A FANNING SCHEME FOR THE PARALLEL TRANSPORT ALONG GEODESICS ON RIEMANNIAN MANIFOLDS

MAXIME LOUIS1,2, BENJAMIN CHARLIER3,1,2, PAUL JUSERLIN4,1,2, SUSOVAN PAL1,2, STANLEY DURRLEMAN1,2

1INRIA PARIS, ARAMIS PROJECT-TEAM, 75013, PARIS, FRANCE
2SORBONNE UNIVERSITÉS, UPMC UNIV PARIS 06, INSERM, CNRS, INSTITUT DU CERVEAU ET DE LA MOELLE (ICM) - HÔPITAL PITIÉ-SALPÉTRIÈRE, BOULEVARD DE L'HÔPITAL, F-75013, PARIS, FRANCE
3INSTITUT MONTPELLIÉRAIN ALEXANDER GROTHENDIECK, CNRS, UNIV. MONTPELLIER
4CMLA, ENS CACHAN

Abstract. Parallel transport on Riemannian manifolds allows one to connect tangent spaces at different points in an isometric way and is therefore of importance in many contexts, such as statistics on manifolds. The existing methods to compute parallel transport require either the computation of Riemannian logarithms, such as Schild’s ladder, or the Christoffel symbols. The Logarithm is rarely given in closed form, and therefore costly to compute whereas the Christoffel symbols are in general hard and costly to compute. From an identity between parallel transport and Jacobi fields, we propose a numerical scheme to approximate the parallel transport along a geodesic. We find and prove an optimal convergence rate for the scheme, which is equivalent to Schild’s ladder’s. We investigate potential variations of the scheme and give experimental results on the Euclidean two-sphere and on the manifold of symmetric positive definite matrices.

Key words. Parallel Transport, Riemannian manifold, Numerical scheme, Jacobi field

1. Introduction. Riemannian geometry has been long contained within the field of pure mathematics and theoretical physics. Nevertheless, there is an emerging trend to use the tools of Riemannian geometry in statistical learning to define models for structured data. Such data may be defined by invariance properties, and therefore seen as points in quotient spaces as for shapes, orthogonal frames, or linear subspaces. They may be defined also by smooth inequalities, and therefore as points in open subsets of linear spaces, as for symmetric positive definite matrices, diffeomorphisms or bounded measurements. Such data may be considered therefore as points in a Riemannian manifolds, and analysed by specific statistical approaches [14, 3, 10, 4]. At the core of these approaches lies parallel transport, an isometry between tangent spaces which allows the comparison of probability density functions, coordinates or vectors that are defined in the tangent space at different points on the manifold. The inference of such statistical models in practical situations requires efficient numerical schemes to compute parallel transport on manifolds.

The parallel transport of a given tangent vector is defined as the solution of an ordinary differential equation ([8] page 52), written in terms of the Christoffel symbols. The computation of the Christoffel symbols requires access to the metric coefficients and their derivatives, making the equation integration using standard numerical schemes very costly in situations where no closed-form formulas are available for the metric coefficients or their derivatives.

An alternative is to use Schild’s ladder [2], or its faster version in the case of geodesics, the pole ladder [6]. These schemes essentially require the computation of Riemannian exponentials and logarithms at each step. Usually, the computation of the exponential may be done by integrating Hamiltonian equations, and does not raise specific difficulties. By contrast, the computation of the logarithm must often be done by solving an inverse problem with the use of an optimization scheme such as a gradient descent. Such optimization schemes are approximate and sensitive to
the initial conditions and to hyper-parameters, which leads to additional numerical errors—most of the time uncontrolled—as well as an increased computational cost. When closed formulas exist for the Riemannian logarithm, or in the case of Lie groups, where the Logarithm can be approximated efficiently using the Baker-Campbell-Hausdorff formula (see [5]), Schild’s ladder is an efficient alternative. When this is not the case, it becomes hardly tractable. A more detailed analysis of the convergence of Schild’s ladder method can be found in [9]

Another alternative is to use an equation showing that parallel transport along geodesics may be locally approximated by a well-chosen Jacobi field, up to the second order error. This idea has been suggested in [12] with further credits to [1], but without either a formal definition nor a proof of its convergence. It relies solely on the computations of Riemannian exponentials.

In this paper, we propose a numerical scheme built on this idea, which tries to limit as much as possible the number of operations required to reach a given accuracy. We will show how to use only the inverse of the metric and its derivatives when performing the different steps of the scheme. This different set of requirements makes the scheme attractive in a different set of situations than the integration of the ODE or the Schild’s ladder. We will prove that this scheme converges at linear speed with the time-step, and that this speed may not be improved without further assumptions on the manifold. Furthermore, we propose an implementation which allows the simultaneous computation of the geodesic and of the transport along this geodesic. Numerical experiments on the 2-sphere and on the manifold of 3-by-3 symmetric positive definite matrices will confirm that the convergence of the scheme is of the same order as Schild’s ladder in practice. Thus, they will show that this scheme offers a compelling alternative to compute parallel transport with a control over the numerical errors and the computational cost.

2. Rationale.

2.1. Notations and assumptions. In this paper, we assume that γ is a geodesic defined for all time $t > 0$ on a smooth manifold \mathcal{M} of finite dimension $n \in \mathbb{N}$ provided with a smooth Riemannian metric g. We denote the Riemannian exponential \exp and ∇ the covariant derivative. For $p \in \mathcal{M}$, $T_p \mathcal{M}$ denotes the tangent space of \mathcal{M} at p. For all $s, t \geq 0$ and for all $w \in T_{\gamma(s)} \mathcal{M}$, we denote $P_{s,t}(w) \in T_{\gamma(t)} \mathcal{M}$ the parallel transport of w from $\gamma(s)$ to $\gamma(t)$. It is the unique solution at time t of the differential equation $\nabla_{\dot{\gamma}(u)} P_{s,u}(w) = 0$ for $P_{s,s}(w) = w$. We also denote $J^w_{\gamma(t)}$ the Jacobi field emerging from $\gamma(t)$ in the direction $w \in T_{\gamma(t)} \mathcal{M}$, that is

$$J^w_{\gamma(t)}(h) = \frac{\partial}{\partial \varepsilon} \bigg|_{\varepsilon=0} \exp_{\gamma(t)}(h(\dot{\gamma}(t) + \varepsilon w)) \in T_{\gamma(t+h)} \mathcal{M}$$

for $h \in \mathbb{R}$ small enough. It verifies the Jacobi equation (see for instance [8] page 111-119)

$$\nabla^2 J^w_{\gamma(t)}(h) + R(J^w_{\gamma(t)}(h), \dot{\gamma}(h))\dot{\gamma}(h) = 0$$

where R is the curvature tensor. We denote $\| \cdot \|_g$ the Riemannian norm on the tangent spaces defined from the metric g, and $g_p : T_p \mathcal{M} \times T_p \mathcal{M} \to \mathbb{R}$ the metric at any $p \in \mathcal{M}$. We use Einstein notations.

We fix Ω a compact subset of \mathcal{M} such that Ω contains a neighborhood of $\gamma([0, 1])$. We also set $w \in T_{\gamma(0)} \mathcal{M}$ and $w(t) = P_{0,t}(w)$. We suppose that there exists a coordinate system on Ω and we denote $\Phi : \Omega \to U$ the corresponding diffeomorphism, where U
is a subset of \mathbb{R}^n. This system of coordinates allows us to define a basis of the tangent space of M at any point of Ω, we denote $\frac{\partial}{\partial x^i} \mid_p$ the i-th element of the corresponding basis of $T_p M$ for any $p \in M$. Note finally that, since the injectivity radius is a smooth function of the position on the manifold (see [8]) and that it is everywhere positive on Ω, there exists $\eta > 0$ such that for all p in Ω, the injectivity radius at p is larger than η.

The problem in this paper is to provide a way to compute an approximation of $P_{0,1}(w)$.

We suppose throughout the paper the existence of a single coordinate chart defined on Ω. In this setting, we propose a numerical scheme which gives an error varying linearly with the size of the integration step. Once this result is established, since in any case $\gamma([0,1])$ can be covered by finitely many charts, it is possible to apply the proposed method to parallel transport on each chart successively. The errors during this computation of the parallel transport would add, but the convergence result remains valid.

2.2. The key identity. The numerical scheme that we propose arises from the following identity, which is mentioned in [12]. Figure 1 illustrates the principle.

Proposition 2.1. For all $t > 0$, and $w \in T_{\gamma(0)} M$ we have

$$P_{0,t}(w) = \frac{J^w_{\gamma(0)}(t)}{t} + O(t^2).$$

Proof. Let $X(t) = P_{0,t}(w)$ be the vector field following the parallel transport equation: $X^i + \Gamma^i_{kl} X^k X^l = 0$ with $X(0) = w$, where $(\Gamma^i_{kl})_{i,j,k \in \{1,\ldots,n\}}$ are the Christoffel symbols associated with the Levi-Civita connection for the metric g. In normal coordinates centered at $\gamma(0)$, the Christoffel symbols vanish at $\gamma(0)$ and the equation gives: $\dot{X}^i(0) = 0$. A Taylor expansion of $X(t)$ near $t = 0$ in this local chart then reads

$$X^i(t) = w^i + O(t^2).$$

By definition, the i-th normal coordinate of $\text{Exp}_{\gamma(0)}(t(v_0 + \varepsilon w))$ is $t(v_0^i + \varepsilon w^i)$. Therefore, the i-th coordinate of $J^w_{\gamma(0)}(t) = \frac{\partial}{\partial \varepsilon} \mid_{\varepsilon = 0} \text{Exp}_{\gamma(0)}(t(\dot{\gamma}(0) + \varepsilon w))$ is tw^i. Plugging this into (3) yields the desired result.

This control on the approximation of the transport by a Jacobi field suggests to divide $[0,1]$ into N intervals $[\frac{k}{N}, \frac{k+1}{N}]$ of length $h = \frac{1}{N}$ for $k = 0, \ldots, N - 1$ and
to approximate the parallel transport of a vector $w \in T_{\gamma(0)}$ from $\gamma(0)$ to $\gamma(1)$ by a
sequence of vectors $w_k \in T_{\gamma(t)}(\mathcal{M})$ defined as

$$
\begin{align*}
 w_0 &= w \\
 w_{k+1} &= N J^w_{\gamma(t)}(\frac{t}{N}) \left(\frac{1}{N} \right).
\end{align*}
$$

(4)

With the control given in the Proposition 2.1, we can expect to get an error of order $O\left(\frac{1}{N^2}\right)$ at each step and hence a speed of convergence in $O\left(\frac{1}{N}\right)$ overall. There are
manifolds for which the approximation of the parallel transport by a Jacobi field is
exact e.g. Euclidean space, but in the general case, one cannot expect to get a better
convergence rate. Indeed, we show in the next Section that this scheme for the sphere
\mathbb{S}^2 has a speed of convergence exactly proportional to $\frac{1}{N}$.

2.3. Convergence rate on \mathbb{S}^2. In this Section, we assume that one knows the
great circles, which may be written as $\gamma(t) = \exp(p \times v)$ along $\gamma(t)$ has constant
coordinates, where \times denote the usual cross-product on \mathbb{R}^3.

Let $p \in \mathbb{S}^2$ and $v \in T_p \mathbb{S}^2$. (p and v are seen as vectors in \mathbb{R}^3). The geodesics are
the great circles, which may be written as

$$
\gamma(t) = \exp_p(tv) = \cos(t|v|)p + \sin(t|v|) \frac{v}{|v|},
$$

where $|\cdot|$ is the euclidean norm on \mathbb{R}^3. Using spherical coordinates (θ, ϕ) on the sphere,
chosen so that the whole geodesic is in the coordinate chart, we get coordinates on
the tangent space at any point $\gamma(t)$. In this spherical system of coordinates, it is
straightforward to see that the parallel transport of $w = p \times v$ along $\gamma(t)$ has constant
coordinates, where \times denote the usual cross-product on \mathbb{R}^3.

We assume now that $|v| = 1$. Since $w = p \times v$ is orthogonal to v, we have

$$
\frac{\partial}{\partial t}|_{t=0} |v + \varepsilon w| = 0.
$$

Therefore,

$$
J^w_p(t) = \frac{\partial}{\partial \varepsilon}|_{\varepsilon=0} \left(\cos(t|v + \varepsilon w|)p + \sin(t|v + \varepsilon w|) \frac{v + \varepsilon w}{|v + \varepsilon w|} \right)
$$

$$
= \sin(t)w
$$

which does not depend on p. We have $J^w_p(t) = \sin(t)w$. Consequently, the se-
quence of vectors w_k built by the iterative process described in equation (4) verifies

$$
w_{k+1} = N w_k \sin(\frac{1}{N})$$

for $k = 0, \ldots, N - 1$, and $w_N = w_0 N \sin(\frac{1}{N})^N$. Now in the
spherical coordinates, $P_{0,1}(w_0) = w_0$, so that the numerical error, measured in these
coordinates, is proportional to $w_0 \left(1 - \left(\frac{\sin(1/N)}{1/N} \right)^N \right)$. We have

$$
\left(\frac{\sin(1/N)}{1/N} \right)^N = \exp \left(N \log \left(1 - \frac{1}{6N^2} + o(1/N^2) \right) \right) = 1 - \frac{1}{6N} + o\left(\frac{1}{N} \right)
$$

yielding

$$
\frac{|w_N - w_0|}{|w_0|} \propto \frac{1}{6N} + o\left(\frac{1}{N} \right).
$$

It shows a case where the bound $\frac{1}{N}$ is reached.
3. The numerical scheme.

3.1. The algorithm. In general, there are no closed forms expressions for the geodesics and the Jacobi fields. Hence, in most practical cases, these quantities also need to be computed using numerical methods.

Computing geodesics. In order to avoid the computation of the Christoffel symbols, we propose to integrate the first-order Hamiltonian equations to compute geodesics. Let \(x(t) = (x_1(t), \ldots, x_d(t))^T \) be the coordinates of \(\gamma(t) \) in a given local chart, and \(\alpha(t) = (\alpha_1(t), \ldots, \alpha_d(t))^T \) be the coordinates of the momentum \(g_\gamma(t)(\dot{\gamma}(t), \cdot) \in T_{\gamma(t)}M \) in the same local chart. We have then (see [13])

\[
\begin{align*}
\dot{x}(t) &= K(x(t))\alpha(t) \\
\dot{\alpha}(t) &= \frac{1}{2} \nabla_x (\alpha(t)^T K(x(t))\alpha(t)),
\end{align*}
\]

where \(K(x(t)) \), a \(d \times d \) matrix, is the inverse of the metric \(g \) expressed in the local chart. Note that using (5) to integrate the geodesic equation will require us to convert initial tangent vectors into initial momenta, as seen in the algorithm description below.

Computing \(J_{\gamma(t)}^w(h) \). The Jacobi field may be approximated with a numerical differentiation from the computation of a perturbed geodesic with initial position \(\gamma(t) \) and initial velocity \(\dot{\gamma}(t) + \varepsilon w \) where \(\varepsilon \) is a small parameter

\[
J_{\gamma(t)}^w(h) \approx \frac{\exp_{\gamma(t)}(h(\dot{\gamma}(t) + \varepsilon w)) - \exp_{\gamma(t)}(h\dot{\gamma}(t))}{\varepsilon},
\]

where the Riemannian exponential may be computed by integration of the Hamiltonian equations (5) over the time interval \([t, t + h]\) starting at point \(\gamma(t) \), as shown on Figure 2. We will also see that a choice for \(\varepsilon \) ensuring a \(O\left(\frac{1}{N}\right) \) order of convergence is \(\varepsilon = \frac{1}{N} \).

The algorithm. Let \(N \in \mathbb{N} \). We divide \([0, 1]\) into \(N \) intervals \([t_k, t_{k+1}]\) with \(t_k = \frac{k}{N} \) and denote \(h = \frac{1}{N} \) the size of the integration step. We initialize \(\gamma_0 = \gamma(0), \dot{\gamma}_0 = \dot{\gamma}(0), \hat{\alpha}_0 = w \) and solve \(\dot{\beta}_0 = K^{-1}(\gamma_0)\hat{\alpha}_0 \) and \(\dot{\alpha}_0 = K^{-1}(\gamma_0)\dot{\gamma}_0 \). We use "\(^* \)" for quantities computed in the scheme without any renormalization and "\(^{\sim} \)" for quantities computed in the scheme which have been renormalized to enforce expected conservations during the parallel transport. We propose to compute, at step \(k \):

(i) The new point \(\gamma_{k+1} \) and momentum \(\hat{\alpha}_{k+1} \) of the main geodesic, by performing one step of length \(h \) of a second-order Runge-Kutta method on equation (5).

(ii) The perturbed geodesic starting at \(\gamma_k \) with initial momentum \(\hat{\alpha}_k + \varepsilon \hat{\beta}_k \) at time \(h \), that we denote \(\tilde{\gamma}_{k+1} \), by performing one step of length \(h \) of a second-order Runge-Kutta method on equation (5).

(iii) The estimated parallel transport before renormalization

\[
\hat{w}_{k+1} = \frac{\tilde{\gamma}_{k+1} - \gamma_{k+1}}{h\varepsilon}.
\]

(iv) The corresponding momentum \(\hat{\beta}_{k+1} \), by solving: \(K(\gamma_{k+1})\hat{\beta}_{k+1} = \hat{w}_{k+1} \).

(v) The renormalized version of this momentum, and the corresponding vector

\[
\begin{align*}
\hat{\beta}_{k+1} &= a_k \hat{\beta}_{k+1} + b_k \hat{\alpha}_{k+1} \\
\hat{w}_{k+1} &= K(\gamma_{k+1})\hat{\beta}_{k+1},
\end{align*}
\]
Figure 2. One step of the numerical scheme. The dotted arrows represent the steps of the Runge-Kutta integrations for the main geodesic γ and for the perturbed geodesic γ^ε. The blue arrows are the initial $w(t_k)$ and the obtained approximated transport using equation (6), with $h = t_{k+1} - t_k$.

where a_k and b_k are factors ensuring $\hat{b}_{k+1}^T K(\tilde{\gamma}(t)) \beta_{k+1} = \beta_0^T K(\gamma_0) \beta_0$ and

$\tilde{\beta}_{k+1}^T K(\tilde{\gamma}(t)) \hat{\alpha}_{k+1} = \beta_0^T K(\gamma_0) \alpha_0$: quantities which should be conserved during the transport.

At the end of the scheme, \tilde{w}_N is the proposed approximation of $P_{0,1}(w)$. Figure 2 illustrates the principle. A complete pseudo-code is given in appendix A. It is remarkable that we can substitute the computation of the Jacobi field with only four calls to the Hamiltonian equations (5) at each step, including the calls necessary to compute the main geodesic. Note however that the (iv) step of the algorithm requires to solve a linear system of size n. Solving the linear system can be done with a complexity less than cubic in the dimension (in $O(n^2.374)$ using Coppersmith–Winograd algorithm).

3.2. Possible variations. There are a few possible variations of the presented algorithm.

1. The first variation is to use higher-order Runge-Kutta methods to integrate the geodesic equations at step (i) and (ii). We prove that a second-order integration of the geodesic equation is enough to guarantee convergence, and noticed experimentally the absence of convergence with a first order integration of the geodesic equation.

2. The second variation is to replace step (ii) and step (iii) the following way. At the k-th iteration, compute two perturbed geodesics starting at $\tilde{\gamma}_k$ and with initial momentum $\tilde{\alpha}_k + \varepsilon \tilde{\beta}_k$ (resp. $\tilde{\alpha}_k - \varepsilon \tilde{\beta}_k$) at time h, that we denote $\tilde{\gamma}_{k+1}^+\varepsilon$ (resp. $\tilde{\gamma}_{k+1}^-\varepsilon$), by performing one step of length h of a second-order Runge-Kutta method on equation (5). Then proceed to a second-order differentiation to approximate the Jacobi field, and set:

$$\hat{w}_{k+1} = \frac{\tilde{\gamma}_{k+1}^+\varepsilon - \tilde{\gamma}_{k+1}^-\varepsilon}{2h\varepsilon}.$$ (8)

3. The final variation of the scheme consists in skipping step (v) and set $\tilde{w}_{k+1} = \hat{w}_{k+1} = \tilde{\beta}_{k+1} = \hat{\beta}_{k+1}$.

We will show that the proposed algorithm and these variations ensure convergence of the final estimate. Note that the best accuracy for a given computational cost is not necessarily obtained with the method in Section 3.1, but might be attained with one of the proposed variations, as a bit more computations at each step may be counter-balanced by a smaller constant in the convergence rate.

3.3. The convergence Theorem. We obtained the following convergence result, guaranteeing a linear decrease of the error with the size of the step h. This manuscript is for review purposes only.
Theorem 3.1. We suppose here the hypotheses stated in Section 2.1. Let $N \in \mathbb{N}$ be the number of integration steps. Let $w \in T_{\gamma(0)}M$ be the vector to be transported. We denote the error

$$\delta_k = \| P_{0,t_k}(w) - \tilde{w}_k \|_2$$

where \tilde{w}_k is the approximate value of the parallel transport of w along γ at time t_k and where the 2-norm is taken in the coordinates of the chart Φ on Ω. We denote ε the parameter used in the step (ii) and $h = \frac{1}{N}$ the size of the step used of the Runge-Kutta approximate solution of the geodesic equation.

If we take $\varepsilon = h$, then we have

$$\delta_N = O\left(\frac{1}{N} \right).$$

We will see in the proof and in the numerical experiments that choosing $\varepsilon = h$ is a recommended choice for the size of the step in the differentiation of the perturbed geodesics. Further decreasing ε has no visible effect on the accuracy of the estimation and choosing a larger ε lowers the quality of the approximation.

Note that our result controls the 2-norm of the error in the global system of coordinates, but not directly the metric norm in the tangent space at $\gamma(1)$. This is due to the fact that $\gamma(1)$ is not accessible, but only its approximation $\tilde{\gamma}_N$ computed by the Runge-Kutta integration of the Hamiltonian equation. However, Theorem 3.1 implies that the couple $(\tilde{\gamma}_N, \tilde{w}_N)$ converges towards $(\gamma(1), P_{0,1}(w))$ using the ℓ^2 distance on $M \times TM$ using a coordinate system in a neighborhood of $\gamma(1)$, which is equivalent to any distance on $M \times TM$ on this neighborhood and hence is the right notion of convergence.

We give the proof in the next Section. The technical lemmas used in the proof are all in the appendix: in Appendix B.1, we prove an intermediate result allowing uniform controls on norms of tensors, in Appendix B.3, we prove a stronger result than Proposition 2.1 with stronger hypotheses and in Appendix B.4, we prove a result allowing to control the accumulation of the error.

4. Proof of the convergence Theorem 3.1. We start by proving convergence without step (v) of the algorithm, i.e. without enforcing the conservations during the transport. Once the convergence of this variation is established, we prove the convergence with the step (v).

Proof. (Without step (v)) We will denote, as in the description of the algorithm in Section 3, $\gamma_k = \gamma(t_k)$, $\tilde{\gamma}_k = \tilde{\gamma}(t_k)$ its approximation in the algorithm. Let N be a number of discretization step and $k \in \{1, \ldots, N\}$. We build an upper bound on the error δ_{k+1} from δ_k. We have

$$\delta_{k+1} = \left\| w_{k+1} - \tilde{w}_{k+1} \right\|_2$$

where

$$\leq \left\| w_{k+1} - \frac{J_{\gamma_k}^w (h)}{h} \right\|_2 + \left\| \frac{J_{\gamma_k}^w (h)}{h} - \frac{J_{\tilde{\gamma}_k}^\tilde{w} (h)}{h} \right\|_2$$

$$+ \left\| \frac{J_{\tilde{\gamma}_k}^\tilde{w} (h)}{h} - \frac{J_{\tilde{\gamma}_k}^w (h)}{h} \right\|_2 + \left\| \frac{J_{\tilde{\gamma}_k}^w (h)}{h} - \frac{\tilde{J}_{\tilde{\gamma}_k}^\tilde{w} (h)}{h} \right\|_2$$

This manuscript is for review purposes only.
\begin{itemize}
 \item γ_k is the approximation of the geodesic coordinates at step k.
 \item $w_k = w(t_k)$ is the exact parallel transport.
 \item \tilde{w}_k is its approximation at step k.
 \item $\tilde{\gamma}$ is the approximation of the Jacobi field computed with finite difference:
 $\tilde{\gamma}_{\tilde{w}} = \frac{\tilde{\gamma}_{t, \tilde{w}_{k+1}} - \tilde{\gamma}_{t, \tilde{w}_k}}{\varepsilon}$.
 \item $J_{\tilde{w}}(h)$ is the exact Jacobi field computed with the approximations \tilde{w}, $\tilde{\gamma}$ and
 $\tilde{\gamma}$ i.e. the Jacobi field defined from the geodesic with initial position $\tilde{\gamma}_k$, initial
 momentum $\dot{\alpha}_k$, with a perturbation \tilde{w}_k.
\end{itemize}

We provide upper bounds for each of these terms. We start by assuming $\|w_k\|_2 \leq 2\|w_0\|_2$, before showing it is verified for any $k \leq N$ when N is large enough. We could assume more generally $\|w_k\|_2 \leq C\|w_0\|_2$ for any $C > 1$. The idea is to get a uniform control on the errors at each step by assuming that $\|w_k\|_2$ does not grow too much, and show afterwards that the control we get is tight enough to ensure, when the number of integration steps is large, that we do have $\|w_k\|_2 \leq 2\|w_0\|_2$.

Term (1). This is the intrinsic error when using the Jacobi field. We show in Proposition B.3 that for h small enough

\begin{equation}
\left\| P_{t_k, t_{k+1}}(w_k) - \frac{J_{\gamma}(h)}{h} \right\|_{g(\gamma(t_{k+1}))} \leq Ah^2\|w_k\|_g = Ah^2\|w_k\|_g.
\end{equation}

Now, since g varies smoothly and by equivalence of the norms, there exists $A' > 0$ such that

\begin{equation}
\left\| P_{t_k, t_{k+1}}(w_k) - \frac{J_{\gamma}(h)}{h} \right\|_2 \leq A'h^2\|w_k\|_2 \leq 2A'h^2\|w_0\|_2
\end{equation}

Term (2). Lemma B.4 show that for h small enough

\begin{equation}
\left\| \frac{J_{\gamma}(h)}{h} - \frac{J_{\tilde{w}}(h)}{h} \right\|_2 \leq (1 + Bh)\delta_k.
\end{equation}

Term (3). This term measures the error linked to our approximate knowledge of the geodesic γ. It is proved in Appendix B.5 that there exists a constant $C > 0$ which does not depend on k or h such that:

\begin{equation}
\left\| \frac{J_{\tilde{w}}(h)}{h} - \frac{\tilde{J}_{\tilde{w}}(h)}{h} \right\|_2 \leq Ch^2.
\end{equation}

Term (4). This is the difference between the analytical computation of J and its approximation. It is proved in Appendix B.6 and B.7 that if we use a Runge-Kutta method of order 2 to compute the geodesic points γ_{t+k+1} and γ_{t+k+1} and a first-order differentiation to compute the Jacobi field as described in the step (iii) of the algorithm, or if we use two perturbed geodesics γ_{t+k+1} and γ_{t+k+1} and a second-order differentiation method to compute the Jacobi field as described in equation (8), there exists $D \geq 0$ which does not depend on K or N, which we have assumed so far.

\begin{equation}
\left\| \frac{J_{\tilde{w}}(h)}{h} - \frac{\tilde{J}_{\tilde{w}}(h)}{h} \right\|_2 \leq D(h^2 + \varepsilon h)
\end{equation}

Note that this majoration is valid as long as \tilde{w}_k is bounded by a constant which does not depend on k or N, which we have assumed so far.
Gathering equations (9), (10), (11) and (12), there exists a constant $F > 0$ such that for all k such that $\|u_i\|_2 \leq \|w_0\|_2$ for all $i \leq k$:

$$\delta_{k+1} \leq (1 + Bh)\delta_k + F(h^2 + h\varepsilon).$$

Combining those inequalities for $k = 1, \ldots, s$ where $s \in \{1, \ldots, N\}$ is such that $\|w_k\|_2 \leq 2\|w_0\|_2$ for all $k \leq s$, we obtain a geometric series whose sum yields

$$\delta_s \leq \frac{F(h^2 + h\varepsilon)}{Bh}(1 + Bh)^{s+1}.$$

We now show that for a large enough number of integration steps N, this implies that $\|w_k\|_2 \leq 2\|w_0\|_2$ for all $k \in \{1, \ldots, N\}$. We proceed by contradiction, assuming that there exist arbitrary large $N \in \mathbb{N}$ for which there exists $u(N) \leq N$ – that we take minimal – such that $\|w_{u(N)}\|_2 > 2\|w_0\|_2$. For any such $N \in \mathbb{N}$, since $u(N)$ is minimal with that property, we can still use equation (14) with $s = u(N)$:

$$\delta_{u(N)} \leq \frac{F(h^2 + h\varepsilon)}{Bh}(1 + Bh)^{u(N)+1}.$$

Now, $h = \frac{1}{N}$ so that

$$\delta_{u(N)} \leq \frac{F(h + \varepsilon)}{B}(1 + Bh)^{u(N)+1} \leq \frac{F(h + \varepsilon)}{B}(1 + Bh)^{\frac{1}{N}+1}.$$

But we have, on the other hand:

$$\|w_0\|_2 < \|\tilde{w}_{u(N)}\|_2 - \|w_0\|_2 \leq \|\tilde{w}_{u(N)} - w_0\|_2 \leq \frac{F(h + \varepsilon)}{B}(1 + Bh)^{\frac{1}{N}+1}$$

Taking $\varepsilon \leq h$, which we will keep as an assumption in the rest of the proof, the term on the right goes to zero as $h \to 0$ i.e. as $N \to \infty$ – which is a contradiction.

So for N large enough, we have $\|w_k\|_2 \leq 2\|w_0\|_2$ and equation (14) holds for all $k \in \{1, \ldots, N\}$. With $s = N$, equation (14) reads:

$$\delta_N \leq \frac{F(h^2 + h\varepsilon)}{Bh}(1 + Bh)^{N+1}.$$

We see that choosing $\varepsilon = \frac{1}{N}$ yields an optimal rate of convergence: choosing a larger value deteriorates the accuracy of the scheme while choosing a lower value still yields an error in $O\left(\frac{1}{N}\right)$. Setting $\varepsilon = \frac{1}{N}$:

$$\delta_N \leq \frac{2F}{BN} \left(1 + \frac{B}{N}\right)^{N+1} = \frac{2F}{BN} \left(\exp(B) + o\left(\frac{1}{N}\right)\right).$$

Eventually, there exists $G > 0$ such that, for $N \in \mathbb{N}$ large enough

$$\delta_N \leq \frac{G}{N}.$$

We now prove Theorem 3.1 when step (v) is used.

Proof. (With step (v)) The idea in this proof is to use equation (13) and the fact that when \tilde{w}_{j+1} is close enough to w_{j+1}, step (v) necessarily improves the approximation. As in the algorithm description, we denote \tilde{w}_k the estimate before step (v) and
\(\hat{w}_k \) the renormalized estimate. We now denote \(\delta_k = \|w_k - \hat{w}_k\|_2 \). We use equation (13), which now reads
\[
(18) \quad \|w_{k+1} - \hat{w}_{k+1}\|_2 \leq (1 + Bh)\delta_k + F(h^2 + h\varepsilon).
\]
For \(t \in [0, 1] \), let’s denote \(P_t : T_{\gamma(t)}M \to T_{\gamma(t)}M \) the operator defined at step (v): for \(z \in T_{\gamma(t)}M \), \(P(t, z) \) is the renormalized version of \(z \) to respect the conservations during parallel transport. Step (v) now reads \(P(t_k, \hat{w}_k) = \hat{w}_k \). For any \(t \in [0, 1] \), we have \(P(t, w(t)) = w(t) \) so that \(z \to \|P(t, z) - w(t)\|_2 \) is smooth and has a local minimum at \(w(t) \), so that its differential is zero at \(w(t) \). Since \(P_t \) continuously varies with \(t \), there exists \(r > 0 \) such that, for all \(t \in [0, 1] \), for all \(z \in T_{\gamma(t)}M \) with \(\|w(t) - z\|_2 \leq r \):
\[
(19) \quad \|w(t) - P(t, z)\|_2 \leq \|w(t) - z\|_2
\]
Now for \(N \) large enough and \(k \in \{1, \ldots, N\} \), assuming \(\delta_k \) small enough will ensure \(\|w_k - \hat{w}_k\| \leq r \) as shown in equation (18) so that:
\[
(20) \quad \delta_{k+1} = \|w_k - P(t, \hat{w}_k)\|_2 \leq \|w_k - \hat{w}_k\|_2 \leq \left((1 + Bh)\delta_k + F(h^2 + h\varepsilon) \right).
\]
This is the same control as equation (13): the proof can be concluded in the same way as above. \(\square \)

5. Numerical experiments.

5.1. Setup. We implemented the numerical scheme on simple manifolds where the parallel transport is known in closed form, allowing us to evaluate the numerical error \(^1\). We present two examples:
- \(S^2 \): in spherical coordinates \((\theta, \phi)\) the metric is \(g = \begin{pmatrix} 1 & 0 \\ 0 & \sin(\theta)^2 \end{pmatrix} \). We gave expressions for geodesics and parallel transport in Section 2.3.
- The set of \(3 \times 3 \) symmetric positive-definite matrices \(\text{ SPD}(3) \). The tangent space at any points of this manifold is the set of symmetric matrices. In [3], the authors endow this space with the affine-invariant metric: for \(\Sigma \in \text{ SPD}(3), V, W \in \text{ Sym}(3), g_{\Sigma}(V, W) = \text{tr}(\Sigma^{-1}V\Sigma^{-1}W) \). Through an explicit computation of the Christoffel symbols, they derive explicit expressions for any geodesic \(\Sigma(t) \) starting at \(\Sigma_0 \in \text{ SPD}(3) \) with initial tangent vector \(X \in \text{ Sym}(3) \): \(\Sigma(t) = \Sigma_0^t \exp(tX)\Sigma_0^\frac{t}{2} \) where \(\exp : \text{ Sym}(3) \to \text{ SPD}(3) \) is the matrix exponentiation. Deriving an expression for the parallel transport can also be done using the explicit Christoffel symbols, see [11]. If \(\Sigma_0 \in \text{ SPD}(3) \) and \(X, W \in \text{ Sym}(3) \), then
\[
P_{0,t}(W) = \exp\left(\frac{t}{2}X\Sigma_0^{-1} \right)W\exp\left(\frac{t}{2}\Sigma_0^{-1}X \right).
\]
The code for this numerical scheme can be written in a generic way and used for any manifold by specifying the Hamiltonian equations and the inverse of the metric. For experiments in large dimensions, we refer to [7].

\(^1\)A modular Python version of the code is available here: https://gitlab.icm-institute.org/maxime.louis/parallel-transport

This manuscript is for review purposes only.
Remark. Note that even though the computation of the gradient of the inverse of the metric with respect to the position, \(\nabla_x K \), is required to integrate the Hamiltonian equations (5), \(\nabla_x K \) can be computed from the gradient of the metric using the fact that any smooth map \(M : \mathbb{R} \to GL_n(\mathbb{R}) \) verifies \(\frac{dM^{-1}}{dt} = -M^{-1} \frac{dM}{dt} M^{-1} \). This is how we proceeded for SPD(3): it spares some potential difficulties if one does not have access to analytical expressions for the inverse of the metric. It is however a costful operation which requires the computation of the full inverse of the metric at each step.

![Graph](image.png)

Figure 3. Relative error for the 2-Sphere in different settings, as functions of the step size, with initial point, velocity and initial \(w \) kept constant. The dotted lines are linear regressions of the measurements.

5.2. Results. Errors measured in the chosen system of coordinates confirm the linear behavior in both cases, as shown on Figures 3 and 4.

We assessed the effect of a higher order for the Runge-Kutta scheme in the integration of geodesics. Using a fourth order method increases the accuracy of the transport in both cases, by a factor 2.3 in the single geodesic case. A fourth order method is twice as expensive as a second order method in terms of number of calls to the Hamiltonian equations, hence in this case it is the most efficient way to reach a given accuracy.

We also investigated the effect of using step (v). Doing so yields an exact transport for the sphere, because it is of dimension 2 and the conservation of two quantities is enough to ensure an exact transport, up to the fact that the geodesic is computed approximately, so that the actual observed error is the error in the integration of the geodesic equation. It yields a dramatically improved transport of the same order of convergence for SPD(3) (see Figure 4). The complexity of this operation is very low, and we recommend to always use it. It can be expected however that the effect of the enforcement of these conservations will lower as the dimension increases, since it only fixes two components of the transported vector.

We also confirmed numerically that without a second-order method to integrate...
the geodesic equations at steps (i) and (ii) of the algorithm, the scheme does not converge. This is not in contradiction with Theorem 3.1 which supposes this integration is done with a second-order Runge Kutta.

Finally, using two geodesics to compute a central-finite difference for the Jacobi field is 1.5 times more expensive than using a single geodesic, in terms of number of calls to the Hamiltonian equations, and it is therefore more efficient to compute two perturbed geodesics in the case of the symmetric positive-definite matrices.

5.3. Comparison with Schild’s ladder. We compared the relative errors of the fanning scheme with Schild’s ladder. We implemented Schild’s ladder on the sphere and compared the relative errors of both schemes on a same geodesic and vector. We chose this vector to be orthogonal to the velocity, since the transport with Schild’s ladder is exact if the transported vector is colinear to the velocity. We use a closed form expression for the Riemannian logarithm in Schild’s ladder, and closed form expressions for the geodesic. The results are given in Figure 5.

6. Conclusion. We proposed a new method, the fanning scheme, to compute parallel transport along a geodesic on a Riemannian manifold using Jacobi fields. In contrast to Schild’s ladder, this method does not require the computation of Riemannian logarithms, which may not be given in closed form and potentially hard to approximate. We proved that the error of the scheme is of order $O\left(\frac{1}{N}\right)$ where N is the number of discretization steps, and that it cannot be improved in the general case, yielding the same convergence rate as Schild’s ladder. We also showed that only four calls to the Hamiltonian equations are necessary at each step to provide a satisfying approximation of the transport, two of them being used to compute the main geodesic.
A limitation of this scheme is to only be applicable when parallel transporting along geodesics, and this limitation seems to be unavoidable with the identity it relies on. Note also that the Hamiltonian equations are expressed in the cotangent space whereas the approximation of the transport computed at each step lies in the tangent space to the manifold. Going back and forth from cotangent to tangent space at each iteration is costly if the metric is not available in closed-form, as it requires the inversion of a system. In very high dimensions this might limit the performances.

Acknowledgements. This work has been partially funded by the European Research Council (ERC) under grant agreement No 678304, European Union’s Horizon 2020 research and innovation programme under grant agreement No 666992, and the programme "Investissements d’avenir" ANR-10-IAIHU-06.

Appendix A. Pseudo-code for the algorithm. We give a pseudo-code description of the numerical scheme. Here, \(G(p) \) denotes the metric matrix at \(p \) for any \(p \in \mathcal{M} \).

1: function \(\text{ParallelTransport}(x_0, \alpha_0, w_0, N) \)
2: function \(\nu(x, \alpha) \)
3: return \(K(x)\alpha \)
4: end function
5: function \(f(x, \alpha) \)
6: return \(-\frac{1}{2}\nabla_x (\alpha^T K(x) \alpha)\) \(\triangleright\) in closed form or by finite differences
7: end function

\(\triangleright \alpha_0 \) coordinates of \(G(\gamma(0))w_0 \)
\(\triangleright \gamma_0 \) coordinates of \(\gamma(0) \)
\(\triangleright \beta_0 \) coordinates of \(G(\gamma(0))w_0 \)
\begin{aligned}
\triangleright N \text{ number of time-steps} \\
8: & \quad h = 1/N, \varepsilon = 1/N \\
9: & \quad \text{for } k = 0, \ldots, (N - 1) \text{ do} \\
10: & \quad \triangleright \text{integration of the main geodesic} \\
11: & \quad \gamma_{k+\frac{1}{2}} = \gamma_k + h v_k \\
12: & \quad \alpha_{k+\frac{1}{2}} = \alpha_k + h F(\gamma_k, \alpha_k) \\
13: & \quad \gamma_{k+1} = \gamma_k + h V(\gamma_{k+\frac{1}{2}}, \alpha_{k+\frac{1}{2}}) \\
14: & \quad \alpha_{k+1} = \alpha_k + h F(\gamma_{k+\frac{1}{2}}, \alpha_{k+\frac{1}{2}}) \\
15: & \quad \triangleright \text{perturbed geodesic equation in the direction } w_k \\
16: & \quad \gamma^e_{k+\frac{1}{2}} = \gamma_k + h v(\gamma_k, \alpha_k + \varepsilon \beta_k) \\
17: & \quad \alpha^e_{k+\frac{1}{2}} = \alpha_k + \varepsilon \beta_k + h \mathcal{B}(\gamma^e_k, \alpha_k + \varepsilon \beta_k) \\
18: & \quad \gamma^e_{k+1} = \gamma_k + h V(\gamma^e_{k+\frac{1}{2}}, \alpha^e_{k+\frac{1}{2}}) \\
19: & \quad \triangleright \text{Jacobi field by finite differences} \\
20: & \quad \hat{w}_{k+1} = \gamma^e_{k+1} - \gamma_{k+1} \\
21: & \quad \beta_{k+1} = g(\gamma_{k+1}) w_{k+1} \\
22: & \quad \triangleright \text{Use explicit } g \text{ or solve } K(\gamma_{k+1}) \hat{\beta}_{k+1} = \hat{w}_{k+1} \\
23: & \quad \triangleright \text{Conserve quantities} \\
24: & \quad \text{end for} \\
25: & \quad \text{return } \gamma_N, \alpha_N, w_N \\
26: & \quad \triangleright \gamma_N \text{ approximation of } \gamma(1) \\
27: & \quad \alpha_N \text{ approximation of } G(\gamma(1)) \dot{\gamma}(1) \\
28: & \quad \triangleright w_N \text{ approximation of } P_{\gamma(0), \gamma(1)}(w_0) \\
29: & \text{end function}
\end{aligned}

\textbf{Appendix B. Proofs.}

\textbf{B.1. A lemma to change coordinates.} We recall that we suppose the geodesic contained within a compact subset \(\Omega \) of the manifold \(\mathcal{M} \). We start with a result controlling the norms of change-of-coordinates matrices. Let \(p \in \mathcal{M} \) and \(q = \text{Exp}_p(v) \) where \(\|v\|_q \leq \frac{\eta}{2} \), where \(\eta > 0 \) is a lower bound on the injectivity radius on \(\Omega \). We consider two basis of \(T_p \mathcal{M} \): one defined from the global system of coordinates, that we denote \(B^p_q \), and another made of the normal coordinates centered at \(p \), built from the coordinate on \(T_p \mathcal{M} \) obtained from the coordinate chart \(\Phi \), that we denote \(B^N_q \). We can therefore define \(\Lambda(p, q) \) as the change-of-coordinates matrix between \(B^p_q \) and \(B^N_q \). The operator norms \(||| \cdot ||| \) of these matrices are bounded over \(\Omega \) in the following sense:

\textbf{Lemma B.1.} There exists \(L \geq 0 \) such that for all \(p \in K \) and for all \(q \in K \) such that \(q = \text{Exp}_p(v) \) for some \(v \in T_p \mathcal{M} \) with \(\|v\|_q \leq \frac{\eta}{2} \), we have

\(|||\Lambda(p, q)||| \leq L \)

and

\(|||\Lambda^{-1}(p, q)||| \leq L \).
We will use this identity to obtain a development of (22) and for all $h < \frac{n}{\|\gamma(t)\|_g}$ we have
\[
\left\| P_{t,t+h}^{-1}(w) \right\|_g \leq Ah^2\|w\|_g.
\]

Proposition B.3. There exists $A \geq 0$ such that for all $t \in [0,1[$, for all $w \in T_{\gamma(t)}M$ and for all $h < \frac{n}{\|\gamma(t)\|_g}$ we have
\[
\left\| P_{t,t+h}^{-1}(w) - \frac{J^w_{\gamma(t)}(h)}{h} \right\|_g \leq Ah^2\|w\|_g.
\]

Proof. Let $t \in [0,1[$, $w \in T_{\gamma(t)}M$ and $h < \frac{n}{\|\gamma(t)\|_g}$, i.e., such that $J^w_{\gamma(t)}(h)$ is well defined. From Lemma B.2, for any smooth vector field V on M,
\[
\nabla^k_{\gamma(t)} V(\gamma(t)) = \frac{d^k}{dh^k} \bigg|_{h=0} P_{t,t+h}^{-1}(V(\gamma(t+h))).
\]

We will use this identity to obtain a development of $V(\gamma(t+h)) = J^w_{\gamma(t)}(h)$ for small h.

We have $J^w_{\gamma(t)}(0) = 0$, $\nabla^I_{\gamma(t)} J^w_{\gamma(t)}(0) = w$, $\nabla^2_{\gamma(t)} J^w_{\gamma(t)}(0) = -R(J^w_{\gamma(t)}(0), \gamma(t))\gamma(t) = 0$ using equation (1) and finally
\[
\|\nabla^3_{\gamma(t)} J^w_{\gamma(t)}(h)\|_g = \|\nabla^2_{\gamma(t)} R(J^w_{\gamma(t)}(h), \gamma(t))\gamma(t) + R(\nabla^2_{\gamma(t)} J^w_{\gamma(t)}(h), \gamma(t))\gamma(t)\|_g
\leq \|\nabla^2_{\gamma(t)} R\|_\infty \|\gamma(t)\|_g^2 \|J^w_{\gamma(t)}(h)\|_g + \|R\|_\infty \|\gamma(t)\|_g^2 \|\nabla^2_{\gamma(t)} J^w_{\gamma(t)}(h)\|_g,
\]
where the ∞-norms, taken over the geodesic and the compact Ω, are finite because the curvature and its derivatives are bounded. Note that we used ∇_γ ˙γ = 0 which holds since γ is a geodesic. In normal coordinates centered at γ(t), we have J_w(γ(t + h)) = hw'. Therefore, if we denote g_{ij}(γ(t + h)) the components of the metric in normal coordinates, we get using Einstein notations

\[\|J_w(γ(t))(h)\|_g^2 = h^2 g_{ij}(γ(t + h)) w^i w^j. \]

To obtain an upper bound for this term which does not depend on t, we note that the coefficients of the metric in the global coordinate system are bounded on Ω. Using Lemma B.1, we get a bound M ≥ 0 valid on all the systems of normal coordinates centered at a point of the geodesic, so that

\[\|J_w(γ(t))(h)\|_g \leq h M \|w\|_g. \]

By equivalence of the norms as seen in Lemma (B.1), and because g varies smoothly, there exists N ≥ 0 such that

\[(24) \|J_w(γ(t))(gh)\|_g \leq h M N \|w\|_g, \]

where the dependence of the majoration on t has vanished, and the result stays valid for all h < max (\|γ(t)\|_g, 1 − t) and all w. Similarly, there exists C > 0 such that

\[(25) \|∇_γ J_w(γ(s))(h)\| \leq C \|w\|_g, \]

at any point and for any h < max (\|γ(t)\|_g, 1 − t). Gathering equations (23), (24) and (25), we get that there exists a constant A ≥ 0 which does not depend on t, h or w such that

\[(26) \|\nabla_γ^3 J_w(γ(s))(h)\|_g \leq A \|w\|_g. \]

Now using equation (22) with V(γ(t + h)) = J_w(γ(t))(h) and a Taylor’s formula, we get

\[P_{t,t+h}^{-1}(J_w(γ(t))(h)) = hw + h^3 r(h,w) \]

where r is the remainder of the expansion, controlled in equation (26). We thus get

\[\|J_w(γ(t))(h) - P_{t,t+h}(w)\|_g = \|P_{t,t+h}(h^3 r(w,h))\|_g. \]

Now, because the parallel transport is an isometry, we can use our control (26) on the remainder to get

\[\|J_w(γ(t))(h) - P_{t,t+h}(w)\|_g \leq \frac{A}{6} h^2 \|w\|_g. \]

B.4. A Lemma to control error accumulation. At every step of the scheme, we compute a Jacobi field from an approximate value of the transported vector. We need to control the error made with this computation from an already approximate vector. We provide a control on the 2-norm of the corresponding error, in the global system of coordinates.

This manuscript is for review purposes only.
There exists $B \geq 0$ such that for all $t \in [0,1[,$ for all $w_1, w_2 \in T_{\gamma(t)}M$ and for all $h \leq \frac{\eta}{\|\gamma(t)\|_g}$ small enough, we have:

$$
\left\| \frac{J_{\gamma(t)}^{w_2}(h) - J_{\gamma(t)}^{w_2}(h)}{h} \right\|_2 \leq (1 + Bh)\|w_1 - w_2\|_2.
$$

Proof. Let $t \in [0,1[,$ and $h \leq \frac{\eta}{\|\gamma(t)\|_g}.$ We denote $p = \gamma(t),$ $q = \gamma(t+h).$ We use the exponential map to get normal coordinates on a neighborhood V of p from the basis $(\frac{\partial}{\partial x^i}|_p)_{i=1,\ldots,n}$ of $T_pM.$ Let’s denote $(\frac{\partial}{\partial y^i}|_q)_{i=1,\ldots,n}$ the basis obtained in the tangent space at any point $r \in V$ from this system of normal coordinates centered at $p.$ At any point r in $V,$ there are now two different bases of T_rM: $(\frac{\partial}{\partial y^i}|_p)_{i=1,\ldots,n}$ obtained from the normal coordinates and $(\frac{\partial}{\partial x^i}|_p)_{i=1,\ldots,n}$ obtained from the coordinate system $\Phi.$ Let $w_1, w_2 \in T_pM$ and denote w_j for $i \in \{1, \ldots, n\},$ $j \in \{1, 2\}$ the coordinates in the global system $\Phi.$ By definition, the basis $(\frac{\partial}{\partial y^i}|_p)_{i=1,\ldots,n}$ and the basis $(\frac{\partial}{\partial x^i}|_p)_{i=1,\ldots,n}$ coincide, and in particular, for $j \in \{1, 2\}$:

$$
w_j = (w_j)^i \frac{\partial}{\partial x^i}|_p = (w_j)^i \frac{\partial}{\partial y^i}|_p.
$$

If $i \in \{1, \ldots, n\},$ $j \in \{1, 2\},$ the j-th coordinate of $J_{\gamma(t)}^{w_i}(h)$ in the basis $(\frac{\partial}{\partial y^i}|_q)_{i=1,\ldots,n}$ is

$$
J_{\gamma(t)}^{w_i}(h)^i = \left. \frac{\partial}{\partial \varepsilon} \right|_{\varepsilon=0} \text{Exp}_q(h(v + \varepsilon w_j))(v + \varepsilon w_j)^i = \left. \frac{\partial}{\partial \varepsilon} \right|_{\varepsilon=0} (h(v + \varepsilon w_j))^i = hw_j^i.
$$

Let $\Lambda(\gamma(t+h), \gamma(t))$ be the change-of-coordinate matrix of $T_{\gamma(t+h)}$ from the basis $(\frac{\partial}{\partial y^i}|_q)_{i=1,\ldots,n}$ to the basis $(\frac{\partial}{\partial x^i}|_q)_{i=1,\ldots,n}.$ Λ varies smoothly with t and $h,$ and is the identity when $h = 0.$ Hence, we can write an expansion

$$
\Lambda(\gamma(t+h), \gamma(t)) = Id + hW(t) + O(h^2).
$$

The second order term depends on the second derivative of Λ with respect to $h.$ Restricting ourselves to a compact subset of M, as in Lemma B.1, we get a uniform bound on the norm of this second derivative thus getting a control on the operator norm of $\Lambda(\gamma(t+h), \gamma(t)),$ that we can write, for h small enough

$$
\|\Lambda(\gamma(t+h), \gamma(t))\| \leq (1 + Bh)
$$

where B is a positive constant which does not depend on h or $t.$ Now we get

$$
\left\| \frac{J_{\gamma(t)}^{w_1}(h) - J_{\gamma(t)}^{w_2}(h)}{h} \right\|_2 = \|\Lambda(\gamma(t+h), \gamma(t))(w_1 - w_2)\|_2 \leq (1 + Bh)\|w_1 - w_2\|_2
$$

which is the desired result. □

B.5. Proof that we can compute the geodesics simultaneously with a second-order method. We give here a control on the error made in the scheme.
when computing the main geodesic approximately and simultaneously with the parallel transport. We assume that the main geodesic is computed with a second-order method, and we need to control the subsequent error on the Jacobi field. The computations are made in global coordinates, and the error measured by the 2-norm in these coordinates. $\Phi : \Omega \to U$ denotes the corresponding diffeomorphism. We note $\eta > 0$ a lower bound on the injectivity radius of M on Ω and $\varepsilon > 0$ the parameter used to compute the perturbed geodesics at step (ii).

Proposition B.5. There exists $A > 0$ such that for all $t \in [0, 1]$, for all $h \in [0, 1 - t]$, for all $w \in T_{\gamma(t)}M$:

$$\left\| \frac{J_{\tilde{w}_k}^k(h)}{h} - \frac{J_{\tilde{w}_k}^k(h)}{h} \right\|_2 \leq Ah^2.$$

Proof. Let $t \in [0, 1]$, $h \in [0, 1 - t]$, and $w \in T_{\gamma(t)}M$. The term rewrites

\begin{equation}
\left\| \frac{J_{\tilde{w}_k}^k(h)}{h} - \frac{J_{\tilde{w}_k}^k(h)}{h} \right\|_2 = \left\| \frac{\partial \text{Exp}_h(h \tilde{\gamma}_k + w \tilde{\nu}_k)}{\partial x} \bigg|_{x=0} - \frac{\partial \text{Exp}_h(h \tilde{\gamma}_k + x \tilde{\nu}_k)}{\partial x} \bigg|_{x=0} \right\|_2.
\end{equation}

This is the difference between the derivatives of two solutions of the same differential equation (5) with two different initial conditions. More precisely, we define $\Pi : \Phi(\Omega) \times B_{\mathbb{R}^n}(0, \|\gamma_k\| + 2\varepsilon\|\tilde{\nu}_k\|) \times [0, \eta) \to \mathbb{R}^n$ such that $\Pi(p_0, \alpha_0, h)$ are the coordinates of the solutions of the Hamiltonian equation at time h with initial coordinates p_0 and initial momentum α_0. Π is the flow, in coordinates, of the geodesic equation. We can now rewrite equation (28)

\begin{equation}
\left\| \frac{J_{\tilde{w}_k}^k(h)}{h} - \frac{J_{\tilde{w}_k}^k(h)}{h} \right\|_2 = \left\| \frac{\partial \Pi(\gamma_k, \tilde{\gamma}_k + \varepsilon \tilde{\nu}_k, h)}{\partial \varepsilon} \bigg|_{\varepsilon=0} - \frac{\partial \Pi(\tilde{\gamma}_k, \tilde{\gamma}_k + \varepsilon \tilde{\nu}_k, h)}{\partial \varepsilon} \bigg|_{\varepsilon=0} \right\|_2.
\end{equation}

By Cauchy-Lipschitz theorem and results on the regularity of the flow, Π is smooth. Hence, its derivatives are bounded over its compact set of definition. Hence there exists a constant $A > 0$ such that

$$\left\| \frac{J_{\tilde{w}_k}^k(h)}{h} - \frac{J_{\tilde{w}_k}^k(h)}{h} \right\|_2 \leq A \left(\|\tilde{\gamma} - \gamma\|_2 + \|\tilde{\dot{\gamma}} - \dot{\gamma}\|_2 \right)$$

where we can once again assume A independent of t and h. In coordinates, we use a second-order Runge-Kutta method to integrate the geodesic equation (5) so that the cumulated error $\|\tilde{\gamma} - \gamma\|_2 + \|\tilde{\dot{\gamma}} - \dot{\gamma}\|_2$ is of order h^2. Hence, there exists a positive constant B which does not depend on h, t or w such that

$$\left\| \frac{J_{\tilde{w}_k}^k(h)}{h} - \frac{J_{\tilde{w}_k}^k(h)}{h} \right\|_2 \leq Bh^2.$$

\[\square\]

B.6. Numerical approximation with a single perturbed geodesic. We prove a lemma which allows to control the error we make when we approximate numerically the Jacobi field using steps (iii) and (ii) of the algorithm:

Lemma B.6. For all $L > 0$, there exists $A > 0$ such that for all $t \in [0, 1]$, for all $h \in [0, \frac{\eta}{\sqrt{\gamma(t)}\|\gamma\|}]$ and for all $w \in T_{\gamma(t)}M$ with $\|w\|_2 < L$ – in the global system of
coordinates – we have

\[\left\| \frac{J^w_{\gamma(t)}(h) - \tilde{J}^w_{\gamma(t)}(h)}{h} \right\|_2 \leq A(h^2 + \varepsilon h) \]

where \(\tilde{J}^w_{\gamma(t)}(h) \) is the numerical approximation of \(J^w_{\gamma(t)}(h) \) computed with a single perturbed geodesic and a first-order differentiation method.

Proof. Let \(L > 0 \). Let \(t \in [0,1[, h \in [0, \frac{2}{\|\gamma(t)\|_2}] \) and \(w \in T_{\gamma(t)}M \). We split the error term into two parts

\[
\left\| \frac{J^w_{\gamma(t)}(h)}{h} - \frac{\tilde{J}^w_{\gamma(t)}(h)}{h} \right\|_2 \leq \left\| \frac{J^w_{\gamma(t)}(h)}{h} - \frac{\text{Exp}_{\gamma(t)}(h(\gamma(t) + \varepsilon w)) - \text{Exp}_{\gamma(t)}(h\gamma(t))}{\varepsilon h} \right\|_2 +
\]

\[
\left\| \frac{\text{Exp}_{\gamma(t)}(h(\gamma(t) + \varepsilon w)) - \text{Exp}_{\gamma(t)}(h\gamma(t)) - \text{Exp}_{\gamma(t)}(h(\gamma(t) + \varepsilon w)) + \text{Exp}_{\gamma(t)}(h\gamma(t))}{\varepsilon h} \right\|_2
\]

where \(\text{Exp} \) is the Riemannian exponential and \(\tilde{\text{Exp}} \) is the numerical approximation of this Riemannian exponential computed thanks to the Hamiltonian equations. When running the scheme, these computations are done in the global system of coordinates.

Term (1). Let \(i \in \{ 1, \ldots, n \} \) and let \(F^i : (x, t, w) \mapsto \text{Exp}[h\gamma(t) + xw]^i \). We have

\[
\frac{J^w_{\gamma(t)}(h)^i}{h} - \frac{\text{Exp}[h(\gamma(t) + \varepsilon w)]^i - \text{Exp}[h\gamma(t)]^i}{\varepsilon h} = \frac{1}{h} \left. \frac{\partial F^i(\varepsilon h,t,w)}{\partial \varepsilon} \right|_{\varepsilon=0} - \left. \frac{F^i(\varepsilon h,t,w) - F^i(0,t,w)}{\varepsilon h} \right|_{x=0} = \left. \frac{\partial F^i(x,t,w)}{\partial x} \right|_{x=0} - \frac{F^i(\varepsilon h,t,w) - F^i(0,t,w)}{\varepsilon h}.
\]

This is the error when performing a first-order differentiation on \(x \mapsto F^i(x,t,w) \) at 0. This error is of order \(ch \) and will depend smoothly on \(t \) and \(w \). Since \(t \in [0,1] \) and imposing \(\|w\|_2 < L \), there exists \(B \) which does not depend on \(t \) or \(w \) such that

\[
\left| \frac{J^w_{\gamma(t)}(h)^i}{h} - \frac{\text{Exp}[h(\gamma(t) + \varepsilon w)]^i - \text{Exp}[h\gamma(t)]^i}{\varepsilon h} \right| \leq B\varepsilon h
\]

so that there exists \(C > 0 \) such that for all \(t \), for all \(h \) and for all \(w \) with \(\|w\|_2 \leq L \)

\[
\left\| \frac{J^w_{\gamma(t)}(h)}{h} - \frac{\text{Exp}[h\gamma(t) + \varepsilon w] - \text{Exp}[h\gamma(t)]}{\varepsilon h} \right\|_2 \leq C\varepsilon h.
\]

Term (2). We rewrite the Hamiltonian equation \(\dot{x}(t) = F_1(x(t),\alpha(t)) \) and \(\dot{\alpha}(t) = F_2(x(t),\alpha(t)) \). We denote \(x^\varepsilon, \alpha^\varepsilon \) the solution of this equation (in the global system of coordinates) with initial conditions \(x^\varepsilon(0) = x_0 = \gamma(t) \) and \(\alpha^\varepsilon(0) = \alpha_0 = K(x_0)^{-1}(\gamma(t) + \varepsilon w) \). We denote \(\bar{x}^\varepsilon \) the result after one step of length \(h \) of the integration of the same equation using a second-order Runge-Kutta method with parameter
\(\delta \in [0, 1] \). The term (2) rewrites
\[
\frac{1}{\varepsilon^k} \| (x^\varepsilon(h) - x^0(h)) - (\hat{x}^\varepsilon - \hat{x}^0) \|_2.
\]
First, we develop \(x^\varepsilon \) in the neighborhood of 0:
\[
x^\varepsilon(h) = x_0 + h\dot{x}_0 + \frac{h^2}{2} \ddot{x}_0 + \int_0^h \frac{(h-t)^2}{2} \dddot{x}(t) dt.
\]
We have, for the last term:
\[
\frac{1}{2} \int_0^h (h-t)^2 \dddot{x}(t) dt - \int_0^h \frac{(h-t)^2}{2} \dddot{x}(t) dt = \int_0^h \int_0^t (h-t)^2 \partial_x x^\varepsilon(u, t) du dt
\]
\(x^\varepsilon \) being solution of a smooth ordinary differential equation with smoothly varying initial conditions, it is smooth in time and with respect to \(\varepsilon \). Hence, when the initial conditions are within a compact, \(\partial_x x^\varepsilon \) is bounded, hence there exists \(D > 0 \) such that
\[
\left\| \int_0^h \frac{(h-t)^2}{2} \dddot{x}(t) dt - \int_0^h \frac{(h-t)^2}{2} \dddot{x}(t) dt \right\|_2 \leq Dh^3 \varepsilon.
\]
After computations of the first and second order terms, we get:
\[
x^\varepsilon(h) = x_0 + h(\dot{x}(0) + \varepsilon w) +
\]
\[
\frac{h^2}{2} \left((\nabla_x K)(x_0)[K(x_0)\alpha_0^\varepsilon]\alpha_0^\varepsilon + K(x_0)F_2(x_0, \alpha_0^0) \right) + O(h^3|\varepsilon|)
\]
Now we focus on the approximation \(\hat{x}^\varepsilon \). One step of a second-order Runge Kutta with parameter \(\delta \) gives:
\[
\hat{x}^\varepsilon = x_0 + h \left[(1 - \frac{1}{2\delta}) F_1(x_0, \alpha_0^0) + \frac{1}{2\delta} F_1(x_0 + \delta h F_1(x_0, \alpha_0^0), \alpha_0^\varepsilon + \delta h F_2(x_0, \alpha_0^0)) \right]
\]
\[
= x_0 + h \left[(1 - \frac{1}{2\delta}) K(x_0)\alpha_0^0 + \frac{1}{2\delta} K(x_0 + \delta h K(x_0)\alpha_0^\varepsilon)(\alpha_0^\varepsilon + \delta h F_2(x_0, \alpha_0^0)) \right]
\]
We use a Taylor expansion for \(K \):
\[
K(x_0 + \delta h K(x_0)\alpha_0^0) = K(x_0) + \delta h (\nabla_x K)(x_0)[K(x_0)\alpha_0^\varepsilon] +
\]
\[
\frac{(\delta h)^2}{2} (\nabla_x K)^2 [K(x_0)\alpha_0^\varepsilon, K(x_0)\alpha_0^\varepsilon] + O(h^3)
\]
Injecting this into the previous expression for \(x^\varepsilon \), we get after development:
\[
\hat{x}^\varepsilon = x_0 + hK(x_0)(\alpha_0^0)
\]
\[
+ \frac{h^2}{2} \left[K(x_0)F_2(x_0, \alpha_0^0) + (\nabla_x K)(x_0)[K(x_0)\alpha_0^\varepsilon]\alpha_0^\varepsilon \right]
\]
\[
+ \frac{h^3\delta}{4} \left[(\nabla_x K)(x_0)[\alpha_0^\varepsilon]F_2(x_0, \alpha_0^0) + (\nabla_x K)^2 [K(x_0)\alpha_0^\varepsilon, K(x_0)\alpha_0^\varepsilon] \right] + O(h^4)
\]
The third order terms of \(\hat{x}^\varepsilon - x^0 \) is then proportional to:
\[
(\nabla_x K)(x_0)[\alpha_0^\varepsilon]F_2(x_0, \alpha_0^0) - (\nabla_x K)(x_0)[\alpha_0^\varepsilon]F_2(x_0, \alpha_0^0)
\]
\[
+ (\nabla_x K)^2 [K(x_0)\alpha_0^\varepsilon, K(x_0)\alpha_0^\varepsilon] \alpha_0^\varepsilon - (\nabla_x K)^2 [K(x_0)\alpha_0^\varepsilon, K(x_0)\alpha_0^\varepsilon] \alpha_0^\varepsilon
\]
Both these terms are the differences of smooth functions at points whose distance is of order $\varepsilon \|w\|_2$. Because those functions are smooth, and we are only interested in these majorations for points in Ω and tangent vectors in a compact ball in the tangent space, this third order term is bounded by $E h^3 \varepsilon \|w\|_2$ where E is a positive constant which does not depend on the position on the geodesic. Finally, the zeroth, first and second-order terms of x^ε and \tilde{x}^ε cancel each other, so that there exists $D \geq 0$ such that:

$$\|(x^\varepsilon(h) - x^0(h)) - (\tilde{x}^\varepsilon(h) - \tilde{x}^0(h))\|_2 \leq (h^3 \varepsilon + E h^3 \varepsilon)$$

which concludes.

B.7. Numerical approximation with two perturbed geodesics. We suppose here that the computation to get the Jacobi field is done using two perturbed geodesics, and a second-order differentiation as described in equation (8).

Lemma B.7. For all $L > 0$, there exists $A > 0$ such that for all $t \in [0,1]$, for all $h \in [0, 1-t]$ and for all $w \in T_{\gamma(t)}M$ with $\|w\|_2 < L$ – in the global system of coordinates – we have

$$\left\| \frac{J^w_{\gamma(t)}(h) - J^w_{\gamma(t)}(h)}{h} \right\|_2 \leq A(h^2 + \varepsilon h),$$

where $J^w_{\gamma(t)}(h)$ is the numerical approximation of $J^w_{\gamma(t)}(h)$ computed with two perturbed geodesics and a central finite differentiation method. We consider that this approximation is computed in the global system of coordinates.

The proof is similar to the one above.

REFERENCES

