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Longitudinal shape changes
ns have facilitated the detection of brain development and of the earliest signs of
neuropsychiatric and neurodegenerative diseases, monitoring disease progression, and resolving drug effects
in clinical trials for preventing or slowing the rate of brain degeneration. To track anatomical shape changes
in serial images, we introduce new point-based time sequence large deformation diffeomorphic metric
mapping (TS-LDDMM) to infer the time flow of within-subject geometric shape changes that carry known
observations through a period. Its Euler–Lagrange equation is generalized for anatomies whose shapes are
characterized by point sets, such as landmarks, curves, and surfaces. The time-dependent momentum
obtained from the TS-LDDMM encodes within-subject shape changes. For the purpose of across-subject
shape comparison, we then propose a diffeomorphic analysis framework to translate within-subject defor-
mation in a global template without incorporating across-subject anatomical variations via parallel transport
technique. The analysis involves the retraction of the within-subject time-dependent momentum along the
TS-LDDMM trajectory from each time to the baseline, the translation of the momentum in a global template,
and the reconstruction of the TS-LDDMM trajectory starting from the global template.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Spatial–temporal images have been widely used in the field of
medical image to record function and anatomy of human organs. Serial
MRI human brain scans have facilitated the detection of brain
development and of the earliest signs of neuropsychiatric and
neurodegenerative diseases, monitoring disease progression, and
resolving drug effects in clinical trials for preventing or slowing the
rate of brain degeneration (Thompson et al., 2000; Chung et al., 2001;
Wang et al., 2003; Apostolova et al., 2006b; Qiu et al., 2008a,b; Xue
et al., 2007). For instance, researchers have identified progressive
hippocampal volume loss to be one of the hallmarks of Alzheimer's
disease (AD). Using brain warping techniques, neuroimaging studies
previously found that patterns of hippocampal shape change distin-
guished early AD from healthy aging (Wang et al., 2003; Apostolova
et al., 2006b; Qiu et al., 2008a,b). Compared to volumetric assessments,
rates of anatomical shape changes provide much richer information for
disease discrimination (e.g. Thompson et al., 1996a; Christensen et al.,
1997; Bookstein, 1997; Chung, 2001; Terriberry et al., 2005; Ashburner
and Friston, 2005; Apostolova et al., 2006a; Csernansky et al., 2004;
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Gilmore et al., 2007; Yu et al., 2007; Qiu et al., 2008a,b). Sensitive and
accurate computational techniques are needed to track within-subject
shape changes in brain structures based on serial MRI scans and then
compare them across clinical populations.

To assess the location and process of atrophy or growth in a brain
structure requires studying within-subject time-dependent deforma-
tion through the transformation. It characterizes the changes of
anatomical coordinates from the baseline to other time points. The
earliest mapping of biological coordinates via landmarks was in the
early 1980s and continued by Bookstein (1978, 1991, 1996, 1997) and
via dense image by Bajcsy et al. (1983), Bajcsy and Kovacic (1989),
Dann et al. (1989), Collins et al. (1994), Friston et al. (1995), Davatzikos
(1996), Feldmar et al. (1997), Thirion (1998), Gee and Haynor (1999),
Gee (1999), Ashburner et al. (2003), Avants and Gee (2004), Avants
et al. (2006), Ashburner (2007), and Rao et al. (2004). As the brain
mapping based on dense image is being carried on bymany of groups;
the mapping restricted to the cortical manifolds, including curves and
surfaces, are being studied as well (Thompson et al., 1996b; Fischl
et al., 1999; van Essen, 2004; Vaillant and Glaunès, 2005; Yu et al.,
2007; Chung et al., 2008; Mangin et al., 2004; Collins et al., 1998;
Hellier and Barillot, 2003; Cachier et al., 2001). Among these template-
based brain mapping techniques, Large Deformation Diffeomorphic
Metric Matching (LDDMM) algorithms have recently received a great
attention. They provide a range of diffeomorphic matching methods
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Fig. 1. A schematic for studying time dependent shape changes. xt(j) is the trajectory
connecting the subject j at time 0 to the one at time t. αt

(j) is the momentum that
encodes the shape change of subject j along the time.
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for landmarks, curves, surfaces, images, vectors, as well as tensors
(Joshi and Miller, 2000; Beg et al., 2005; Vaillant and Glaunès, 2005;
Cao et al., 2005a,b; Glaunès et al., 2008; Qiu and Miller, 2007; Vaillant
et al., 2007). All of these mapping algorithms provide diffeomorphic
maps — one-to-one, reversible smooth transformations that preserve
topology. The use of LDDMM for studying the shapes of objects
implies the placement of shapes in a metric space, provides a
diffeomorphic transformation, and defines a metric distance that
can be used to quantify the similarity between two shapes. Moreover,
LDDMM provides a mechanism that allows for the reconstitution of
the variations by encoding precise variations of anatomies relative to
the template. The resultant template-based representation can be
interpreted as a change of coordinates, representing anatomies in a
local chart centered at the template. They have been successfully
applied to a variety of functional and structural MRI studies (Miller et
al., 2005; Qiu et al., 2007, 2008a; Kirwan et al., 2007; Qiu and Miller,
2008; Bakker et al., 2008).

Within-subject anatomical variation in multiple time points is
naturally represented by the deformation needed to pass from the
anatomy at the baseline through the anatomies at the remaining time
points. When comparing two or more subjects, the absence of a
common coordinate system across subjects can undermine hypothesis
testing related to time-dependent within-subject deformation. One
approach commonly used in the previous studies is to map subjects'
structures at different time points to a global template via brain
warping techniques (Wang et al., 2003). The difficulty with this
approach is that the transformations used to assess longitudinal
changes in the structure included the variation of the transformation
between different time points within and across subjects together. The
weakness of this approach for detectingwithin-subject changes is that
the variation across subjects is generally larger than the variation
within subjects. The other commonly used approach is to map the
anatomy at the baseline to the other time point and then translate the
Jacobian determinant of the within-subject deformation to the global
template by modulating the Jacobian determinant of the deformation
between the subject and the global template (Kipps et al., 2005;
Brambati et al., 2007). Again, across-subject deformation is involved in
the group comparison. Recently, we have introduced a new technique
in the LDDMM framework that decides how change in the anatomy of
one subject can be translated into the similar deformation occurring in
another subject without incorporating across-subject deformation in
terms of remained deformation covariance structure (Younes, 2007;
Younes et al., 2008; Qiu et al., 2008a,b). The metric structure on
anatomies provided by LDDMM offers a consistent approach for the
translation of this information. This operation, parallel translation
taken from Riemannian geometry, displaces vectors along a curve
without changing properties such as the norms of the vectors or their
dot products. In the Euclidean space, this operation is the standard
translation of vectors; i.e., the infinitesimal displacement of subject 1
is applied to subject 2 without change. In curved spaces, however,
parallel translation is nonlinear. We computed by solving a differential
equation. This approach with the LDDMM-surface mapping (Vaillant
and Glaunès, 2005; Vaillant et al., 2007) has been used to assess the
hippocampal atrophy between the baseline and followup in normal
healthy controls, converters and patients with AD (Qiu et al., 2008a,b).

In this paper, we extend our previous longitudinal shape analysis
(Qiu et al., 2008a,b) for tracking shape changes between two time
points tomultiple time points as illustrated in Fig.1. Wewill first adapt
the LDDMM mapping technique and develop a new algorithm, time
sequence large deformation diffeomorphic metric mapping (TS-
LDDMM) for constructing a trajectory connecting multiple observa-
tion of one subject in a shape space. This algorithm, which has been
suggested in (Miller et al., 2002) for the image matching case, seeks
the optimal time flow of geometric changes that carry the known
observations through a period time.We here generalize TS-LDDMM to
anatomies represented by a set of points, such as unlabeled land-
marks, or curves, or surfaces. We then adapt our parallel transport
strategy to time series with an analysis along the following three
steps, which are applied to each subject:

Retraction: Parallel transport of the deformation signature along
the TS-LDDMM trajectory from each time t to the baseline t=0.

Translation: Parallel transport the collected information from the
subject baseline to a template, along a geodesic connecting the two
shapes.

Extension: Reconstruct a trajectory starting from the template
based on the transported information, inverting the first step.

We organize this paper by first reviewing static point-based
LDDMM algorithms and then extend them to the dynamic case (Time
sequence large deformation diffeomorphic metric mapping for land-
marks, curves, and surfaces (TS-LDDMM)). Finally, we will describe
the technique of parallel transport in diffeomorphisms.

Static point-based large deformation diffeomorphic metric
mapping

In the setting of diffeomorphic metric mapping, the set of ana-
tomical shapes are placed into a metric shape space. This is modeled
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by assuming that the shape is generated one from the other via a flow
of diffeomorphisms, solutions of ordinary differential equations:
�t = vt �tð Þ; ta 0;1½ � starting from the identity map ϕ0=id, and asso-
ciated velocity vector fields vt, t∈ [0,1]. We define a metric distance
between target shape Itarg and template shape Itemp as the length of
the geodesic curves �td Itemp; ta 0;1½ � through the shape space such
that �1d Itemp = Itarg at time t=1. For instance, in the landmark case,
Itemp=(xi)i=1n and the group action is taken as �1d Itemp = �1 xið Þni = 1.
These geodesics �td Itemp; ta 0;1½ � are generalizations of simple finite
dimensional curves. The metric between two shapes Itemp, Itarg is
determined by the integrated norm ‖vt‖V of the vector field generating
the transformation, where vt∈V, a smooth Hilbert space with kernel
kV and norm ‖d‖V . To ensure solutions are diffeomorphisms, Vmust be
a space of smooth vector fields (Trouvé, 1995; Dupuis et al., 1998).
Equivalently, themetric distance can be computed throughmt, termed
the momentum, a linear transformation of vt defined by the kernel,
kV:vt→mt=kV−1vt according to

ρ Itemp; Itarg
� �2 = inf

vt :
�
�t = vt �tð Þ;�0 = id

Z 1

0
‖vt‖2Vdt

such that�1 � Itemp = Itarg

= inf
mt :

�
�t = kVmt �tð Þ;�0 = id

Z 1

0
bmt ; kVmtN2dt

such that�1� Itemp = Itarg :

ð1Þ

The Euler equation associated to Eq. (1) indicates that the momentum
mt along the geodesic ϕt is conserved (Miller et al., 2002, 2006) (it is
constant when expressed in a fixed coordinate system). This implies
that the initial momentum m0 encodes the geodesic connecting Itemp

and Itarg, the conservation equation being

dmt

dt
+Dvtmt +mt∇ � vt +DmT

t vt = 0 ð2Þ

where D is the Jacobian matrix and (∇�) is the divergence operator.
Althoughwewrote the equation in classical form, it must be noted that
it may have singular solutions, and that this happens in particular
with point-set LDDMM (the form taken by this equation for singular
momenta is given below). This reduces the problem of studying shapes
of a population in a nonlinear diffeomorphic metric space to a problem
of studying the initial momenta in a linear space. This has been applied
to landmarks and surfaces in (Vaillant et al., 2004; Qiu and Miller,
2008).

In the point-based LDDMM mapping, let Itemp=x=(xi)i=1n and Itarg=
y=(yi)i=1m be the point sets on the objects of Itemp and Itarg, and define
the trajectories xi tð ÞW�t xið Þ for i=1,…, n. The momentum, mt, takes
the singular form

mt = ∑
n

i = 1
αi tð Þ � δxi tð Þ; ð3Þ

where αi(t) is the momentum vector of the ith point at time t. The
momentum here is not a function but a discrete vector measure, the
notation being interpreted by the fact that, for any smooth vector-
valued function uR

u xð Þ � dmt xð Þ =∑
N

i = 1
αi tð Þ � u xi tð Þð Þ:

Let αt=(αi(t))i =1n . We can rewrite Eq. (1) as

ρ x; yð Þ2 = inf
αt :

�
�t = kVαt ;�0 = id

Z 1

0
∑
n

i = 1
∑
n

j = 1
kV xi tð Þ; xj tð Þ� �

αi tð Þ� � � αj tð Þdt

such that�1dx = y: ð4Þ
In practice, we often introduce a matching functional, E �1dx; yð Þ, and
define an inexact matching problem: find a diffeomorphism ϕt

between two objects x and y as a minimizer of

J αtð Þ = argmin
αt

Z 1

0
∑
n

i = 1
∑
n

j = 1
kV xi tð Þ; xj tð Þ� �

αj tð Þ� �

� αi tð Þdt + E �1 � x; yð Þ: ð5Þ

The matching functional, E, depends only on the positions of the finite
number of points (ϕ1(xi))i=1n . Here, we particularly review E when
objects x and y are unlabeled points, including unlabeled landmarks,
curves, and surfaces. They will be represented as discrete measures, in
the form (using the same notation as above) (Glaunès et al., 2004,
2008; Vaillant and Glaunès, 2005; Qiu and Miller, 2007)

μx =∑
i

wxi � δxi : ð6Þ

The action of ϕ1 on the discrete measure μx is given in the form of

�1 � μx =∑
i

w�1 xið Þ � δ�1 xið Þ:

For unlabeled landmarks, the weights, wxi are scalars; for 3D curves
and surfaces, they are 3D vectors.

We use a kernel norm to compare �1dμx and μy. Let kW be a kernel
and μ be a measure. We define

‖μ‖2kW≐
R
kw x; yð Þdμ xð Þ � dμ yð Þ:

The W in the notation comes from the fact that kW can be
interpreted as the reproducing kernel of a vector space (W) of
smooth vector-valued functions and ‖ � ‖kW is then the dual norm
(Glaunès et al., 2004, 2008; Vaillant and Glaunès, 2005; Durrleman
et al., 2007; Qiu and Miller, 2007).

We will let

E �1 � x; yð Þ = ‖�1 � μx−μy‖
2
kW : ð7Þ

With μx =∑
n

i = 1wxi � δxi and μy =∑
m

j = 1 w̃yj � δyj , this is equal to

E �1 � x; yð Þ =∑
n

i = 1
∑
n

j = 1
w�1 xið Þ �w�1 xjð ÞkW �1 xið Þ; �1 xj

� �� �

−2∑
n

i = 1
∑
m

j = 1
wϕ1 xið Þ � w̃yj kW �1 xið Þ; yj

� �

+∑
m

i = 1
∑
m

j = 1
w̃yi � w̃yj kW yi; yj

� �
: ð8Þ

We now describe how this representation is implemented with
unlabeled landmarks, curves and surfaces.

Unlabeled landmarks

If x and y above represent unstructured unlabeled landmarks, the
weight wxi and w̃yj are scalars. They can be chosen in function of the
application, the simplest choices being either wxiu1 or wxiu1=n and
similarly for w̃yj .

Curves

When each curve is represented by a sequence of points, still
denoted as x=(xi)i =1n and y=(yj)j=1m . However, a curve cannot be
uniquely reconstructed based on the locations of a set of points. We
assume a curve embedded in R3 is a one-dimensional manifold in the
sense that the local region of every point on the curve is equivalent to
a line which can be uniquely defined by this point and the tangent
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vector at this location.We use the representation (Glaunès et al., 2008;
Qiu and Miller, 2007)

μx =∑
n−1

i = 1
wci � δci

with ci=(xi+1+xi)/2 and wci = xi + 1−xi, and similarly for y. The action of
ϕ1 on ci is approximated as ϕ1(ci)= (ϕ1(xi + 1)+ϕ1(xi))/2, and its
corresponding w�1 cið Þ is approximated by ϕ1(xi + 1)−ϕ1(xi). This
representation in terms of vector measure accounts for the geometry
of the curve (while the scalar measure used above would treat the
sequence as an unordered list of points).

Surfaces

Now, let Itemp and Itarg be triangulated meshes with vertices x=
(xi)i =1n and y=(yj)j =1m , respectively. We assume the cortical surfaces
embedded in R3 to be a two-dimensional manifold in the sense that
the neighborhood of every point on the surface is equivalent to a two-
dimensional plane in Euclidean space. Such a plane can be uniquely
defined by a point and a vector originated at this point and normal to
the plane.We thus let (Vaillant andGlaunès, 2005; Vaillant et al., 2007)

μx = ∑
faFx

wcf � δcf ;

where F x is the set of faces in the triangulation, and, for a posi-
tively ordered face f = xf1 ; xf2 ; xf3

� �
, wcf =

1
2 xf1−xf2
� �

xf3−xf1
� �

and
cf = 1

3 xf1 + xf2
�

+ xf3 Þ; μy is defined similarly. ϕ1(cf) and w�1
cf
� �

are
respectively approximated as �1 cf

� �
= 1

3 �1 xf1
� �

+ �1 xf2
� �

+ �1 xf3
� �� �

and
w�1

cf
� �

= 1
2 �1 xf1

� �
−�1 xf2

� �� �
�1 xf3

� �
−�1 xf1

� �� �
. Here again, the represen-

tationmakes adirect use of the geometryof thepoint set as a triangulated
surface. Note that the definitions of μx in the curve and surface cases come
fromdiscretizations ofmathematical objects called currents, as described
in Vaillant and Glaunès (2005).

Lemma 1. Static variational solution. The point-based LDDMM algo-
rithm minimizes the energy in Eq. (5), with variables xt=(xi(t))i=1n and
αt=(αi(t))i =1n that are related via the dynamical equations

dxi tð Þ
dt

=∑
n

j = 1
kV xi tð Þ; xj tð Þ� �

αj tð Þ; i = 1;2;…;n ð9Þ

with initial condition x0=x. The Euler–Lagrange optimality conditions
for this variational problem imply

dαi tð Þ
dt

= −∑
n

j = 1
αi tð Þ� αj tð Þ∇1kV xi tð Þ; xj tð Þ� �

; ð10Þ

where∇1 denotes taking derivative of kV(xi(t), xj(t)) with respect to its
first variable.

This was proven previously (Vaillant et al., 2004). Eqs. (9) and (10)
indicate that the evolution from one object to the other is uniquely
determined by α0. Since α0 carries the same information as dx tð Þ

dt at t=0
and therefore corresponds to an infinitesimal variation of x0, we shall
term α0 as “deformation signature” in the static point-based LDDMM.
In fact, Eq. (10) is the form taken by the conservation of momentum
Eq. (2) in the singular case of point momenta.

Time sequence large deformation diffeomorphic metric mapping
for landmarks, curves, and surfaces (TS-LDDMM)

In the time sequence large deformation diffeomorphic metric
mapping (TS-LDDMM), time sequence observations are given and the
goal is to infer the time flow of geometric change that carries the
known observation through the period t∈ [0, 1]. Here flows of point
sets are diffeomorphic, with t corresponding to actual real-time, and
the comparison is examined by the similarity of the observables It,
t∈ [0, 1] and the observable, I0 at t=0. I0 plays the role of the so-called
template. In the static point-based LDDMM algorithm discussed in the
previous section, the time in Eq. (5) is a dummy time only used for
algorithmic purposes with the single target observable at t=1, and is
not relevant to the time at which the data is collected. In the TS-
LDDMMmodel, the observables, It, are generated from I0 under space-
time flows, ϕt such that �t � I0 = It at all time t. We define an inexact
point-based TS-LDDMM matching: find a time-dependent diffeo-
morphism ϕt connecting a point set x= I0=(xi)i =1n and time-dependent
point sets yt= It=(yj(t))j =1m as a minimizer of

J αtð Þ = argmin
αt

Z 1

0
∑
n

i = 1
∑
n

j = 1
kV xi tð Þ; xj tð Þ� �

αi tð Þ� �
d αj tð Þdt

+
Z 1

0
Et �t � x; ytð Þdt; ð11Þ

where the matching functional, Et, quantifies the closeness between
the deformed template, �t � x, and observation, yt at time t. In our
applications, we choose Et dependent of time and given by Eq. (7)
adapted to the unlabeled landmarks, curve, and surface cases.We can
rewrite J into a matrix form

J αtð Þ =
Z 1

0
αt � kV xt ; xtð Þαt½ �dt +

Z 1

0
Et xt ; ytð Þdt; ð12Þ

where αt=(αi(t))i=1n , xt = �1dx, and yt=(yi(t))i=1n are vectors of momen-
tum and coordinates of xt and yt at time t.

Lemma 2. Time-sequence variational solution. The Euler–Lagrange
equation associatedwith the variational problem in Eq. (12) is given by
(▿J)t=2αt+ηt=0, where vector ηt =

R 1
t ∇xs Esds +

R 1
t ∂xs kV xs; xsð Þαs½ �ð Þ4

ηs + αs
� �

ds and ∇xs Es is the derivative of Es with respect to xs.
The Euler–Lagrange optimality conditions for the point-based TS-

LDDMM in Eq. (12) imply

dαi tð Þ
dt

= −∑
n

j = 1
αi tð Þ� αj tð Þ∇1kV xi tð Þ; xj tð Þ� �

+
1
2
∇xi tð ÞEt ; ð13Þ

where▿1 denotes taking derivative of kV(xi(t), xj(t)) with respect to its
first variable and ∇xi tð ÞEt is the derivative of Et with respect to xi(t).

We give the proof of this lemma in Appendix.
Unlike the static point-based LDDMM with shape variations

encoded in the initial momentum based on Eqs. (9) and (10), the
dynamic shape motion in the point-based TS-LDDMM also depends
on the serial observations. Thus, the time-dependent momentum is
needed to characterize the dynamic shape motion (not only the initial
momentum). In the point-based TS-LDDMM we term this time-
dependent momentum as “deformation signature” that carries the
dynamic motion of the serial observations.

The sampled TS-LDDMM

The usual problem in Computational Anatomy involves sampled
observables in time of the observed data Itk = ytk ; k = 1;…;N with t0=0,
tN=1. Then the variational problem and its solution becomes amixture
of the static and dynamic solutions, interpolating between time
points. Between sample points the geodesic satisfies the Euler-
equation and conservation of momentum, with the observables
entering at the boundary points t1, t2, tN.

Lemma 3. The optimizing flow connecting the observables
ytk ; k = 1;…;N given by

J αtð Þ = argmin
αt

Z 1

0
∑
n

i = 1
∑
n

j = 1
kV xi tð Þ; xj tð Þ� �

αj tð Þ� �
d αi tð Þdt +∑

N

k = 1
Etk �tk d x; ytk

� �

ð14Þ



Fig. 2. A coronal section of the left ventricle was selected from the systole phase (panels (a–d)) and the diastole phase (panels (e–g)) during one cardiac cycle. Green curves on each
panel are the automatically segmented contours of endocardium and epicardium. Red curves on each panel are the deformed template at each phase. Red and green contours are
overlapped very well, which indicates the accuracy of the TS-LDDMM algorithm. The time normalized into the range between 0 and 1 is indicated on the top of each panel.
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has Euler–Lagrange optimality conditions for the point-based TS-
LDDMM in Eq. (12) given by

dαi tð Þ
dt

= −∑
n

j = 1
αi tð Þ � αj tð Þ∇1kV xi tð Þ; xj tð Þ� �

; t∈ ti−1; tið Þ; i = 1;…;N

ð15Þ
with jumps at observation times defined as follows: α1 =∇x1E1=2, and
αt +

k
−αt−

k
=∇xtk

Etk=2.
We give the proof of this lemma in Appendix (with the expression

of the gradient of J with respect to α). This situation is intermediate
between the static LDDMMand TS-LDDMM. It is easy to check that the
whole trajectory αt is characterized by the momenta at time 0, α0 and
at time tk

+, for tkb1.

Implementation

We use a conjugate gradient routine to perform the minimization
of functional J in (11) with respect to variables αi(t). Of course any
other optimization scheme could be considered at this point. The
different steps required to compute the functional and its gradient for
each iteration are the following:

1. from momentum vectors αi(t), compute trajectories xi(t) by
integrating the system of ordinary differential equations (ODE)
using Eq. (9).
Fig. 3. Momentum vectors, αt, of the epicardium curves computed from
2. evaluate J from Eq. (11)
3. compute vectors ηi(t) by integrating the system of ODE in Eq. (21)
4. compute gradient (▿J)i(t)=2αi(t)+ηi(t).

All time-dependant variables are evaluated on a uniform grid
t1=0,…, tT=1 and a predictor/corrector centered Euler scheme was
used to solve the systems of ODE in Eq. (9) and (21). The complexity
of each iteration is of order dTN2, where N=max(n, m). To speed up
computations when N is large, all convolutions by kernels kV and kW
are accelerated with fast Gaussian transform (Yang et al., 2003),
which reduces the complexity to dTN log(N).

Heart and brain applications

TS-LDDMM of MR heart image
We illustrate an application of the TS-LDDMM for encoding heart

motion in cardiac cycles. Total 25 image volumes were acquired per
cardiac cycle. For the sake of simplicity, one cardiac cycle from the
end-diastole (ED) to the next ED was normalized from t=0 to t=1
and sampled into 25 time points. Fig. 2 illustrates a coronal section of
the left ventricle selected from the systole phase (panels a–d) and
the diastole phase (panels e–g). We applied the automatic segmen-
tation algorithm (Jolly, 2006) for contouring the endocardium and
epicardium in every phase, which are marked in green curves on
each panel. The endocardium and epicardium curves in panel (a)
served as template curves in the TS-LDDMM algorithm that map it
the TS-LDDMM algorithm are shown in the template coordinates.



Fig. 4. Panel (a) shows the hippocampal surface at time 0 in the inferior view. Panels (b–e) illustrate the hippocampal surfaces with surface-inward deformation in the subiculum
subfield at times 1–4. The strength of the deformation is denoted by its distance to the hippocampal surface at time 0. Panels (f–i) show the deformed template computed from the
TS-LDDMM algorithm at each time point. They are colored by their distances to the surface on panel (a). The region with no deformation is colored in blue.
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to the curves at the rest of the cardiac cycle. Red curves in Fig. 2
illustrate the deformed templates in each phase of the cardiac cycle,
which are well overlapped with the segmented contours. The
momentum, αt, of the epicardium curves shown in Fig. 3, encodes
the trajectory of the heart motion through the flow in Eq. (9).

TS-LDDMM of hippocampal surface shapes
Subfield-specific shape changes of the hippocampus have been

identified inmild cognitive impairment (MCI) and Alzheimer's disease
(AD). We demonstrate an application of the TS-LDDMMalgorithms for
tracking subfield-specific shape changes of the hippocampus in
multiple time points in simulated datasets. To do so, we generated
two sets of hippocampal surface shapes at five time points: one set
with the surface-inward deformation only in the subiculum subfield
(Fig. 4); the other with the surface-inward deformation only in the
subfields of CA1,2,3 (Fig. 5). In each set, the hippocampal surfaces at
time points 1–4 (panels b–e) were generated from the one at time 0
(panel a). Between any two subsequent time points, the reduction in
the hippocampal volume is about 10%. Each surface in (panels b–e) is
colored by its distance to the surface at time 0 to show the strength of
the hippocampal atrophy. In the TS-LDDMM algorithm, each surface
was represented by 3223 vertices and 6442 triangles. The hippocam-
Fig. 5. Panel (a) shows the hippocampal surface at time 0 in the superior view. Panels (b–e)
CA1, 2, and 3 at times 1–4. The strength of the deformation is denoted by its distance to the h
the TS-LDDMM algorithm at each time point. They are colored by their distances to the sur
pal surface at time 0 was considered as within-subject template and
the surfaces at the other time points were considered as time-
dependent targets. 20 time steps were chosen between each time
interval. The TS-LDDMM mapping for these examples took 7 or 8 min
when using a 64-bit computer with a 2.4GHz CPU. Figs. 4 and 5(f–i)
show the deformed template computed from the TS-LDDMM
algorithm at each time point colored with its distance map to the
template at time 0. Visually, the TS-LDDMM algorithm can well map
the template to the time-dependent targets through trajectory, ϕt.

Making between-subject shape comparison possible requires to
translate the deformation signature encoding the within-subject
dynamic shape changes (e.g. vectors in Fig. 3) to a global reference
frame. In the subsequent section, we describe how the deformation
signature obtained from the TS-LDDMM is transported first to the
within-subject baseline, then to the global template along the curve
connecting the within-subject template with the global template.

Parallel transport in diffeomorphisms

Via relation in Eq. (9) the deformation signature αt
(j) at time t is

attached to the current position xt(j) of the evolving point set for
subject j. In this section, we describe how this subject-dependent
illustrate the hippocampal surfaces with surface-inward deformation in the subfields of
ippocampal surface at time 0. Panels (f–i) show the deformed template computed from
face on panel (a). The region with no deformation is colored in blue.



Fig. 6. Panel (a) shows the hippocampus of a subject at the baseline. The hippocampus
surface of this subject at the follow-up (green) is superimposed with one at the baseline
in panel (b). Panel (c) shows the global hippocampus template. Panel (d) shows the
hippocampus of this subject at the follow-up (green) represented in the global template
coordinates (gray).
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signature can be normalized to provide a new time series evolving
from a fixed (subject independent) baseline, whichwill be used for the
between-subject comparison.

The basic operation for this purpose will be parallel transport in
deformable point sets. It is performed along a curve traced on a
Riemannian manifold, which allows translation of a tangent vector at
one end of the curve to the other end of curve without change
according to the intrinsic geometry of the manifold. This has been
described in the diffeomorphic matching framework in (Qiu et al.,
2008a,b; Younes, 2007; Younes et al., 2008). In the context of this
paper, parallel transport takes in input a trajectory, sizs, and a
deformation signature ωt at some time t (attached to zt). The output is
a transported signature, ωs, at each time s of the trajectory. They
satisfy the following dynamical system

∑
n

j = 1
kV zi tð Þ; zj tð Þ� �

×
dωj tð Þ
dt

+∑
n

l = 1
∇1kV zj tð Þ; zl tð Þ� �

βj tð Þdωl tð Þ +ωj tð Þdβl tð Þ� �0
@

1
A

=∑
n

j = 1
∇1kV zi tð Þ; zj tð Þ� �

d

��
∑
n

l = 1
kV ðziðtÞ; zl tð ÞÞωl tð Þ

−∑
n

l = 1
kV zj tð Þ; zl tð Þ� �

wl tð Þ
	
βj tð Þ−

�
∑
n

l = 1
kV zi tð Þ; zl tð Þð Þβl tð Þ

−∑
n

l = 1
kV zj tð Þ; zl tð Þ� �

βl tð Þ
	
ωj tð Þ

	
;

ð16Þ

where βt is defined by

dzi tð Þ
dt

=∑
n

j = 1
kV zi tð Þ; zj tð Þ� �

βj tð Þ; i = 1;2;…;n: ð17Þ

Since this is a first order linear dynamical system, knowing ω at
time t uniquely specifies its value at all times.

The following notation will be convenient. Define PT z; t; ω̃; s
� �

the
solution at time s of System (16), for the curve sizs and ωt = ω̃ at
time t (i.e., the parallel translation of ω̃ along z from time t to time s).
Then, as illustrated in Fig. 1, our normalization procedure for TS-
LDDMM deformation signatures is defined as follows. We assume
that a global template x0

(0) has been chosen, as an examplar of the
subject baselines, x0

(j).

Retraction: For each subject j and each time t, parallel translate α t
(j)

from time t to time 0 along six jð Þ
s , yielding a vector denoted β0

(j,t).
With our notation, this is

β j;tð Þ
0 = PT x jð Þ; t;α jð Þ

t ;0
� �

:

Translation: For each j, compute a geodesic z(j) between x0
(j) and the

template x0
(0) by solving the LDDMM problem in Eq. (5). Then,

translate β0
(j,t) along this trajectory, yielding ω0

(j,t). Thus,

ω j;tð Þ
0 = PT z jð Þ;0;β j;tð Þ

0 ;1
� �

:

Extension: This is the inverse of the retraction operation. For each j
and each t, reconstruct a new trajectory yt

( j) starting from the global
template (y0

(j) =x 0
(0)), solving the system

dy jð Þ
t

dt
= kv yt ; ytð Þω j;tð Þ

t

with ωt
(j, t)=PT(y(j), 0, ω0

(j, t), t).

The result of this algorithm is a subject-indexed family of
trajectories (yt

(j)) which are all deformations of the same template,
and therefore can be compared in a meaningful way. The extension
step requires a double integration in its implementation: at each time
t, parallel translation (Eq. (16)) must be solved from 0 to t in order to
update the trajectory yt(j).

Fig. 6 intuitively illustrates one example using parallel transport to
represent within-subject deformation in the global template coordi-
nates. Panel (a) shows the hippocampal surface of a subject at the
baseline while Panel (b) shows the hippocampal surface of the same
subject at the follow-up (green) superimposed with one at the
baseline (gray). Panel (c) depicts the global hippocampal template.
Panel (d) shows the hippocampal surface of this subject at the follow-
up (green) represented in the global template coordinates (gray). The
deformation of the hippocampal surface between baseline and follow-
up represented by interlacing green and gray in panel (b) has a similar
pattern as in panel (d). This indicates that the technique of parallel
transport in diffeomorphism is a reasonable approach allowing us to
study longitudinal shape variationwithin subjects in a global template
coordinate system.

TS-LDDMM and parallel transport for hippocampal atrophy

We applied the TS-LDDMM and parallel transport algorithms for
assessing differences in the hippocampal shape changes between 19
healthy elders (age: 74.6±6.5) and 19 patients with Alzheimer's
disease (AD) (age: 74.0±6.8). Each subject was scanned every three
months so there were four MRI volumes per subject in a nine-month
interval.

In structural delineation process, the hippocampus of each subject
at the baseline was semi-automatically segmented using the method
described in (Haller et al., 1997) and was then propagated to the rest
time points using the LDDMM-image mapping (Beg et al., 2005). We
represented the hippocampal shape using triangulated meshes. In the
mapping process, the TS-LDDMM algorithm was applied to find an
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optimal trajectory that passes through the four observations of each
subject in a metric shape space. This trajectory and its corresponding
momenta encode the within-subject time-dependent shape changes.
Then, following the illustration in Fig. 1, the parallel transport
operationfirst translated thewithin-subject timedependentmomenta
to the subject's baseline coordinate system, and then to the global
template. Thewithin-subject shape trajectorywas reconstructed in the
global template coordinates via the flow and parallel transport. Finally,
we computed the Jacobianmatrixof thewithin-subject deformation in
the global template x(0), through the flow equation in Eq. (9) when
αt=ωt

(j, t). The Jacobian determinant shows regions with expansion
(JacobianN1) or compression (Jacobianb1). Let F(j)(p), p∈x(0) denote
the Jacobian determinant in the logarithmic scale for subject j.

To illustrate our results, we performed the statistical testing on the
log Jacobian determinant that characterizes the shape changes in nine
months. Assume F(j)(x) arises from random processes. Its distribution
models as random field in the global template that can be represented
by a linear combination of orthonormal bases as follows:

F jð Þ xð Þ =∑
10

i = 1
F jð Þ
i ψi xð Þ; xax 0ð Þ; ð18Þ

where ψi(x) is chosen as the ith basis of the Laplace–Beltrami (LB)
operator on x(0) (Qiu et al., 2006). Fi(j) is the coefficient associated with
ψi. In our study, 10 LB bases take 90% of total variation of F(j). We
hypothesized that the Fi

(j)s are equal in the groups of healthy elders
and patients with AD against that the Fi

(j)s are not equal in both
groups. To examine it, we performed two-sided Student t-tests on
each individual Fi

(j). At a significance level of 0.02, the shape
differences between the two groups occur in the 1st (p=0.0171) and
the 4th (p=0.0159) LB bases of the left hippocampus and the 3rd
(p=0.0032) and the 10th p=0.0156 LB bases of the right hippocampus.
For the visualization purpose, we back projected these LB bases to the
global template coordinates, which is shown in both superior and
inferior views of the hippocampus in Fig. 7. Compared with the
healthy controls, regions in warm color have greater atrophy in
patients with AD, while regions in cool color have less atrophy. This
result suggests that the greater atrophy occurs in the left hippocam-
pus, particularly in the posterior segment, and the lateral middle body
of the right hippocampus.

Discussion

This paper presents shape analysis algorithms for tracking long-
itudinal shape changes for point-based objects, including unlabeled
Fig. 7. Panel (a) shows the shape differences of the left hippocampus between the healthy el
shape differences of the right hippocampus. Compared with the healthy elders, regions with
AD group are in cool color.
landmarks, curves, and surfaces, under the diffeomorphic mapping
framework. It incorporates two major diffeomorphic techniques: TS-
LDDMM and parallel transport. The dynamic motion or shape change
is encoded via time-dependent momentum obtained from TS-
LDDMM. The parallel transport operation taken from Riemannian
geometry in a diffeomorphic shape space translates these momentum
vectors (tangent vectors) in the shape space towithin-subject baseline
coordinates and then to the global template without incorporating
across-subject deformation. It preserves the metric or covariance of
the momentum from a subject coordinate system to the global
template coordinate system. The benefit from it is to directly make
statistical inference for detecting across-subject shape differences.

The TS-LDDMM algorithms introduced in this paper are the
extension of the static point-based LDDMM algorithms (Glaunès et
al., 2004, 2008; Vaillant and Glaunès, 2005; Vaillant et al., 2007; Qiu
and Miller, 2007). We consider point-based shapes, such as unlabeled
landmarks, curves, and surfaces, as measure. The structure of a Hilbert
space is imposed on the measure in the way its norm can be used to
quantify the geometric similarity between two objects (Glaunès et al.,
2008; Vaillant and Glaunès, 2005). We generalized the gradient
derivation of the energy in the TS-LDDMM variational problem with
respect to the momentum along the deformation trajectory for the
point-based shapes, including unlabeled points, curves, and surfaces.
Unlike the static LDDMM encoding the shape variation in the initial
momentum, the TS-LDDMM Euler–Lagrange optimality conditions
indicate that time-dependent shape changes are characterized by the
time-dependent momentum, which do not satisfy the geometric
evolution of Eqs. (9) and (10). The TS-LDDMM algorithm provides a
way to fit subject's time-dependent observations by a smooth trajec-
tory in the metric space.

The demonstration of the use of the TS-LDDMM and parallel
transport is given through an example of detecting time-dependent
hippocampal atrophy pattern in AD. A variety of other applications
using the proposed analysis framework can be found in medical
image analysis and computer vision (e.g. studying heart motion
abnormalities in cardiac diseases).
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Appendix A. Gradient of a point-based matching functional in the
TS-LDDMM setting
Lemma 4. The Euler–Lagrange equation associated with the vari-
ational problem in Eq. (12) is given by (∇J)t=2αt+ηt=0, where vector
ηt =

R 1
t ∇xs Esds +

R 1
t ∂xs kV xs; xsð Þαs½ �ð Þ4 ηs + αs

� �
ds and ∇xs Es is the deri-

vation of Es with respect to xs.

Proof. We consider a variation αt
e=αt+eα̃t. Our goal is to express the

derivative f′(0) of f eð ÞWJ αe
t

� �
in function of α̃t.

Since

dxt
dt

= kv xt ; xtð Þαt :

The variation in α implies a first order variation in x, that we
denote x with

dx̃t
dt

= ∂x kv xt ; xtð Þαtð Þx̃t + kv xt ; xtð Þα̃t :

From

J αð Þ =
Z 1

0
αtd kv xt ; xtð Þαtð Þdt +

Z 1

0
Et xt ; ytð Þdt

we get

f 0 0ð Þ = 2
Z 1

0
αtd kV xt ; xtð Þαtð Þdt +

Z 1

0
∇xt αtd kV xt ; xtð Þαtð Þ +∇xEt xtð Þð Þd x̃tdt:

ð19Þ

Introduce the matrix Rst defined by Rss=identity and

dRst

dt
= ∂xt kV xt ; xtð Þαt½ �Rst :

Then we have

x̃t =
Z t

0
RstkV xs; xsð Þα̃sds;

as can be easily checked. Also, RstRts=identity which implies

dR4
st

ds
= −∂xt kV xt ; xtð Þαt½ ��R�

st :

Introducing

ηt =
Z 1

t
R4
ts ∇xs αsdkV xs; xsð Þαsð Þ +∇xEs xsð Þð Þds;

we can rewrite Eq. (19) as

f V 0ð Þ = 2
Z 1

0
αtd kv xt ; xtð Þαtð Þdt +

Z 1

0
ηtd kv xt ; xtð Þαtð Þdt ð20Þ

with η1=0 and

dηt
dt

= −∇xt Et xtð Þ−∂xt kV xt ; xtð Þαt½ �� αt + ηt
� � ð21Þ
where we have used the fact that

∇xt αtdkV xt ; xtð ÞÞαt = ∂xt kV xt ; xtð Þαt½ �4αt :
�

This provides the Euler Lagrange equations stated in the lemma.
Moreover, from 2αt=−ηt we get

dαt

dt
=
1
2
∇xt Et xtð Þ−1

2
∂xt kV xt ; xtð Þαt½ �� αtð Þ

which coincide with the expression given in Lemma 2. This result was
detailed in Glaunès et al. (2004) for unlabeled landmarks, Glaunès
et al. (2008) for curves, and Vaillant and Glaunès (2005) for surfaces.

The proof of Lemma 3 is very similar. We leave the details of the
computation to the reader. One finds that the gradient of J is given by
2αt+ηt with

ηt =
Z 1

t
R4
ts ∂xs kV xs; xsð Þαsð Þð Þds +∑

k

R4
ttk
∇xtk

Etk1 tk ;1½ � tð Þ:

Computing the derivative as above, one finds that at all t≠tk; dηt
satisfies

dηt
dt

= −∂xt kV xt ; xtð Þαt½ �� αt + ηt
� �

;

ηt is discontinuous at observation times with η1 =∇x1E1, and the jump
ηt−

k
ηt +

k
=∇xtk

Etk . This translates directly into the conditions given in
Lemma 3.

We have implicitly defined the gradient of J relatively to the metric
given by kV(xt, xt) with two-fold advantages of being closer to the
metric inducing the space of velocity field vt and simplifying the
formula for the gradient.
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