value with probability ⌧ where

⌧ = min

✓
p(�|Oi, ✓p)

p(↵0,i,p|Oi, ✓p)

q(↵0,i,p|�)

q(�|↵0,i,p)
, 1

◆
, (2.4.17)

where the unknown normalizing constant cancels out in the acceptance ratio. Under mild
conditions on q, we can show easily that the invariant distribution under this transition
kernel is precisely the conditional distribution.

The Metropolis-Hasting divides itself in a series of methods depending on the choice of
the proposal distribution. For example, an independent sampler assumes that the proposal
distribution does not depend on the current state, for instance the prior distribution of
the random effect. Another usual choice is a symmetric random walk where a Gaussian
perturbation is added to the current state.
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In high-dimension, it is very difficult to design a proposal distribution which yields
to reasonable acceptance rate. In this situation we include the Metropolis-Hasting method
within a Gibbs sampler, which loops over each coordinate at each iteration. Given a proposal
distribution for the jth coordinate of the random effects, ↵0,i,j , the acceptance ratio at pth
step and jth coordinate writes:

p(�j |Oi, ✓p,↵0,i,�j)

p(↵0,i,j |Oi, ✓p,↵0,i,�j)

q(↵0,i,j |�j)

q(�j |↵0,i,j)
, (2.4.18)

where ↵0,i,�j denotes the coordinates of ↵0,i expect the jth one:
↵0,i,1, . . . ,↵0,i,j�1,↵0,i,j+1, . . .↵0,i,Ncp .

There is then a trade-off between the computational complexity induced by the number
of the coordinates, the acceptance rate and the convergence of the algorithm. Usually a
mixed strategy is followed were the Gibbs sampler loops over blocks of coordinates, which
is called a block Metropolis within Gibbs sampler. This strategy will be used in the next
chapter.

We saw in the previous sections that the gradient of the complete likelihood may be
computed at a reasonable computational cost by integrating a set of linear ODEs. The
Metropolis Adjusted Langevin Algorithm (MALA) takes into account this information in
the design of a proposal distribution to favor the exploration in the directions that are the
most likely to increase the likelihood. The proposal distribution is a random walk which
writes:

q(�|↵0,i,p) = ↵0,i,p + "r↵0,i,p log (p(↵0,i,p|Oi)) + "2h , (2.4.19)

where h ⇠ N (0, Id). Without h, the proposal distribution is deterministic and the algorithm
behaves like a gradient ascent scheme. Here, the purpose is to allow an exploration of the
support of the target distribution on a neighborhood of the locally optimal direction. Note
that the gradient of the posterior distribution equals the gradient of the complete likelihood
as the normalizing constant does not depend on the random variables ↵0,i, which makes
the overall algorithm tractable.

We proposed two complementary sampling strategies:

• for mesh data, the coordinates of the template mesh becomes random variables and
therefore needs to be sampled with a MCMC scheme. Independent or symmetric
random walk performed for each vertex independently does not allow the proposition
of reasonable candidate shape. The gradient descent scheme used in the deterministic
setting updates the template shapes by adding a smooth vector field to the template
mesh. We proposed therefore to design a specific proposal distribution by adding a
random smooth vector field to the coordinate of the template mesh at each iteration.
Denoting Oc

0 the candidate mesh and O0,p the template mesh at the p-th iteration,
we have q(Oc

0|O0,p) = O0,p + v(O0,p), where v(x) =
P

q
K(x, dq)�q, K a Gaussian

kernel, dq a set of pre-defined fixed control points with spacing equal to the bandwidth
of K, and �q a set of independent random Gaussian vectors that belong to the dual
space of the RKHS defined by K. Since the control points dq are fixed, the proposal
distribution is symmetric and its likelihood does not appear anymore in the acceptance
ratio. This strategy will be evaluated in the next chapter.
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• for strongly anisotropic target distribution, we proposed in [Allassonnière 2015b]
to use the Anisotropic Metropolis Adjusted Langevin Algorithm (AMALA) intro-
duced in [Allassonnière 2015a] for the estimation of digital shape models. The
idea is to replace the isotropic random walk in the MALA algorithm by an
anisotropic proposal distribution: h ⇠ N (0,�) where the covariance matrix � =�
r↵0,i,p log p(↵0,i,p|Oi)

� �
r↵0,i,p log p(↵0,i,p|Oi)

�T
+ "0Id. If the gradient is large, this

proposal is more concentrated in the direction of the gradient and mostly ignore other
directions. If the gradient decreases near a critical point, the proposal explores a more
isotrophic neighborhood.

2.4.5.3 Construction of digital image models

We implemented the AMALA algorithm to estimate a digital shape model estimated
from image data in [Allassonnière 2015b]. We chose a parametric image model, so that the
parametric weights are seen as random variables. The prior distribution is a zero mean
Gaussian distribution with covariance matrix given by the photometric kernel. The control
point positions are also considered as random Gaussian variables with small variance to
have a model that belongs to the exponential family.

We run experiments on the USPS handwritten digit database. Twenty images of each
digit are used as the training sample which shows a large geometric and photometric vari-
ability (see Fig. 2.11). We consider the model with random control points as well as its
simplified version where the control points are fixed. The number of control points is chosen
equal to 4, 9 or 16 depending on the experiments.

We present in Figure 2.26 the estimated templates obtained with fixed and optimized
control points, and a varying number of them. As expected, the contours in the template
image become sharper as the number of control points increases. Moreover, the number of
control points being fixed, the sharpness of the estimated template is improved by allowing
the control points to move toward optimized positions. We can also note that the estimated
control points are informative as they tend to move toward the contours of the digits, and in
particular toward those that correspond to the regions of highest variability among samples.
It is particularly noticeable on digits 5 and 6 for example.

Note that we checked empirically the robustness of the estimation of the control point
positions by running several times the same experiment with different random initializa-
tions.

We evaluate the relevance of the estimated covariance matrix via the generation of syn-
thetic samples. In Figure 2.27, we compare the geometry captured with 9 control points
using fixed (top) and estimated (bottom) control point models. Although the template of
the digit 6 looks similar in both cases, this experiment shows that the geometric variability
captured by the models are rather different. The model with equidistributed fixed control
points generates unrealistic shapes of the digit 6 and therefore does not reflect well the
geometric variability observed in the training set. Optimizing for control point positions
enables to retrieve a much more natural geometric variability. This optimization increases
the number of hidden variables to sample, although the dimension of the covariance matrix
remains the same. Updates in control point positions optimize the sub-group of diffeomor-
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Figure 2.26: Estimated templates with varying numbers of control points: 4 (left), 9 (mid-
dle) and 16 (right), with either fixed (top) or estimated (bottom) control points positions.

phisms of fixed dimension that is the most adapted to describe the variability of a given
data set.

Figure 2.27: Synthetic samples from the generative model with either fixed (top) or esti-
mated (bottom) control point positions for digit 6.

With no control point, the model classifies according to the L2 similarity with the
grey level average image. This mean image, though very fuzzy, is still informative and
leads to a classification score of about 85%. If the number of control points is increased, the
model incorporates deformations. The template images become less fuzzy and deformations
explain part of the shape variability in an interpretable way (see Figure 2.27) and the
classification scores increase (see Figure 2.28). Near the maximal classification score, models
with estimated control points perform better. As already noted, the slight increase in
classification score goes with a much more realistic and interpretable representation of the
variability. If the number of control points is drastically increased, overall classification
scores drop down, as we fall typically in an overfitting situation. Allowing control point
positions to be optimized further increases the dimension of parameters. In this case, the
deformation model becomes so flexible that it can accommodate for any small differences
in shapes, and does not generalize well.

The best performances are reached for in between numbers of control points. In this
region, estimating the positions of these control points allows to reach higher classifica-
tion scores. This confirms the idea of an intrinsic dimension of the deformation space.
We proposed strategies to automatically estimate this dimension either in the determin-
istic gradient descent setting by using a L1 type prior in [Durrleman 2013a] or in this
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Figure 2.28: Evolution of the classification score for varying numbers of control points either
fixed (blue) or estimated (red).

AMALA setting by thresholding the estimated covariance matrice of the momentum vec-
tors in [Allassonnière 2015b] with a selection criterion for the threshold.

We built a digital image model from a second training set composed of 36 X-ray scans
of mouse mandibles (see Fig. 2.29). The template images estimated with three different
number of control points are shown in Fig. 2.30. These templates look similar, thus show-
ing that the same photometric invariants have been captured in each experiment. These
invariants include the main bones of the mandibles (i.e. the brightest areas in the image).
The decrease in number of control points is balanced by the optimization of their positions.
Control points in the right image are noticeably located on the edges of the shape in order
to drive the dilation, contraction and opening of the mandible. Depending on the desired
precision of the atlas, we can reduce even more the number of control points, thus enabling
a faster estimation task at the cost of providing less information about the data.

Figure 2.29: Five training images from the mouse mandibles.

2.5 Double diffeomorphisms

2.5.1 Need to alleviate the diffeomorphic constraint

The approach followed so far allows only one diffeomorphic deformation to warp the
template shape complex to every observation. This kind of deformation preserves the
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Figure 2.30: Estimated templates of the mouse mandible images obtained with 260 fixed
control points (left), with 117 (middle) and 70 (right) estimated control points.

anatomical organisation of the components of the template complex, namely they cannot
intersect, fold or shear. Moreover, deformations are defined locally and they can vary across
different areas of the ambient space. This makes it possible to capture the variations in
relative position between separate structures. However, using a single diffeomorphism, one
implicitly assumes that the relative position between structures in contact with each other
or, in practice, close to each other, does not change across subjects. This limitation is of
particular importance for the study of brain connectivity defined as the regions of the grey
matter that are connected together by white matter fiber bundles. Using a single diffeo-
morphism prevents from detecting variations in the grey matter regions that are connected
by the same white matter fiber bundle, as illustrated in Fig. 2.31 where the template and
the subject’s anatomical configuration complex exhibit a different connectivity.

Structural connectivity analysis is usually based on the partition of the cortical surface
and sub-cortical nuclei in consistent parcels across subjects, see e.g. [Craddock 2013]. Con-
nectivity is then modeled as a graph where every parcel is considered as a node and the
number of streamlines connecting two nodes gives the weighted edge [Bullmore 2009]. This
approach requires the alignment of every image to a common space beforehand and then
rely only on topological properties ignoring variability in shape. Therefore, it precludes the
joint analysis of connectivity changes and changes in grey matter shape such as the one
induced by cortical atrophy for instance. It does not allow either the use of information in
the white matter to drive the co-registration of every image, which is driven only by the
contours of the grey matter.

In [Gori 2015, Gori 2017b], we proposed a double diffeomorphic framework to unify
shape and structural connectivity analysis. The template complex is warped towards every
shape complex of the population using a composition of two diffeomorphisms. The first
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diffeomorphism acts only on the white matter of the template complex, keeping fixed the
gray matter. During this transformation, the fiber bundles are repositioned with respect
to the gray matter structures, capturing the variations in structural connectivity. The
second diffeomorphism acts on the whole template complex, namely on both the resulting
deformed white matter and gray matter, bringing all structures of the template complex
into the subject’s space. White matter tracts are re-arranged by the first diffeomorphism
so that the second one can correctly put into correspondence all the components of the
template complex, as illustrated in Fig. 2.31.

The proposed approach is different from other multi-diffeomorphic methods with slid-
ing conditions such as [Risser 2013, Pace 2013, Arguillère 2016]. These methods aim to
correctly register anatomical complexes characterised by sliding regions. Every region is
smoothly and independently deformed. By contrast, we are interested in studying the rel-
ative variation of one region, white matter, with respect to another one, gray matter.

Figure 2.31: Registration between a toy-template complex (blue) and a toy-subject complex
(red) using either a single or a double diffeomorphism. Black arrows indicate the areas where
only the double diffeomorphism can correctly put into correspondence all structures.

2.5.2 A statistical model for brain connectivity

We propose therefore to extend the generative statistical model to:

Oi = �
cAll

0 ,↵All

0,i

1 ?

✓
�
cW

0 ,↵W

0,i

1 ?OW

0 [OG

0

◆
+ "i , (2.5.1)

where we split the components in the template shape complex O0 into OW

0 and OG

0 for the
components in the white and grey matter respectively.

The two deformations �c
W

0 ,↵W

0,i

1 and �
cAll

0 ,↵All

0,i

1 are two diffeomorphisms of the entire
ambient space. They follow one another creating a cascade of diffeomorphisms. The former
is a relative change of coordinates with respect to the grey matter of the template complex
OG

0 , which is considered as a fixed reference frame. The latter is instead a global change of
coordinates which brings the template complex to the subject space.

The first diffeomorphism �
cW

0 ,↵W

0,i

1 captures the differences in structural connectivity.

The second one �
cAll

0 ,↵All

0,i

1 describes the global morphological changes common to both
white and gray matter.
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We estimated this model from a train data set by optimizing the complete likelihood with
Bayesian priors as in Sec. 2.4.4. Priors are on noise variance of every shape component and
two covariance matrices of both diffeomorphisms. As detailed in [Gori 2015, Gori 2017b],
one needs to integrate a succession of two sets of linear ODEs to compute of the gradi-
ent of the complete likelihood with respect to the vertices of the template meshes (curves
and surfaces), the two sets of control points and initial momentum vectors for both diffeo-
morphisms. At each step of the gradient descent, updates of the variance parameters and
covariance matrices are computed in closed-form.

2.5.3 Evaluation in Gilles de la Tourette syndrome

We evaluate the method on a dataset of 49 patients with Gilles de la Tourette pa-
tients and 27 control subjects in a classification task. The patients are divided in three
sub-groups based on their symptoms: G1=simple-tics (17 patients), G2=complex-tics (15),
G3=complex tics with Obsessive Compulsive Disorders (12). We consider anatomical com-
plexes composed of the the cortical surface, left putamen and the fiber bundles connecting
them in the left hemisphere.

Cortical surfaces are modelled with landmarks, putamens as varifolds with �W =3mm
and fiber bundles, approximated with weighted prototypes, as weighted currents with
�g=7mm for the geometric kernel, �c=10mm for the kernel for the curve extremity in the
cortex and �b=5mm for the kernel for the curve extremity in the putamen. The bandwidths
of both diffeomorphic kernels are equal to 11mm.

We build an digital model with 10 subjects (5 controls and 5 patients). The model is
then personalized to all the remaining subjects by optimizing the likelihood the random
effects (momentum vectors ↵All

0,i
and ↵W

0,i
) given the estimated fixed effects: template, con-

trols points positions, noise variance of every shape component �2
k
, and the two covariance

matrices of the momentum vectors �W

↵
, �All

↵
.

We used then a Linear Discriminant Analysis (LDA) with a leave-one-out cross valida-
tion strategy on the features ↵All

0,i
and ↵W

0,i
. We assume that the class-conditional densities

of the initial momenta are Gaussian with a covariance matrix equal to the estimated �↵.
This can be seen as a regularised LDA since the covariance matrix is estimated from the
training set. We test the discriminative power of the two diffeomorphisms by using either
only ↵All

0,i
or ↵W

0,i
. Moreover, we compare these results with the ones obtained using the

initial momenta of a single diffeomorphism where we employ either only the fiber bundles
or all structures from both grey and white matter. Resulting sensibility, sensitivity and
balanced accuracy are shown in Table 2.2 where we separately use either all patients or
each sub-group alone. We assess the statistical significance of the classification scores with
a randomization test (1000 permutations). These experiments show that a single diffeor-
mophism method does not exhibit features that may correctly classify patients and controls.
By contrast, the proposed double diffeomrophism method does exhibit discriminative fea-
tures. It is interesting to note that only the parameters encoding variability in connectivity
are discriminative for the most severe groups of patients (G2 and G3) but not parameters
encoding morphological variability of the grey mattter. This fact is not surprising as Gilles
de la Tourette syndrome is a neurodevelopmental disorder that is more likely to affect brain
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connectivity than cortical thickness or the organization of deep brain structures.

Table 2.2: Classifications scores

Single Diffeomorphism - White and Grey Matter

Sensitivity % Specificity % Balanced Accuracy %

G1 12 36 24

G2 33 64 48

G3 58 59 59

G2+G3 52 64 58

G1+G2+G3 54 41 48

Single Diffeomorphism - Only White Matter

G1 53 54 54

G2 33 45 39

G3 50 54 52

G2+G3 59 59 59

G1+G2+G3 66 45 56

Double Diffeomorphism - First (white) diffeomorphism

G1 47 59 53

G2 67 77 72*

G3 50 82 66*

G2+G3 74 64 69*

G1+G2+G3 73 41 57

Double Diffeomorphism - Second (global) diffeomorphism

G1 29 50 40

G2 40 45 43

G3 50 68 59

G2+G3 52 68 60

G1+G2+G3 70 50 60
* : p-value < 0.05

One of the main interest of the digital model is the possibility to interpret their vari-
ability across individuals or groups. To this end, we compute the organizational and mor-
phological characteristics proper to each group by deforming the template complex along
the most discriminative deformation axis. We estimate the best linear decision boundary
(i.e. B↵T Bw⇤ � b⇤) with all the test subjects (22 controls and 44 patients) using either
↵All

0,i
or ↵W

0,i
. The typical configurations of patients and controls are found by deform-

ing the template complex at µ � w⇤ and µ + w⇤ respectively, where µ =
1
2 (µc + µp) and

||w⇤|| = ||µc � µp|| with µc and µp equal to the averages of initial momenta of controls
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and patients respectively. In Fig. 2.32, we compare the typical structural connectivity of
controls and patients. The main differences are in the supplementary motor area, premo-
tor cortex, superior frontal part, insula and in the dorsal and ventro-lateral part of the
putamen. These results are in line with those reported in the literature [Worbe 2015].

Figure 2.32: Typical structural connectivity of controls and patients obtained by deforming
the fiber bundle of the template complex along the most discriminative deformation axis in
the space of the initial momenta of the first diffeomorphism ↵W

0,i
. Grey matter structures

are kept fixed. Colours refer to the density of the extremities of the fiber bundle onto the
grey matter.

2.6 Geodesic regression from shape time series

2.6.1 Statistical models for time series

The proposed framework for statistical shape analysis may be also easily extended to
generalize the concept of linear regression to shape data. This generalization builds on the
idea that geodesics extend the concept of straight lines on a Riemannian manifold.

Now the set of observations Oi is assumed to be associated to a covariate, usually a
time-point denoted ti. The idea is to estimate a template shape, which will play the role
of the intercept, and a geodesic flow of diffeomorphisms whose initial velocity will play the
role of the slope. Formally, we can define the following regression model:

Oi,k = �c0,↵0
ti

?O0,k + "i,k , (2.6.1)

where now diffeomorphisms at intermediate time-points of the flow are considered and not
only the final diffeomorphism, as illustrated in Fig. 2.33 Note that this model requires the
observations to come from different individuals not to violate the assumption of indepen-
dence of the noise variables "i,k for different subject’s index i. The presence of repeated
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Figure 2.33: Overview of geodesic shape regression. An initial baseline configuration O0

is deformed over time to match shape observations. The flow of diffeomorphisms is con-
strained to be a geodesic, parameterized by initial momenta ↵0 located at control points
c0. Parameters of the model which must be estimated are shown in red.

observations of the same individual at multiple time-points give raise to the concept of
longitudinal data set, which will be extensively studied in the next chapter.

Using a non-informative prior on the template shape and the control point positions,
and assuming a zero mean Gaussian prior on the momentum vectors ↵0 with covariance
matrix K(c0), the maximization of the posterior log-likelihood writes:

� log (p(c0,↵0, O0|O1, . . . , ON )) =

NX

i=1

KX

k=1

1

2�2
k

���c0,↵0
ti

?O0,k �Oi,k

��2
+

1

2
↵T

0 K↵0 ,

(2.6.2)
where the norm matches the type of each component in the shape complex, and

• O0 is a shape complex of the same composition as the observations for which one fixes
the topology of the non-image components, namely the number of vertices and the
edges of the meshes,

• �c0,↵0
ti

? O0,k = O0,k � Y (ti, .) if O0,k is of image type, or �c0,↵0
ti

? O0,k = Xk(ti)

otherwise,

• Y (t, .) and X(t) are solution of the set of differential equations:
8
>><

>>:

Ṡ(t) = F (S(t)) S(0) = (c0,↵0)

Ẋ(t) = G(X(t), S(t)) X(0) = X0

Ẏ (t, .) = H(Y (t, .), S(t)) Y (0) = Y0 ,

(2.6.3)

• X0 concatenates the position of all the vertices in O0, Y0 is the map of coordinates of
the image domain,

• c0 is a set of control points distributed on the image domain whose number is fixed.

This criterion may be optimized using a gradient descent scheme. As shown
in [Fishbaugh 2013a, Fishbaugh 2013c, Fishbaugh 2017], the computation of the gradient
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is very similar to the gradient computed in Sec. 2.4.2, where now the gradients of the resid-
uals at intermediate time-points appear as jumps in the backward integration of the adjoint
equations. Denoting E the criterion, we have

rc0E = ⌫Sc
(0) +

1

2
rc0↵

T

0 K(c0)↵0

rX0E = ⌫X(0)

r↵0E = ⌫S↵
(0) + K(c0)↵0 ,

(2.6.4)

where ⌫Sc
and ⌫S↵

represent the coordinates in ⌫S corresponding to control points and
momenta respectively, and satisfy the following linear ODEs integrated backward in time:

⌫̇S = � (dSF (S))
T ⌫S � (dSG(S, X))

T ⌫X � (dSH(S, Y ))
T ⌫Y ⌫S(T ) = 0

⌫̇X = � (dXG(S, X))
T ⌫X +

NX

i=1

rX(ti)D(X(ti), Oi)
2�(t� ti) ⌫X(T ) = 0

⌫̇Y = � (dY H(S, Y ))
T ⌫Y +

NX

i=1

rY (ti)D(I0(Y (ti)), Oi)
2�(t� ti) ⌫Y (T ) = 0 ,

(2.6.5)

where T is the last-time point of the geodesic regression that is supposed to be greater than
any ti, and �(t� ti) = 1 when t = ti and is zero otherwise.

The method proposed here takes full advantage of the possibility to combine mul-
tiple geometries in a shape analysis problem. It unifies therefore the approaches de-
rived for image data, for instance in [Niethammer 2011] which leverages the initial mo-
menta formulation of the EPDiff equation [Vialard 2012a], and for mesh data developped
for instance in [Fishbaugh 2013c]. Other regression techniques in the large diffeomor-
phic deformation setting have also been explored, including piecewise geodesic regression
in [Durrleman 2009a, Durrleman 2013b], kernel regression in [Davis 2007], spline regression
in [Singh 2015], and second-order perturbation of geodesic paths [Vialard 2012b]. The con-
cept of geodesic regression derived here in the a special case can be easily defined in for
a generic Riemannian manifold as in [Fletcher 2011, Fletcher 2013], a point of view which
will be adopted in the next chapter.

2.6.2 Construction of dynamical anatomical models

We evaluate the geodesic regression method using a unique longitudinal dataset of a
child scanned 16 times from around 4 to 8 years old. For each time-point, we segment three
subcortical pairs (left/right): hippocampus, caudate, and putamen. The left of Figure 2.34
shows the subcortical shapes at the earliest time-point of 4.2 years. Segmentation is done
independently for each time-point, by nonlinear alignment to a template [Gouttard 2007].
The right of Figure 2.34 shows the volume of the structures over time, showing the distribu-
tion of observations as well as highlighting the variability in the extracted shapes, with noise
introduced during image acquisition and segmentation. The noisy observations represent
a significant modeling challenge, where the goal is not to match observations as closely as
possible, but rather the model should capture the overall trend.
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A) B)

Figure 2.34: A) Hippocampus, caudate, and putamen observations segmented from MRI
for a child at 4.2 years old. B) Volume of subcortical shapes measured from 16 observations
of the same child.

2.6.2.1 Evaluation of the generalization of the regression

With such a dense sampling across time, we use the 16 observations as a proxy for
ground truth. We can therefore leave a subset of observations out during model estimation,
and evaluate how well the model matches the excluded data. We estimate models using 2
observations, 3, and so forth, up to all 16 observations, always choosing the kept observations
as evenly spaced in time as possible. Models are estimated jointly on the shape-complex
consisting of 6 subcortical shapes with parameters �V = 10 mm, �W = 3 mm, and �2

k
= 1.0.

For comparison, we also estimate a corresponding set of piecewise-geodesic models, as the
piecewise-geodesic model is also based on flows of diffeomorphisms, and therefore has the
same parameters �V = 10 mm and �W = 3 mm. In both cases, regularity parameter was
chosen to greatly favor data matching over regularity, and ease the comparison between
models.

Figure 2.35 summarizes the results of the leave-several-out experiments on the hip-
pocampus, caudate, and putamen. We see the coefficient of determination R2 as a function
of the number of observations used in model estimation, where the norm on currents is used
for computing the coefficient of determination. The currents metric is the reason the values
are so close to 1, as shape features smaller than 3mm are considered equivalent.

The key takeaway here is the trend in R2 as more and more observations are used
in model estimation. For piecewise-geodesic models, R2 steadily increases as more obser-
vations are utilized. The geodesic model gets increasingly more accurate up to about 6
observations, at which point the addition of further observations does not greatly influ-
ence model estimation. In this case, the piecewise-geodesic model is overfitting the noisy
observations while the geodesic model captures the overall trend.

The piecewise-geodesic shape sequence undergoes instantaneous change of direction,
effectively matching the variability in the observations. The estimated geodesic model
results in a smooth shape sequence which captures the overall trend without being greatly
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Figure 2.35: Coefficient of determination R2 as a function of the number of observations
used in model estimation. R2 here is measured with respect to the currents metric, which
explains why the values are nearly 1, as the currents metric is insensitive to shape features
smaller than �W .

influenced by outliers.

2.6.2.2 Modeling of Extracted Shape Features

Many analyses rely on the extraction of a measurement, such as volume, from imaging
data and perform subsequent analysis on the measurement now isolated from the orig-
inal anatomical context. Modeling shape evolution has several advantages, as it allows
the extraction of a much larger variety of shape characteristics beyond simple volumes, a
reconstruction of these measurements at any temporal resolution while guaranteeing that
intermediate values are compatible with a smooth deformation of the underlying anatomy,
a fact that cannot be guaranteed by a simple regression of the extracted measurements.

We perform the same leave-several-out experiments on the 16 time-point data set as
in the previous section, by estimating piecewise-geodesic and geodesic models. From the
resulting models, we extract continuous volume curves and compare to the volume of the
observations. Figure 2.36 shows observed putamen volume as well as volume curves ex-
tracted from piecewise-geodesic and geodesic regression models. Volume extracted from
piecewise-geodesic regression does not follow a realistic time course, while the geodesic
model produces a smooth and anatomically reasonable volume curve. Furthermore, the
putamen volume curve extracted after geodesic regression is similar to an exponential re-
gression on the volume measurements themselves. However, the shape model was built
using the left/right caudate, putamen, and hippocampus. Modeling the shapes jointly al-
lows for possible interactions between structures which was not considered in a regression
analysis of putamen volume alone. Furthermore, from a single model of shape change we
can extract other shape features, such as surface area, thickness, curvature, among numer-
ous others. This experiment illustrates that spatiotemporal shape modeling fits naturally
into traditional analysis pipelines for scalar measurements.

2.6.2.3 Multimodal shape regression

The control point formulation of diffeomorphic flow separates the deformation parame-
terization from any specific shape representation. As a consequence, we can embed several
shapes with different representations (i.e. points, curves, meshes, etc.) into the same
ambient space without impacting the dimensionality or parameterization of the geodesic
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Figure 2.36: Putamen volume extracted continuously after piecewise-geodesic and geodesic
shape regression using all 16 observations. Also shown is a curve from exponential regression
on the raw observed volumes. Volume from piecewise-geodesic regression closely follows
the observations, but does not generalize the trend in the observations. Geodesic regression
produces a smooth volume trajectory which is similar to that from exponential regression,
but with guarantee that reconstructed values are compatible with a smooth deformation of
the underlying anatomy.

Figure 2.37: Fiber tracts and subcortical shapes at 6, 12, and 24 months old.

model. By including multiple sources of geometric information in the analysis, we get a
more complete picture than is possible from any single source. In [Fishbaugh 2017], we
explored multimodal modeling by combining shape information extracted from diffusion
tensor imaging (DTI) and structural MRI (sMRI).

We have longitudinal observations of the same subject at 6, 12, and 24 months which
include both DTI and sMRI (T1W and T2W). Segmentation of left/right caudate and
putamen are superimposed with fiber tracts resulting from atlas-based tractography. The
goal here is not to capture differences at the scale of individual fiber bundles, such as
longitudinal changes of fiber dispersion, bifurcations or crossings. Rather, we wish to model
the general size and shape changes of fiber bundles over time, inspired by the tract-based
analysis framework of [Goodlett 2009]. Finally, mean diffusivity images are rigidly aligned
with structural T2W images, as they have a similar appearance. This allows to align fiber
geometry and subcortical structures for each time-point, as well as to provide alignment
across time. The aligned fiber tracts and subcortical shapes are shown in Figure 2.37.

We estimate a comprehensive geodesic model using the 4 subcortical shapes as well as
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Figure 2.38: Fibers and subcortical shapes at 24 months estimated from geodesic regression.
The same shape-complex is shown from three orthogonal angles (top, side, front) with a
grid showing the total deformation from 6 to 24 months. Color denotes the magnitude of
velocity.

the fiber curves with parameters �V = 8 mm, �W = 6 mm for the fibers, �W = 3 mm for
the subcortical shapes, and � = 0.1. Figure 2.38 shows 3 views of the shapes estimated from
geodesic regression at 24 months, along with grids which show the amount of deformation
from 6 to 24 months. The model captures a large amount of torsion, as the top half and
bottom half of the fibers move in opposite directions. Also captured is a pose change in the
subcortical structures as well as non-linear growth of each structure.

The contribution of the fibers in addition to shapes in model estimation is clear. The
fibers cover a large region surrounding the subcortical shapes, giving additional geometric
information that expands far beyond the boundaries of the shapes. However, the reverse is
not as obvious; it is not immediately clear what is gained by including subcortical shapes in
addition to fiber geometry. For comparison, we estimate a geodesic model using only fiber
geometry with the same parameter settings as before.

Figure 2.39 shows an axial slice through the subcortical structures for the model esti-
mated on fibers alone (top) and the model built with fibers and subcortical shapes (bottom).
The grid shows the total amount of deformation over the time interval from 6 to 24 months.
The inclusion of subcortical shapes in model estimation results in considerably more defor-
mation to the ambient space which is shared by the fibers and subcortical structures. This
example serves as an illustration that multimodal models estimated from a variety of geo-
metric sources result in a more comprehensive model which captures changes not possible
by any isolated shape taken out of anatomical context.

In the same spirit, we estimated a dynamical model of progression mixing image and
surface data in [Fishbaugh 2013b]. Fig. 2.40 shows that adding segmented shapes to the
image is often beneficial to capture atrophy trend, even if the segmentation is not perfect.
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Figure 2.39: Grid looking down from the top, which shows the total deformation from 6
to 24 months. Top) Model estimated on fiber geometry alone. Bottom) Model estimated
jointly on fiber geometry and subcortical shapes. Note the additional deformation present
in the region of the subcortical shapes in the multimodal model, showing the impact of
including additional sources of information in model estimation.
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Figure 2.40: Top: geodesic regression estimated from the images alone. The caudate sur-
faces are not estimated, but obtained by deforming the baseline surface mesh along the
geodesic flow estimated from images. Bottom: geodesic regression estimated from images
and surface data. Regression on images alone results in a slight expansion of the ventricles,
but does not capture the shrinking of the caudates due mostly to a low grey/white contrast.
Adding surface data in the estimation allows the capture of the expansion of the ventricles
and the shrinking of the caudates.
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3.1 Introduction

The study of the temporal progression of a biological or natural phenomenon is central
in several scientific fields. For instance, the study of progressive diseases plays a crucial
role for the diagnosis and prognosis of patients. In computer vision, the dynamics of face
expression in video sequences may be important to automatically detect and characterize
emotions.

For a given individual or object, the evolution of the observed phenomenon can be
measured by several characteristics or features, which describe the state of the individual
at a given time point. In medicine, these features may be blood markers, height, weight, but
also structured multivariate data such as medical images. The shape of a human face may
be described by the position of characteristic points in the nose, mouth or brows. These
features may be represented, at a given time point, as a point in a high dimensional space.
The temporal evolution of these features may be modeled therefore as a smooth parametric
curve in the space of measurements, i.e. a spatiotemporal trajectory. These trajectories vary
across individuals in two possible ways. First, the position and direction of the trajectory
differ because the measurements have intrinsically different values and different trajectory
of changes for different individuals. Second, the pace at which the trajectory is followed
(i.e. the way the curve is parameterized) varies because some individuals may follow the
same progression pattern but at a different age and possibly at a different speed. We refer
to the first type of variability as a spatial variability, and the second type as a temporal
variability, leading together to the concept of spatiotemporal variability.

The goal of this paper is to automatically estimate the typical trajectory of changes,
and its spatiotemporal variability within a group of individuals. We aim to infer such
spatiotemporal patterns from longitudinal data sets, which consist in repeated observations
of the same biological phenomenon at several time points for a group of individuals. The
time points and their number may vary for different individuals.

In the literature, mixed-effects models [Eisenhart 1947, Laird 1982, Verbeke 2009] ap-
pear as a popular method for the analysis of longitudinal data. These statistical models
include fixed and random effects which provide these models with a hierarchical structure,
where fixed effects described the data at the population (or group) level, and the random
effects at the individual level. By fitting a mixed-effects model, one can learn an average
trajectory as well as individual-specific trajectories. Moreover, mixed-effects models enforce
conditions on the distribution of the random effects, thus opening up the possibility to learn
a distribution of trajectories in the space of observations.

Linear Mixed Effects (LME) models are the most simple mixed-effects models introduced
in [Laird 1982]. A particular, but yet informative case of the LME models for analyzing
longitudinal data is the random slope and intercept model. This model writes: yi,j =

(ti,j � t0)(A + Ai) + (B + Bi) + "i,j , where t0 2 R and (ti,j)1jki
denotes the time points

at which the observations yi,j 2 Rn of the ith individual were obtained. The population
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parameters (or fixed effects) of the model are the slope A and the intercept B. The random
effects are the subject-specific slopes (Ai)1ip and intercepts (Bi)1ip, which are assumed
to be normally distributed and independent of each other. This random slope and intercept
model estimates an average trajectory �0(t) = (t � t0)A + B. The random effects of the
model allow to estimate also individual trajectories �i(t) = (t � t0)(A + Ai) + (B + Bi),
which are obtained by adjusting the slope and intercept of the average trajectory. This
model is essentially built on the idea of regressing the measurements against time. The
parameter t0 can be understood as a reference time. If the longitudinal dataset arises from
animal breeding studies, developmental studies or pharmacological studies, the reference
time t0 may be chosen to be the date of birth or time at which a drug was administered.
However, there are many situations in which there is no obvious reference time t0 at which
observations may be compared. In ageing, for instance, different individuals at the same
age may be at different stages of aging or stages of disease progression. Therefore, it does
not make sense to regress the measurements against age, or, in other words, to statistically
compare measurements at a given age. In video sequences, there is no obvious way to find
the frames corresponding to the same event in two different sequences. By contrast, we
would like this temporal alignment of the trajectories to be automatically estimated from
the data. Adding the reference time t0 as a new parameter of the model is not a solution as
the model becomes non-identifiable: an infinite number of triplets (A, B, t0) parameterize
the same trajectory.

In [Yang 2011] and [Delor 2013], the authors addressed this problem by introducing
time shifts in their statistical analysis. In [Durrleman 2009b, Durrleman 2013b], time
reparametrizations called time warps (smooth monotonic transformations of the real line)
are considered to address this point in the context of longitudinal shape analysis, and pa-
rameters were estimated by optimizing an uncontrolled approximation of the likelihood.
In [Hong 2014], the authors use parametric time warps with a regression model for shape
analysis. In [Lorenzi 2015], the authors used Riemannian manifold techniques to estimate
a model of normal brain aging from MR images. The model was used to compute a time
shift, called morphological age shift, which corresponds to the actual anatomical age of the
subject with respect to an estimated reference age. Similarly [Gaser 2013] automatically
estimate a stage of aging by regressing image intensity patterns with age in a training
set. In [Fonteijn 2012, Young 2015], the authors developed a statistical model called the
Event-Based Model, which estimates an ordering of categorical variables. The model is
used to estimate the progression of a series of event. However, this models do not allow
to estimate the relative timing between two consecutive events. In [Jedynak 2012], the
authors model the progression of biomarkers using a nonlinear mixed-effects model for uni-
variate observations. This model estimates individual trajectories which are defined using
individual-specific time reparametrizations of an average trajectory. However, the proposed
model is not identifiable unless some conditions are imposed on the parameters of the model
but these conditions, and the model, may not generalize well to multivariate or manifold-
valued observations. These works offer pragmatic solutions to include the idea of time
reparameterization in the estimation of trajectories of changes for some specific applica-
tions. Nevertheless, we are still lacking a principle and generic approach to deal with the
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estimation of spatiotemporal variability in longitudinal data sets.
We believe that geometry gives a good framework to define such a principled approach.

Indeed, we can now re-think about the linear-mixed effect model as a generative model
based on a random distribution of curves:

yij = �i(tij) + "ij = Ti(�0)(tij) + "ij (3.1.1)

where Ti is a defined as a random perturbation of the reference trajectory �0. In this
abstract form, it is tempting to add a time-warp function: �i(t) directly into the model as:

yij = Ti(�0)( i(tij)) + "ij . (3.1.2)

Nevertheless, as highlighted above such a model is not identifiable if we use for Ti random
perturbation of the slope and intercept. In this work, we propose to use a Riemannian
framework to introduce a new kind of transforms Ti, called “exp-parallelization” to define
random distributions of curves on a manifold, which:

• is intrinsic, in the sense that it does not depend on the parameterization of the
reference geodesic �0,

• is compatible with time-warps in the sense that T (�) �  = T (� �  ),

• may ensure the identifiability of the statistical model if combined with time-warps,
by adding an orthogonality condition.

Using Riemannian geometry will not only allow us to re-visit the usual mixed-effects
models for longitudinal data including the aforementioned linear model, the logistic regres-
sion models in the univariate and multivariate case, but also to extend the approach to
data that do not live in a Euclidean spaces, such as symmetric definite positive matrices
or diffeomorphic deformations acting on images or meshes, as introduced in the previous
chapter. For such structured data, algebraic operations such as addition or scaling are not
defined, or does not yield an output of the same type. By contrast, they are defined by
smooth constraints or invariance properties as elements in quotient spaces, and therefore
can be naturally seen as points on a Riemannian manifold. As a consequence, the proposed
approach extends longitudinal data analysis to a large array of structured data.

3.2 A statistic-geometric model to learn distributions of
spatiotemporal trajectories

This section aims at introducing a notion of Riemannian geometry called “exp-
parallelization”. Given a group-average trajectory on a Riemannian manifold, the notion
of exp-parallelization is used to define individual trajectories. For a comprehensive review
of basic concepts of Riemannian geometry, see [Do Carmo Valero 1992, Petersen 2006]. In
this section, we assume that M is an open subset of RN equipped with a Riemannian metric
gM.
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3.2.1 Exp-parallelization on a Riemannian manifold

This section introduces the notion of “exp-parallelization” of a curve on a Riemannian
manifold (M, gM). The notion of “variation of a differentiable curve” on a manifold is defined
in [Do Carmo Valero 1992] (Chapter 9). This notions allows to define neighbouring curves
to a given curve c. In the next section, this construction will be used to define individual
trajectories. Let (M, gM) denotes a geodesically complete Riemannian manifold equipped
with its Levi-Civita connection rM. For p 2 M, TpM denotes the tangent space of M at
p. For a vector w 2 Tc(s)M, for s, t 2 [0, 1], we denote Pc,s,t(w) 2 Tc(t)M the parallel
transport of w from c(s) to c(t). It is the unique solution at time t of the differential
equation rċ(u)Pc,s,u(w) = 0 for Pc,s,s(w) = w. Alternatively, we may write Pc,p,q(w) for
p = c(s) and q = c(t), or simply Pp,q for the sake of simplicity.

Definition 3.1. Let c : I ⇢ R ! M a differentiable curve on M, t0 2 I and w 2 Tc(t0)M
a tangent vector to M at c(t0). A exp-parallelization of c in the direction of w is a curve
⌘w

(c)(·) : I !M defined by:

8t 2 I, ⌘w
(c)(t) = Exp

M
c(t)

�
Pc,t0,t(w)

�
. (3.2.1)

This construction is illustrated in Fig. 3.1. Given t 2 I, parallel transport carries the
tangent vector w from Tc(t0)M to Tc(t)M along the curve c. At the point c(t), a new point
on M is obtained by taking the Riemannian exponential of the tangent vector Pc,t0,t(w).
This new point is denoted by ⌘w

(c)(t). As t varies, one describes a curve ⌘w
(c)(·) on M,

which can be understood as a “parallel” to the curve c. Note that if M is the Euclidean
space RN , an exp-parallelization of a curve c, in the direction of a tangent vector wi, is the
translation of c by the vector wi.

Figure 3.1: exp-parallelization on a schematic manifold. Left: a non-zero vector wi is cho-
sen in Tc(t0)M. Middle: the tangent vector wi is transported continuously along the curve
c. Then, a point ⌘wi(c)(s) is constructed at time s by use of the Riemannian exponential.
Right: The curve ⌘wi(c)(·) is the parallel resulting from the construction.

The “exp-parallelization” may be seen as a particular case of a translation operator on
a manifold, defined as follows:

Definition 3.2. Let �0(t) for t 2 I be a smooth curve on M. Tw

p0
(�0) for p0 = �0(t0) and

w 2 Tp0M is said to be a translation of the curve �0 in the direction w, if it defines a
smooth curve on M for all t 2 I. The translation is said to be:

• intrinsic if Tw

p0
(�0) = T

P
�0,p0,p00

(w)

p
0
0

(�0) for any point p00 on the curve �0,
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• compatible with time-warps if Tw

p0
(�0 �  )(t) = Tw

p0
(�0)(t) for  : I ! I a smooth

map.

We can easily verify that the “exp-parallelization” defines an intrinsic translation that
is compatible with time-warps. The intrinsic property ensures that the definition of the
translation does not depend on a particular choice of the point p0 on the manifold M. If we
define w as a random variable in Tp0M, then its distribution at any other point p00 along
the base curve �0 derives from its initial distribution in Tp0M by the isometric mapping
P�0,p0,p

0
0
.

The compatibility with the metric guarantees that one can analyze spatial and temporal
component separately. Consider �i = Twi

p0
(�0 � i) a family of curves seen as spatiotemporal

transformations (Ti, i) of a reference curve �0. One the one hand, one may want to
compare the distribution of the points on the manifold at to the same stage of progression
instead of the the same time-point, namely the distribution of �i �  �1

i
. On the other

hand, one may want to compare the dynamics of the individuals in a common reference
frame, namely the trajectories Twi

p0

�1
(�i). The compatibility property ensures that these

two quantities are easily computed as Twi

p0
(�0) and �0 � i respectively. The commutativity

between translation and time re-parameterization also avoids the need to choose a specific
order as a design choice.

Remark 3.3. Another translation operator has been proposed in [Fletcher 2011,
Singh 2013, Singh 2014] in the context of hierarchical model in a group of diffeomorphisms.
Using our notations, this geodesic-parallelization writes:

Tw

p0
(�0) = Exp

c(1)(Pc,0,1(w)) where 8u 2 [0, 1], c(u) = Exp
p0

(uw). (3.2.2)

One can verify that this translation is neither intrinsic or compatible with time-warps. One
may also check that for M the flat Euclidean space, the translation defined by the usual
mixed-effect model is not intrinsic or compatible with time-warps either. ⇤

It has been shown in [Schiratti 2015b] that if �0 = Exp
p0

((t � t0)v0) is a geodesic
passing through point p0 at time t0 with velocity v0, and if  (t) = t0 + ↵(t � t0) then
�0( (t)) = Exp

�0(t00)
((t � t00)v

0
0) is the same geodesic passing though point p00 = �0( (t0))

at time t00 =  (t0) with velocity ↵v0. This shows the following proposition:

Proposition 3.4. If �0 is a geodesic on M,  an affine time-warp, and Tw

p0
(w)(�0) an

intrinsic translation of �0, then this translation is compatible with the time-warp.

Note that all directions w with the same component that is orthogonal to the velocity
v0 leads to the same exp-parallel curve, but with different time parameterization.

3.2.2 Hierarchical structure of the model

In this section, we consider a longitudinal dataset (yi,j)1ip, 1jki
. The observations

are obtained for a group of p individuals. For the ith individual, the observations
(yi,j)1jki

are obtained at times ti,1 < . . . < ti,ki
. The number ki of observations may

vary from one individual to another.
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The generic spatiotemporal model is a nonlinear mixed-effects model. As emphasized in
the introduction, mixed-effects models include fixed and random effects. The fixed-effects
are parameters which are shared by all the individuals and allow to describe the model at
the population level. Random effects are individual-specific random variable which describe
the model at the individual level. These two types of effects provide the model with a hi-
erarchical structure. The generic spatiotemporal model is constructed as follows. To begin
with, a group-average trajectory �0 is defined on the manifold M. Given the average tra-
jectory, subject-specific trajectories are obtained by spatiotemporal transformations, which
consist in exp-parallelization of the average trajectory �0 and time reparametrization. The
data points yi,j are seen as samples along these individual trajectories. If �

i
denotes the

trajectory of the ith individual, the model writes: yi,j = �
i
(ti,j) + "i,j , where "i,j is a

Gaussian noise. The observation yi,j is therefore considered as a small perturbation of a
quantity which lies in a Riemannian manifold.

The group-average trajectory �0 is chosen to be the unique geodesic �0 = �p0,t0,v0
of

M which goes through the point p0 2 M at time t0 and with velocity v0 2 Tp0M. Let
i 2 {1, . . . , p} denote the ith individual. The subject-specific trajectory �

i
is defined in two

steps. The first step consists in constructing the curve ⌘wi(�0), which is a exp-parallelization
the average trajectory �0 in the direction of a tangent vector wi 2 Tp0M. This tangent
vector is chosen orthogonal, for the inner product gMp0

, to �̇0(t0) = v0. The tangent vectors
(wi)1ip are random effects of the model, called space shifts. The orthogonality condition
on the space shifts is discussed below. The second step consists in reparametrizing in time
the exp-parallelization ⌘wi(�0). We consider a subject-specific affine mapping  i of the
form  i(t) = ↵i(t� t0 � ⌧i) + t0, where ↵i > 0 and ⌧i 2 R are random effects of our model.
The trajectory �

i
of the ith individual is �

i
(t) = ⌘wi(�0)( i(t)). The mapping  i is called

time reparametrization and the random effects ↵i (respectively ⌧i) are called acceleration
factor (respectively time shift).

3.2.3 Definition of the space shifts

As mentioned above, the space shifts (wi)1ip are required to be orthogonal to �̇0(t0) =

v0 for the inner product gMp0
induced by the Riemannian metric on M. This condition is

required to ensure the identifiability of the model. Indeed, as explained above, a component
of the space shift that is parallel to the velocity of the geodesic would re-parameterize
the exp-parallel curve without changing its location, thus having the same effect as the
acceleration factor. This section discusses different methods which allow to include this
orthogonality condition on the space shifts into a statistical model. The methodological
challenge raised by this section consists in defining a (nonlinear) mixed-effects model with
smooth constraints on some of the random effect of the model.

In order to ensure the interpretability of the space shifts, we consider an Independent
Component Analysis (ICA) [Hyvärinen 2004] decomposition of each tangent vector wi as a
linear combination of Ns < N statistically independent tangent vectors (Al)1lNs

which
are called independent components or independent directions. As a consequence, the space
shifts (wi)1ip are defined as follows: 8i 2 {1, . . . , p}, wi = Asi =

P
Ns

l=1 sl,iAl where
A = (Al)1lNs

is such that each Ai is a vector in T�̇0(t0)M. In this definition, the
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weights (sl,i)1lNs
are random effects of the model called sources. By defining the space

shifts this way, the generic spatiotemporal model will estimate an ICA decomposition of
the space shifts. However, this definition does not ensure the orthogonality of the space
shifts. A possible solution to make the vectors wi orthogonal to v0 = �̇0(t0) consists in
decomposing each vector (Al)1lNs

in an orthonormal basis of Span
�
�̇0(t0)

�? ⇢ Tp0M.
Indeed, if (Bk)1k(N�1)Ns

is an orthonormal basis of Span
�
�̇0(t0)

�?, we assume that:
8l 2 {1, . . . , Ns}, Al =

P(N�1)Ns

k=1 �l,kBk. By construction, each independent component
Al (1  l  Ns) is orthogonal, for the inner product gMp0

, to v0. Therefore, each space shift
(wi)1ip is orthogonal to v0 since we assumed that it writes as a linear combination of
these independent components. In the following, the orthonormal basis is computed using
the Gram-Schmidt algorithm or the Householder method [Coleman 1984].

Moreover, it is important to note that the choice of the form of the distribution of
the space-shifts does not depend on the reference time-point t0. Indeed, the wi = Asi are
defined in the tangent space of the curve at point p0 = �0(t0). At another point p00 = �0(t

0
0),

space-shifts become w0
i

= P�0,t0,t
0
0
wi, where P�0,t0,t

0
0

is an orthogonal matrix. They are
therefore distributed according to w0

i
= P�0,t0,tAsi : the distribution of the sources si does

not change and the independent components (i.e. the columns of A) are adjusted to the
new position on the average trajectory. In particular, the variance of the w0

i
is invariant.

This property holds for isometric invariant distributions. For instance, if wi ⇠ N (0,⌃),
then w0

i
⇠ N (0, P�0,t0,t

0
0
⌃P

>
�0,t0,t

0
0
).

3.2.4 The statistical model

The generic spatiotemporal model assumes that the jth observation of the ith individual
derives from:

yi,j = ⌘wi(�0)( i(ti,j)) + "i,j . (3.2.3)

With the notations introduced above, let zpop = (p0, t0,v0, (�l,k)l,k) denote the population
variables and (zi)1ip denote the set of individual variables with: zi = (⇠i, ⌧i, (sl,i)l,i).
Both zpop and (zi)1ip are latent (or random) variables assumed independent of each
other and distributed as follows:

p0 ⇠ N (p0,�2
p0

), t0 ⇠ N (t0,�2
t0

),

v0 ⇠ N (v0,�2
v0

), �l,k

i.i.d.⇠ N (�
l,k

,�2
�
)

(3.2.4)

and  i(t) = ↵i(t� t0 � ⌧i) + t0 with ↵i = exp(⇠i) and :

⇠i
i.i.d.⇠ N (0,�2

⇠
), ⌧i

i.i.d.⇠ N (0,�2
⌧
), sl,i

i.i.d.⇠ N (0, 1). (3.2.5)

where �2
p0

, �2
t0

, �2
v0

and �2
�

are fixed variance parameters. The noise variables ("i,j)i,j are
assumed independent of the other random variables and identically distributed:

"i,j

i.i.d.⇠ N (0,�2
). (3.2.6)

Let ✓var = (�2
⇠
,�2
⌧
,�2

) denote the variance parameters which are not fixed and ✓ =�
p0, t0,v0, (�l,k

),✓var

�
be the parameters of the model. The domain of ✓ is denoted by
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⇥ and defined by:

⇥ =
�
✓ =(p0,v0, t0, (�l,k

)l,k,✓var)
�
p0 2M,v0 2 TM,

t0 2 R, (�
l,k

)l,k 2 R(N�1)Ns , ✓var 2]0, +1[
3
 
.

(3.2.7)

Figure 3.2: Graphical representation of the generic spatiotemporal model. Round indicate
latent variables of the model. Boxes with indexes in the upper left corner indicate a rep-
etition. Shaded boxes indicate that the quantity is observed. This figure illustrates the
dependence between the variables of the generic spatiotemporal model.

3.2.4.1 Discussion

The additive, or extrinsic, noise model in Equation (3.2.3) makes sense because we
assumed that M is a subset of the Euclidean space RN . The term ⌘wi(�0)( i(ti,j)) belongs
to the manifold M while the noise term "i,j is added in the underlying Euclidean space.
However, the noise model is not intrinsic in the sense that the noise term "i,j is not added
on the manifold. In [Fletcher 2011], the authors have considered an intrinsic noise model
which would write: yi,j = Exp⌘wi (�0)( i(ti,j))("i,j). This noise model allows to remain on
the manifold. Still, obtaining maximum a posteriori estimates of the parameters with this
intrinsic noise model is more difficult as the model likelihood might not be available in
closed-form.

We assume a centered log-normal distribution for the acceleration factors ↵i. Indeed,
this choice of probability distribution ensures the positiveness of the acceleration factors.
With this assumption, the individual time reparametrizations do not reverse time. Other
probability distributions, such as the exponential distribution, could have been considered.
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This generic spatiotemporal model is a statistical tool which allows, given a Rieman-
nian manifold M equipped with a Riemannian metric gM, to instantiate a large variety of
nonlinear mixed-effects model. In the following, we introduced several instances of this
model in various situations, which will be presented in the sequel. The models for one-
dimensional geodesically complete Riemannian manifolds given in Section 3.4.1 were intro-
duced in [Schiratti 2015b]. The unstructured progression models, given in Section 3.5.1 were
introduced in [Schiratti 2015c]. The network propagation models, given in Section 3.5.2
were introduced in [Koval 2017].

3.3 Inference algorithm using a MCMC-SAEM method

The generic spatiotemporal model (3.2.3) is a nonlinear mixed-effects model for which
the observed likelihood is not available in closed-form. Indeed, it writes as an intractable
integral which could only be approximated. In order to produce maximum likelihood esti-
mates, we could use the Expectation Maximization (EM) algorithm [Dempster 1977]. The
first step of the EM algorithm, usually called “E-step”, requires to compute the expectation
of the log-complete likelihood (the likelihood of the observations y = (yi,j)1ip, 1jki

and
the latent variables z) with respect to the conditional distribution of the latent variables
knowing the observations and the current values of the parameters. In the case of our
model, this expectation cannot be computed in closed-form.

Remark 3.5. In order to ensure that the model belongs to the curved exponential family,
a usual workaround [Kuhn 2005] consists in assuming a Gaussian prior on some of the
parameters of the model. We recall from Section 3.2.2 that the parameters of the generic
model are ✓ = (p0, t0,v0,�⌘,�⌧ ,�,A). For the parameters p0, t0 and v0 which define
the group-average trajectory, we assume the following priors : p0 ⇠ NRN (p0,⌃p0), t0 ⇠
N (t0,�2

t0
) and v0 ⇠ NRN (v0,⌃v0). p0, t0 and v0 are parameters which will be estimated

from the data. ⌃p0 , �t0 and ⌃v0 are fixed diagonal matrices with very small diagonal entries.
Regarding the matrix A, so as to ensure the orthogonality condition on the columns of the
matrix, we assume that A follows a normal distribution on the space ⇥A defined as follows
:

⇥A =
�
A = (c1(A), . . . , cNs

(A)) 2
�
Tp0M

�Ns ,

8l 2 {1, . . . , Ns}, hcl(A),v0ip0
= 0
 
.

(3.3.1)

where cl(A) denotes the lth column of the matrix A. This is equivalent to assuming that
the matrix A writes : A =

P(N�1)Ns

k=1 �kBk where (B1, . . . , B(N�1)Ns
) is an orthonormal

basis of the vector space ⇥A obtained by application of the Gram-Schmidt process to a basis
of ⇥A. We assume that, for all 1  k  (N � 1)Ns, �k ⇠ N (�

k
,�2
�
). (�

k
)1k(N�1)Ns

are parameters which will be estimated from the data and �� is fixed. In the case of
the progression model (3.5.2), the group-average trajectory is defined by an additional
vector � of parameters. For this statistical model, we assume that for all 1  k  N � 1,
�k ⇠ N (�k,�2

�
) where ( �k)1kN�1 is a vector of parameters which will be estimated and

�� is fixed.
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To summarize, the statistical model which we consider is derived from (3.2.3) and writes
:

yi,j = ⌘wi(�0)( i(ti,j)) + "i,j . (3.3.2)

with �0 = �p0,t0,v0
,  i(t) = ↵i(t � t0 � ⌧i) + t0, ↵i = exp(⌘i), A =

P(N�1)Ns

k=1 �kBk,
wi = Asi and : 8

>>>><

>>>>:

p0 ⇠ N (p0,⌃p0), ⌘i

i.i.d.⇠ N (0,�2
⌘
),

t0 ⇠ N (t0,�2
t0

), ⌧i
i.i.d.⇠ N (0,�2

⌧
),

v0 ⇠ N (v0,⌃v0), sl,i

i.i.d.⇠ N (0, 1)

�k

i.i.d.⇠ N (�
k
,�2
�
), "i,j

i.i.d.⇠ N (0,�2
Iki

).

(3.3.3)

This statistical model, which we will refer to as the Bayesian generic model, belongs
to the curved exponential family. For this statistical model, the parameters of the model
are ✓̃ = (p0, t0,v0,�1, . . . ,�(N�1)Ns

,�⌘,�⌧ ,�). The latent variables of the model are z =

(zpop, (zi)1ip), where zpop = (p0, t0,v0,�1, . . . ,

�(N�1)Ns
) denote the vector of “population latent variables”, latent variables shared by

all the individuals. For 1  i  p, zi = (⌘i, ⌧i, s1,i, . . . , sNs,i) denotes the individual-
specific latent variables, which define the spatiotemporal transformations of the group-
average trajectory.

For the Bayesian tensor model, the priors in (3.3.3) are defined as follows : P0 ⇠
SN (P0,�2

P0
) and V0 ⇠ SN (V0,�2

V0
), where SN denotes the Gaussian distribution on the

vector space Sym(3). The Gaussian distribution SN (0,�2
) on Sym(3) is the probability

distribution whose density function is p(M) / exp
�
� 1

2�2 tr(M2
)
�
, where M 2 Sym(3).

If M 2 Sym(3), the statement M ⇠ SN (M,�2
) is equivalent to M = M + M̃ where

M̃ ⇠ SN (0,�2
).

Therefore, we choose to estimate the parameters of the generic spatiotemporal model by
using a stochastic version of the EM algorithm, in which this step is replaced by a stochastic
approximation. This algorithm is the Monte Carlo Markov Chains (MCMC) Stochastic
Approximation EM (MCMC-SAEM) algorithm [Allassonnière 2010c]. The MCMC-SAEM
iterates, until convergence, between three steps: simulation, stochastic approximation and
maximization.

3.3.1 Simulation step

If ✓̃
(k�1)

denotes the current estimate of ✓̃ at the beginning of the kth iteration of
the MCMC-SAEM, the simulation step consists in drawing a sample z(k) from the tran-
sition kernel ⇡✓(k�1)

,y(z(k�1),·
) of an ergodic Markov chain whose stationary distribution

is the conditional distribution q(z | y, ✓̃
(k�1)

), the distribution of the latent variables z

knowing the observations y and ✓̃
(k�1)

. This step is achieved using a Monte Carlo Markov
Chain (MCMC) sampler. We chose to use a Block Metropolis-Hastings-within-Gibbs (Block
MHwG) sampler for the sampling step of the MCMC-SAEM. Each Metropolis-Hastings
step of the algorithm consists in a multivariate symmetric random walk. The Block MHwG
sampler updates simultaneously block (or sets) of latent variables then, at each iteration,
each block is updated conditionally on the others. Even though the latent variables can
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be grouped in several ways, we chose to group the latent variables as follows: {zpop} and
{zi}1ip. This grouping being given by the hierarchical structure of the model. Note that
the latent variables could also have been grouped as follows: {p0, t0,v0}, {(�l,k)l,k} and
{zi}1ip. In the case of the propagation models, the delay variables (�k)1kN�1 were
grouped with zpop, although they could also be considered as a block in itself.

For each block, the proposal in the Metropolis-Hastings step is chosen to be a multi-
variate Gaussian distribution centered at the current state of the block. Each variance-
covariance matrix of a proposal distribution is chosen to be diagonal matrix: Dpop =

Diag
�
⇣2
p0

IN , ⇣2
t0

, ⇣2
v0

IN , ⇣2
�I(N�1)Ns

�
for the proposal distribution associated to zpop and

Dindiv = Diag
�
⇣2
⇠
, ⇣2
⌧
, ⇣2

s

�
for the proposal distribution associated to zi (1  i  p). The

variances parameters ⇣2
p0

, ⇣2
t0

, ⇣2
v0

, ⇣2
� and ⇣2

⇠
, ⇣2
⌧

are adjusted by hand to ensure an average
acceptance rate for each block around 23% [Roberts 1997]. The Block MHwG sampler is
described in Algorithm 1.

Let ✓hyper = (�2
p0

,�2
t0

,�2
v0

,�2
�) denote the fixed hyperparameters which appear in the

probability distribution of the latent variables in zpop. Let i 2 {1, . . . , p} and qpop

�
· | ✓

�
(re-

spectively qi(· | ✓) denote the density function of the joint distribution of the latent variables
zpop (respectively zi) as specified in the generative model (equations (3.2.4) and (3.2.5)):

qpop(zpop | ✓) / exp

⇣
� 1

2�2
p0

kp0 � p0k2
⌘

exp

⇣
� 1

2�2
t0

(t0 � t0)
2
⌘

exp

⇣
� 1

2�2
v0

kv0 � v0k2
⌘

exp

⇣
� 1

2�2
�

k� � �k2
⌘ (3.3.4)

and

qi(zi | ✓) / exp

⇣
� 1

2�2
⇠

⇠2
i

⌘
exp

⇣
� 1

2�2
⌧

⌧2
i

⌘
exp

⇣
� 1

2
ksik2

⌘
(3.3.5)

with: � = [�l,k]1lNs, 1kN�1 and for all i 2 {1, . . . , p}, si = [sl,i]1lNs
. The probability

distributions qpop and qi (1  i  p) are given up to a constant. Indeed, the normalizing
constant of qpop or qi (1  i  p) depends only on the parameters ✓. Therefore, these
constants can be omitted for the computation of the acceptance ratio in Algorithm 1.
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Algorithm 1 The Block Metropolis-Hastings-within-Gibbs sampler

Require: Set of latent variables z(k�1)
=
�
z(k�1)
pop , (z(k�1)

i
)1ip

�
, current estimate of the

parameters ✓(k�1), variance-covariance matrices Dpop and (Di)1ip and ✓hyper

Ensure: Set of latent variables z(k)

1: Block z(k)
pop of population latent variables:

2: Draw a candidate z⇤pop ⇠ N
�
z(k�1)
pop ,Dpop

�

3: Compute the acceptance ratio ↵(z(k�1)
pop , z⇤pop) defined by:

↵(z(k�1)
pop , z⇤pop) =

q(y | z⇤pop, (z(k�1)
i

)1ip,✓
(k�1)

)qpop(z⇤pop | ✓(k�1)
)

q(y | z(k�1)
pop , (z(k�1)

i
)1ip,✓

(k�1)
)qpop(z(k�1)

pop | ✓(k�1)
)

^ 1.

4: Draw U ⇠ Uniform
�
[0, 1]

�

5: Set: z(k)
pop = z⇤pop if U  ↵(z(k�1)

pop , z⇤pop) and z(k)
pop = z(k�1)

pop otherwise.
6: for i = 1 . . . p do
7: Blocks (z(k)

i
)1ip of individual latent variables:

8: Draw a candidate z⇤
i
⇠ N

�
z(k�1)

i
,Dindiv

�

9: Compute the acceptance ratio ↵(z(k�1)
i

, z⇤
i
) defined by:

↵(z(k�1)
i

, z⇤
i
) =

q(y | z(k)
pop, z(k�1),(k)

�i
, z⇤

i
,✓(k�1)

)qi(z⇤i | ✓(k�1)
)

q(y | z(k)
pop, z(k�1),(k)

�i
, z(k�1)

i
,✓(k�1)

)qi(z
(k�1)
i

| ✓(k�1)
)

^ 1.

10: Draw U ⇠ Uniform([0, 1])

11: Set: z(k)
i

= z⇤
i

if U  ↵(z(k�1)
i

, z⇤
i
) or z(k)

i
= z(k�1)

i
otherwise.

12: end for
13: Return: z(k)

=
�
z(k)
pop, (z(k)

i
)1ip

�
.

Discussion

In order to avoid tuning by hand the parameters ⇣2
p0

, ⇣2
t0

, ⇣2
v0

and ⇣2
� of the proposal

distribution in the Block MHwG sampler, a possible solution would consist in using an
adaptive [Atchadé 2006] version of the Block MHwG sampler, where the algorithm auto-
matically adjusts these variance parameters.

3.3.2 Stochastic approximation

The convergence of the MCMC-SAEM is proved, in [Kuhn 2004] (for bounded latent
variables) and in [Allassonnière 2010b] (for unbounded latent variables), for statistical mod-
els which belong to the curved exponential family. That is to say, models for which the log
complete likelihood q(y, z,✓) writes: 8✓ 2 ⇥, log q(y, z,✓) = ��(✓) + hS(y, z), (✓)i,
where �, are smooth functions of the parameters, S(y, z) is a measurable function of
the observations and latent variables called sufficient statistic of the model and h·, ·i is an
inner product on a product space. The generic spatiotemporal model belongs to the curved
exponential family.
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Because the generic spatiotemporal model belongs to the curved exponential family, the
stochastic approximation can be done on the sufficient statistics of the model. At the kth
iteration of the MCMC-SAEM, we have: Sk = Sk�1 +"k

�
S(y, z(k)

)�Sk�1

�
, where ("k)k�1

is a sequence of positive step sizes such that
P

k
"k = +1 and

P
k
"2

k
< +1. If "k = 1,

then Sk does not depend on Sk�1. Intuitively, the sequence (Sk)k�0 has “no memory ”as
long as "k = 1 and the MCMC-SAEM explores freely the parameters space during this
period. In practice, we choose "k = 1 as long as k  Nb and "k = (k �Nb)

�0.65 if k > Nb.

3.3.2.1 Maximization step

The maximization step consists in solving the following optimization problem : ✓(k)
=

arg max
✓2⇥

�
� �(✓) + hSk, (✓)i

�
, where Sk denotes the stochastic approximation on the

sufficient statistics of the model, obtained in the “stochastic approximation step ”of the
algorithm. For the generic spatiotemporal model, this optimization problem is solved in
closed-form.

3.3.3 Computational aspects

For the progression model (3.5.2), the MCMC-SAEM would have to estimate the follow-
ing parameters : ✓ = (p0, t0, v0, �1, . . . , �N�1,�1, . . . ,�(N�1)Ns

,�⌘,�⌧ ,�). In this example,
we see that the number of parameters to estimate is 6+ (N � 1)(Ns +1). As the dimension
N of the manifold M increases, the number of parameters increases linearly. Moreover, as
N increases, the number Ns of independent sources has a greater impact on the number of
parameters to estimate.

The number p of individuls also impacts the runtime of the MCMC-SAEM. As the
number p of individuals increases, the cost of a single computation of the observed likelihood
increases. This step is the most expensive step of the MCMC-SAEM algorithm. The overall
runtime of the MCMC-SAEM could be improved sampling the blocks (zi)1ip (in the Block
MHwG sampler) in parallel.

3.3.4 Validation procedure

One of the main aim of the proposed approach is to put into correspondence individual
trajectories of changes with a common scenario of change, and therefore to predict the time
at which a particular event will occur in the life a the individual by the personalization of
the model.

We propose then to assess how well the method estimate individual time reparametriza-
tions by evaluating how well it puts in correspondence the time at which a particular event
occurred such as a diagnosis or a metabolic changes for instance. Note that this information
will not be used for the construction of the model.

The individual time reparametrization  i precisely are supposed to put into correspon-
dence the time at which similar spatiotemporal patterns are found in the individual data.
To assess how well this is achieved, we will test whether the time at which a particular
event occur in the life of the individuals are mapped to the same time-point in the average
trajectory of the model.
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Figure 3.3: The average time of event topt is mapped to the individual timelines using  �1
i

.

For the ith individual,  i maps the timeline of this individual to the “average timeline”,
namely the one of the average trajectory. Let t⇤

i
be the time point at which the event occurs

in the timeline of the ith individual. We estimate the time-point topt that corresponds to
the occurrence of the event in the average trajectory �0 by minimizing the sum of errors
E(t) =

P
i
|t⇤

i
�  �1

i
(t)|. Note that topt can be interpreted as a median of the normalized

ages ( i(t⇤i ))i, and could therefore not be unique. Then we map topt back to the individual
timelines by using the mappings  �1

i
, as illustrated in Fig. 3.3. The value  �1

i
(topt

) may
be thought of as a prediction of the model of the time-point (or age) at which the event
occured in the ith individual. Without errors, this time-point would be exactly t⇤

i
. In

practice, the difference |t⇤
i
�  �1

i
(topt

)| allows to quantify how well the events the timeline
of the ith individual and the average timeline have been put into correspondence.

In the following experiments, the median topt of
�
 i(t⇤i )

�
1ip

is computed unambigu-
ously. To assess how well the individual trajectories and the average trajectory are put into
correspondence, we will plot an histogram of the errors

�
|t⇤

i
�  �1

i
(topt

)|
�
1ip

.

3.4 Univariate measurements and symmetric definite
positive matrices

3.4.1 The univariate case

Let M be an open interval of R equipped with a Riemannian metric gM , for which
it is geodesically complete. The case of one dimensional manifolds is particular because,
for all p0 2 M , TpM ' R and given v0 2 Tp0M , there is only one tangent vector w at
p0 which is orthogonal (for the inner product gM

p0
) to v0 : w = 0. As a result, if �0 is a

geodesic of M , t0 2 R and w = 0, then for all s 2 R, ⌘w
(�0)(s) = �0(s). Therefore, the

generic spatiotemporal model writes: yi,j = �0 �  i(ti,j) + "i,j , with, for all i 2 {1, . . . , p},
 i(t) = ↵i(t� t0 � ⌧i) + t0 and ↵i = exp(⇠i).
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We show that, in this one-dimensional framework, a different presentation of the generic
spatiotemporal model is possible. This presentation provides a different insight on the role
of the latent variables (↵i, ⌧i)1ip. Let p0 2M , t0 2 R and v0 2 Tp0M ' R. Let �0 be the
group-average trajectory defined as the geodesic which goes through the point p0 at time
t0 and with velocity v0. Let 1  i  p. The trajectory �i of the ith individual is defined
as the geodesic �i which goes through the point p0 at time t0 + ⌧i and with velocity ↵iv0.
Having defined individual trajectories of progression, the observations are seen as random
samples along these trajectories: yi,j = �i(ti,j) + "i,j . In this definition, the acceleration
factor ↵i allows to characterize whether the ith individual is progressing faster (↵i > 1) or
slower (↵i < 1) than the average trajectory. The time shift ⌧i allows to determine whether
the ith individual is evolving ahead (⌧i < 0) or behind (⌧i > 0) the average trajectory.
Moreover, it follows from a unicity property of the geodesics that, for all i 2 {1, . . . , p},
�i(t) = �0

�
 i(t)

�
. This result legitimates the choice of affine time reparametrizations of the

form  i : t 7! ↵i(t� t0 � ⌧i) + t0.

3.4.1.1 The “straight lines model”

Unbounded observations can be considered as points on the real line. The real
line M = R equipped with its canonical metric is a geodesically complete one-
dimensional Riemannian manifold. For the canonical metric, the geodesics are of the
form t 2 R 7! at + b with (a, b) 2 R2. The generic spatiotemporal model writes:
yi,j = p0 + ↵iv0(ti,j � t0 � ⌧i) + "i,j . This model is referred to as the univariate straight
lines model. Note that, even though the average and individual trajectories are straight
lines, the model is not linear due to the multiplication between the random effects ↵i and ⌧i.

We propose to compare the nonlinear straight lines model to the random slope and
intercept model, discussed in the introduction. This linear mixed-effects model writes:
yi,j = (a + ai)(ti,j � t0) + (b + bi) + "i,j , where (Ai, Bi)1ip are random effects of the
model which are assumed independent of each other and normally distributed with mean
0 and variance-covariance matrix D. The fixed effects of this model are (A, B, t0). This
linear model analyzes the distribution of the observations at a fixed reference time t0. In
comparison, the straight lines model analyzes the distribution of the times at which the
observations reach a given value of the measurements. These two different approaches are
illustrated in Fig. 3.4.

3.4.1.2 The “logistic curves model”

If the observations are bounded, such as percentages or scores to a test, the measure-
ments can be normalized to produce new observations in the open interval M =]0, 1[. We
consider that this open interval of the real line is equipped with the Riemannian metric
g = (gp)p2]0,1[ where : 8p 2 M =]0, 1[, 8(u, v) 2 TpM ⇥ TpM, gp(u, v) = uM(p)v, where
M(p) = 1/

�
p2

(1 � p)
2
�
. This Riemannian metric on ]0, 1[ is obtained as the push-forward

of the Euclidean metric on R by the logit transform. In [Schiratti 2015b], it is proven that
M =]0, 1[ is a geodesically complete Riemannian manifold and that the generic spatiotem-
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Figure 3.4: Schematic example of a random slope and intercept linear mixed-effects model
(left) and straight lines model (right).

poral model writes:

yi,j =

 
1 +

⇣
1

p0
� 1

⌘
exp

⇣
� v0↵i(ti,j � t0 � ⌧i)

p0(1� p0)

⌘!�1

+ "i,j . (3.4.1)

In this framework, the Riemannian logarithm at p = 1/2, which corresponds to the
inflexion point of the logistics, is given by: 8q 2]0, 1[, Log1/2(q) = (1/4)logit(q). However,
in (3.4.1), the point p0 is not fixed to 1/2, but is estimated as a fixed effect. The model
estimates the p0, and therefore the best tangent space, which best describes the observa-
tions. Furthermore, even if one fixes p = 1/2, the model lifted up on the tangent space
remains nonlinear due to the multiplication between the random effects ↵i and ⌧i. There-
fore, the logistic curves model is not equivalent to a linear model on the logit transform of
the observations.

3.4.1.3 Validation on simulated data sets and comparison with alternative im-
plementation

In this section, we aim at comparing our implementation of the MCMC-SAEM with
state of the art algorithms. Our algorithm, implemented in MATLAB, is compared with
STAN and MONOLIX. STAN is a R/C++ library which implements an adaptive Hamil-
tonian Monte Carlo sampler called “the No U-Turns Sampler ”(NUTS, [Hoffman 2014]).
MONOLIX is a software developed by Marc Lavielle and the Lixoft company. It imple-
ments the MCMC-SAEM algorithm with some technical improvements (such as a simulated
annealing scheme). Note that our implementation of the MCMC-SAEM algorithm differs
from MONOLIX in the sense that it can be used with any particular case of the generic
spatiotemporal model. In particular, our implementation can be used to analyze univari-
ate, as well as multivariate (such as covariance matrices), longitudinal observations. In its
current version, MONOLIX can only be used to analyze univariate observations.

This section aims at comparing our implementation of the MCMC-SAEM algorithm with
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Table 3.1: Relative error on the parameters estimated with the different algorithms. First
row : results obtained with our implementation of the MCMC-SAEM. Second row :
results obtained with STAN. Third row : results obtained with MONOLIX.

| bp0 � p⇤0|/p⇤0 |bt0 � t⇤0|/t⇤0 | bv0 � v⇤0 |/v⇤0 |c�⇠ � �⇤⇠ |/�⇤⇠ |c�⌧ � �⇤⌧ |/�⇤⌧ |b� � �⇤|/�⇤

0.0150 0.0050 0.0176 0.0600 0.0545 0.010

0.0917 0.0191 0.1088 0.0600 0.0386 0.010

0.0417 0.0086 0.0412 0.0400 0.0286 0.008

several state-of-the art algorithms for the statistical inference in nonlinear mixed-effects
models. We propose to compare our implementation to the library STAN and software
MONOLIX. STAN is a R/C++ library which implements an adaptive Hamiltonian Monte
Carlo sampler called the “No U-Turn Sampler” (NUTS, [Hoffman 2014]). MONOLIX is a
software developed by Marc Lavielle and promoted by the Lixoft company. It implements
the MCMC-SAEM with some techinical improvements. Note that our implementation
of the MCMC-SAEM differs from MONOLIX in the sense that it can be used with any
particular case of the generic spatiotemporal model.

In order to compare these algorithms, we consider a simulated longitudinal dataset of
observations in

�
]0, 1[, g

�
where g is the Riemannian metric we defined on ]0, 1[. This dataset

is generated for p = 250 individuals, with an average of 5 time points per individual, using
the logistic curves model. Each algorithm is run with the same initialization and the data
is analyzed using the logistic curves model (3.4.1).

The experimental results given in Table 3.1 consist in relative errors on the parameters
estimated with the different algorithms. The runtime and number of iteration needed for
each method to converge are reported in Table 3.2. The results presented in the first table
show that all the different methods succeeded in estimating the parameters which were used
to generate the data. The corresponding number of iterations show that STAN is, by far, the
most computationally intensive method. Even though our implementation of the MCMC-
SAEM requires more iterations to converge than MONOLIX, the overall runtime is similar.
The fact that MONOLIX requires less iterations to converge can be explained by the fact
that the MCMC-SAEM is coupled with a simulated annealing procedure [Lavielle 2007],
which allows for a better and faster exploration of the parameters space.

The results presented in these tables show that the performance of our implementation
of the MCMC-SAEM is similar to the one of state-of-the-art methods. Still, the number of
iterations needed to converge could be further reduced, for example, by combining several
MCMC samplers in the sampling step of the MCMC-SAEM.

3.4.1.4 Changes in body mass index in adolescent girls

We analyzed a longitudinal dataset of body fat percentages from 162 adolescent girls.
This dataset is taken from the MIT Growth and Development Study [Bandini 2002,
Phillips 2003]. The data is analyzed using the univariate logistic model. The analysis of
this data in [Fitzmaurice 2012] requires the use of the time at menarche to temporally align
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Iterations Runtime (for 1000 iterations) Overall runtime
3500 30 s 90 s
15000 15 min ' 3, 75 h
400 110 s 45 s

Table 3.2: Number of iterations and runtimes corresponding to the experimental results
given in Table 3.1. First row : results obtained with our implementation of the MCMC-
SAEM. Second row : results obtained with STAN. Third row : results obtained with
MONOLIX.
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Figure 3.5: Left: Effect of the acceleration factor and time-shift on the population model
(with plots of �0(e±�⇠(t� t0)+ t0) and �0((t� t0 ±�⌧ )+ t0) respectively). Right: histogram
of the prediction error on the age at menarche

the data across individuals before the statistical analysis. By contrast, our approach is able
to include such an alignment as a random effect of the model, together with inter-individual
variability in profile of progression, yielding a personalizable growth model (see Fig. 3.5).
The estimated parameters made a error of less than one year for 50% of the individuals in
the alignment of the age at which the menarche occurred, as shown in Fig. 3.5.

3.4.2 The symmetric positive definite (SPD) matrices model

3.4.2.1 An instance of the model for SPD with affine-invariant metric

In this section, we describe how the generic spatiotemporal model can be used to
analyze longitudinal datasets of symmetric positive definite matrices. Such datasets may
arise in Diffusion Tensor Imaging (DTI) or when observing the temporal evolution of
covariance matrices.

The space of 3 ⇥ 3 symmetric positive definite matrices is usually denoted by SDP(3),
which is an open subset of the vector space of (3, 3) symmetric real matrices, denoted by
Sym(3). By identifying Sym(3) with R6, M = SDP(3) can be considered as an open sub-
manifold of R6. Indeed, M can be equipped with a Riemannian metric. In [Pennec 2006a],
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the authors define an affine-invariant Riemannian metric on SPD(3). Equipped with
this metric, the space of symmetric positive definite matrices is a geodesically complete
Riemannian manifold, without boundaries (matrices with null eigenvalues are at infinity).
The results presented below are obtained with the affine-invariant metric on SPD(3).

If ⌃ 2 SDP(3), ⌃1/2 denotes the unique symmetric positive definite matrix S such
that : S2

= ⌃ and ⌃�1/2 denotes its inverse. Let T⌃M denote the tangent space to M at
the point ⌃. T⌃M can be identified with Sym(3) and is equipped with the inner product
h·, ·i⌃ defined by : 8(W1,W2) 2 T⌃M, hW1,W2i⌃ = tr

�
⌃�1/2W>

1 ⌃�1W2⌃
�1/2�.

In order to describe parallel variations in the Riemannian manifold SPD(n) equipped
with the affine invariant metric, we give a closed-form expression of the parallel transport.
The result given in Lemma 3.6 is based in the work of [Lenglet 2006]. For P0 2 SPD(n),
t0 2 R, V0 2 TP0SPD(n) ' Sym(n), the geodesic �0, defined by �0(t) = ExpP0,t0

(V0)(t)

for all t 2 R, is given by : �0(t) = P1/2
0 exp

�
tP�1/2

0 V0P
�1/2
0

�
P1/2

0 , where P1/2
0 (respectively

P�1/2
0 ) denotes the unique symmetric positive definite square root of P0 (respectively its

inverse). The proof of Lemma 3.6 can be adapted to obtain the expression of the geodesics.
One can also obtain this expression by noting that the geodesic starting at In with velocity
V 2 Sym(n) is given by exp(tV) and use the invariance of the affine-invariant metric under
congruent transformations. Finally, the expression of the parallel transport along such a
geodesic is given by the following lemma.

Lemma 3.6. Let P0 2 SPD(n), t0 2 R and V0 2 TP0SPD(n) ' Sym(n). Let �0 be the
geodesic defined as above. If W is a tangent vector in TP0SPD(n), the parallel transport
P�0,t0,t(W) is given by:

8t 2 R, P�0,t0,t(W) = exp

⇣ t� t0
2

V0P
�1
0

⌘
W exp

⇣ t� t0
2

P�1
0 V0

⌘
. (3.4.2)

The proof of Lemma 3.6 is given in [Schiratti 2017b]. It follows from this lemma that
the generic spatiotemporal model writes :

Yi,j = Pi(ti,j)
1/2

exp
�
Pi(ti,j)

�1/2Vi(ti,j)Pi(ti,j)
�1/2

�
Pi(t)

1/2
+ "i,j (3.4.3)

with, for all t 2 R,

Pi(t) = P1/2
0 exp

�
↵i(t� t0 � ⌧i)P�1/2

0 V0P
�1/2
0

�
P1/2

0 (3.4.4)

and:

Vi(t) = exp

⇣↵i(t� t0 � ⌧i)
2

V0P
�1
0

⌘
Wi exp

⇣↵i(t� t0 � ⌧i)
2

P�1
0 V0

⌘
. (3.4.5)

The prior distribution for the matrices P0, V0 and ("i,j)i,j are defined as follows:
P0 ⇠ SN (P0,�2

P0
), V0 ⇠ SN (V0,�2

V0
) and "i,j

i.i.d.⇠ SN (0,�2
), where SN denotes the

Gaussian distribution on the vector space Sym(n). Given M 2 Sym(n), the probability
distribution SN (M,�2

) on Sym(n) is defined by the density function q such that:
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q(M) =
1

(2⇡)m/2�m
exp

�
� 1

2�2 tr
⇥
(M�M)

2
⇤�

with M 2 Sym(n) and with m = n(n + 1)/2.
The “standard ”distribution SN (0, 1) is used in physics and in the theory of random ma-
trices. It is sometimes called Gaussian Orthogonal Ensemble. The probability distribution
of the other random effects of the model are defined as in Section 3.2.2. This model will be
referred to as the symmetric positive definite matrices model or SPD(n) matrices model.

In [Arsigny 2006], the authors consider the space SPD(n) equipped with the log-
Euclidean metric. This metric provides the space of symmetric positive definite matri-
ces with a structure of Riemannian manifold. Unlike with the affine-invariant metric,
the space SPD(n) endowed with the Log-Euclidean metric is a flat Riemannian manifold,
meaning that its sectional curvature is null everywhere. By contrast, the space SPD(n)

equipped with the affine-invariant metric is a Riemannian manifold of non-positive curva-
ture [Skovgaard 1984, Moakher 2011] with no cut-locus. Within the Log-Euclidean frame-
work, the geodesics are of the form: exp(V1 + tV2) with V1,V2 2 Sym(n). As expected,
the geodesics are the image of a straight line in Sym(n) by the matrix exponential map.
Future developments should include comparisons with the log-euclidean metric on the space
SPD(3).

Remark 3.7. Let P 2 M and (pi,j)1i,j3 be the coefficients of the matrix P. Let
vecp(P) = (p1,1, p1,2, p2,2, p1,3, p2,3, p3,3)

> denote the vector, in R6, of the coefficients which
define the matrix P and let vec(P) denote the vector, in R9, which contains (column-
wise) all the coefficients of the matrix P. Let B3 denote a 9 ⇥ 6 real matrix such that
vecp(P) = B>3 vec(P) for all matrices P 2 Sym(3).

In the Bayesian generic spatiotemporal model ((3.3.2),(3.3.3)), we assume that
the matrices P0 and V0 follow a Gaussian distribution on the space Sym(3). In
other words, we assume that vecp(P0) ⇠ NR6(vecp(P0),�2

P0
B>3 B3) and vecp(V0) ⇠

NR6(vecp(V0),�2
V0

B>3 B3), where P0 and V0 are parameters in Sym(3), which will be
estimated from the data and �P0 , �V0 are fixed. The priors on t0,�1, . . . ,�5Ns

remain
unchanged. For the noise model, we assume that vecp("i,j) ⇠ NR6(0, sigma2B>3 B3).

3.4.2.2 Validation on simulated data

We consider a simulated dataset, in which we simulate repeated observations of a sym-
metric definite positive matrix (also called a diffusion tensor in medical imaging) for one
hundred individuals. The observations were not generated from the model. The observa-
tions were obtained instead by prescribing an adhoc hierarchical model on the eigenvalues
of the diffusion tensors. At the level of the population, the eigenvalues of the diffusion
tensors follow a decreasing piecewise linear evolution with a change point at 50 years old.
Observations for a given individual were simulated by randomly shifting the change point
(time at which the a change occurs in the speed at which eigenvalues decrease) and ran-
domly increasing or decreasing the slopes of each eigenvalue (see Fig.3.7, left). In this
simulated dataset, the individuals have, on average, five time points.

The results presented below were obtained with Ns = 1 source. A greater number of
independent sources would have been possible but many more iterations would have been
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Figure 3.6: Simulated evolutions of diffusion tensors. First row : average trajectory from
a highly anisotropic diffusion tensor to a sphere. Second row : a parallel to the average
trajectory obtained using a random space shift Wi. Third row : the reparametrization of
the parallel with ↵i = 0.7 and ⌧i = �4 (years). Fourth row : the observations are samples
from the reparametrized parallel. The samples are obtained using the noise model described
in 3.4.2. Each diffusion tensor is colored according to its fractional anisotropy (red for a
highly anisotropic tensors, yellow for a sphere).

necessary for the MCMC-SAEM to converge. The Bayesian tensor model with the MCMC-
SAEM allowed to estimate an average trajectory of progression in the space SDP(3). This
average trajectory is the geodesic which goes through the point P0, at time t0, with velocity
V0, given by :

P0 =

0

B@
11.30 0.96 0.68

0.96 9.53 1.21

0.68 1.21 10.19

1

CA , t0 = 53.83 years,

and

V0 =

0

B@
�0.99 �0.17 �0.20

�0.17 �0.75 �0.27

�0.20 �0.27 �0.85

1

CA unit per year.

The evolution of the eigenvalues of the average trajectory, plotted in Fig. 3.7, is similar
to the model used to generate the observations. However, the MCMC-SAEM tends to
underestimate the first eigenvalue and overestimate the third eigenvalue. The variability
in speed and delay of progression is captured by the estimated parameters �⌘ = 0.07 and
�⌧ = 0.5 year. Fig. 3.7 (left) shows that eigenvalues of each individual decrease at a similar
pace before and after the change point. This may explain why the model captured small
variations in speed of progression. The standard deviation �⌧ on the parameter t0 is much
smaller. The individual acceleration factor, time shift and space shift allow to fit the average
trajectory to the observations of an individual. As shown in Fig. 3.7 (right), the estimated
individual trajectory is well adjusted to the observations of the individual.

The eigenvalues of the average estimated trajectory are smooth functions of time. There-
fore, it would not have been possible to obtain a piecewise-linear progression of the eigen-
values for the average trajectory. Nevertheless, we can still validate the ability of the tensor
model to put into correspondence the dynamic of each individual following Sec. 3.3.4 by
using the individual change point t⇤

i
. For this dataset, the sum of errors

P
i
|t⇤

i
� �1

i
(t)| has

a unique minimum at topt
= 49.73 years. This minimum topt is close to 50 years, the time

at which the change point occurs in the average model used to generate the data. Fig. 3.8
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shows that the model made an error of less than 2 years for almost 60% of the population
by predicting the individual change point with  �1

i
(topt

), and less than 4 years for 90% of
the population. The change point was generated using a Gaussian distribution centered at
50 years with a standard deviation of 2 years. Therefore, the error is of the same order as
the standard deviation of the change point.

Figure 3.7: Left : In solid bold line, the average model of eigenvalues evolution for the simu-
lated dataset of tensors. In solid lines, the evolution of the eigenvalues for all the individuals
in the dataset. In dotted line, the evolution of the eigenvalues of the average trajectory,
given by the MCMC-SAEM. Right : the evolution of the eigenvalues of an individual. In
dotted line, the eigenvalues of the average trajectory estimated by the MCMC-SAEM. With
square markers, the eigenvalues of the observations for this individual. With round markers,
the eigenvalues of the estimated individual trajectory.
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Figure 3.8: Histogram of
�
|t⇤

i
� �1

i
(topt

)|
�
1i100

superimposed with the cumulative distri-
bution of this error. Here, t⇤

i
represents the age of the change point for the ith individual.
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3.5 Personalized digital models of biomarkers progres-
sion

3.5.1 Unstructured progression model

3.5.1.1 A multivariate instance of the generic model

The generic spatiotemporal model can be used to study the temporal progression of a
family of features which characterizes the evolution of a biological phenomenon. We as-
sume that each feature is described by repeated univariate observations, which are random
perturbations of quantities lying in a one-dimensional geodesically complete Riemannian
manifold (M, gM

), open subset of R. For each individual, at each time point, the obser-
vations (yi,j)1ip, 1jki

consist in a N -dimensional vector of univariate features. Hence,
for this propagation model, the observations (yi,j)1ip, 1jki

are considered as random
perturbations of quantities which belong to the product manifold M = M⇥ . . .⇥M = MN .
Since each Riemannian manifold (M, gM

) is geodesically complete, M equipped with the
product metric is also geodesically complete.

On the product manifold M = MN , equipped with the product metric, a geodesic is
of the form t 7!

�
�1(t), . . . , �N (t)

�
, where �1, . . . , �N are geodesics of the one-dimensional

Riemannian manifold M . Because we would like to model the joint temporal progression of
N features, we propose to choose the group-average trajectory among a parametric family
of geodesics of M. This family is of the form:

⇢
�0,� : t 2 R 7!

�
�0(t), �0(t + �1), . . . , �0(t + �N�1)

��
(3.5.1)

with � = (0, �1, . . . , �N�1)
>, �i 2 R and �0 denotes a geodesic of the one-dimensional

Riemannian manifold gM which goes through a point p0 2 M at time t0 with velocity
v0. The relative delay between two consecutive biomarkers is given by the parameters �i
(1  i  N � 1). The vector � is to be estimated as a fixed effect of the model. The first
component of the vector � is chosen equal to zero to ensure the identifiability of the model.
Note that assuming that the group average belongs to this parametric family of geodesics
is equivalent to assuming that the progression of each feature is described by trajectories
which have the same shape but are shifted in time.

Lemma 3.8. Let � be a geodesic of the product manifold M = MN and let t0 2 R. If
⌘w

(�) denotes a parallel to the geodesic � with w = (w1, . . . , wN

�
2 T�(t0)M and �(t) =

(�1(t), . . . , �N (t)), we have ⌘w
(�)(s) =

�
�1

�
w1

�̇1(t0)
+ s
�
, . . . , �N

�
wN

�̇N (t0)
+ s
��

, s 2 R.

In this framework, a parallel variation of the group-average trajectory �0,� can be com-
puted using the result given in Lemma 3.8. Indeed, it follows from Lemma 3.8 that the
generic spatiotemporal model 3.2.3 writes :

yi,j,k = �0

 
wi,k

�̇0(t0 + �k�1)
+  i(ti,j) + �k�1

!
+ "i,j,k (3.5.2)

where, for all k 2 {1, . . . , N}, (yi,j)k denotes the kth component of yi,j . In other words,
(yi,j)k is the observation associated to the kth biomarker, for the ith individual, at the



3.5. Personalized digital models of biomarkers progression 91

jth time point. Similarly, (wi)k denotes the kth component of the space shift wi. For all
i 2 {1, . . . , p},  i(t) = ↵i(t� t0 � ⌧i) + t0 is the individual specific time reparametrization.
This model is referred to as the propagation model. For this model, the latent variables are:
zpop =

�
p0, t0, v0, (�k)1kN�1, (�l,k)l,k

�
and, for all i 2 {1, . . . , p}, zi =

�
⇠i, ⌧i, (sl,i)l,i

�
.

The definition of the individual latent variables (zi)1ip remains unchanged. For the
population latent variables zpop, the variables (�k)1kN�1 are added. We assume that the
latent variables zpop are distributed as follows:

p0 ⇠ N (p0,�
2
p0

), t0 ⇠ N (t0,�
2
t0

), v0 ⇠ N (v0,�
2
v0

) (3.5.3)

and
�l,k

i.i.d.⇠ N (�
l,k

,�2
�
), �k

i.i.d.⇠ N (�k,�2
�
) (3.5.4)

where �2
p0

, �2
t0

, �2
v0

and �2
�

are fixed variance parameters. Similarly to the generic spatiotem-
poral model, the latent variables are assumed independently of each other and independently
of the noise variables "i,j

i.i.d.⇠ N (0,�2
IN ).

3.5.1.2 Profile of cognitive decline in Alzheimer’s Disease

The dataset consists in scores to the modified “ADAS-Cog ”test [Mohs 1997] obtained
from the ADNI1, ADNIGO and ADNI2 cohorts of the Alzheimer’s Disease Neuroimaging
Initiative. The 13 items were grouped into 4 categories according to the cognitive function
they assess: memory, language, concentration and praxis. For each cognitive function,
the scores were added and normalized by the maximum possible value therefore producing
measurements in ]0, 1[. As a consequence, each observation is a point on the manifold
M =]0, 1[

4 (note that results without item pooling are presented in [Schiratti 2015a]). We
use 248 individuals who were included in the study as mild cognitive impaired (MCI)
subjects and later converted to Alzheimer’s disease (AD). Each individual was observed on
average 6 times.

This data set was analyzed using the progression model given in Eq. (3.5.2) with logistic
curves. The number of independent components could be either 1, 2 or 3, as the manifold
is of dimension 4. The model with one independent component estimated a residual noise
variance �2

= 0.012 and explained 79% of the total variance. The model with two (resp.
three) independent components estimated a noise variance �2

= 0.008 (resp. �2
= 0.0084)

and explained 84% (resp. 85%) of the total variance. Because the results obtained with
three independent components are similar to the results obtained with two independent
components, we choose, for the sake of clarity, to report the results obtained with two
components (Ns = 2).

The average trajectory estimated by the propagation model, plotted in Fig. 3.9, is
characterized by the fixed effects p0 = 0.3, t0 = 72 years, v0 = 0.04 unit per year and
� = [0;�15;�13;�5] years. The first biomarker (memory) reaches the value p0 = 0.3 at 72

years on average, the second one (concentration), at t0 + 5 = 77 years, followed by praxis
and language. The fixed effects provide an ordering of the biomarkers and the relative delay
between them. The random effects characterize the spatiotemporal variability of the average
trajectory among the population. The estimated standard deviation ot the time-shift is
�⌧ = 7.5 years, meaning that age of disease onset ranges between 72 ± 7.5 years for 95% of
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Figure 3.9: The estimated average trajec-
tory. The estimated parameters p0 (resp.
t0) are represented by an horizontal (resp.
vertical line) at p0 = 0.3 (resp. t0 = 72

years).
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Figure 3.10: Histogram of
�
|tconv

i
�

 �1
i

(topt
)|
�
1i248

superimposed with
the cumulative distribution of this error.

the individuals. A positive (resp. negative) time-shift means that the individual is evolving
behind (resp. ahead) the average trajectory. The estimated standard deviation of the
acceleration factors is �⌘ = 0.9. As a consequence, most of the individuals are progressing
between e�⌘ ' 2.4 times faster or e��⌘ ' 0.4 times slower than the average trajectory (see
Fig. 3.12, first row). Estimates of the individual time-shifts and log-acceleration factors are
plotted in Fig. 3.11. This figure shows a clear correspondence between the time shifts and
the estimated age at which individuals were diagnosed with the disease. This fact shows
that the normalized age  i(t) is a better temporal marker of disease progression than age. It
is confirmed by our validation procedure (Fig. 3.10), which shows an error in the prediction
of age at diagnosis of less than 2.5 years in 50% of the cases.

In this multivariate setting, random effects also include space shifts, which are a com-
bination of two independent components denoted here c1(A) and c2(A). As shown in
lemma 3.8, these space-shifts perturb the relative delay and the ordering in the progression
of biomarkers. Fig. 3.12 shows that individuals with a space shift of the form wi = �si

c1(A)

have memory and concentration impaired nearly at the same time, while the language and
praxis remains nearly constant. In the opposite direction, impairment in language and
praxis nearly coincide for individuals with a space-shift of the form wi = ��si

c1(A). The
second independent component almost does not change memory and concentration but
changes the delay and the ordering between language and praxis. These results show that
the biomarkers tend to evolve by pairs : memory & concentration, language & praxis. Space
shifts capture here the variability in the profile of cognitive decline at the individual level
during the onset of the disease.
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Figure 3.11: Plot of t0 + ⌧i with respect to the log-acceleration factor ⌘i. Each point is
colored with respect to the estimated age of conversion to AD.

Accelerat ion factor Independent  direct ion Independent  direct ion Time shift  

+

Figure 3.12: Variability of the average trajectory �� in terms of space shift, time shift and
acceleration factor. The solid lines represent the average trajectory, while the dotted lines
represent the variability of this average trajectory among the population.

3.5.2 Network progression model

3.5.2.1 A model for network-valued data

In this section, we extend the previous unstructured biomarkers model to a set of mea-
surements distributed at the nodes of a fixed graph, seen as a network. We assume that
data points yij are distributed on a weighted graph G = (V, E, W ) with a set of N vertices
V , a set of edges E, each edge being associated to a weight in W . At each vertex xk, the
measurement of the ith subject at the jth time-point is the kth coordinate of the vector yij :
yijk. Given the weights, we can compute the N -by-N distance matrix D, whose entry Dpq
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gives the total weight of the geodesic path between vertex xp and vertex xq, namely the
path with the smallest total weight among all the paths on the graph connecting the two
nodes.

A typical example of such structured data is the cortical thickness measurements ex-
tracted from a longitudinal MRI data set. Using FreeSurfer software [Fischl 1999], measures
of cortical thickness for each MRI eventually take the form of a spatial map distributed on
a fixed mesh of the cortical surface. In this case, the weight of each edge is the length of
the edge in 3D, and the distance Dpq is the geodesic distance on the surface mesh between
nodes xp and xq.

We still consider that the measurement vectors yij belong to a product manifold MN of
dimension N . However, in this case, we need to alleviate the hypothesis that the average
profile of progression of the measurement at each vertex is derived one from each other by a
temporal shift, as in the previous section. We consider a more general form for the average
geodesic in the product manifold:

�0(t) = (�0,1, . . . , �0,N (t)) (3.5.5)

where �0,k is a one-dimensional geodesic on the base manifold M: �0,k = Exp
pk

((t� tk)vk),
which is uniquely parameterized by a pre-defined pair of parameters within the triplets
(pk, tk, vk). We further assume that the pair of parameters vary smoothly across the net-
work, as we expect the temporal profiles of change at neighboring nodes (in the sense of the
geodesic distance in the graph) to be similar. To this end, we assume that any parameter
⇡ (among pk, vkandtk) forms a smooth map on the graph:

⇡k = ⇡(xk) =

NcpX

p=1

exp
�
�D2

kp
/�2
�
�p (3.5.6)

where Dk,p is the distance between current node xk and a pre-selected set of control nodes
xc regularly distributed on the mesh, and � a scale parameter that is typically of the or-
der of the spacing between control nodes. This choice amounts to consider the parameter
map in a reproducible kernel Hilbert space with the exponential as smoothing kernel. An-
other advantage of this specific parameterisation of the average geodesic is the reduction
dimension, since now the parameter map is now defined by Ncp values �p instead of N

independent values at each vertex.
The exp-parallelization of this average geodesic �0 in the product manifold in the direc-

tion w is still given by:

⌘w

k
(t) = �0,k

✓
wk

�̇0,k(t0) + t

◆
(3.5.7)

for each coordinate, so that the statistical model writes for affine time-warps:

yijk = �
k

✓
wik

�̇
k
(t0)

+ ↵i(tij � ⌧i � t0) + t0

◆
+ "ijk . (3.5.8)

Cortical thickness measurements do not have natural asymptotic bounds, so that logistic
curves are not adequate to model their progression at the vertex level. We tried two other
profiles: a linear profile of atrophy, an exponential decay tending to zero. The last choice
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is given by the metric gp(u, v) =
uv

p2 on the manifold M =]0,1[. In the former case, the
model writes

yijk = pk + wik + vk↵i(tij � ⌧i � t0) + "ijk . (3.5.9)

and, in the latter case:

yijk = p(xk) exp

 
(wi)k

p(xk)
+

v(xk)

p(xk)
↵i(ti,j � t0 � ⌧i)

!
+ "ijk. (3.5.10)

Note that in the straight line model, one cannot assume a Gaussian distribution for the
space shift wi as it raises an identifiability issue with the noise. In this case, we choose a
Laplace distribution instead with a fixed parameter.

3.5.2.2 Spatiotemporal maps of cortical atrophy in Alzheimer’s Disease

We extracted from the ADNI data set all the subjects who presented a monotonous
decline from MCI to AD, called the MCI converters, removing those that may convert from
AD back to MCI. It represents 154 MCI patients and 787 visits, each individual being
examined 5 times on average, from 2 to 7 times.

Out of each T1-weighted MRI data, we extracted the cortical thickness on the left
hemisphere of the brain using the longitudinal pipeline of FreeSurfer [Reuter 2012], before
projecting it on a common atlas, namely FSAverage [Fischl 1999], which is a three dimen-
sional mesh composed of 163,842 nodes for each hemisphere. This common fixed graph
allows to compare the cortical thickness between visits or patients, node to node.

In order to smooth the noise and variability due to the data acquisition and alignment,
and to reduce the computational time of the estimation algorithm, we sub-sample the ini-
tial graph into 1827 uniformly distributed patches, each being constituted of approximately
89 initial nodes. As a consequence, the graph G contains 1827 nodes and each observation
corresponds to the average cortical thickness of the patches. We used the Fast Marching Al-
gorithm [Peyré 2010] to compute the distance matrix D. We selected a set of 258 uniformly
distributed control nodes among the vertices, and set the kernel parameter � = 16mm.

The model estimation using the exponential decay profile with several pairs of possible
parameters did not show to explain a greater part of the variance than the model with
linear decay. This result is not surprising given the very low signal-to-noise-ratio in the
measurements. As a consequence, we only report results for the straight line network
model, where the profile at the vertex-level is parameterized by position pk and velocity vk,
for tk arbitrarily set to t0.

Due to the numerous number of hyperparameters and the stochastic behavior of the
MCMC-SAEM, the algorithm was computed several times, each run of 100,000 iterations
taking approximately 15 hours. We kept the run that provided the best individual recon-
structions i.e. the smaller standard deviation of the noise.

Fig. 3.13 and 3.14 show the population average model of cortical atrophy. It shows a
propagation pattern starting in the para-hippocampal region followed by atrophy in the
temporal then frontal lobe. This results is in line with the current knowledge on the
manifestation of the disease.
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Figure 3.13: Average evolution of the cortical thickness from X to Y years old. This typical
pattern of atrophy propagation shows an important cortical loss in the superior frontal lobe,
the temporal lobe and the hippocampus region.

Figure 3.14: Final estimation of the annual rate of cortical loss observed during the typical
pattern of atrophy propagation.

One of the main interest of the approach is that it does not only provide a population
average trend, but also allows personalization at the individual level. The mode of the
histogram of the random effects in the last iterations of the Markov Chain give the mode
of the posterior distribution of the random effects, which may be used to personalize the
model to training samples. Fig. 3.16 shows how the model reconstructs two individual
observations. Fig. 3.15 shows the reconstruction errors for all individuals across all nodes
and all patches of the graph. It shows that observations are well reconstructed by the
model, and that the residual is not structured, suggesting that no important information
has been left aside.

The ability of the model to accurately put into correspondence age at diagnosis is eval-
uated in Fig. 3.17 (left). It shows that the histogram of the age at diagnosis is more peaked
once re-aligned into the common time-line. Fig. 3.17 (right) shows the prediction of the age
of diagnosis, showing good accuracy on average with some subjects with large prediction
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Figure 3.15: Relative reconstruction error on all training samples: histogram of the er-
ror across all nodes (left), and all patches (middle), and average error over each patch
distributed on the graph (right)

Figure 3.16: Real data and reconstructed data for subjects with a small space shift (right)
and large space shift (left). The model is able to reconstruct the observed data, up to a
smoothing component, for subjects that present different cortical thicknesses as shown by
the different value range in the colormaps.

errors. These errors may be amplified by the exponential in the expression of the acceler-
ation factor. More investigation is needed though to better understand why some subjects
yield such prediction errors.

In Fig. 3.18, we plot the histogram of the individual random effects: log-acceleration
factor ⇠ = log(↵i) and time-shift ⌧i, estimated as the mode of the posterior distribution.
The histograms for different sub-populations caracterized by the number of alleles "4 in
the APOE gene show that subject with more alleles tend to become early onset and fast
progresser patients.

3.6 A Fanning scheme to compute parallel transport
along geodesics on manifolds

At the core of the proposed approach lies parallel transport, an isometric mapping
which allows the comparison of probability density functions, coordinates or vectors that
are defined in the tangent space at different points on a manifold. In the previous instances,
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Figure 3.17: Left: histogram of the observed age at diagnosis tdiag,i for the 154 MCI con-
verters (red) and histogram of the reparametrized age at diagnosis  i(tdiag,i) once aligned
on the common time-line (blue). Right: Given t⇤ = mean( i(tdiag,i) the estimated age at
diagnosis in the average time-line, the figure shows the estimated individual age at diagnosis
 i(t⇤) and the corresponding true tdiag,i.

Figure 3.18: Distribution of the estimated age at disease onset (left) and pace of disease
progression (right) in sub-groups characterized by different APOE genotype. More alleles
of APOE-"4 is correlated to an earlier disease onset with a faster pace of propagation of
the Alzheimer’s Disease.

closed-form solutions allowed us to compute parallel transport along any curves on these
simple manifolds. However, there are many cases for which closed-form solution do not
exist for parallel transport. The inference of statistical models involving parallel transport
requires therefore efficient numerical schemes to compute parallel transport on manifolds.
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The parallel transport of a given tangent vector is defined as the solution of an ordinary
differential equation ([Do Carmo Valero 1992] page 52). In small dimension, this equation is
solved using standard numerical schemes. However, this equation requires the computation
of the Christoffel symbols whose number explodes with the dimension of the manifold in a
combinatorial manner, which makes this approach intractable in realistic situations.

An alternative is to use the Schild’s ladder [Kheyfets 2000], or its faster version in the
case of geodesics: the Pole’s ladder [Lorenzi 2013b]. These schemes essentially requires the
computation of Riemannian exponentials (Exp) and logarithms (Log) at each step. Usually,
the computation of the exponential may be done by integrating Hamiltonian equations, and
do not raise specific difficulties. By contrast, the computation of the logarithm must often
be done by solving an inverse problem (Exp � Log(x) = x) with the use of an optimization
scheme such as a gradient descent. Such optimization schemes are approximate and sensitive
so the initial conditions and to hyper-parameters, which leads to additional numerical errors
at each step of the scheme. The effects of those numerical errors on the global convergence
of the scheme still remain to be studied. When closed formulas exist for the Riemannian
logarithm, or in the case of Lie groups, where the Logarithm can be approximated efficiently
using the Baker-Campbell-Haussdorff formula (see [Lorenzi 2013a]), the Schild’s ladder is
an efficient alternative. When this is not the case, it becomes hardly tractable.

Another alternative is to use an equation showing that parallel transport along geodesics
may be locally approximated by a well-chosen Jacobi field, up to the second order error.
This idea has been suggested in [Younes 2007] with further credits to [Vogtmann 1997], but
without either a formal description of the scheme nor a proof of its convergence. It relies
solely on the computations of Riemannian exponentials.

In [Louis 2017b], we proposed a numerical scheme built on this idea, which tries to
limit as much as possible the number of operations required to reach a given accuracy.
We proved that this scheme converges at linear speed with the time-step, and that this
speed may not be improved without further assumptions on the manifold. Furthermore,
we proposed an implementation which allows the simultaneous computation of the geodesic
and of the transport along this geodesic. Numerical experiments on the 2-sphere and on the
manifold of 3-by-3 symmetric positive definite matrices confirmed that the convergence of
the scheme is of the same order as the Schild’s ladder in practice. Thus, they show that this
scheme offers a compelling alternative to compute parallel transport in high-dimensional
manifolds with a control over the numerical errors and the computational cost.

We recall here the numerical scheme and the main results, and refer the reader
to [Louis 2017a, Louis 2017b] for more details.

3.6.1 The key identity

In this section, we assume that � is a geodesic defined for all time t 2 [0, 1] on a
manifold M of finite dimension n 2 N provided with the Riemannian metric g. We denote
r the covariant derivative. We recall that for p 2 M, TpM denotes the tangent space
of M at p, and that for a vector w 2 T�(s)M, for s, t 2 [0, 1], Ps,t(w) 2 T�(t)M denotes
the parallel transport of w from �(s) to �(t). It is the unique solution at time t of the
differential equation r�̇(u)Ps,u(w) = 0 for Ps,s(w) = w. We also note J

w

�(t)(h) the Jacobi



100
Chapter 3. Learning personalized model of disease progression from

multimodal longitudinal data sets

Field emerging from �(t) in the direction w 2 T�(t)M, that is:

J
w

�(t)(h) =
@

@"

����
"=0

Exp
�(t)(h(�̇(t) + "w)) 2 T�(t+h)M

for h 2 R small enough. It verifies the Jacobi equation (see for instance
[Do Carmo Valero 1992] page 111-119):

r2
�̇
Jw

�(t)(h) + R(Jw

�(t)(h), �̇(h))�̇(h) = 0 (3.6.1)

where R is the curvature tensor. We denote k · kg the Riemannian norm on the tangent
spaces defined from the metric g, taken at the appropriate point. We use Einstein notations.

We suppose here that there exists a global coordinate system on M and we note � :

M �! U the corresponding diffeomorphism, where U is a subset of Rn. This system of
coordinates allows us to define a basis of the tangent space of M at any point, we note
@

@xi

��
p

the i-th element of the corresponding basis of TpM for any p 2M.
We assume that there exists a compact subset K of M such that �([0, 1]) ⇢ K. We also

assume that there exists ⌘ > 0 such that injectivity radius of the manifold M is strictly
larger than ⌘.

The numerical scheme arises from the following identity, which is mentioned in
[Younes 2007]. Figure 3.19 illustrates the principle.

Proposition 3.9. For all t > 0, and w 2 T�(0)M we have

P0,t(w) =

J
w

�(0)(t)

t
+ O

�
t2
�

(3.6.2)

Proof. Let X(t) = P0,t(w) be the vector field following the parallel transport equation:
Ẋi

+ �
i

kl
X l�̇k

= 0 with X(0) = w. In normal coordinates centered at �(0), the Christoffel
symbols vanish at �(0) and the equation gives: Ẋi

(0) = 0. A Taylor expansion of X(t)

near t = 0 in this local chart then writes:

Xi
(t) = wi

+ O
�
t2
�
. (3.6.3)

By definition, the i-th normal coordinate of Exp
�(0) (t(v0 + "w)) is t(vi

0 + "wi
). Therefore,

the i-th coordinate of J
w

�(0)(t) =
@

@"
|"=0Exp

�(0)(t(�̇(0)+"w)) is twi. Plugging this into (3.6.3)
yields the desired result. ⌅

This control on the approximation of the transport by the Jacobi field suggests to divide
[0, 1] into N intervals [

k

N
, k+1

N
] of length h =

1
N

for k = 0, . . . , N � 1 and to approximate
the parallel transport of a vector w 2 T�(0) from �(0) to �(1) by a sequence of vectors
wk 2 T

�( k

N )
M defined as:

8
><

>:

w0 = w

wk+1 = NJ
wk

�( k

N )

✓
1

N

◆ (3.6.4)

With the control given in the Proposition 3.9, we can expect to get an error of order O
�

1
N2

�

at each step and hence a speed of convergence in O
�

1
N

�
overall. There are manifolds
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Figure 3.19: The solid line
is the geodesic. The green
dotted line is formed by the
perturbed geodesics at time
t. The blue arrows are the
initial vector and its ap-
proximated parallel trans-
port at time t.

for which the approximation of the parallel transport by Jacobi field is exact e.g. Eu-
clidean space, but in the general case, one cannot expect to get a better convergence rate.
In [Louis 2017b], we showed that this scheme for the sphere S2 has a speed of convergence
exactly proportional to 1

N
, and therefore that one could not expect a faster convergence

rate without further assumptions on the manifold.

3.6.2 The numerical scheme

In the general case, there are no closed forms expressions for the geodesics and the Jacobi
fields. Hence, these quantities, which are required to approximate parallel transport, also
need to be approximated using numerical methods.

Computing geodesics In order to avoid the computation of the Christoffel symbols,
we propose to integrate the first-order Hamiltonian equations to compute geodesics (see
[Younes 2010]). Let x(t) = (x1(t), . . . , xd(t))

T be the coordinates of �(t) in a given local
chart, and ↵(t) = (↵1(t), . . . ,↵d(t))

T be the coordinates of the momentum g(�(t))�̇(t) 2
T ⇤
�(t)M in the same local chart. We have then:

8
<

:

ẋ(t) = K(x(t))↵(t)

↵̇(t) = �1

2
rx

�
↵(t)T K(x(t))↵(t)

� , (3.6.5)

where K(x(t)), a d-by-d matrix, is the inverse of the metric g expressed in the local chart.
We will see that to ensure the convergence of the scheme we must use a Runge-Kutta scheme
of order of at least 2 to integrate this equation, for which the error is in O

�
1

N2

�
.

Computing J
w

�(t)(h) The Jacobi field may be approximated with a numerical differenti-
ation from the computation of a perturbed geodesic �" with initial position �(t) and initial
velocity �̇ + "w where " is a small parameter:

J
w

�(t)(h) '
Exp

�(t)(h(�̇(t) + "w))� Exp
�(t)(h(�̇(t))

"
, (3.6.6)

where the Riemannian exponential may be computed by integration of the Hamiltonian
equations (3.6.5) over the time interval [t, t + h] starting at point �(t), see Figure 3.20. We
will also see that, in general, a choice for " ensuring a O

�
1
N

�
order of convergence is " =

1
N

.
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Figure 3.20: One step of
the numerical scheme. The
dotted arrows represent the
steps of the Runge-Kutta
integrations for the main
geodesic � and for the per-
turbed geodesic �". The
blue arrows are the initial
w and the obtained ap-
proximated transport using
equation (3.6.6).

The algorithm Let N 2 N. We divide [0, 1] into N intervals [tk, tk+1], and initialize
with �0 = �(0), �̇0 = �̇(0) and w0 = w. The algorithm we propose consists in iteratively
computing, at step k :

(i) The momentum in the cotangent space corresponding to the vector wk: �k = K(�k)wk

(ii) The new point on the main geodesic �k+1, by integration of the Hamiltonian equations
using a second-order Runge-Kutta method.

(iii) The perturbed geodesic starting at �k with initial tangent vectors �̇k + "wk at time
h, that we denote �"

k+1 using a second-order Runge-Kutta method.

(iv) The estimated parallel transport before renormalization :

ŵk+1 =
�"

k+1 � �k+1

"

(v) The new estimated parallel transport :

wk+1 = ↵kŵk+1 + �k�̇k+1

where ↵k and �k are normalization factors ensuring kw(tk+1)kg = kw(t0)kg and
g(wk+1, �̇k+1) = g(w0, �̇0) : those quantities should be conserved during the trans-
port. This comes at a small cost, and we showed in [Louis 2017b] that it allows to
put a uniform bound on the approximation of the transport by the Jacobi field.

Figure 3.20 illustrates the principle. A complete pseudo-code is given in Algorithm 0.
It is remarkable that we can substitute the computation of the Jacobi Field with only four
calls to the hamiltonian equations (3.6.5) at each step, including the calls necessary to
compute the main geodesic. Note however that the (i) step of the algorithm requires to
solve a linear system, which is an operation whose cost increases with the dimension, in a
polynomial manner.

Remark 3.10. The orders of the different approximations presented above are optimal
in the sense that they are minimal to ensure linear convergence of the scheme. We could
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increase the order of the Runge-Kutta integration in the steps (ii) or (iii), or increase the
order of the finite difference approximation of the derivative in step (iii) e.g. by computing
two perturbed geodesics and using a central finite difference:

J
w

�(t)(h) ' Exp(h(�̇(t) + "w))� Exp(h(�̇(t)� "w))

2"
,

which is of order 2 instead of the non-symmetric first-order approximation proposed here.
This method requires 6 calls to the Hamiltonian equations, instead of 4. We will study
both of these in Section 3.6.3 to identify the most cost-effective method to reach a given
precision. ⇤

The numerical scheme may be summarized as follows:
1: function ParallelTransport(x0,↵0, w0, N)

. x0 coordinates of �(0)

. ↵0 coordinates of G(�(0))�̇(0) 2 T ⇤
�(0)M

. w0 coordinates of w 2 T�(0)M
. N number of time-steps

2: h = 1/N , " = 1/N

3: for k = 0, . . . , (N � 1) do
. integration of the main geodesic

4: x
k+ 1

2
= xk +

h

2 vk

5: ↵
k+ 1

2
= ↵k +

h

2f(xk,↵k)

6: xk+1 = xk + hv(x
k+ 1

2
,↵

k+ 1
2
)

7: ↵k+1 = ↵k + hf(x
k+ 1

2
,↵

k+ 1
2
)

. perturbed geodesic equation in the direction wk

8: �k = K(xk)
�1wk

9: ↵"
k

= ↵k + "�k

10: x"
k+ 1

2
= xk +

h

2 (vk + "wk)

11: ↵"
k+ 1

2
= ↵"

k
+

h

2f(xk,↵"
k
)

12: x"
k+1 = x"

k
+ hv(x"

k+ 1
2
,↵"

k+ 1
2
)

13: Jk+1 =
x
"�xk+1

"
. Jacobi field by finite differences

. Conserve quantities
14: vk+1 = v(xk+1,↵k+1)

15: Solve for a, b :
16: G(w0, w0) = G(aJk+1 + bvk+1, aJk+1 + bvk+1),
17: G(v0, w0) = G(aJk+1 + bvk+1, vk+1)

18: wk+1 = aJk+1 + bvk+1 . parallel transport
19: end for

return xN ,↵N , wN

. xN approximation of �(1)

. ↵N approximation of G(�(1))�̇(1)

. wN approximation of P�(0),�(1)(w0)

20: end function
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21: function v(x,↵)
22: return K(x)↵

23: end function

24: function f(x,↵)
25: return � 1

2rx

�
↵T K(x)↵

�
. in closed form or by finite differences

26: end function

27: function K(x)
28: return K(x) (or G(x)

�1) . in closed form
29: end function

3.6.3 Empirical validation of the convergence

We implemented the numerical scheme on simple manifolds where the parallel transport
is known in a closed form, allowing us to evaluate the numerical error 1. We present two
examples :

• S2 : in spherical coordinates (✓,�) the metric is g =

 
1 0

0 sin(✓)2

!
.

• The set of 3⇥ 3 symmetric positive-definite matrices SPD. The tangent space at any
points of this manifold is the set of symmetric matrices. In [Lenglet 2006], the authors
endow this space with the affine-invariant metric: for ⌃ 2 SPD, V, W 2 Sym(3) :

g⌃(V, W ) = tr(⌃
�1V ⌃�1W )

Through an explicit computation of the Christoffel symbols, they derive explicit ex-
pressions for any geodesic ⌃(t) starting at ⌃0 2 SPD with initial tangent vector
X 2 Sym(3) :

⌃(t) = ⌃
1
2
0 exp(tX)⌃

1
2
0

where exp : Sym(3) ! SPD is the matrix exponentiation. Deriving an expression
for the parallel transport can also be done using the explicit Christoffel symbols, see
[Schiratti 2017b]. If ⌃0 2 SPD and X, W 2 Sym(3), then :

P0,t(W ) = exp(
t

2
X⌃�1

0 )W exp(
t

2
⌃
�1
0 X)

Remark 3.11. Note that even though the computation of the gradient of the inverse
of the metric with respect to the position, rxK, is required to integate the Hamiltonian
equations (3.6.5), rxK can be computed from the gradient of the metric using the fact
that any smooth map M : R ! GLn(R) verifies dM

�1

dt
= �M�1 dM

dt
M�1. This is how

we proceeded for SPD: it spares some potential difficulties if one does not have access to
analytical expressions for the inverse of the metric. ⇤

1An implementation of the scheme in Python is available here: https://gitlab.icm-institute.org/

maxime.louis/parallel-transport for the sphere and SPD matrices. The code is modular so that it is
easy to implement the scheme for any other manifold.

https://gitlab.icm-institute.org/maxime.louis/parallel-transport
https://gitlab.icm-institute.org/maxime.louis/parallel-transport
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Figure 3.14: Relative error for the 2-Sphere in defferent settings, as functions of the step
size, with initial point, velocity and initial w kept constant. The dotted lines are linear
regressions of the measurements.

cases, by a factor 2.3 in the single geodesic case. A fourth order method is twice as expensive
as a second order method in terms of number of calls to the Hamiltonian equations, hence
in this case it is the most efficient way to reach a given accuracy.

We also investigated the effect of enforcing the conservations of the norm and of the
scalar product with the velocity. Doing so yields an exact transport for the sphere, because
it is of dimension 2, and a dramatically improved transport of the same order of convergence
for SPD (see Figure 3.15). The complexity of this operation is very low, and we recommend
to always use it. It can be expected however that the effect of the enforcement of these
conservations will lower as the dimension increases, since it only fixes two components of
the transported vector.

We also confirmed numerically that without a second-order method to integrate the
geodesic equations, the scheme does not converge.

Finally, using two geodesic to compute a central-finite difference for the Jacobi Field
is 1.5 times more expensive than using a single geodesic, in terms of number of calls to
the Hamiltonian equations, and it is therefore more efficient to compute two perturbed
geodesics in the case of the symmetric positive-definite matrices.

3.6.4 Comparison with the Schild’s ladder

We compared the relative errors of the fanning scheme with the other Christoffel-less
method : the Schild’s ladder. We implemented the Schild’s ladder on the sphere, and
compare the relative errors of both schemes on a same geodesic and vector. We chose this
vector to be orthogonal to the velocity, since the transport with the Schild’s ladder is exact
if the transported vector is colinear to the velocity. We use a closed form expression for the

Figure 3.21: Relative error for the 2-Sphere in different settings, as functions of the step
size, with initial point, velocity and initial w kept constant. The dotted lines are linear
regressions of the measurements.

Errors measured in the chosen system of coordinates confirm the linear behavior in both
cases, as shown on Figures 3.21 and 3.22.

We assessed the effect of a higher order for the Runge-Kutta scheme in the integration
of geodesics. Using a fourth order method increases the accuracy of the transport in both
cases, by a factor 2.3 in the single geodesic case. A fourth order method is twice as expensive
as a second order method in terms of number of calls to the Hamiltonian equations, hence
in this case it is the most efficient way to reach a given accuracy.

We also investigated the effect of enforcing the conservations of the norm and of the
scalar product with the velocity. Doing so yields an exact transport for the sphere, because
it is of dimension 2, and a dramatically improved transport of the same order of convergence
for SPD (see Figure 3.22). The complexity of this operation is very low, and we recommend
to always use it. It can be expected however that the effect of the enforcement of these
conservations will lower as the dimension increases, since it only fixes two components of
the transported vector.

We also confirmed numerically that without a second-order method to integrate the
geodesic equations, the scheme does not converge.

Finally, using two geodesic to compute a central-finite difference for the Jacobi Field
is 1.5 times more expensive than using a single geodesic, in terms of number of calls to
the Hamiltonian equations, and it is therefore more efficient to compute two perturbed
geodesics in the case of the symmetric positive-definite matrices.
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measurements.

0 0.05 0.1 0.15 0.2

0

10

20

30

40

Step size

Re
la

tiv
e

er
ro

r(
%

)

One perturbed geodesic, Runge-Kutta 2
One perturbed geodesic, Runge-Kutta 2, without conservation

One perturbed geodesic, Runge-Kutta 4
Two perturbed geodesic, Runge-Kutta 2
Two perturbed geodesic, Runge-Kutta 4

Figure 4. Relative errors for SPD(3) in di�erent settings, as functions of the step size, with
initial point, velocity and initial w kept constant. The dotted lines are linear regressions.

calls to the Hamiltonian equations, and it is therefore more e�cient to compute two422
perturbed geodesics in the case of the symmetric positive-definite matrices.423

6.3. Comparison with the Schild’s ladder. We compared the relative errors424
of the fanning scheme with the other Christo�el-less method : the Schild’s ladder.425
We implemented the Schild’s ladder on the sphere, and compare the relative errors of426
both schemes on a same geodesic and vector. We chose this vector to be orthogonal427
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Figure 3.22: Relative errors for SPD in different settings, as functions of the step size, with
initial point, velocity and initial w kept constant. The dotted lines are linear regressions.

3.6.4 Comparison with the Schild’s ladder

We compared the relative errors of the fanning scheme with the other Christoffel-less
method : the Schild’s ladder. We implemented the Schild’s ladder on the sphere, and
compare the relative errors of both schemes on a same geodesic and vector. We chose this
vector to be orthogonal to the velocity, since the transport with the Schild’s ladder is exact
if the transported vector is colinear to the velocity. We use a closed form expression for the
Riemannian logarithm in the Schild’s ladder, and closed form expressions for the geodesic.
The results are given in Figure 3.23. The fanning scheme is 1.6 times more accurate.

3.6.5 Computing parallel transport on a manifold of diffeomor-
phisms

It is straightforward to adapt the numerical scheme to the finite-dimensional manifold
of diffeomorphisms introduced in Chap. 2. Coordinates of the point p on the manifold are
given by the 3D-coordinates of the control point position ck. In this context, the algorithm
to transport a co-tangent vector ! along the geodesic starting from control points c0 in the
co-tangent direction ↵0 writes:

(i) Compute the geodesic control points ck+1 and momenta ↵k+1, using a Runge-Kutta
2 method.

(ii) Compute the control points c±"
k+1 of the perturbed geodesics �±" with initial momenta

and control points (↵k ± "!k, ck), using a Runge-Kutta 2 method.
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Figure 5. Relative error of the Schild’s ladder scheme compared to the fanning scheme (double
geodesic, Runge-Kutta 2) proposed here, in the case of S2.

The constants in the speed of convergence don’t di�er much.432

7. Conclusion. We proposed a new method, the fanning scheme, to compute433
parallel transport along a geodesic on a Riemannian manifold using Jacobi Fields.434
At variance with the Schild’s ladder, this method does not require the computation435
of Riemannian logarithms, which are in a lot of cases not given in closed form and436
potentially hard to approximate. We proved that the error of the scheme is of order437
O
� 1
N

�
where N is the number of discretization steps, and that it cannot be improved438

in the general case, yielding the same convergence rate as the Schild’s ladder. Note439
also that, to the best of our knowledge, no convergence result is available for the440
Schild’s ladder when extra approximations, which are often necessary, are made –e.g.441
approximate Riemannian logarithm through gradient descent or using the Baker-442
Haussdorf-Campbell formula. We also showed that only four calls to the Hamiltonian443
equations are necessary at each step to provide a satisfying approximation of the444
transport, two of them being used to compute the main geodesic. We confirmed the445
rate of convergence numerically, and showed empirically that ensuring the conserva-446
tions of the norm and of the scalar product with the velocity can yield significative447
improvements to the approximation, although this fact still needs to be confirmed in448
high dimensions.449

A limitation of this scheme is to only be applicable when parallel transporting450
along geodesics, and an extension to a more general family of curves would be an inter-451
esting perspective. Besides, the Hamiltonian equations are expressed in the cotangent452
space whereas the velocity lies in the tangent space. Going back and forth from cotan-453
gent to tangent space at each iteration can be costly : it typically requires a matrix454

This manuscript is for review purposes only.

Figure 3.23: Relative error of the Schild’s ladder scheme compared to the fanning scheme
(double geodesic, Runge-Kutta 2) proposed here, in the case of S2.

(iii) Approximate the Jacobi field Jk+1 by central finite difference :

Jk+1 =
c"
k+1 � c�"

k+1

2✏
. (3.6.7)

(iv) Compute the transported momenta !̃k+1 according to equation (3.6.2) :

Kck+1 !̃k+1 =
Jk+1

h
. (3.6.8)

(v) Correct this value with !k+1 = �k+1!̃k+1 + �k+1↵k+1, where �k+1 and �k+1 are nor-
malization factors ensuring the conservation of k!kVc

= !T

k
Kck

!k and of h↵k,!kick =

↵T

k
Kck

!k.

where we substitute here a differentiation of order 2 in step iii (double geodesic method)
making 6 calls to the Hamiltonian equations, instead of the order 1 differentiation (single
geodesic method) making 4 calls to the Hamiltonian equations, as we will show that the
overhead computational cost is counterbalanced by a faster convergence.

This manifold is a good example to study the behavior of the numerical scheme in
a high dimension setting, although we cannot assess the numerical error in absence of
a closed-form expression of the parallel transport. As a workaround, we compute the
parallel transport for a varying number of discretization steps N , thus obtaining increasingly
accurate estimations, and then compute the empirical relative errors by taking the most
accurate computation as a reference.

The reference geodesic is chosen as the output of a geodesic regression of a series of
meshes of deep brain structures (hippocampus, amygdala and putamen) from both hemi-
sphere extracted from T1-weighted MRI data of a given subject at multiple time-points.
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conservations at step ?? (WEC), using a Runge-Kutta of order 4 at step ??
(RK4), and using a single perturbed geodesic to compute J at step ?? (SPG).

We recover a linear behavior with the size of the step
1
N

in all cases. The SPG

variant converges much slower, and is excluded from the following considerations.

For the other algorithms, the empirical relative error remains below 5% with

15 steps or more, and below 1% with 25 steps or more. The slopes of the asymp-

totic linear behaviors, estimated with the last 10 experimental measurements,

range from 0.10 for the RK4 method to 0.13 for the WEC one. Finally, an iter-

ation takes respectively 4.26, 4.24 and 8.64 seconds for the proposed algorithm,

the WEC variant and the RK4 one. Therefore the initially detailed algorithm

in section ?? seems to achieve the best tradeo� between accuracy and speed, in

the considered experimental setting.

3.4 Prediction performance

Table ?? gathers the predictive performance of the proposed exp-parallelization

method. The performance metric is the Dice coe�cient, which ranges from 0 for

disjoint structures to 1 for a perfect match. A Mann-Witney test is performed to

Method
Predicted follow-up visit

M12 M24 M36 M48 M60 M72 M96
N=140 N=134 N=123 N=113 N=81 N=62 N=17

[exp] .882
.884

.852

.852
.825
.809

�
��

.796
.764

�
���

.768
.734

�
��

.756
.706

�
���

.730
.636

�
��[ref]

Table 1: Averaged Dice performance measures. In each cell, the first line gives the

average performance of the exp-parallelization-based prediction [exp], and the

second line the reference one [ref]. Each column corresponds to an increasingly

remote predicted visit from baseline. Significance levels [.05, .01, .001].

Figure 3.24: Empirical rel-
ative error of the paral-
lel transport in a high-
dimensional setting.
In black the proposed algo-
rithm, in green the WEC
variant, in red the RK4
variant, and in blue the
SPG one.

3000 control points were used in the regression, so that the manifold considered is here of
dimension 9000.

Figure 3.24 gives the results for the proposed algorithm and three variations : without
enforcing the conservations at step v (WEC), using a Runge-Kutta of order 4 at step ii
(RK4), and using a single perturbed geodesic to compute J at step iii (SPG). We recover
a linear behavior with the size of the step 1

N
in all cases. The SPG variant converges much

slower, and will not be used in the sequel.
For the other algorithms, the empirical relative error remains below 5% with 15 steps or

more, and below 1% with 25 steps or more. The slopes of the asymptotic linear behaviors,
estimated with the last 10 experimental measurements, range from 0.10 for the RK4 method
to 0.13 for the WEC one. Finally, an iteration takes respectively 4.26, 4.24 and 8.64 seconds
for the proposed algorithm, the WEC variant and the RK4 one. Therefore the initially
detailed algorithm in Sec. 3.6.2 seems to achieve the best tradeoff between accuracy and
speed in the considered experimental setting.

3.7 Spatiotemporal models of shape changes

3.7.1 Exp-parallelization in shape spaces

Given the numerical scheme given above, we can define the exp-parallelization in a
finite-dimensional manifold of diffeomorphisms, and hence in a shape space by the action
of the diffeomorphisms on a shape (see Chap. 2).

For c0 be a set of control points, let GVc0
be a finite-dimensional manifold of diffeomor-

phisms defined in Sec. 2.2.1. Let �cO,m0
t

be a geodesic path in GVc0
starting at identity at

time-point t0 in the direction of the momenta m0 in the co-tangent space V ⇤
c0

. Using the
Riemannian exponential notation, we may write �cO,m0

t
= Expid((t� t0)K(c0)m0).

The exp-parallelization of the such a geodesic in the direction of w 2 Vc0 writes then:

⌘w
(�c0,m0

.
)(t) = Exp

�
c0,m0
t

(P�c0,m0
.

,t0,t(w)), (3.7.1)

which is nothing but the composition of two diffeomorphisms: �c0,m0
t

2 GVc0
followed by
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�
�t(c0),P

�
c0,m0
t

,t0,t
(w)

1 2 GV�t(c0)
:

⌘w
(�c0,m0

.
)(t) = �

�t(c0),P
�
c0,m0
t

,t0,t
(w)

1 � �c0,m0
t

. (3.7.2)

As explained in Sec. 2.2.1, the results of the composition is still a diffeomorphism in GVc0
,

so that the Exp-parallelization defines a curve in GVc0
.

For a shape S0 like an image seen as an element in L2
(⌦, R) or a mesh seen as an

element in a current or varifold space, this path in GVc0
translates into a trajectory in the

corresponding shape space via the action:

S(t) = �c0,m0
t

? S0 (3.7.3)

for the geodesic, and
Sw

(t) = ⌘w
(�c0,m0

.
)(t) ? S0 (3.7.4)

for the exp-parallel to the geodesic S(t).
In practice the geodesic is computed by integrating the Hamiltonian equations and the

flow equations. The exp-parallel is computed by parallel transporting the tangent vector w

using the Fanning scheme presented in the previous section followed by the exponentiation
that is computed by integrating again the Hamiltonian equation and flow equations.

Figure 3.25 illustrates the whole procedure. From the top-left shape, the computational
scheme is as follows: integrate the Hamiltonian equations to obtain the control points c(t)

(red crosses) and momenta m(t) (bold blue arrows) ; compute the associated velocity fields
vt (light blue arrows) ; compute the flow t! �t?S0 (trajectory of shape changes) ; transport
the momenta w along �c0,m0

.
(red arrows) ; compute the exp-parallel curve ⌘ by repeating

the three first steps along those transported momenta.
Fig. 3.26 presents two other examples of exp-parallelization in shape spaces.

3.7.2 Mixed-effects models in shape spaces

We are now in a position to give an instance of the generic mixed-effect model in
Eq. (3.2.3) for the estimation of personnalized shape models from longitudinal shape data
sets.

The model mixing exp-parallelization and time-warping writes using notation of Chap. 2:

Oi,j = ⌘wi(�c0,m0
.

) ( i(tij)) ?O0 + ✏i,j . (3.7.5)

where the exp-parallelization writes according to (3.7.2) ⌘wi(�c0,m0
.

)( i(tij)) =

�
� i(tij)

(c0),P
�
c0,m0
 i(tij)

,t0, i(tij)
(wi)

1 � �c0,m0

 i(tij)
, and the noise variable ✏i,j are defined in Chap. 2

for each type of objects. The training data set consists in the observations Oi,j that denotes
the jth observation of the ith subject observed at time-point tij .

The time warp function  i and the space-shift wi 2 Vc0 respectively encode for the
individual time and space variability. The time-warp is defined as an affine reparametriza-
tion of the reference time t :  i(t) = ↵i(t � t0 � ⌧i) + t0 where the individual time-shift
⌧i 2 R allows an inter-individual variability on the stage of evolution, and the individual
acceleration factor ↵i 2 R⇤+ a variability on the pace of evolution. For convenience, we
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Figure 3.25: Samples from a geodesic S(t) (top) and an exp-parallelized curve Sw
(t) (bot-

tom). Geodesic parameters are the blue momenta attached to control points and plotted
together with the associated velocity fields. Momenta in red are parallel transported along
the geodesic and define a deformation mapping each frame of the geodesic to a frame of
Sw.

write ↵i = exp(⇠i). In the spirit of Independent Component Analysis, the space-shift wi

is assumed to be a linear combination of ns sources, gathered in the ncp ⇥ ns modulation
matrix A : wi = A

m
?
0
si. Before computing this superposition, each column cl(A) of A

has been projected on the hyperplane m?0 for the metric K(c0), ensuring the orthogonality
between m0 and wi.

Eventually, the fixed effects are the template shape O0, the set of control points c0 and
the momentum vectors m0 parameterizing the group-average geodesic, and the modulation
matrix of the space shift A. The random effects are the time-shift ⌧i, acceleration factor
↵i = exp(⇠i) and sources si.

We implemented a MCMC-SAEM algorithm to estimate the model parameters, assum-
ing that fixed effects become random variables with small variance so that the model belongs
to the exponential family. We used a Metropolis within block-Gibbs sampler where the pro-
posal distribution is an adaptive symmetric random walk. For the template shape, we used
the specific proposal distribution described in 2.4.5.2. The whole estimation procedure is
detailed in [Bône 2017a].

3.7.3 Personalizable dynamic model of shape changes

3.7.3.1 Experiments on simulated data

We first conduct experiments on simulated data, which are generated from the model.
Our choice of reference geodesic � is plotted on top line of the previously introduced
Fig. 3.25: the template O0 is the top central shape, the chosen five control points c0 are
the red crosses, and the momenta m0 the bold blue arrow. We set ntruth

s
= 4 independent

components, and we simulate N = 20 individual trajectories and sample 5 observations in



3.7. Spatiotemporal models of shape changes 111

each trajectory.
Fig. 3.27 and 3.28 display results for 4 components. At the top of figure 3.27 are

displayed the true and estimated template shapes O0 as well as the optimal and estimated
geodesic velocity fields v0 = K(c0)m0 (blue arrows). The difference between those two fields
if represented by the red arrows, and has been scaled by a factor 10 in order to be visible.
These results show that the algorithm recovered the true geometries quite well, especially
considering the very low sample size compared to the number of parameters to estimate.

The bottom part of Fig. 3.27 plots the evolution of the variance parameters �✏,�⌧ ,�⇠
along the iterations of the algorithm, for three different runs. The unexplained variance
quickly drops to 4% of the initial variance. The errors on the other parameters quickly
drops and then oscillate around values close to zero.

We estimate the model with ns 2 {1, 2, 3, 4, 5, 6} components, yielding a percentage of
unexplained variances of 6.03%, 4.42%, 4.17%, 4.09%, 4.06% and 4.05% respectively. These
experiments suggest that our method is robust with respect to user choices.

One may personalize the model by using the mode of the posterior distribution of the
random effect given the observations. This mode can be computed easily for the training
samples by using the last iterations of the Markov Chain. The personalization to one
subject is shown in Fig. 3.28 and shows how well the estimated model reconstructs the

Figure 3.26: Two toy exam-
ples that illustrate the exp-
parallelization concept. In
each scenario, the top
row displays the refer-
ence geodesic successively
at time 0, 0.5 and 1. In
green is plotted the initial
velocity field corresponding
to w, whose Riemannian
exponentiation gives the
bottom-left target shape.
The red vector fields are the
successive variations aris-
ing from the parallel trans-
port, i.e. the differences
in V between the veloc-
ity fields corresponding to
the transport of w and the
one corresponding to w.
The bottom rows display
the shapes along the exp-
parallel curves.
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Figure 3.27: Final population parameters at the top, evolution of the variance of the random
effects along the iterations of the SAEM at the bottom. The true template and velocity
fields are compared to the estimated ones on the top-right subplot, where the difference of
velocity fields has been scaled by a factor 10. The evolution of the variance parameters is
given for three different runs with the same settings.

observations. Nevertheless, given the small number of training samples, it is possible that
this good reconstruction results from an over-fit of the training data.

3.7.3.2 Construction of spatiotemporal model of hippocampal atrophy

We segment of the hippocampus of the right hemisphere and transformed them into
surface meshes from T1-weighted Magnetic Resonance Images (MRI) of the ADNI database
in N = 11 subjects with an average n = 8.4 time-points per subjects. The subjects present
Mild Cognitive Impairements at baseline, and are eventually diagnosed with Alzheimer’s
disease (MCIc patients) during the observation period. We use this data set to show how
to construct a model of morphological changes of the hippocampus at the early stages of
the Alzheimer’s disease.

We initialize the geodesic population parameters O0, c0, m0 with a geodesic regression
of the data of a single subject, as explained in [Fishbaugh 2013c, Fishbaugh 2017] and
Sec. 2.6. After 5000 iterations of the MCMC-SAEM, the parameter estimates stabilized,
and the percentage of unexplained variances were respectively 21.9%, 16.4% and 8.4% of
the initial variance for ns = 1, 2, 4 sources. For ns = 4 sources, Fig. 3.29 plots the estimated
model of hippocampal atrophy, which is in line with medical knowledge. In particular, it
confirms that hippocampal atrophy follows a complex spatiotemporal pattern, which may
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Figure 3.28: Reconstruction of the longitudinal observations of a subject from the estimated
model (solid black), compared with the truth (red dashes).

75.7 y 78.3 y 80.8 y 83.3 y 85.8 y 88.3 y 90.8 y

Figure 3.29: Average spatiotemporal model of hippocampal atrophy estimated from N = 11

MCI-converters subjects.

not be well decribed by the single volume, as usually done in clinical trials for the assessment
of drug efficacy. Fig. 3.30 exhibits a strong correlation between the estimated individual
time-shifts ⌧i and the age of diagnostic, giving indirect validation of the estimation of the
time-warp functions.

This experiment shows how the proposed approach leads to the estimation of dynamical
model of disease progression depicting highly non-linear spatiotemporal patterns of shape
changes. More work has to be done though to better understand the behavior of the algo-
rithm, such as convergence of the fixed effects, speed of convergence with different sampling
strategies and number of training samples. We need also to investigate the generalizability
of the model to unseen data, and its accuracy in predicting time-to-disease onset.
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Figure 3.30: Comparison of the estimated individ-
ual time-shifts ⌧i (augmented with the estimated
reference time t0) with the age of diagnostic. The
exhibited strong correlation suggests that the es-
timated model captures well the relative stages of
development of the disease across patients.
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4.1 State-of-the-art and objectives

4.1.1 Methodological challenges raised by the study of brain aging

According to the European Brain Council, neurodegenerative diseases like Alzheimer’s
disease, Parkinson’s disease and other forms of dementia cost up to 24 billions Euros in
2010 in the European Union, a number that is likely to sharply increase with the aging of
the population [Olesen 2012]. Despite an unprecedented research effort in the last decades,
no treatment for Alzheimer’s disease has been proven yet to be effective. We have gained a
better understanding of the lesions that are responsible for normal and pathological brain
aging at the molecular and cellular level, but there is currently no accurate maps of the
propagation of these lesions in the brain both in space (across brain regions) and in
time (during aging or disease progression). Unveiling the spatiotemporal profiles of lesion
propagation would be an important step toward a better characterization of the pathologies
of brain aging, a better understanding of how symptoms relates with underlying biological
processes and then the design of more effective therapeutic strategies [Jucker 2013].

Multimodal medical imaging offers a unique opportunity to track such lesion prop-
agation, as it allows to have access to an incredible amount of volumetric measurements of
toxic protein accumulation in the brain, local alterations in neuronal activity, metabolism
and function, as well as morphological changes in brain structure. These data take the
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form of meshes representing grey matter structures and white matter fiber tracts connect-
ing them, which are embedded into the image domain where anatomical, functional and
metabolic signals are measured, a typical example being shown in Fig. 4.1. Altogether, these
data form rich iconic-geometric representations of the brain anatomy and function.
To track the changes due to aging or disease progression in these measurements, one needs
repeated observations of the same individuals over time. A collection of different objects,
where each object is observed at several points in time is called a longitudinal data set.

The statistical analysis of longitudinal data sets requires to average individual trajec-
tories of temporal changes. Averaging iconic or geometric data within a group is already a
difficult task because of the complexity of the brain structure and function and its impor-
tant variability across individuals. The addition of the temporal dimension raises specific
difficulties. Differences between the observations of two individuals may be due to intrin-
sic differences in their brain anatomy and function or to differences in the pace of their
anatomical and functional alterations during normal or pathologic aging. Even at the same
age, two individuals may be at a different stage of aging or disease progression. Learning
typical scenarios of object changes from examples requires to disentangle variability in
individual trajectories and in paces at which these trajectories are followed.

The detection of pathological effects in otherwise normally aging individuals questions
the usual case-control paradigm in medical data analysis. The clinical diagnosis of neu-
rodegenerative diseases mainly relies on the observation of the symptoms of the patients.
The same symptom may be due to different lesion propagation pathways, which intersect
in the same functional area of the brain. The diagnosis could not be used therefore to pool
patients with similar spatiotemporal patterns of lesion propagation. Furthermore, patients
often suffer from multiple symptoms present in different pathologies, so that their lesions
are likely to propagate along a superimposition of spatiotemporal patterns. Last but not
least, normal and pathologic aging scenarios cannot be considered as two distinct categories,
since disease onset is a progressive departure from an otherwise normal aging scenario.
At the early phases of disease, symptoms like slight memory impairment are shared by
normal aging individuals and future demented patients. The clinical diagnosis could be not
used though to identify the disease onset, since pathologic lesion propagation is likely to
have started decades before the first symptoms [Jucker 2013]. The role of the statistical
analysis is precisely to detect the emergence of pathological effects, and identify what
is pathologic: an atypical propagation pathway, a greater amplitude of the lesions, an
earlier start of the propagation along typical pathways, a faster progression speed?

This project proposes to address these questions by the construction of virtual dy-
namical models of normal and pathologic brain aging. These models will result from
the learning of typical spatiotemporal patterns of lesion propagation in longitudinal
data sets of iconic-geometric data. Complex individual trajectories of brain aging will
need to be decomposed into a set of elementary spatiotemporal patterns, and indi-
viduals will need to be clustered according to their patterns of lesion propagation. The
quantitation of the typical variations in the propagation pathways and the pace of lesion
propagation should allow the detection of atypical pathways or atypical dynamics of
propagation, as early signs of disease onset.
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Figure 4.1: Example of iconic-
geometric representation of the
brain including meshes of the
cortex (red), sub-cortical struc-
tures (blue) and white mat-
ter fiber tracts (green) superim-
posed with the Magnetic Reso-
nance Image (MRI) of an indi-
vidual. Various functional mea-
surements are defined on the
same image domain, such as
sources of electrical or magnetic
activation, or signals from func-
tional MRI.

4.1.2 Computational and statistical bottlenecks

4.1.2.1 Computational models in neuroimaging

The first difficulty in the analysis of neuroimaging data comes from the inherent complex-
ity of the image data themselves. A usual strategy is to reduce this complexity by extracting
a set of global, regional or point-wise descriptors from the images and treat them as a fea-
ture vector. Various statistical tools, including recent machine learning techniques, may be
used to identify the most relevant measurements, correlate them with clinical data, or find
boundaries between groups. This approach is standard in the search for imaging biomark-
ers of neurodegenerative diseases, as one can be convinced by the workshops dedicated to
this topic at the flagship conference MICCAI [Wang 2012b, Sabuncu 2014, Wu 2014]. This
descriptive approach has led to a vast collection of heterogeneous findings depending on
the choice of descriptors, models and statistical methods. Combinations of features that
result from temporal regression or interpolation are difficult to interpret, since they may
not reflect realistic changes in the brain images. Moreover, the spatial relationship among
measurements is lost, so that it is difficult to track temporal changes of the features across
neighboring brain regions.

Generative statistical approaches are based on realistic models of variations of the mea-
sured signals. They allow the construction of realistic virtual models of the brain and to
visualize statistical results, such as the temporal regression, as variations and deforma-
tions of this model. We defined such a generative approach for the analysis of the shape
of anatomical structures given as images or sets of meshes [Durrleman 2013b, Gori 2013,
Durrleman 2014b]. Shape variations are modeled by diffeormorphic deformations of the
ambient space, which guarantee the preservation of the topology of the shapes and of the
anatomical organization of the brain. The progressive atrophy of brain structures during
aging may be displayed then as a deformation of the meshes. The development of this
methodology was initiated in the field of shape analysis [Miller 2002] and has not yet tack-
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led the problem of combining this geometrical information with functional signals
superimposed with it, such as fMRI images or M/EEG signals after source reconstruc-
tion. The main difficulty resides in the definition of realistic changes in the dynamics of
functional signals, and the combination of these changes with deformations of the underly-
ing anatomy on which functional signals are measured. The combination of surfaces of gray
matter structure and fiber bundles of the white matter in [Gori 2013] may be key to con-
strain signal changes to propagate along neuronal fibers. Taking into account constraints in
the model, such as topology preservation for shapes or propagation of signal changes in fa-
vored directions, often implies that variations of data are modeled by mathematical objects,
like diffeomorphisms, which do not live in standard Euclidean spaces but on Riemannian
manifolds instead.

4.1.2.2 Longitudinal models

Mixed-effects models provide a rich and powerful framework for the study of longitu-
dinal data [Fitzmaurice 2012]. The hierarchical nature of these models allows the estimation
of group average trajectories and the variations of this trajectory across individuals. They
do not require that subjects are observed the same number of times and at the same time-
points, a characteristic that is crucial in the study of brain aging. Nonetheless, these models
have been designed for data that can be summed up or scaled, and do not extend easily
to Riemannian manifolds. These models often assume a reference starting time point at
which the measurements could be compared, such as the time of drug injection in phar-
macokinetics studies [Lavielle 2014]. In neurodegenerative diseases, the stage of disease
progression of a given patient is unknown, and is, by contrast, one of the main variables of
interest. Several practical solutions have been provided to the problem of the estimation of
disease progression stage, for instance in [Wang 2012a, Delor 2013]. Combining the estima-
tion of the disease progression with inter-individual differences is difficult, since differences
between observations of two subjects may be due either by the fact that they are following
different trajectories, or by the fact that they follow the same trajectory but at a different
pace. To that purpose, we have introduced the concept of “time warp” to account for
differences in the dynamics of individual trajectories [Durrleman 2009b, Durrleman 2013b].
We included this time re-parameterization in mixed-effect models for anatomical shape
data. We assumed inter-individual differences to be independent of time to address the
problem of disentangling changes in shape and in pace of shape changes. This assumption
is questionable for observations over long periods of time and does not take full advan-
tage of the intrinsic properties of the underlying Riemannian manifold. This concept of
time-warping has been included in [Su 2014], but for data that do not need to be spatially
registered. The method proposed in [Singh 2013] uses the concept of parallel transport for
registering trajectories of data with different shapes, but in a way that does not allow time
re-parameterization. Other pragmatic solutions can be found in the archived proceedings of
the MICCAI workshop “Spatiotemporal Image Analysis for Longitudinal and Time-Series
Image Data” [Fletcher 2010, Durrleman 2012a, Durrleman 2014a]. However, no generic ap-
proach has emerged yet for the statistical analysis of longitudinal data on Riemannian
manifolds with unknown progression stage.
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4.1.2.3 Beyond hypothesis testing in case-control studies

Last but not least, statistical methods in neuroimaging have been dominated by the
framework of hypothesis testing in case-control studies. Such an approach requires the def-
inition of well-defined categories and sensible hypotheses to test. The goal of the project
is precisely to find hypotheses about the onset of neurodegenerative diseases thanks to
the identification of specific spatiotemporal lesion propagation patterns. Using the clin-
ical diagnosis to pool individual into categories is not ideal, as the diagnosis is mostly
based on the observation of symptoms. Symptoms may not distinguish between distinct
lesion propagation pathways, which intersect in the same functional areas. Symptoms also
partially overlap with those of the normal aging at the earliest stages of a disease. There-
fore, one could not think of normal and pathologic aging, and the different pathologies
among themselves as distinct categories, but rather as a spectrum of pathologies that pro-
gressively emerge from an otherwise normal aging scenario. This situation requires a
change of paradigm in neuroimaging by the development of techniques for unsupervised
clustering and estimation of mixtures of distributions [Dempster 1977]. The framework
of independent component analysis [Moulines 1997, Attias 1999, Allassonnière 2012] may
allow the estimation of elementary spatiotemporal patterns of brain aging, which
would combine to give a specific aging scenario for each individual. This technique needs
to be adapted, though, to find disease-specific effects that progressively emerge from the
large variability in the normal aging process. Another specificity in imaging science is that
one often falls within the “high dimensional low sample size” paradigm. Aforementioned
decomposition in independent component is a way to reduce the number of parameters
to estimate. It is an example of non-Gaussian distributions, which seems to be well
suited for data embedded in a very high dimensional space that tend to concentrate at the
corners of the space [Jung 2009]. Using such distributions in statistical models that deal
with imaging data requires the development of approximation schemes to cope with
the cost for computing the likelihood, such as Variational Bayes or stochastic approxima-
tions [Delyon 1999, Blei 2006].

4.1.3 Objectives

The lack of computational models, which may aggregate various imaging data in complex
iconic-geometric representations, currently hampers the use of generative models in brain
imaging despite the strong interest they raise due to their interpretability. Usual mixed-
effects models for longitudinal data do not easily extend to data lying on Riemannian
manifolds, and are not adapted to situations where the stage of development of each object
is not known. The detection of atypical effects that progressively emerge from otherwise
typical scenario of changes could not be done in the standard statistical paradigm, which
assumes well-separated categories.

To change this situation, we propose to develop a new generation of computational
and statistical tools to learn typical spatiotemporal patterns of lesion propaga-
tion in longitudinal iconic-geometric data sets, which will

• define continuous variations and deformation of iconic-geometric data for
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modeling inter-individual differences in brain anatomy and function and for tracking
propagation of lesions during aging or disease progression,

• design mixed-effect longitudinal models for such variation-deformations consid-
ered as continuous paths on Riemannian manifolds, which will be based on a generic
approach to decompose variability due to differences across objects and differences in
the pace of change of each object,

• decompose complex individual patterns of lesion propagation into a set of elemen-
tary spatiotemporal patterns, and estimate non-Gaussian distributions of ran-
dom effects with categorical variables whose likelihood will indicate the progressive
emergence of atypical effects.

These objectives represent three methodological challenges at the crossroads of 3D mod-
eling, image analysis, statistical learning and Riemannian geometry.

4.2 Methodology

To put it in a nutshell, we propose to reach these objectives by the construction and
inference of the following statistical model:

Dij = �ico-geo
ij

? T (c)
0

�
 i(tij)

�
+ "ij , (4.2.1)

meaning that the jth observation of the ith subject at time point tij , which is denoted
Dij , derives from a variation-deformation �ico-geo

ij
of the average change trajectory from cth

cluster T (c)
0 (t) at time-point  i(tij), which is different from tij , up to a residual random

noise "ij .
To make sense of this model, we propose to divide the work into four work-packages:

• The first work-package will deal with the geometrical modeling, namely the def-
inition a model of variation-deformation of iconic-geometric data, and a model of
random noise, which amounts to define a metric between iconic-geometric data.

• The second work-package will define the mixed-effect model, considering the aver-
age trajectory as fixed effect, variation-deformation �ico-geo

ij
as random effects account-

ing for differences in individual trajectories, and “time-warps”  i as random-effects
accounting for differences in pace of changes along individual trajectories. We will
introduce orthogonality condition between the average trajectory and the variation-
deformation �ico-geo

ij
to ensure a unique decomposition of individual series of observa-

tions onto the model,

• The third work-package will define the distribution of the random effects as a
mixture of distributions, where each component is a superimposition of statistically
independent sources, some sources being forced to be “switched off” for normally aging
individuals and to progressively emerge for pathological cases.

• The fourth work-package will apply these tools to recently acquired clinical data
sets, which include normally aging individuals and patients suffering from a wide
spectrum of neurodegenerative diseases.
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4.2.1 WP1: Construction of deformable iconic-geometric model

The objectives of this work-package are:

• the definition of variation-deformations of iconic-geometric data, namely the “star”
operation: �ico-geo ?D,

• the construction of continuously varying families of variation-deformations as geodesic
paths on a Riemannian manifold, denoted �ico-geo

(t) = Exp
t
extp0,t0 (v0) (t),

• the definition of the noise model of each modality "ij , which determines, in turn, a
metric between iconic-geometric data,

• the evaluation of the previous modeling choices in a registration task, which amounts
to estimate the variation-deformation �ico-geo which best align two iconic-geometric
data D1 and D2. Registration may be seen as a simplified static version of our
statistical model, where one wants to find the optimal parameter v which minimizes
the residual error " in:

D2 = �ico-geo ?D1 + " (4.2.2)

with �ico-geo
= Exp

t
extp0,0 (v) (1).

Task 1.1: Definition of variation-deformation of iconic-geometric data. An
iconic-geometric data is a series of K signals Sigk 2 Rn (k = 1, . . . , K) measured on a
support Suppk, which takes the form of either the image domain ⌦ or a mesh M , seen as
a sub-manifold embedded into ⌦. A variation-deformation is composed of two mappings
�ico-geo

= (�ico,�geo
). The one-to-one 3D map �geo from ⌦ to itself deforms the image

domain, as well as any meshed embedded into the domain as �geo
(Suppk). The signal is

therefore changed by the deformation of its support as Sig � (�geo
)
�1. In addition, we

introduce an iconic change of the signals at each voxel or vertex, so that the signal is
changed to �ico � Sig � (�geo

)
�1, �ico being a map from Rn to Rn. Therefore, the action

of the variation-deformation on each component of the data D = {Suppk, Sigk}k=1,...,K is
given by:

�ico-geo ? (Suppk, Sigk) =

( �
⌦,�ico � Sigk � (�geo

)
�1
�

for images,
�
�geo

(M),�ico � Sigk � (�geo
)
�1
�

for meshes.
(4.2.3)

For the purpose of this project, we want to construct continuously varying variation-
deformations by the integration of a vector field on ⌦ ⇥ Rn, which may be seen as an
infinitesimal variation-deformation. A generic approach allows the construction of a Rie-
mannian manifold from the choice of a parameterization and a metric for the vector
fields [Miller 2002, Trouvé 2005]. The result of the integration of a vector field is a path
on the manifold. Among these paths, shortest paths named geodesics are of particular
interest as they are fully determined by the velocity field at only one time-point. This
approach has been followed in [Miller 2002] for the construction of diffeomorphic geometric
deformations, thus ignoring the iconic part in (4.2.3). In [Durrleman 2014b], we make the
parameterization of such deformations independent of the data to be deformed, thus allow-
ing the combination of image and mesh data in the same computational framework. The
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combination of the diffeomorphisms of [Miller 2002] with iconic variations for scalar images
has been proposed in the framework of metamorphosis [Trouvé 2005].

We propose here to extend the framework of metamorphosis. First, we will con-
sider not only deformation of images but also of meshes, which requires to take into
account a different action of the deformation to the geometric part of the data. Sec-
ond, we will extend variations of scalar measurements to variations of dynamical sig-
nals, such as signal of brain activation recorded over a short period of time. To com-
pare such dynamical measurements across different individuals, we propose to use the
average amplitude of the Fourier transform of the signals over various frequency bands
with biological significance, such as the gamma or alpha band. The same construction as
in [Miller 2002, Trouvé 2005, Durrleman 2014b] will allow the definition of geodesic paths
of variation-deformations, which will be parameterized by an initial vector field composed of
a geometric and an iconic part. We will write such geodesics passing by point p0 at time t0
with velocity v0 as Exp

t
extp0,t0 (v0) (t) for all t, where Exp

t
ext stands for the Riemannian

exponential.

Eventually, the framework of metamorphosis allows the value at each voxel to vary
independently of each other. We propose here to include spatial smoothness constraints
in the variation of the signals, for instance by using kernel interpolation of vector weights
sparsely distributed over the image domain or over the meshes. In this case, a geodesic
path connecting any pair of iconic-geometric data does not necessarily exist, unlike in the
framework of metamorphosis. It will make the model variation-deformation more realistic
from a biological point of view and more robust to noise.

Task 1.2: Definition of noise distribution. A central aspect of the model in (4.2.1)
is the definition of the distribution p" of the noise parameters ". We will assume that
these parameters follow a Gaussian distribution, so that the likelihood p(Dij |T0,�

ico-geo
ij

) =

p"(Dij ��ico-geo
ij

?T0(t0ij)) is proportional to Exp
t
ext
⇣
kDij � �ico-geo

ij
? T0(t0ij)k2/�2

"

⌘
. This

norm measures how well the current estimate of the variation-deformation allows a good
match between the model T0 and the observation Dij , and will appear here and there in
the cost function to optimize as the fidelity-to-data term.

The norm has to be defined for each kind of data. For scalar images, we will assume that
the noise parameter "ij are images of white noise, so that the corresponding norm is the L2

norm between maps from ⌦ to R, which is implemented as the sum of squared differences
between image intensities. This model extend straightforwardly to vector-valued images,
as the L2 norm between maps from ⌦ to Rn. For meshes, the metric on currents, which ap-
plies for both surface and curve meshes, does not require establishing point-correspondence
between meshes, is robust to noise and mesh imperfection such as small holes or irregular
meshing. We used this metric extensively in our previous works and defined in [Gori 2013]
the probability density function of discrete currents that is associated to this norm. The
concept of functional currents has been recently introduced in [Charon 2013] for defining
a metric between meshes with a signal mapped onto them. In this task, we will define
the noise model associated to the functional currents, using the same approach we followed
in [Gori 2013] for currents.

Task 1.3: Registration of iconic-geometric data. In this task, we will evaluate our
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model of variation-deformation and metric on iconic-geometric data in registration tasks.
The problem of registering two data sets can be seen as the estimation of a simplified static
version of the statistical model (4.2.1). We consider D1 and D2 two data sets and the
following model: D2 = �ico-geo ?D1 + ", in which we consider the initial velocity field v of
variation-deformation �ico-geo

= Exp
t
extp0,0 (v0) (1) as a parameter of the model. The point

p0 is such that the Riemannian exponential will be the identity variation-deformation (i.e.
no changes) at t = 0. The maximum likelihood estimation of the deformation amounts to
minimizing the discrepancy kD2��ico-geo ?D1k2 over the velocity field parameters. We will
use gradient-based optimization methods such as a gradient descent with adaptive step-size,
Nesterov scheme [Nesterov 1983] or L-BFGS scheme among other possible choices.

The main difficulty in this task is to compute the gradient of the data term with respect
to the initial velocity v0. The variation-deformation in the data term is the endpoint
(at t = 1) of a geodesic path, resulting from the integration of the initial velocity v0

and point p0 from t = 0 to t = 1. Our previous works on scalar images and meshes
in [Durrleman 2013b, Durrleman 2014b] show that there is a generic way to compute the
gradient of the likelihood by transporting the gradient of the fidelity-to-data term defined
at the endpoint t = 1 back to time t = 0 using a the linearization of the geodesic equations.
We will use the same approach to compute the likelihood gradient for variation-deformation
of iconic-geometric data.

Experiments on samples taken from our clinical data sets (see WP4) will help to evalu-
ate our modeling choices. The problem of registering functional data among patients with
important anatomical alterations is known to be difficult. We expect that using simulta-
neously functional and anatomical data to define the optimal alignment between data sets
will help to obtain more robust and more precise matching of both kinds of data.

4.2.2 WP2: Mixed-effects longitudinal models

The objectives of this work-package are:

• the estimation of a regression model to build a continuous trajectory of variation-
deformation from sparse time-series of observations Dj , which can be seen as the esti-
mation of the following simple model where one does not account for inter-individual
variability:

Dj = T0(tj) ?B0 + "j , with T0(t) = Exp
t
extp0,t0 (v0) (t) (4.2.4)

with B0 a virtual iconic-geometric representation of the subject’s brain at time t0
and the initial velocity v0, both parameters being estimated as the equivalent of the
intercept and slope in a linear regression framework,

• the estimation of our longitudinal model in (4.2.1) for a single cluster and Gaussian
distribution for the random effects.

Task 2.1: Regression of time-series of iconic-geometric data. We will address
here the problem of estimating a continuous scenario of iconic-geometric changes from
few observations Dj of the same subject at different ages tj . This can be considered as
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a simplified version of the statistical model in (4.2.1): Dj = T0(tj) + "j where "j are
noise variables as defined in WP1. The continuously time-varying trajectory of variation-
deformation T0(t) is supposed to be a continuous deformation of a virtual iconic-geometric
representation B0, T0(t) = �ico-geo

0 (t) ?B0, where �ico-geo
0 (t) = Exp

t
extp0,t0 (v0) (t) follows a

geodesic path on the Riemannian manifold defined in WP1. Observations are supposed to
be samples of this continuous trajectory at time-points {tj}j , up to a residual random error.
The point p0 will be chosen so that the Riemannian exponential is the identity mapping at
time-point t0. Here, the reference-time point t0 will be set by the user, typically at a time-
point of particular interest. The parameters that remain to be estimated are: the virtual
representation of the data B0 at time-point t0, which is called “baseline” and the velocity
v0 of the trajectory in the tangent-space of the manifold at point p0. These two parameters
are the analog in this Riemannian setting as the intercept and slope in a standard linear
regression framework. The baseline B0 is supposed to be representative of the subject’s
brain anatomy and function at the chosen time-point t0.

The log-likelihood of this model, assuming independence of noise variables, is propor-
tional to the sum of the residual errors: L =

P
tj
kDj � T0(tj)k2. This likelihood is similar

to the likelihood of the registration problem in Task 1.3, except that the residual error at the
endpoint of the geodesic path is replaced by a sum of residual errors at several intermediate
time-point. We computed the gradient of this likelihood for meshes without signals attached
to them in [Fishbaugh 2013c]. We showed that the gradient with respect to the velocity
parameters v0 can be obtained by integrating the same set of linear differential equations as
in Task 1.3, except that the gradients of the residual errors at time tj are added as jumps in
the backward gradient integration scheme, instead of appearing at the final condition of the
differential equations. We showed also that the result of this backward integration allows
the optimization of the locations of the vertices in B0 at no additional computational cost
and in a way that preserves the topology of the meshes [Durrleman 2014b]. We extended
this framework to scalar images in [Fishbaugh 2013a, Fishbaugh 2013b].

In this task, we propose to extend this framework to variation-deformation of iconic-
geometric dataset. Since our project is built on the same mathematical foundations, there is
no theoretical bottleneck to derive the gradients in the same way for variation-deformations,
which are constructed as geodesic paths on a Riemannian manifold. From a numerical
point of view, adding more variables in the optimization raises the problem of efficiently
adjusting the step-sizes during line-search. We will benchmark several methods developed
in the numerical optimization community to address this issue [Tibshirani 1996, Efron 2004,
Nocedal 2006]

To better model lesion propagation during aging, we will constrain to find the optimal
scenario of changes �ico-geo

0 within a sub-set of geodesic paths. We propose to construct
a family of “propagation geodesics” as follows: from a 1D geodesic path of signal change
at a given location �(t), we build a signal change in the whole support by continuously
delaying this signal change over the neighboring voxels or vertices. The resulting path
(�(t), . . . , �(t + �k), . . . , �(t + �n)) is still a geodesic. The continuous maps {�k} over the
domain or mesh will be estimated as another fixed effect of the model.

Task 2.2: Design of a mixed-effect longitudinal model. In the previous task,
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we estimated a continuous trajectory from a time-series data set, thus estimating temporal
changes without taking into account inter-individual variability. In the registration task
of WP1, we estimate inter-individual differences without taking into account the fact that
observations are indexed by time. In this task, we aim at combining the estimation of
inter-individual differences and temporal changes using hierarchical mixed effect models.

The previously introduced continuous trajectory T0 will be considered now as an average
trajectory of a group of subjects observed repeatedly at few time-points. The parameters
of this trajectory, namely the baseline B0 and velocity v0 will be fixed effects of the model.
The baseline B0 is now supposed to be representative of the brain anatomy and function of
the group of subjects at time t0. We will introduce two kinds of random effects to generate
subject-specific trajectories from the average trajectory.

First, we take into account the fact that observations come from different objects with
intrinsic differences. At time t0 and point p0, we assume that an observation is gener-
ated by varying-deforming the average trajectory at this time point: T0(t0) = B0. We
assume that this variation-deformation is the endpoint of a geodesic path starting at p0:
Exp

t
extp0,0 (vi) (1). We propose to constrain the velocity vi to be orthogonal to the velocity

of the average trajectory v0 (see Fig. 4.2). To generate an observation of the subject i at a
later time-point tij , we may vary-deform the average trajectory at this time-point T0(tij)

along the direction vij , which results from the parallel transport of the velocity vi from t0
to tij along �ico-geo

0 , which is written as: vij = P�0
t0,tij

(vi). Since the parallel transport is an
isometry between any tangent-spaces along the average trajectory, the velocity vij is also
orthogonal to the velocity of the average trajectory at �ico-geo

0 (tij) (see Fig. 4.2). Therefore,
the data Dij from subject i at time-point tij is supposed to derive from T0 by:

Dij = �ico-geo
ij

? T0(tij) + "ij (4.2.5)

with

• �ico-geo
ij

= Exp
t
extpij ,0(vij)(1), the endpoint of the geodesic of unit length starting at

point pij ,

• vij = P�0
t0,tij

(vi) with vi orthogonal to v0, so that this orthogonality condition is valid
all along the average trajectory,

• pij = Exp
t
extp0,t0(v0)(tij), the point on the average trajectory at time point tij

In this construction, successive data {Dij}j of the same subject i are seen as samples of
a continuous subject-specific trajectory Di(t), which is parallel to the average trajectory:
Di(t) = Exp

t
extp(t),0

⇣
PT0

t0,t
(vi)

⌘
(1) ? T0(t). The key point is that the distribution of the

vij does not depend on time if one assumes a distribution of the vi’s that is invariant under
the isometry group, like the Gaussian distribution for instance. In this construction, the
generation of the subject-specific trajectories does not depend on the choice of the reference
time-point t0.

The second source of variability takes into account the fact that each object does not
evolve at the same pace as the average trajectory but at its own pace. We propose therefore
to introduce a subject-specific time re-parameterization of the average trajectory T0( i(t)),
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for a 1D monotonic map  i called “time-warp”. In [Durrleman 2009b, Durrleman 2013b], we
introduced a generic family of such monotonic map as diffeomorphisms of a time interval.
Here, we propose to use an affine time re-parameterization instead, which has the form
of  i(t) = t0 + ↵i(t � ⌧i � t0). This form has a nice geometrical interpretation. T0(t) =

Exp
t
extp0,t0(v0)(t) being the geodesic passing by p0 at time t0 with velocity v0, T0( i(t)) =

Exp
t
extp0,t0+⌧i(↵iv0) is the geodesic passing by p0 at time t0 + ⌧i with velocity ↵iv0, for

↵i > 0.
Combining both sources of variability, the statistical model writes:

Dij = �ico-geo
ij

? T0( i(tij)) + "ij , (4.2.6)

which is nothing than our general statistical model (4.2.1) for one cluster. The fixed effects
are the parameters of the average trajectory: time-point t0, velocity v0 and baseline data B0,
the point p0 being always chosen so that T0(t0) = B0. The random effects are acceleration
factors ↵i, time-shifts ⌧i, and velocities vi. Note that the reference time-point t0 is now a
fixed effect of the model. The distribution of the spatial maps does not depend on its value,
but the distribution of the time re-parameterization functions does.

In this task, we will assume Gaussian distribution of the random effects with zero mean
for vi and ⌧i, and a log-normal distribution for the positive acceleration factors ↵i with mean
1. Let ✓ be the parameters of the model, namely the fixed effects and covariance matrices
of the random effects. Maximizing the likelihood amounts to minimizing the integral:

L(Dij |✓) =

NY

i=1

Z 0

@
NiY

j=1

p"
⇣
Dij � �ico-geo

ij
? T0(tij)

⌘
1

A p(↵i, ⌧i)p(vi)d↵id⌧idvi (4.2.7)

where N is the number of subjects and Ni the number of observations for subject i. The
computation of the integral in the above equation is intractable. The most common ap-
proximation in the field of Computational Anatomy is to approximate the distribution of
the random effects by their modes, leading to the minimization of the cost function:
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(4.2.8)
under the constraints of orthogonality vi?v0 for all subject’s indices i. This cost function
will be minimized using a constrained minimization approach [Nocedal 2006], whereas more
sophisticated approximation of the likelihood will be investigated in the next work-package.

To disentangle spatial and temporal variability, we assumed in [Durrleman 2009b,
Durrleman 2013b] that the subject-specific spatial maps were independent of time, which
amounts to assume �ico-geo

ij
to be independent of index j. We propose here a more realistic

assumption that the distribution of the parameters of the spatial maps are independent of
time, and not the spatial maps themselves. In [Singh 2013], subject-specific trajectories are
derived from the group-average trajectory by transporting the velocity v0 parallel to the
subject-specific map, thus making the distribution of the parameters of these maps depen-
dent of time. Here, we propose to reverse the way the parallel transport is performed, so
that one can combine this variability with time re-parameterization of the average scenario.



4.2. Methodology 129

v0

vi

�ico-geo
0i

vij

pij

p0

�ico-geo
0 (t)

�ico-geo
ij

Di(t)

Figure 4.2: Scheme of parallel transport to model inter-subject variability. At time t0 and
point p0 along the average scenario �ico-geo

0 (t), the vector vi is chosen perpendicular to the
velocity v0 of the average trajectory. A point on the ith subject trajectory data is derived
by the geodesic shooting of vi on the manifold. At a later time-point tij , another point
is derived by shooting the vector vij resulting from the parallel transport of vi along the
average trajectory. The set of all these points builds a subject trajectory Di(t) that is
parallel to the average trajectory.

4.2.3 WP3: non-Gaussian distributions for the characterization of
disease-specific effects

The objective of this work-package is to replace the assumption of Gaussian distribution
of the random effects by more general distribution,

• using mixture models for the identification of homogeneous clusters of individuals
sharing similar spatiotemporal pathways,

• using superimposition of common and disease-specific sources to characterize patho-
logical cases in each of the previous clusters.

Task 3.1: introduction of mixture of Bayesian models for clustering pur-
poses. The model of the previous work-package estimates an average trajectory from a
group of individuals, assuming that the individual trajectories stay parallel to the average
in the Riemannian manifold of variation-deformation. The average trajectory will illustrate
the average spatiotemporal patterns of lesion propagation within this group. If the group
of subjects is heterogeneous, in the sense that it mixes subjects with different (i.e. unpar-
allel) propagation pathways, the group-average will be “fuzzy” and will not isolate specific
pathways. To unveil a mixture of spatiotemporal pathways within a group, we propose to
consider a series of average trajectories T (c)

0 parameterized by a series of baseline objects
B(c)

0 , velocities v(c)
0 and reference time-points t(c)0 . In this first task, we assume that the

distribution of the random effects in each cluster remains Gaussian. We will introduce the
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probability that the ith subject belong to the kth cluster: p(ci = k) = ⇡k with
P

N

k=1 ⇡k = 1

and add a Dirichlet prior to the probabilities ⇡k. We will also add inverse Whishart priors on
the distribution of the other hidden variables in the spirit of what we did in [Gori 2013]. In
this setting, the user needs only to specify the maximum number of clusters. Small clusters
with a distribution of the random effects very different from the prior will be automatically
emptied during the optimization of the likelihood.

Using the same approximation of the likelihood as in the previous work-package leads
to an algorithm with exploding complexity as the maximum number of clusters is in-
creased. To address this issue, we will use an expectation-minimization (EM) algo-
rithm, which has been introduced precisely to estimate mixtures of Gaussian distribu-
tions [Dempster 1977]. Nevertheless, the expectation step being intractable in our highly
non-linear setting, we will investigate the use of the Stochastic Approximation EM al-
gorithm [Delyon 1999] and its generalization using Markov Chain Monte Carlo (MCMC)
methods for the sampling step [Kuhn 2004, Allassonnière 2010b]. A mixture model for
geometric deformations of scalar images has been estimated in [Allassonnière 2010a] us-
ing a Metropolis-Hasting within Gibbs sampler. Other samplers include the Riemannian
Manifold Langevin algorithm or the Hamiltonian Monte Carlo [Girolami 2011], the latter
being used for instance in [Zhang 2013] for medical images. Another choice based on the
direction of the gradient, named Anisotropic Metropolis Adjusted Langevin has been pro-
posed in [Allassonnière 2015b]. In the framework of a collaboration with S. Allassonnière,
we have shown that the execution time of the algorithm was increased by a factor 50 for
3D medical images. This opens up the possibility to use such a technique for mixture of
variation-deformation of iconic-geometric data.

This clustering approach is unsupervised. The analysis of the posterior probability that
an individual belongs to a given cluster may be used then to isolate clusters containing only
patients. The average trajectory of such a cluster will highlight spatiotemporal patterns
of lesion propagation, which are specific to a given pathology. Nevertheless, pathologic
aging being a process that largely overlaps with normal aging, it is likely that clusters mix
pathologic and control cases. Distinguishing pathologic from normal effects is the purpose
of the following task.

Task 3.2: superimposition of sources with independent weights. In this task,
we aim at finding what are the effects of the pathology on brain aging within the previously
identified clusters. Each cluster isolates precise spatiotemporal patterns of lesion propaga-
tion. The effect of a disease may be to accelerate the scenario of brain aging along this
pathway, or to start this scenario earlier. To detect such effects in a supervised manner,
we will assume that the logarithm of the acceleration factors, (�i) (resp. the time-shifts
⌧i) is normally distributed with mean µ� (resp. µ⌧ ) if the subject is diseased and �µ�
(resp. �µ⌧ ) otherwise and equal variance for both classes. These parameters depend on
the cluster index c that we omit from now on for clarity purposes.

It may be also that the average trajectory within a cluster results from the superim-
position of disease-specific spatiotemporal patterns with patterns of normal aging. Such
patterns may be retrieved by the analysis of the velocities vi for both the pathologic and
control cases. In the spirit of Independent Component Analysis (ICA) and its probabilistic
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extensions [Moulines 1997, Hyvarinen 1999, Attias 1999, Lappalainen 2000, Petersen 2005],
we propose to assume that the distribution of the velocities vi results from the superim-
position of few sources with statistically independent weights: some of them are shared by
diseased and control cases, thus forming the background distribution of normal aging, the
others are disease-specific sources which are superimposed on the background distribution.
Formally, we propose that the vi within each cluster are written as:

vi = A⇢i + B⌘i (4.2.9)

where A and B are rectangular matrices whose columns are the sources of the background
distribution and disease-specific sources respectively. The disease-specific sources will be
forced to be “switched off” by writing for each coordinate k: ⌘i,k = bi,khi,k, where bi,k

is 0 for control subjects and follow a Bernoulli distribution with unknown parameter qk

otherwise. The distribution of the background components ⇢i,k will be assumed to have
a heavy tail, such as Laplace with fixed parameter. The disease-specific components hi,k

will be assumed to be normally distributed with zero mean and unknown variance. The a
posteriori estimate of q given the data of new subject will give the likelihood that this subject
follows a disease specific pattern, thus accounting for the progressive disease onset from
normal aging. Disease-specific spatiotemporal patterns will be displayed by transporting
the columns in B parallel to the average scenario T (c)

0 .
The introduction of the categorical variables bi,k in the model prevents from using

gradient-based optimization scheme to estimate model parameters. Stochastic approxima-
tion EM algorithms are particularly adapted to this situation, since they only need to draw
samples of the missing random variables. The introduction of source decomposition is even
more favorable, as it replaced large square covariance matrices of size n⇥ n where n is the
dimension of the parameters of the velocities vi, by much smaller rectangular matrices A

and B of size n times the number of sources. The hidden variables vi are also replaced by
⇢i, bi and hi, thus also reducing the number of coordinates to simulate at each iteration.

4.2.4 WP4: application on clinical data set

In this work-package, we will apply the methods developed in the previous work-packages
to clinically relevant databases. The work will consist mainly in turning the prototypes de-
veloped in the other work-packages into software tools that could be run routinely on large
data sets. These codes will be included into our software Deformetrica, and therefore
publicly released at www.deformetrica.org. Computational methods to increase code per-
formance will be investigated, such as the use of map-reduced techniques for parallelization
or the use of stochastic gradient methods when the number of subjects come larger than
the number of nodes in the computer cluster [Schmidt 2013].

We will use the publicly available data base of the Alzheimer’s Disease Neuroimag-
ing Initiative (www.adni-info.org), in which patients have been scanned up to 13 times
including a large number of modalities. A data set of subjects with a genetic mutation
responsible for the frontotemporal dementia will be used to study the lesion propagation
pathways before the onset of the symptoms. In the framework of our clinical collabora-
tions, we have access also to longitudinal data set with patients with Huntington’s disease,

www.deformetrica.org
www.adni-info.org


132 Chapter 4. ERC project

Primary Progressive Aphasia and Spinocerebellar ataxia, thus offering the opportunity to
characterize a wide spectrum of neurodegenerative diseases with specific spatiotemporal
patterns of lesion propagation.

4.2.5 Work organization

The work-packages are weakly dependent on each other. WP1 builds the foundations to
embed anatomic and functional data in the same computational model. Nevertheless, WP2
could be started before the completion of WP1 by implementing the longitudinal statistical
model for anatomic data and/or for scalar measurements mapped on a fixed image. The
decomposition into independent components (WP3 Task 3.2) could be started as a post-
processing step before being included within the estimation of the statistical model set up
in WP2. Only the model of mixtures (WP3 Task 3.1) needs the result of WP2.

The WP4 is transversal to all other work-packages. It may start at the beginning of the
project to organize the databases and build the infrastructure to routinely perform standard
pre- and post-processing steps. It will then aim to apply the methodologies developed in
the other work-packages to our clinical data sets.

4.2.6 Conclusion

This project proposes the construction a generic methodological framework to learn
typical dynamical changes from complex iconic-geometric data. It will provide generic tools
based on concepts of Riemannian geometry to estimate spatiotemporal patterns from re-
peated observations of the same objects with variable forms and variable pace of changes.
The introduction of time re-parameterization will allow the temporal alignment of vari-
able dynamical processes in absence of temporal markers of these processes. It will
therefore extend the potential applications of longitudinal statistical models to the
fields of meteorology, epidemiology, economics or video analysis for instance.

In neuroimaging, the use of generative models will allow clinicians and biologists to
visualize the typical pathways along which the cellular and molecular lesions propagate
in the brain. Such a dynamical virtual representation of the brain will provide clin-
icians with an unparalleled investigation tool to understand the biological processes
underlying brain aging and its associated pathologies. The detection of the progressive
emergence of pathological effects within an otherwise normally aging scenario will open
up new perspectives to diagnose patients much earlier than what we can do today, and
therefore treat them when treatments have the highest chance of success. The use of gen-
erative models and non-Gaussian multivariate statistics will represent a paradigm shift in
the analysis of neuroimaging data, a field that is currently dominated by mass-univariate
statistical tests.

The proposed methodology contains few key ideas, which I have matured over the
last years, since our first contribution to the emerging field of longitudinal image data
analysis and after the organization of two among three international workshops dedicated
to this topic at the reference conference MICCAI. It includes the development of a new
generation of computational and statistical tools, which will be possible thanks
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to a strong network of collaborators in the fields of imaging, statistical learning and
computational mathematics. The project indeed takes advantage of important contributions
in each of these domains, which have recently seen core methodological concepts turned
into efficient computational tools for data analysis.





Chapter 5

Conclusion

In the last few years, we have explored essentially two ideas:

• learning an optimal decomposition of deformation in statistical shape analysis based
on the combination of a small number of spatially located deformation patterns,

• learning distribution of trajectories of manifold-valued measurements

The first idea has led to the definition, implementation and evaluation of a mixed effects
model yielding personalizable digital shape models. This approach has a unprecedented
generic aspect, as it can combine image and mesh data without the need for intensive
data pre-processing like topology correction or point labelling as in standard approaches.
It provides a multivariate description of shape variability which contrasts to massive uni-
variate approaches that are common in the neuroimaging community. One of its main
advantage may be its ability to yield outputs, namely template shapes and its modes of
variations, in the same form as the observations, which may be therefore easily interpreted.
The decomposition of the deformation into local deformation patterns further adds to the
interpretability of the results.

Nevertheless, this first line of work has also been shown frustrating. We have not
managed so far to convincingly show the interest to combine images with geometric features
extracted from the images. We tried to show improvements in the localisation of the sub-
thalamic nucleus in surgical planning procedures for deep brain stimulation [Fouquier 2014].
The mixed results might be due to the localisation of the target in the image domain that
is quite far from mesh data. We believe nevertheless that this approach is worth to be
pursued, for instance to combine segmentation, registration and statistical analysis using
specific atlases, in order to address current limitations of segmentation software yielding
variable results in aged subjects or in patients with important anatomical alterations.

Another great expectation of this approach was to increase statistical power by reducing
the dimension of the feature vector characterizing shape variability. We tried manual and
automatic selection procedures either in the deterministic case [Durrleman 2013a] or in the
stochastic case [Allassonnière 2015b]. However, we have not shown so far that dimension
reduction has a significant effect on predictions, as if there were a trade-off between inter-
pretability and statistical power. We may need to explore this aspect in more depth by
using larger data sets of the order of 1,000 individuals or more, which are becoming more
and more widely available, but are also more demanding in terms of software engineering.

The second line of work has led to the definition of a statistical approach for learning spa-
tiotemporal distributions on manifolds. This approach is not limited to shape analysis and
allows us to include other types of data like clinical assessments in addition to neuroimaging
data. We believe that we have included into a coherent framework the main methodological
principles that may be found in previous works in more ad-hoc and less generic approaches.
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It also allowed us to revisit the standard linear mixed effects models for longitudinal data
in the absence of known temporal markers of the observed phenomenon.

In some sense, we believe that we proposed the most simple non-linear model for longitu-
dinal data. Obviously, it may be extended in several ways, and several restrictive hypotheses
may be alleviated like the assumption of parallelism of individual trajectories, or the linear
structure of the time-warps for instance. We need also to better understand the behaviour
of our estimation algorithms beyond proven properties of asymptotic convergence.

We applied this approach to build digital models of Alzheimer’s Disease progression de-
picting the onset of cognitive decline, hippocampic atrophy and spatiotemporal patterns of
cortical thinning. Models of hippocampic atrophy builds on the shape analysis framework.
Models of cortical thinning lies more in the field of voxel-based or surface-based morphome-
try, where variability is captured by analyzing signals at homologous locations, once images
are registered in a common template. The idea to combine both approaches in the spirit of
metamorphoses underlies the research program presented in Chap. 4.

The ability to personalize the model to new unseen patients must be key to make pre-
dictions at the individual level, and therefore to design clinical decision support systems in
the spirit of [Ansart 2017]. We presented naive prediction systems based on the identifica-
tion of the event on the common timeline. More accurate predictions might come from the
integration of the estimated individual parameters in more sophisticated machine learning
systems.
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Curriculum Vitae

Date of birth: November 13, 1980, Nationality: French, Marital status: married
with 2 sons born in 2014 and 2016, Web-site: http://who.rocq.inria.fr/Stanley.

Durrleman

Education
2010 PhD from University of Nice-Sophia Antipolis, France, mention très

honorable (highest degree). Advisor: N. Ayache (Inria). Title: Sta-
tistical models of currents for measuring the variability of anatomical
curves, surfaces and their evolution.

2006 Master from Ecole Supérieure des Télécommunications, Paris,
France (equivalent to a Master in Electrical Engineering)

2005 Master “Mathematics, Vision, Learning” from Ecole Normale
Supérieure de Cachan, France, mention très bien (highest degree)
(equivalent to a Master in applied mathematics)

Professional Record
2017 - Candidate head of joint INRIA/ICM ARAMIS Lab (depending on

on-going national evaluation)
2017 - Head of the ICM Center for Neuroinformatics, a virtual center co-

ordinating research and development activities in data collection,
management and analysis with data science methods.

2017 - Scientific Head of the ICM bioinformatics core facility (iCONICS)
2011 - INRIA Research Scientist in the joint INRIA/ICM ARAMIS team

within the Brain and Spine Institute (ICM), Pitié-Salpêtrière Hos-
pital, Paris, France

2010 - 2011 Postdoctoral fellow at the Scientific Computing and Imaging Insti-
tute, University of Utah, USA

2006 - 2010 PhD candidate in the INRIA ASCLEPIOS team, Sophia Antipolis,
France

2006 - Civil servant in the French elite administration corps “Corps des
Mines”

Publications

• Editor of 5 archived conference proceedings (3 in the Springer Lecture Notes in Com-
puter Sciences series)

http://who.rocq.inria.fr/Stanley.Durrleman
http://who.rocq.inria.fr/Stanley.Durrleman
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• Author of 50+ peer-reviewed publications (2/3 as first or last author):

– journal articles among which 2 in Neuroimage, 3 in Medical Image Analysis, 2 in
IEEE Trans. Medical Imaging, 2 in International Journal of Computer Vision,
2 in Journal of Human Evolution

– articles in the most selective conferences of our domain: Medical Image Comput-
ing and Computer-Assisted Intervention (MICCAI) and Information Processing
in Medical Imaging (IPMI), among which:

⇤ 7 oral presentations (5 as first author) with a selection rate < 5%
⇤ 10 regular papers (8 as first or last author) with a selection rate < 35%

• h-index 20, 1308 citations according to Google Scholar as of Dec 4, 2017.

Supervision of graduate students and postdoctoral fellows

Postdoctoral fellows:
2014 - 2015 Susovan Pal, Alain Bensoussan fellowship from ERCIM, PhD from

Rutgers University, USA [Louis 2017b]
2013 - 2015 Ana Fouquier, ANR fellowship, PhD from Sao Paulo University,

Brazil [Fouquier 2014, Routier 2014]
PhD candidates:
2017 - Thomas Lartigue, fellowship from Inria
2017 - Raphael Couronné, funded by ERC project LEASP
2016 - Maxime Louis, fellowship from Ecole Polytechnique [Louis 2017b,

Louis 2017a, Bône 2017b]
2016 - Manon Ansart, funded by H2020 EuroPOND project [Ansart 2017]
2016 - Igor Koval, funded by H2020 EuroPOND project [Koval 2017]
2016 - Alexandre Bône, funded by H2020 EuroPOND project [Bône 2017a,

Bône 2017b]
2015 - Junhao Wen, fellowship from Chinese government [Bertrand 2017]
2015 - Lou Albessard, fellowship from Sorbonnes Universités
2013 - 2016 Barbara Gris, fellowship from Ecole Normale Superieure [Gris 2017,

Gris 2015]
2013 - 2016 Jean-Baptiste Schiratti, fellowship from Jacques Hadamard

Fundation [Schiratti 2017a, Schiratti 2015b, Schiratti 2015c,
Schiratti 2015a]

2012 - 2016 Pietro Gori, INRIA fellowship [Gori 2017a, Gori 2016, Gori 2015,
Gori 2014, Gori 2013]

Teaching Activities

Since 2017, I have taught a 21 hours lesson “Geometrical and Statistical Approaches to
Longitudinal Data Analysis” in the master of applied mathematics “Mathematic, Vision,
Learning” from Ecole Normale Supérieure de Cachan. I gave previously several lectures
in the course of A. Trouvé in the same master, and in the master of electrical engineering
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“Image Analysis” from Pierre and Marie Curie University in Paris. I gave also lectures in
Professor Gerig’s lesson “Advanced Image Processing” of the computer science department
at the University of Utah in the USA.

Services to the community

Editorial activities

I have served as associate editor of IEEE Transactions on Medical Imaging since 2016.
I serve regularly as reviewer for journals in the fields of neuroimaging (e.g. Medical Image

Analysis, NeuroImage), image analysis and computer vision (e.g. IEEE Trans. Medical
Imaging, IEEE Trans. Image Processing, International Journal of Computer Vision (IJCV),
SIAM Imaging Sciences), mathematics and statistics (e.g. Annals of Applied Stats) and
clinical studies (e.g. Journal of Alzheimer’s Disease).

I served also serve regularly as reviewer in the main conferences in medical imaging
(Medical Image Computing and Computer-Assisted Intervention (MICCAI), Information
Processing in Medical Imaging (IPMI)) and computer vision (Computer Vision and Pattern
Recognition (CVPR), and International Conference on Computer Vision (ICCV)).

Member of PhD committees
2017 P. Roussillon, Descartes University, Paris (examiner)
2017 J. Dumoncel, Paul Sabatier University, Toulouse (examiner)
2017 J.-B. Schiratti, University Paris-Saclay (co-advisor)
2016 B. Gris, University Paris-Saclay (co-advisor)
2016 P. Gori, University Pierre et Marie Curie, Paris (co-advisor)
2014 J. Fishbaugh, School of Computing, University of Utah, USA
2013 A. Imperiale, Pierre and Marie Curie University, Paris (examiner)
2013 O. Mirat, Paris Descartes University, Paris (examiner)
2012 A. Sharma, School of Computing, University of Utah, USA

Review panel member

2016 - Member of the “Commission de Développement Technologique” of
INRIA Paris Center for the evaluation of software and technological
development projects

2016 European Research Council (ERC)
2014 INdAM fellowships in Mathematics co-funded with Marie Curie Ac-

tions (FP7 of the European Union
2014 ANEP (Spanish National Agency for Scientific Evaluation) for

CONEX program

Organization of scientific meetings

I was co-chair of the:
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• 8th Workshop on Biomedical Image Registration (WBIR), Leiden, w/ M. Staring, S.
Klein, and S. Sommer (programme chair)

• 4th, 5th, and 6th MICCAI Workshop on Mathematical Fundations of Computational
Anatomy (MFCA) w/ X. Pennec, M. Nielsen, S. Joshi, T. Fletcher, S. Sommer in
2013, 2015 and 2017.

• 2nd and 3rd MICCAI Workshop on Spatiotemporal Image Analysis and Time-Series
Image Data (STIA) with G. Gerig, M. Niethammer and T. Fletcher in 2012 and 2014

• 2nd MICCAI Workshop Methodological Challenges in Deep Brain Stimulation
(DBMSC) w/ E. Bardinet, L. Collins, S. Cottin, C. Essert in 2014

• INRIA/ICM Workshop Statistical Analysis of genomic data for neurologic diseases
w/ O. Colliot in 2014

• ICM Workshop Mathematical Shapes, Biological Shapes, w/ O. Colliot, A. Trouvé in
2012

Invited Presentations
2017 Diplôme Inter-universitaire - Maladie d’Alzheimer, Lille, France
2017 Topological and Geometrical Science of Information (TGSI), Luminy,

Marseille, France
2016 Evolution du cerveau et des capacités cognitives des Hominidés fos-

siles jusqu’à l’homme moderne, Tautavel, France
2015 Shape: symposium on statistical shape models and applications,

Delémont, Switzerland
2015 Meeting of the Trisomy 21 Research Society, Brain and Spine Insti-

tute, Paris, France
2015 Workshop Infinite-dimensional Riemannian geometry with applica-

tions to image matching and shape analysis, E. Schrodinger Intl In-
stitute for Mathematical Physics, Vienna, Austria

2014 Workshop Statistical Challenges in Neurosciences, Center for Re-
search in Statistical Methodology, Warwick University, UK

2014 MICCAI Workshop Spatiotemporal and Time Series Image Analysis,
Boston, USA

2014 Congrès Reconnaissance de Formes et Intelligence Artificielle
(RFIA), Rouen, France

2013 Rank Prize Funds Symposium Medical Imaging Meets Computer
Vision, Windermere, UK

2010 Workshop Computational Methods for the automated analysis of
virtual hominid endocasts at 79th Annual Meeting of the American
Association of Physical Anthropologists (AAPA’10), Albuquerque,
USA
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I am invited to give lectures a regular seminar series, such as at Ceremade at University
Paris Dauphine, Biomedical Imaging Analysis Group at Imperial College, INRIA Asclepios
team, Horizon Maths at IBM, INRIA Mokaplan team, Telecom ParisTech, Laboratoire
Jacques-Louis Lions, University Pierre and Marie Curie, INSA Rouen, for instance.

Communications to the public

In 2017, I took part in

• Podium presentations to the general audience: TED-like presentation at S3 Odéon1,
meeting with the public at the event “Open Brain Bar” in Paris, presentation and
panel discussion with 2 other ERC grantees at the 12th edition of BIOVISION in the
session ERC = Science2, Lyon2, presentation for the 10th anniversary of ERC at
INRIA3

• TV and web interviews: TV report for Agence France Press4, Let’s Talk on Facebook5,
video interview for FrenchWeb.fr6, Interview for the website of the journal Sciences
et Avenir7 (1000+ views)

• Radio programs: “Priorité Santé” on Radio France International8, citation in the
morning journal of French national radio France Inter9, citation in the French national
radio France Culture and France Inter10

• Articles in journals for general scientific and non-scientific audience: post in French
version of the Huffington Post11, 2 articles in Sciences et Avenir12,13, portrait in the
weekly magazine Réforme,

• 4+ Fund raising events for the ICM (private events)

1
www.s3odeon.fr

2
https://www.youtube.com/watch?v=F_epspreeoE

3
https://www.youtube.com/watch?v=gIUxH7E0seA

4
http://u.afp.com/4R5H

5
https://www.facebook.com/384955301529344/videos/1687937584564436/

6
http://www.frenchweb.fr/quand-les-algorithmes-pourront-guerir-la-maladie-dalzheimer/

293360

7
https://www.sciencesetavenir.fr/sante/un-cerveau-numerique-pour-predire-alzheimer_110622

8
http://www.rfi.fr/emission/20170921-alzheimer

9
https://www.franceinter.fr/emissions/le-zoom-de-la-redaction/le-zoom-de-la-redaction-18-juillet-2017

10
https://www.franceinter.fr/sciences/science-programme-de-recherche-europeen-horizon-2020?

xtmc=durrleman&xtnp=1&xtcr=1

11
http://www.huffingtonpost.fr/stanley-durrleman/comment-les-big-data-pourraient-pronostiquer-la-maladie-d-alzheimer_

a_23217596/?utm_hp_ref=fr-cest-la-vie

12
https://www.sciencesetavenir.fr/sante/cerveau-et-psy/l-intelligence-artificielle-peut-elle-nous-aider-a-vaincre-alzheimer_

116234

13
https://www.sciencesetavenir.fr/sante/e-sante/focus-inria-a-l-heure-de-la-sante-numerique_

119176?
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Patents and software

2016 Patent “A method for determining the temporal progression of a bio-
logical phenomenon and associated methods and devices” submitted
under reference PCT/IB2016/052699

2015 - Co-Coordinator of the Clinica software project aiming to design stan-
dard processing analysis pipelines for routine use in neuroimaging
studies http://www.clinica.run

2012 - Coordinator of the Deformetrica software project (www.
deformetrica.org) providing algorithms to build static or
dynamic models from series of 3D geometrical data

2012 US Patent “Methods for Obtaining Continuous Trajectories from Dis-
crete Anatomical Shapes” MBF Ref. 026389-9045-US00, Utah Ref.
U-5184

2007 - 2011 Principal contributor to the software ExoShape (Inter Deposit Digi-
tal Number FR.001.410028.000.S.A.2009.000.21000.)

Grants

2018 - 2020 Big Brain Theory Program SEMAPHORE (Coordinator w/ S.
Lehéricy): Personalized progression model of Parkinson’s disease

2017 - 2021 INRIA Project Lab (IPL) Neuromarkers (Coordinator w/ O. Col-
liot): design of anatomical biomarkers of neurodegenerative diseases
for clinical trials and study of their genetic associations

2016 - 2020 ERC Starting Grant LEASP (Coordinator): Learning spatiotempo-
ral patterns in longitudinal image data sets of the aging brain

2015 - 2019 H2020 project EuroPOND (Coordinator of work-package: Method
Development): Progression of Neurological Disorders

2015 - 2017 Big Brain Theory Program DYNAMO (Coordinator w/ H. Hampel):
dynamic models models of disease progression across Alzheimer’s
disease stages informed by multimodal neuroimaging and biological
data

2015 - 2017 INRIA Software Development Action Clinica (Coordinator w/ O.
Colliot): analytics pipeline for the application of the Deformetrica
software in clinical studies

2013 - 2015 INRIA Software Development Action DBSoft (Coordinator w/ O.
Colliot): registration techniques for the surgical planning in Deep
Brain Stimulation

2012 - 2016 Consultant for NIH grant “4D Shape Analysis for Modeling Spa-
tiotemporal Change Trajectories in Huntington’s Disease” (PIs: G.
Gerig and H. Johnson)

http://www.clinica.run
www.deformetrica.org
www.deformetrica.org
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2015 Starting Grant from the European Research Council (ERC)
2010 Second Gilles Kahn Prize for best dissertation from Société Informa-

tique de France (SIF)
2008 Young Investigator Award at the MICCAI conference in New York,

USA
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