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Abstract. Parallel transport on Riemannian manifolds allows one to connect tangent spaces at12
different points in an isometric way and is therefore of importance in many contexts, such as statistics13
on manifolds. The existing methods to compute parallel transport require either the computation14
of Riemannian logarithms, such as Schild’s ladder, or the Christoffel symbols. The Logarithm is15
rarely given in closed form, and therefore costly to compute whereas the Christoffel symbols are16
in general hard and costly to compute. From an identity between parallel transport and Jacobi17
fields, we propose a numerical scheme to approximate the parallel transport along a geodesic. We18
find and prove an optimal convergence rate for the scheme, which is equivalent to Schild’s ladder’s.19
We investigate potential variations of the scheme and give experimental results on the Euclidean20
two-sphere and on the manifold of symmetric positive definite matrices.21
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1. Introduction. Riemannian geometry has been long contained within the field23
of pure mathematics and theoretical physics. Nevertheless, there is an emerging trend24
to use the tools of Riemannian geometry in statistical learning to define models for25
structured data. Such data may be defined by invariance properties, and therefore26
seen as points in quotient spaces as for shapes, orthogonal frames, or linear subspaces.27
They may be defined also by smooth inequalities, and therefore as points in open28
subsets of linear spaces, as for symmetric positive definite matrices, diffeomorphisms29
or bounded measurements. Such data may be considered therefore as points in a30
Riemannian manifolds, and analysed by specific statistical approaches [14, 3, 10, 4].31
At the core of these approaches lies parallel transport, an isometry between tangent32
spaces which allows the comparison of probability density functions, coordinates or33
vectors that are defined in the tangent space at different points on the manifold. The34
inference of such statistical models in practical situations requires efficient numerical35
schemes to compute parallel transport on manifolds.36

The parallel transport of a given tangent vector is defined as the solution of37
an ordinary differential equation ([8] page 52), written in terms of the Christoffel38
symbols. The computation of the Christoffel symbols requires access to the metric39
coefficients and their derivatives, making the equation integration using standard nu-40
merical schemes very costly in situations where no closed-form formulas are available41
for the metric coefficients or their derivatives.42

An alternative is to use Schild’s ladder [2], or its faster version in the case of43
geodesics, the pole ladder [6]. These schemes essentially require the computation of44
Riemannian exponentials and logarithms at each step. Usually, the computation of45
the exponential may be done by integrating Hamiltonian equations, and does not46
raise specific difficulties. By contrast, the computation of the logarithm must often47
be done by solving an inverse problem with the use of an optimization scheme such48
as a gradient descent. Such optimization schemes are approximate and sensitive to49
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the initial conditions and to hyper-parameters, which leads to additional numerical50
errors –most of the time uncontrolled– as well as an increased computional cost. When51
closed formulas exist for the Riemannian logarithm, or in the case of Lie groups, where52
the Logarithm can be approximated efficiently using the Baker-Campbell-Hausdorff53
formula (see [5]), Schild’s ladder is an efficient alternative. When this is not the case,54
it becomes hardly tractable. A more detailed analysis of the convergence of Schild’s55
ladder method can be found in [9]56

Another alternative is to use an equation showing that parallel transport along57
geodesics may be locally approximated by a well-chosen Jacobi field, up to the second58
order error. This idea has been suggested in [12] with further credits to [1], but59
without either a formal definition nor a proof of its convergence. It relies solely on60
the computations of Riemannian exponentials.61

In this paper, we propose a numerical scheme built on this idea, which tries to limit62
as much as possible the number of operations required to reach a given acuracy. We63
will show how to use only the inverse of the metric and its derivatives when performing64
the different steps of the scheme. This different set of requirements makes the scheme65
attractive in a different set of situations than the integration of the ODE or the Schild’s66
ladder. We will prove that this scheme converges at linear speed with the time-67
step, and that this speed may not be improved without further assumptions on the68
manifold. Furthermore, we propose an implementation which allows the simultaneous69
computation of the geodesic and of the transport along this geodesic. Numerical70
experiments on the 2-sphere and on the manifold of 3-by-3 symmetric positive definite71
matrices will confirm that the convergence of the scheme is of the same order as72
Schild’s ladder in practice. Thus, they will show that this scheme offers a compelling73
alternative to compute parallel transport with a control over the numerical errors and74
the computational cost.75

2. Rationale.76

2.1. Notations and assumptions. In this paper, we assume that γ is a geo-77
desic defined for all time t > 0 on a smooth manifold M of finite dimension n ∈ N78
provided with a smooth Riemannian metric g. We denote the Riemannian exponential79
Exp and ∇ the covariant derivative. For p ∈ M, TpM denotes the tangent space of80
M at p. For all s, t ≥ 0 and for all w ∈ Tγ(s)M, we denote Ps,t(w) ∈ Tγ(t)M the81
parallel transport of w from γ(s) to γ(t). It is the unique solution at time t of the82
differential equation ∇γ̇(u)Ps,u(w) = 0 for Ps,s(w) = w. We also denote Jwγ(t)(h) the83
Jacobi field emerging from γ(t) in the direction w ∈ Tγ(t)M, that is84

Jwγ(t)(h) = ∂

∂ε

∣∣∣∣
ε=0

Expγ(t)(h(γ̇(t) + εw)) ∈ Tγ(t+h)M85

for h ∈ R small enough. It verifies the Jacobi equation (see for instance [8] page86
111-119)87

(1) ∇2
γ̇J

w
γ(t)(h) +R(Jwγ(t)(h), γ̇(h))γ̇(h) = 088

where R is the curvature tensor. We denote ‖·‖g the Riemannian norm on the tangent89
spaces defined from the metric g, and gp : TpM×TpM→ R the metric at any p ∈M.90
We use Einstein notations.91

We fix Ω a compact subset ofM such that Ω contains a neighborhood of γ([0, 1]).92
We also set w ∈ Tγ(0)γ and w(t) = P0,t(w). We suppose that there exists a coordinate93
system on Ω and we denote Φ : Ω −→ U the corresponding diffeomorphism, where U94

This manuscript is for review purposes only.



A FANNING SCHEME FOR THE PARALLEL TRANSPORT 3

Figure 1. The solid line
is the geodesic. The green
dotted line is formed by the
perturbed geodesics at time t.
The blue arrows are the initial
vector and its approximated
parallel transport at time t.

is a subset of Rn. This system of coordinates allows us to define a basis of the tangent95
space ofM at any point of Ω, we denote ∂

∂xi

∣∣
p

the i-th element of the corresponding96
basis of TpM for any p ∈M. Note finally that, since the injectivity radius is a smooth97
function of the position on the manifold (see [8]) and that it is everywhere positive98
on Ω, there exists η > 0 such that for all p in Ω, the injectivity radius at p is larger99
than η.100

The problem in this paper is to provide a way to compute an approximation of101
P0,1(w).102

We suppose throughout the paper the existence of a single coordinate chart de-103
fined on Ω. In this setting, we propose a numerical scheme which gives an error varying104
linearly with the size of the integration step. Once this result is established, since in105
any case γ([0, 1]) can be covered by finitely many charts, it is possible to apply the106
proposed method to parallel transport on each chart successively. The errors during107
this computation of the parallel transport transport would add, but the convergence108
result remains valid.109

110

2.2. The key identity. The numerical scheme that we propose arises from the111
following identity, which is mentioned in [12]. Figure 1 illustrates the principle.112

Proposition 2.1. For all t > 0, and w ∈ Tγ(0)M we have113

(2) P0,t(w) =
Jwγ(0)(t)

t
+ O

(
t2
)
.114

Proof. Let X(t) = P0,t(w) be the vector field following the parallel transport115
equation: Ẋi+ΓiklX lγ̇k = 0 with X(0) = w, where (Γikl)i,j,k∈{1,...,n} are the Christof-116
fel symbols associated with the Levi-Civita connection for the metric g. In normal117
coordinates centered at γ(0), the Christoffel symbols vanish at γ(0) and the equation118
gives: Ẋi(0) = 0. A Taylor expansion of X(t) near t = 0 in this local chart then reads119

(3) Xi(t) = wi + O
(
t2
)
.120

By definition, the i-th normal coordinate of Expγ(0) (t(v0 + εw)) is t(vi0 +εwi). There-121

fore, the i-th coordinate of Jwγ(0)(t) = ∂
∂ε |ε=0Expγ(0)(t(γ̇(0) + εw)) is twi. Plugging122

this into (3) yields the desired result.123

This control on the approximation of the transport by a Jacobi field suggests124
to divide [0, 1] into N intervals [ kN ,

k+1
N ] of length h = 1

N for k = 0, . . . , N − 1 and125
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to approximate the parallel transport of a vector w ∈ Tγ(0) from γ(0) to γ(1) by a126
sequence of vectors wk ∈ Tγ( k

N )M defined as127

(4)


w0 = w

wk+1 = NJwk

γ( k
N )

(
1
N

)
.

128

With the control given in the Proposition 2.1, we can expect to get an error of order129
O
( 1
N2

)
at each step and hence a speed of convergence in O

( 1
N

)
overall. There are130

manifolds for which the approximation of the parallel transport by a Jacobi field is131
exact e.g. Euclidean space, but in the general case, one cannot expect to get a better132
convergence rate. Indeed, we show in the next Section that this scheme for the sphere133
S2 has a speed of convergence exactly proportional to 1

N .134

2.3. Convergence rate on S2. In this Section, we assume that one knows the135
geodesic path γ(t) and how to compute any Jacobi fields without numerical errors,136
and show that the approximation due to Equation (2) alone raises a numerical error137
of order O

( 1
N

)
.138

Let p ∈ S2 and v ∈ TpS2. (p and v are seen as vectors in R3). The geodesics are139
the great circles, which may be written as140

γ(t) = Expp(tv) = cos(t|v|)p+ sin(t|v|) v
|v|
,141

where |·| is the euclidean norm on R3. Using spherical coordinates (θ, φ) on the sphere,142
chosen so that the whole geodesic is in the coordinate chart, we get coordinates on143
the tangent space at any point γ(t). In this spherical system of coordinates, it is144
straightforward to see that the parallel transport of w = p×v along γ(t) has constant145
coordinates, where × denote the usual cross-product on R3.146

We assume now that |v| = 1. Since w = p × v is orthogonal to v, we have147
∂
∂ε

∣∣
ε=0 |v + εw| = 0. Therefore,148

Jwp (t) = ∂

∂ε
|ε=0

(
cos(t|v + εw|)p+ sin(t|v + εw|) v + εw

|v + εw|

)
= sin(t)w

149

which does not depend on p. We have Jwγ(t)(t) = sin(t)w. Consequently, the se-150
quence of vectors wk built by the iterative process described in equation (4) verifies151

wk+1 = Nwk sin
( 1
N

)
for k = 0, . . . , N − 1, and wN = w0N sin

( 1
N

)N . Now in the152
spherical coordinates, P0,1(w0) = w0, so that the numerical error, measured in these153

coordinates, is proportional to w0

(
1−

(
sin(1/N)

1/N

)N)
. We have154 (

sin(1/N)
1/N

)N
= exp

(
N log

(
1− 1

6N2 + o
(
1/N2))) = 1− 1

6N + o
( 1
N

)
155

yielding156

|wN − w0|
|w0|

∝ 1
6N + o

( 1
N

)
.157

It shows a case where the bound 1
N is reached.158
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3. The numerical scheme.159

3.1. The algorithm. In general, there are no closed forms expressions for the160
geodesics and the Jacobi fields. Hence, in most practical cases, these quantities also161
need to be computed using numerical methods.162

Computing geodesics. In order to avoid the computation of the Christoffel sym-163
bols, we propose to integrate the first-order Hamiltonian equations to compute geo-164
desics. Let x(t) = (x1(t), . . . , xd(t))T be the coordinates of γ(t) in a given local chart,165
and α(t) = (α1(t), . . . , αd(t))T be the coordinates of the momentum gγ(t)(γ̇(t), ·) ∈166
T ∗γ(t)M in the same local chart. We have then (see [13])167

(5)

 ẋ(t) = K(x(t))α(t)

α̇(t) = −1
2∇x

(
α(t)TK(x(t))α(t)

) ,168

where K(x(t)), a d-by-d matrix, is the inverse of the metric g expressed in the local169
chart. Note that using (5) to integrate the geodesic equation will require us to convert170
initial tangent vectors into initial momenta, as seen in the algorithm description below.171

Computing Jwγ(t)(h). The Jacobi field may be approximated with a numerical172
differentiation from the computation of a perturbed geodesic with initial position γ(t)173
and initial velocity γ̇(t) + εw where ε is a small parameter174

(6) Jwγ(t)(h) '
Expγ(t)

(
h(γ̇(t) + εw)

)
− Expγ(t)

(
hγ̇(t)

)
ε

,175

where the Riemannian exponential may be computed by integration of the Hamilto-176
nian equations (5) over the time interval [t, t+ h] starting at point γ(t), as shown on177
Figure 2. We will also see that a choice for ε ensuring a O

( 1
N

)
order of convergence178

is ε = 1
N .179

180
The algorithm. Let N ∈ N. We divide [0, 1] into N intervals [tk, tk+1] with tk = k

N181
and denote h = 1

N the size of the integration step. We initialize γ0 = γ(0), γ̇0 = γ̇(0),182
w̃0 = w and solve β̃0 = K−1(γ0)w̃0 and α̃0 = K−1(γ0)γ̇0. We use ”̂ ” for quantities183
computed in the scheme without any renormalization and ”̃ ” for quantities computed184
in the scheme which have been renormalized to enforce expected conservations during185
the parallel transport. We propose to compute, at step k:186

(i) The new point γ̃k+1 and momentum α̃k+1 of the main geodesic, by performing187
one step of length h of a second-order Runge-Kutta method on equation (5).188

(ii) The perturbed geodesic starting at γ̃k with initial momentum α̃k + εβ̃k at time189
h, that we denote γ̃εk+1, by performing one step of length h of a second-order190
Runge-Kutta method on equation (5).191

(iii) The estimated parallel transport before renormalization192

(7) ŵk+1 =
γ̃εk+1 − γ̃k+1

hε
.193

(iv) The corresponding momentum β̂k+1, by solving: K(γ̃k+1)β̂k+1 = ŵk+1.194
(v) The renormalized version of this momentum, and the corresponding vector

β̃k+1 = akβ̂k+1 + bkα̃k+1

w̃k+1 = K(γ̃k+1)β̃k+1

This manuscript is for review purposes only.
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Figure 2. One step of
the numerical scheme. The
dotted arrows represent the
steps of the Runge-Kutta inte-
grations for the main geodesic
γ and for the perturbed
geodesic γε. The blue arrows
are the initial w(tk) and
the obtained approximated
transport using equation (6),
with h = tk+1 − tk.

where ak and bk are factors ensuring β̃>k+1K(γ̃(t))β̃k+1 = β>0 K(γ0)β0 and195
β̃>k+1K(γ̃(t))α̃k+1 = β>0 K(γ0)α0: quantities which should be conserved during196
the transport.197

At the end of the scheme, w̃N is the proposed approximation of P0,1(w). Figure 2198
illustrates the principle. A complete pseudo-code is given in appendix A. It is remark-199
able that we can substitute the computation of the Jacobi field with only four calls to200
the Hamiltonian equations (5) at each step, including the calls necessary to compute201
the main geodesic. Note however that the (iv) step of the algorithm requires to solve202
a linear system of size n. Solving the linear system can be done with a complexity less203
than cubic in the dimension (in O

(
n2.374) using Coppersmith–Winograd algorithm).204

3.2. Possible variations. There are a few possible variations of the presented205
algorithm.206

1. The first variation is to use higher-order Runge-Kutta methods to integrate207
the geodesic equations at step (i) and (ii). We prove that a second-order208
integration of the geodesic equation is enough to guarantee convergence, and209
noticed experimentally the absence of convergence with a first order integra-210
tion of the geodesic equation.211

2. The second variation is to replace step (ii) and step (iii) the following way. At212
the k-th iteration, compute two perturbed geodesics starting at γ̃k and with213
initial momentum α̃k + εβ̃k (resp. α̃k − εβ̃k) at time h, that we denote γ̃+ε

k+1214
(resp. γ̃+ε

k+1), by performing one step of length h of a second-order Runge-215
Kutta method on equation (5). Then proceed to a second-order differentiation216
to approximate the Jacobi field, and set:217

(8) ŵk+1 =
γ̃+ε
k+1 − γ̃

−ε
k+1

2hε .218

219
3. The final variation of the scheme consists in skipping step (v) and set w̃k+1 =220
ŵk+1 and β̃k+1 = β̂k+1.221

We will show that the proposed algorithm and these variations ensure convergence222
of the final estimate. Note that the best accuracy for a given computational cost is223
not necessarily obtained with the method in Section 3.1, but might be attained with224
one of the proposed variations, as a bit more computations at each step may be225
counter-balanced by a smaller constant in the convergence rate.226

3.3. The convergence Theorem. We obtained the following convergence re-227
sult, guaranteeing a linear decrease of the error with the size of the step h.228
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Theorem 3.1. We suppose here the hypotheses stated in Section 2.1. Let N ∈ N229
be the number of integration steps. Let w ∈ Tγ(0)M be the vector to be transported.230
We denote the error231

δk = ‖P0,tk (w)− w̃k‖2232

where w̃k is the approximate value of the parallel transport of w along γ at time tk and233
where the 2-norm is taken in the coordinates of the chart Φ on Ω. We denote ε the234
parameter used in the step (ii) and h = 1

N the size of the step used of the Runge-Kutta235
approximate solution of the geodesic equation.236
If we take ε = h, then we have237

δN = O
( 1
N

)
.238

We will see in the proof and in the numerical experiments that choosing ε = h is239
a recommended choice for the size of the step in the differentiation of the perturbed240
geodesics. Further decreasing ε has no visible effect on the accuracy of the estimation241
and choosing a larger ε lowers the quality of the approximation.242

Note that our result controls the 2-norm of the error in the global system of243
coordinates, but not directly the metric norm in the tangent space at γ(1). This is244
due to the fact that γ(1) is not accessible, but only its approximation γ̃N computed245
by the Runge-Kutta integration of the Hamiltonian equation. However, Theorem246
3.1 implies that the couple (γ̃N , w̃N ) converges towards (γ(1), P0,1(w)) using the `2247
distance on M× TM using a coordinate system in a neighborhood of γ(1), which is248
equivalent to any distance on M× TM on this neighborhood and hence is the right249
notion of convergence.250

We give the proof in the next Section. The technical lemmas used in the proof251
are all in the appendix: in Appendix B.1, we prove an intermediate result allowing252
uniform controls on norms of tensors, in Appendix B.3, we prove a stronger result253
than Proposition 2.1 with stronger hypotheses and in Appendix B.4, we prove a result254
allowing to control the accumulation of the error.255

4. Proof of the convergence Theorem 3.1. We start by proving convergence256
without step (v) of the algorithm, i.e. without enforcing the conservations during257
the transport. Once the convergence of this variation is established, we prove the258
convergence with the step (v).259

Proof. (Without step (v)) We will denote, as in the description of the algorithm260
in Section 3, γk = γ(tk), γ̃k = γ̃(tk) its approximation in the algorithm. Let N be a261
number of discretization step and k ∈ {1, . . . , N}. We build an upper bound on the262
error δk+1 from δk. We have263

δk+1 = ‖wk+1 − w̃k+1‖2

≤
∥∥∥∥wk+1 −

Jwk
γk

(h)
h

∥∥∥∥
2︸ ︷︷ ︸

(1)

+

∥∥∥∥∥Jwk
γk

(h)
h

−
Jw̃k
γk

(h)
h

∥∥∥∥∥
2︸ ︷︷ ︸

(2)

+
∥∥∥∥Jw̃k

γk
(h)
h

−
Jw̃k
γ̃k

(h)
h

∥∥∥∥
2︸ ︷︷ ︸

(3)

+

∥∥∥∥∥Jw̃k
γ̃k

(h)
h

−
J̃w̃k
γ̃k

(h)
h

∥∥∥∥∥
2︸ ︷︷ ︸

(4)

264

where265
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• γ̃k is the approximation of the geodesic coordinates at step k.266
• wk = w(tk) is the exact parallel transport.267
• w̃k is its approximation at step k268
• J̃ is the approximation of the Jacobi field computed with finite difference:269

J̃w̃k
γ̃k

= γ̃ε
k+1−γ̃k+1

ε .270

• Jw̃k
γ̃k

(h) is the exact Jacobi field computed with the approximations w̃, γ̃ and271
˜̇γ i.e. the Jacobi field defined from the geodesic with initial position γ̃k, initial272
momentum α̃k, with a perturbation w̃k.273

We provide upper bounds for each of these terms. We start by assuming ‖wk‖2 ≤274
2‖w0‖2, before showing it is verified for any k ≤ N when N is large enough. We275
could assume more generally ‖wk‖2 ≤ C‖w0‖2 for any C > 1. The idea is to get a276
uniform control on the errors at each step by assuming that ‖wk‖2 does not grow too277
much, and show afterwards that the control we get is tight enough to ensure, when278
the number of integration steps is large, that we do have ‖wk‖2 ≤ 2‖w0‖2.279

Term (1). This is the intrinsic error when using the Jacobi field. We show in280
Proposition B.3 that for h small enough281 ∥∥∥∥Ptk,tk+1(wk)−

Jwk
γk

(h)
h

∥∥∥∥
g(γ(tk+1))

≤ Ah2‖wk‖g = Ah2‖wk‖g.282

Now, since g varies smoothly and by equivalence of the norms, there exists A′ > 0283
such that284

(9)
∥∥∥∥Ptk,tk+1(wk)−

Jwk

γ(k)(h)
h

∥∥∥∥
2
≤ A′h2‖wk‖2 ≤ 2A′h2‖w0‖2285

Term (2). Lemma B.4 show that for h small enough286

(10)
∥∥∥∥Jwk

γ(tk)(h)
h

−
Jw̃k

γ(tk)(h)
h

∥∥∥∥
2
≤ (1 +Bh)δk.287

Term (3). This term measures the error linked to our approximate knowledge of288
the geodesic γ. It is proved in Appendix B.5 that there exists a constant C > 0 which289
does not depend on k or h such that :290

(11)
∥∥∥∥Jw̃k

γk
(h)
h

−
J̃w̃k
γk

(h)
h

∥∥∥∥
2
≤ Ch2.291

Term (4). This is the difference between the analytical computation of J and292
its approximation. It is proved in Appendix B.6 and B.7 that if we use a Runge-293
Kutta method of order 2 to compute the geodesic points γεk+1 and γk+1 and a first-294
order differentiation to compute the Jacobi field as described in the step (iii) of the295
algorithm, or if we use two perturbed geodesics γεk+1 and γ−εk+1 and a second-order296
differentiation method to compute the Jacobi field as described in equation (8), there297
exists D ≥ 0 which does not depend on k such that:298

(12)
∥∥∥∥Jw̃k

γ(tk) − J̃w̃k

γ(tk)

h

∥∥∥∥
2
≤ D(h2 + εh)299

Note that this majoration is valid as long as w̃k is bounded by a constant which does300
not depend on k or N , which we have assumed so far.301

302
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Gathering equations (9), (10), (11) and (12), there exists a constant F > 0 such303
that for all k such that ‖wi‖2 ≤ ‖w0‖2 for all i ≤ k:304

(13) δk+1 ≤ (1 +Bh)δk + F (h2 + hε).305

Combining those inequalities for k = 1, . . . , s where s ∈ {1, . . . , N} is such that306
‖wk‖2 ≤ 2‖w0‖2 for all k ≤ s, we obtain a geometric series whose sum yields307

(14) δs ≤
F (h2 + hε)

Bh
(1 +Bh)s+1.308

We now show that for a large enough number of integration steps N , this implies that309
‖wk‖2 ≤ 2‖w0‖2 for all k ∈ {1, . . . , N}. We proceed by contradiction, assuming that310
there exist arbitrary large N ∈ N for which there exists u(N) ≤ N – that we take311
minimal – such that ‖wu(N)‖2 > 2‖w0‖2. For any such N ∈ N, since u(N) is minimal312
with that property, we can still use equation (14) with s = u(N):313

(15) δu(N) ≤
F (h2 + hε)

Bh
(1 +Bh)u(N)+1.314

Now, h = 1
N so that315

(16) δu(N) ≤
F (h+ ε)

B
(1 +Bh)u(N)+1 ≤ F (h+ ε)

B
(1 +Bh) 1

h +1.316

But we have, on the other hand:317

(17) ‖w0‖2 < |‖w̃u(N)‖2 − ‖w0‖2| ≤ ‖w̃u(N) − w0‖2 ≤
F (h+ ε)

B
(1 +Bh) 1

h +1318

Taking ε ≤ h, which we will keep as an assumption in the rest of the proof, the term319
on the right goes to zero as h → 0 – i.e. as N → ∞ – which is a contradiction.320
So for N large enough, we have ‖wk‖2 ≤ 2‖w0‖2 and equation (14) holds for all321
k ∈ {1, . . . , N}. With s = N , equation (14) reads:322

δN ≤
F (h2 + hε)

Bh
(1 +Bh)N+1.323

We see that choosing ε = 1
N yields an optimal rate of convergence: choosing a larger324

value deteriorates the accuracy of the scheme while choosing a lower value still yields325
an error in O

( 1
N

)
. Setting ε = 1

N :326

δN ≤
2F
BN

(
1 + B

N

)N+1
= 2F
BN

(
exp(B) + o

( 1
N

))
.327

Eventually, there exists G > 0 such that, for N ∈ N large enough328

δN ≤
G

N
.329

We now prove Theorem 3.1 when step (v) is used.330

Proof. (With step (v)) The idea in this proof is to use equation (13) and the fact331
that when ŵj+1 is close enough to wj+1, step (v) necessarily improves the approxima-332
tion. As in the algorithm description, we denote ŵk the estimate before step (v) and333
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w̃k the renormalized estimate. We now denote δk = ‖wk − w̃k‖2. We use equation334
(13), which now reads335

(18) ‖wk+1 − ŵk+1‖2 ≤ (1 +Bh)δk + F (h2 + hε).336

For t ∈ [0, 1], let’s denote Pt : Tγ(t)M→ Tγ(t)M the operator defined at step (v): for337
z ∈ Tγ(t)M , P (t, z) is the renormalized version of z to respect the conservations during338
parallel transport. Step (v) now reads P (tk, ŵk) = w̃k. For any t ∈ [0, 1], we have339
P (t, w(t)) = w(t) so that z → ‖P (t, z) − w(t)‖22 is smooth and has a local minimum340
at w(t), so that its differential is zero at w(t). Since Pt continuously varies with t,341
there exists r > 0 such that, for all t ∈ [0, 1], for all z ∈ Tγ(t)M with ‖w(t)− z‖2 ≤ r:342

(19) ‖w(t)− P (t, z)‖2 ≤ ‖w(t)− z‖2343

Now for N large enough and k ∈ {1, . . . , N}, assuming δk small enough will ensure344
‖wk − ŵk‖ ≤ r as shown in equation (18) so that:345

(20) δk+1 = ‖wk − P (t, ŵk)‖2 ≤ ‖wk − ŵk‖2 ≤
[
(1 +Bh)δk + F (h2 + hε)

]
.346

This is the same control as equation (13): the proof can be concluded in the same347
way as above.348

5. Numerical experiments.349

5.1. Setup. We implemented the numerical scheme on simple manifolds where350
the paralllel transport is known in closed form, allowing us to evaluate the numerical351
error 1. We present two examples:352

• S2: in spherical coordinates (θ, φ) the metric is g =
(

1 0
0 sin(θ)2

)
. We gave353

expressions for geodesics and parallel transport in Section 2.3.354
• The set of 3 × 3 symmetric positive-definite matrices SPD(3). The tangent355

space at any points of this manifold is the set of symmetric matrices. In356
[3], the authors endow this space with the affine-invariant metric: for Σ ∈357
SPD(3), V,W ∈ Sym(3), gΣ(V,W ) = tr(Σ−1V Σ−1W ). Through an explicit358
computation of the Christoffel symbols, they derive explicit expressions for359
any geodesic Σ(t) starting at Σ0 ∈ SPD(3) with initial tangent vector X ∈360

Sym(3): Σ(t) = Σ
1
2
0 exp(tX)Σ

1
2
0 where exp : Sym(3) → SPD(3) is the matrix361

exponentiation. Deriving an expression for the parallel transport can also be362
done using the explicit Christoffel symbols, see [11]. If Σ0 ∈ SPD(3) and363
X,W ∈ Sym(3), then364

P0,t(W ) = exp
( t

2XΣ−1
0

)
W exp

( t
2Σ−1

0 X
)
.365

The code for this numerical scheme can be written in a generic way and used for366
any manifold by specifying the Hamiltonian equations and the inverse of the metric.367
For experiments in large dimensions, we refer to [7].368

1A modular Python version of the code is available here: https://gitlab.icm-institute.org/
maxime.louis/parallel-transport
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Remark. Note that even though the computation of the gradient of the inverse of369
the metric with respect to the position, ∇xK, is required to integate the Hamiltonian370
equations (5), ∇xK can be computed from the gradient of the metric using the fact371

that any smooth map M : R→ GLn(R) verifies dM−1

dt = −M−1 dM
dt M

−1. This is how372
we proceeded for SPD(3): it spares some potential difficulties if one does not have373
access to analytical expressions for the inverse of the metric. It is however a costful374
operation which requires the computation of the full inverse of the metric at each375
step.376
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One perturbed geodesic, Runge-Kutta 2
One perturbed geodesic, Runge-Kutta 4
Two perturbed geodesic, Runge-Kutta 2
Two perturbed geodesic, Runge-Kutta 4

Figure 3. Relative error for the 2-Sphere in different settings, as functions of the step size,
with initial point, velocity and initial w kept constant. The dotted lines are linear regressions of the
measurements.

5.2. Results. Errors measured in the chosen system of coordinates confirm the377
linear behavior in both cases, as shown on Figures 3 and 4.378

We assessed the effect of a higher order for the Runge-Kutta scheme in the in-379
tegration of geodesics. Using a fourth order method increases the accuracy of the380
transport in both cases, by a factor 2.3 in the single geodesic case. A fourth order381
method is twice as expensive as a second order method in terms of number of calls to382
the Hamiltonian equations, hence in this case it is the most efficient way to reach a383
given accuracy.384

We also investigated the effect of using step (v). Doing so yields an exact transport385
for the sphere, because it is of dimension 2 and the conservation of two quantities is386
enough to ensure an exact transport, up to the fact that the geodesic is computed387
approximately, so that the actual observed error is the error in the integration of the388
geodesic equation. It yields a dramatically improved transport of the same order of389
convergence for SPD(3) (see Figure 4). The complexity of this operation is very low,390
and we recommend to always use it. It can be expected however that the effect of the391
enforcement of these conservations will lower as the dimension increases, since it only392
fixes two components of the transported vector.393

We also confirmed numerically that without a second-order method to integrate394
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Two perturbed geodesics, Runge-Kutta 4

Figure 4. Relative errors for SPD(3) in different settings, as functions of the step size, with
initial point, velocity and initial w kept constant. The dotted lines are linear regressions. Runge-
Kutta 2 (resp. 4) indicate that a second-order (resp. fourth order) Runge-Kutta integration has been
used to integrate the geodesic equations at steps (i) and (ii). Without conservation indicates that
(v) has not been used.

the geodesic equations at steps (i) and (ii) of the algorithm, the scheme does not con-395
verge. This is not in contradiction with Theorem 3.1 which supposes this integration396
is done with a second-order Runge Kutta.397

Finally, using two geodesics to compute a central-finite difference for the Jacobi398
field is 1.5 times more expensive than using a single geodesic, in terms of number of399
calls to the Hamiltonian equations, and it is therefore more efficient to compute two400
perturbed geodesics in the case of the symmetric positive-definite matrices.401

5.3. Comparison with Schild’s ladder. We compared the relative errors of402
the fanning scheme with Schild’s ladder. We implemented Schild’s ladder on the403
sphere and compared the relative errors of both schemes on a same geodesic and404
vector. We chose this vector to be orthogonal to the velocity, since the transport with405
Schild’s ladder is exact if the transported vector is colinear to the velocity. We use406
a closed form expression for the Riemannian logarithm in Schild’s ladder, and closed407
form expressions for the geodesic. The results are given in Figure 5.408

6. Conclusion. We proposed a new method, the fanning scheme, to compute409
parallel transport along a geodesic on a Riemannian manifold using Jacobi fields. In410
contrast to Schild’s ladder, this method does not require the computation of Rie-411
mannian logarithms, which may not be given in closed form and potentially hard to412
approximate. We proved that the error of the scheme is of order O

( 1
N

)
where N413

is the number of discretization steps, and that it cannot be improved in the general414
case, yielding the same convergence rate as Schild’s ladder. We also showed that only415
four calls to the Hamiltonian equations are necessary at each step to provide a satis-416
fying approximation of the transport, two of them being used to compute the main417
geodesic.418
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Figure 5. Relative error of Schild’s ladder scheme compared to the fanning scheme (double
geodesic, Runge-Kutta 2) proposed here, in the case of S2.

A limitation of this scheme is to only be applicable when parallel transporting419
along geodesics, and this limitation seems to be unavoidable with the identity it relies420
on. Note also that the Hamiltonian equations are expressed in the cotangent space421
whereas the approximation of the transport computed at each step lies in the tangent422
space to the manifold. Going back and forth from cotangent to tangent space at423
each iteration is costly if the metric is not available in closed-form, as it requires the424
inversion of a system. In very high dimensions this might limit the performances425

Acknowledgements. This work has been partially funded by the European Re-426
search Council (ERC) under grant agreement No 678304, European Union’s Horizon427
2020 research and innovation programme under grant agreement No 666992, and the428
program ”Investissements d’avenir” ANR-10-IAIHU-06.429

Appendix A. Pseudo-code for the algorithm. We give a pseudo-code430
description of the numerical scheme. Here, G(p) denotes the metric matrix at p for431
any p ∈M.432

1: function ParallelTransport(x0, α0, w0, N)433
2: function v(x, α)434
3: return K(x)α435
4: end function436

437
5: function f(x, α)438
6: return − 1

2∇x
(
αTK(x)α

)
. in closed form or by finite differences439

7: end function440
441

. γ0 coordinates of γ(0)442
. α0 coordinates of G(γ(0))γ̇(0) ∈ T ∗γ(0)M443

. w0 coordinates of w ∈ Tγ(0)M444
. β0 coordinates of G(γ(0))w0445
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. N number of time-steps446
8: h = 1/N , ε = 1/N447
9: for k = 0, . . . , (N − 1) do448

. integration of the main geodesic449
10: γk+ 1

2
= γk + h

2 vk450

11: αk+ 1
2

= αk + h
2 f(γk, αk)451

12: γk+1 = γk + hv(γk+ 1
2
, αk+ 1

2
)452

13: αk+1 = αk + hf(γk+ 1
2
, αk+ 1

2
)453

. perturbed geodesic equation in the direction wk454
14: γε

k+ 1
2

= γk + h
2 v(γk, αk + εβk)455

15: αε
k+ 1

2
= αk + εβk + h

2 f(()γεk, αk + εβk456

16: γεk+1 = γεk + hv(γε
k+ 1

2
, αεk + 1

2 )457

. Jacobi field by finite differences458

17: ŵk+1 = γε
k+1−γk+1

hε459

18: β̂k+1 = g(γk+1)wk+1 . Use explicit g or solve K(γk+1)β̂k+1 = ŵk+1460
. Conserve quantities461

19: Solve for a, b:462463
20: β>0 K(γ0)β0 = (aβ̂k+1 + bαk+1)>K(γ̃k+1)(aβ̂k+1 + bαk+1),464
21: α>0 K(γ0)α0 = (aβ̂k+1 + bαk+1)>K(γ̃k+1)(aβ̂k+1 + bαk+1, vk+1)465466
22: βk+1 = aβ̂k+1 + bαk+1 . parallel transport467
23: wk+1 = K(γk+1)βk+1468
24: end for469

return γN , αN , wN470
. γN approximation of γ(1)471

. αN approximation of G(γ(1))γ̇(1)472
. wN approximation of Pγ(0),γ(1)(w0)473

25: end function474
475

Appendix B. Proofs.476

B.1. A lemma to change coordinates. We recall that we suppose the geode-477
sic contained within a compact subset Ω of the manifold M. We start with a result478
controlling the norms of change-of-coordinates matrices. Let p inM and q = Expp(v)479
where ‖v‖g ≤ η

2 , where η > 0 is a lower bound on the injectivity radius on Ω. We480
consider two basis of TqM: one defined from the global system of coordinates, that481
we denote BΦ

q , and another made of the normal coordinates centered at p, built from482
the coordinate on TpM obtained from the coordinate chart Φ, that we denote BNq .483
We can therefore define Λ(p, q) as the change-of-coordinates matrix between BΦ

q and484
BNq . The operator norms ||| · ||| of these matrices are bounded over Ω in the following485
sense:486

Lemma B.1. There exists L ≥ 0 such that for all p ∈ K and for all q ∈ K such487
that q = Expp(v) for some v ∈ TpM with ‖v‖g ≤ η

2 , we have488

|||Λ(p, q)||| ≤ L489

and490

|||Λ−1(p, q)||| ≤ L.491
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Proof. Any two norms on TqM are equivalent, and the norm bounds of the coor-492
dinate change smoothly depend on p and q by smoothiness of the metric. Hence the493
result.494

This lemma allows us to translate any bound on the components of a tensor in the495
global system of coordinates into a bound on the components of the same tensor in496
any of the normal systems of coordinates centered at a point of the geodesic, and vice497
versa.498

B.2. Transport and connection. We prove a result connecting successive co-499
variant derivatives to parallel transport:500

Proposition B.2. Let V be a vector field onM. Let γ : [0, 1]→M be a geodesic.501
Then502

(21) ∇kγ̇V (γ(t)) = dk

dhk

∣∣∣∣
h=0

P−1
t,t+h(V (γ(t+ h)).503

Proof. Let Ei(0) be an orthonormal basis of Tγ(0)M. Using the parallel transport504
along γ, we get orthonormal basis Ei(s) of Tγ(t)M for all t. For t ∈ [0, 1], denote505
(ai(t))i=1,...,n the coordinates of V (γ(t)) in the basis (Ei(t))i=1,...,n. We have506

dk

dhkP
−1
t,t+h(V (γ(t+ h)) = dk

dhkP
−1
t,t+h

( n∑
i=1

ai(t+ h)Ei(t+ h)
)

=
n∑
i=1

dkai(t+ h)
dhk Ei(t)507

because P−1
t,t+hEi(t+ h) = Ei(t) does not depend on h. On the other hand508

∇kγ̇V (γ(t)) = ∇kγ̇
n∑
i=1

ai(t)Ei(t) =
n∑
i=1
∇kγ̇(ai(t))Ei(t) =

n∑
i=1

dkai(t+ h)
dhk Ei(t)509

by definition of Ei(s).510

B.3. A stronger version of Proposition 2.1. From there, we can prove a511
stronger version of Proposition 2.1. As before, η denotes a lower bound on the injec-512
tivity radius of M on Ω.513

Proposition B.3. There exists A ≥ 0 such that for all t ∈ [0, 1[, for all w ∈514
Tγ(t)M and for all h < η

‖γ̇(t)‖g
we have515 ∥∥∥∥Pt,t+h(w)−

Jwγ(t)(h)
h

∥∥∥∥
g

≤ Ah2‖w‖g.516

Proof. Let t ∈ [0, 1[, w ∈ Tγ(t)M and h < η
‖γ̇(t)‖g

i.e. such that Jwγ(t)(h) is well517
defined. From Lemma B.2, for any smooth vector field V on M,518

(22) ∇kγ̇(t)V (γ(t)) = dk

dhk

∣∣∣∣
h=0

P−1
t,t+h(V (γ(t+ h)).519

We will use this identity to obtain a development of V (γ(t+ h)) = Jwγ(t)(h) for small520
h.521

We have Jwγ(t)(0) = 0, ∇γ̇Jwγ(t)(0) = w, ∇2
γ̇J

w
γ(t)(0) = −R(Jwγ(t)(0), γ̇(0))γ̇(0) = 0522

using equation (1) and finally523

(23)
‖∇3

γ̇J
w
γ(t)(h)‖g = ‖∇γ̇(R)(Jwγ(t)(h), γ̇(h))γ̇(h) +R(∇γ̇Jwγ(t)(h), γ̇(h))γ̇(h)‖g

≤ ‖∇γ̇R‖∞‖γ̇(h)‖2g‖Jwγ(t)(h)‖g + ‖R‖∞‖γ̇(h)‖2g‖∇γ̇Jwγ(t)(h)‖g,
524
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where the∞-norms, taken over the geodesic and the compact Ω, are finite because the525
curvature and its derivatives are bounded. Note that we used ∇γ̇ γ̇ = 0 which holds526
since γ is a geodesic. In normal coordinates centered at γ(t), we have Jwγ(t)(h)i =527

hwi. Therefore, if we denote gij(γ(t + h)) the components of the metric in normal528
coordinates, we get using Einstein notations529

‖Jwγ(t)(h)‖2g = h2gij(γ(t+ h))wiwj .530

To obtain an upper bound for this term which does not depend on t, we note that the531
coefficients of the metric in the global coordinate system are bounded on Ω. Using532
Lemma B.1, we get a bound M ≥ 0 valid on all the systems of normal coordinates533
centered at a point of the geodesic, so that534

‖Jwγ(t)(h)‖g ≤ hM‖w‖2.535

By equivalence of the norms as seen in Lemma (B.1), and because g varies smoothly,536
there exists N ≥ 0 such that537

(24) ‖Jwγ(t)(gh)‖g ≤ hMN‖w‖g538

where the dependence of the majoration on t has vanished, and the result stays valid539
for all h < max ( η

‖γ̇(t)‖g
, 1− t) and all w. Similarly, there exists C > 0 such that540

(25) ‖∇γ̇Jwγ(s)(h)‖ ≤ C‖w‖g,541

at any point and for any h < max ( η
‖γ̇(t)‖g

, 1− t). Gathering equations (23), (24) and542

(25), we get that there exists a constant A ≥ 0 which does not depend on t, h or w543
such that544

(26)
∥∥∥∇3

γ̇J
w
γ(s)(h)

∥∥∥
g
≤ A‖w‖g.545

Now using equation (22) with V (γ(t+ h)) = Jwγ(t)(h) and a Taylor’s formula, we get546

P−1
t,t+h(Jwγ(t)(h)) = hw + h3r(h,w)547

where r is the remainder of the expansion, controlled in equation (26). We thus get548 ∥∥∥∥Jwγ(t)(h)
h

− Pt,t+h(w)
∥∥∥∥
g

= ‖Pt,t+h(h3r(w, h))‖g.549

Now, because the parallel transport is an isometry, we can use our control (26) on the550
remainder to get551 ∥∥∥∥Jwγ(t)(h)

h
− Pt,t+h(w)

∥∥∥∥
g

≤ A

6 h
2‖w‖g.

552

B.4. A Lemma to control error accumulation. At every step of the scheme,553
we compute a Jacobi field from an approximate value of the transported vector. We554
need to control the error made with this computation from an already approximate555
vector. We provide a control on the 2-norm of the corresponding error, in the global556
system of coordinates.557
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Lemma B.4. There exists B ≥ 0 such that for all t ∈ [0, 1[, for all w1, w2 ∈558
Tγ(t)M and for all h ≤ η

‖γ̇(t)‖g
small enough, we have :559

(27)
∥∥∥∥Jw1

γ(t)(h)− Jw2
γ(t)(h)

h

∥∥∥∥
2
≤ (1 +Bh)‖w1 − w2‖2.560

Proof. Let t ∈ [0, 1[ and h ≤ η
‖γ̇(t)‖g

. We denote p = γ(t), q = γ(t+h). We use the561
exponential map to get normal coordinates on a neighborhood V of p from the basis562 (

∂
∂xi

∣∣
p

)
i=1,...,n of TpM. Let’s denote

(
∂
∂yi

∣∣∣
r

)
i=1,...,n the basis obtained in the tangent563

space at any point r of V from this system of normal coordinates centered at p. At any564

point r in V , there are now two different bases of TrM:
(

∂
∂yi

∣∣∣
r

)
i=1,...,n obtained from565

the normal coordinates and
(

∂
∂xi

∣∣
r

)
i=1,...,n obtained from the coordinate system Φ.566

Let w1, w2 ∈ TpM and denote wij for i ∈ {1, . . . , n}, j ∈ {1, 2} the coordinates in the567

global system Φ. By definition, the basis
(

∂
∂yi

∣∣∣
p

)
i=1,...,n

and the basis
(

∂
∂xi

∣∣
p

)
i=1,...,n

568

coincide, and in particular, for j ∈ {1, 2}:569

wj = (wj)i
∂

∂xi

∣∣∣∣
p

= (wj)i
∂

∂yi

∣∣∣∣
p

.570

If i ∈ {1, . . . , n}, j ∈ {1, 2}, the j-th coordinate of Jwi

γ(t)(h) in the basis
(

∂
∂yi

∣∣∣
q

)
i=1,...,n

571

is572

J
wj

γ(t)(h)i = ∂

∂ε

∣∣∣∣
ε=0

(Expp(h(v + εwj)))i = ∂

∂ε

∣∣∣∣
ε=0

(h(v + εwj))i = hwij .573

Let Λ(γ(t + h), γ(t)) be the change-of-coordinate matrix of Tγ(t+h) from the basis574 (
∂
∂yi

∣∣∣
q

)
i=1,...,n

to the basis
(

∂
∂xi

∣∣
q

)
i=1,...,n

. Λ varies smoothly with t and h, and is575

the identity when h = 0. Hence, we can write an expansion576

Λ(γ(t+ h), γ(t)) = Id+ hW (t) +O(h2).577

The second order term depends on the second derivative of Λ with respect to h.578
Restricting ourselves to a compact subset of M, as in Lemma B.1, we get a uniform579
bound on the norm of this second derivative thus getting a control on the operator580
norm of Λ(γ(t+ h), γ(t)), that we can write, for h small enough581

|||Λ(γ(t+ h), γ(t))||| ≤ (1 +Bh)582

where B is a positive constant which does not depend on h or t. Now we get583 ∥∥∥∥Jw1
γ(t)(h)− Jw2

γ(t)(h)
h

∥∥∥∥
2

= ‖Λ(γ(t+ h), γ(t))(w1 − w2)‖2 ≤ (1 +Bh) ‖w1 − w2‖2584

which is the desired result.585

B.5. Proof that we can compute the geodesic simultaneously with a586
second-order method. We give here a control on the error made in the scheme587
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when computing the main geodesic approximately and simultaneously with the par-588
allel transport. We assume that the main geodesic is computed with a second-order589
method, and we need to control the subsequent error on the Jacobi field. The com-590
putations are made in global coordinates, and the error measured by the 2-norm in591
these coordinates. Φ : Ω → U denotes the corresponding diffeomorphism. We note592
η > 0 a lower bound on the injectivity radius of M on Ω and ε > 0 the parameter593
used to compute the perturbed geodesics at step (ii).594

Proposition B.5. There exists A > 0 such that for all t ∈ [0, 1[, for all h ∈595
[0, 1− t], for all w ∈ Tγ(t)M:596 ∥∥∥∥∥Jw̃k

γk
(h)
h

−
Jw̃k
γ̃k

(h)
h

∥∥∥∥∥
2

≤ Ah2.597

Proof. Let t ∈ [0, 1[, h ∈ [0, 1− t], and w ∈ Tγ(t)M. The term rewrites598
(28)∥∥∥∥∥Jw̃k

γk
(h)
h

−
Jw̃k
γ̃k

(h)
h

∥∥∥∥∥
2

=

∥∥∥∥∥ ∂Expγk
(hγ̇k + xw̃k)
∂x

∣∣∣∣
x=0
−
∂Expγ̃k

(h˜̇γk + xw̃k)
∂x

∣∣∣∣∣
x=0

∥∥∥∥∥
2

.599

This is the difference between the derivatives of two solutions of the same differential600
equation (5) with two different initial conditions. More precisely, we define Π : Φ(Ω)×601
BRn(0, ‖γ̃k‖+2ε‖w̃k‖)× [0, η])→ Rn such that Π(p0, α0, h) are the coordinates of the602
solutions of the Hamiltonian equation at time h with initial coordinates p0 and initial603
momentum α0. Π is the flow, in coordinates, of the geodesic equation. We can now604
rewrite equation (28)605 ∥∥∥∥∥Jw̃k

γk
(h)
h

−
Jw̃k
γ̃k

(h)
h

∥∥∥∥∥
2

=
∥∥∥∥ ∂Π(γk, γ̇k + εw̃k, h)

∂ε

∣∣∣∣
ε=0
− ∂Π(γ̃k, ˙̃γk + εw̃k, h)

∂ε

∣∣∣∣
ε=0

∥∥∥∥
2
.606

By Cauchy-Lipschitz theorem and results on the regularity of the flow, Π is smooth.607
Hence, its derivatives are bounded over its compact set of definition. Hence there608
exists a constant A > 0 such that609 ∥∥∥∥∥Jw̃k

γk
(h)
h

−
Jw̃k
γ̃k

(h)
h

∥∥∥∥∥
2

≤ A
(
‖γ̃ − γ‖2 +

∥∥ ˙̃γ − γ̇
∥∥

2

)
610

where we can once again assume A independent of t and h. In coordinates, we use a611
second-order Runge-Kutta method to integrate the geodesic equation (5) so that the612
cumulated error ‖γ̃ − γ‖2 +

∥∥ ˙̃γ − γ̇
∥∥

2 is of order h2. Hence, there exists a positive613
constant B which does not depend on h, t or w such that614 ∥∥∥∥∥Jw̃k

γk
(h)
h

−
Jw̃k
γ̃k

(h)
h

∥∥∥∥∥
2

≤ Bh2.
615

B.6. Numerical approximation with a single perturbed geodesic. We616
prove a lemma which allows to control the error we make when we approximate617
numerically the Jacobi field using steps (iii) and (ii) of the algorithm:618

Lemma B.6. For all L > 0, there exists A > 0 such that for all t ∈ [0, 1[, for619
all h ∈ [0, η

‖γ̇(t)‖g
] and for all w ∈ Tγ(t)M with ‖w‖2 < L – in the global system of620
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coordinates – we have621 ∥∥∥∥∥Jwγ(t)(h)− J̃wγ(t)(h)
h

∥∥∥∥∥
2

≤ A(h2 + εh)622

where J̃wγ(t)(h) is the numerical approximation of Jwγ(t)(h) computed with a single per-623
turbed geodesic and a first-order differentiation method.624

Proof. Let L > 0. Let t ∈ [0, 1[, h ∈ [0, η
‖γ̇(t)‖g

] and w ∈ Tγ(t)M. We split the625
error term into two parts626

∥∥∥∥Jwγ(t)(h)
h

−
J̃wγ(t)(h)

h

∥∥∥∥
2

≤

∥∥∥∥∥∥∥∥
Jwγ(t)(h)

h
−

Expγ(t)
(
h(γ̇(t) + εw)

)
− Expγ(t)

(
hγ̇(t)

)
εh︸ ︷︷ ︸

(1)

∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥
Expγ(t)

(
h(γ̇(t) + εw)

)
− Expγ(t)

(
hγ̇(t)

)
− ˜Expγ(t)

(
h(γ̇(t) + εw)

)
+ ˜Expγ(t)

(
hγ̇(t)

)
εh︸ ︷︷ ︸
(2)

∥∥∥∥∥∥∥∥
2

627

where Exp is the Riemannian exponential and ˜Exp is the numerical approximation of628
this Riemannian exponential computed thanks to the Hamiltonian equations. When629
running the scheme, these computations are done in the global system of coordinates.630

Term (1). Let i ∈ {1, . . . , n} and let F i : (x, t, w) 7→ Exp[hγ̇(t) + xw]i. We have631

Jwγ(t)(h)
h

i

− Exp[h(γ̇(t) + εw)]i − Exp[hγ̇(t)]i

εh

= 1
h

∂F i(εh, t, w)
∂ε

∣∣∣∣
ε=0
− F i(εh, t, w)− F i(0, t, w)

εh

= ∂F i(x, t, w)
∂x

∣∣∣∣
x=0
− F i(εh, t, w)− F i(0, t, w)

εh
.

632

This is the error when performing a first-order differentiation on x 7→ F i(x, t, w) at
0. This error is of order εh and will depend smoothly on t and w. Since t ∈ [0, 1] and
imposing ‖w‖2 < L, there exists B which does not depend on t or w such that∣∣∣∣∣J

w
γ(t)(h)
h

i

− Exp[hγ̇(t) + εhw]i − Exp[hγ̇(t)]
εh

i
∣∣∣∣∣ ≤ Bεh

so that there exists C > 0 such that for all t, for all h and for all w with ‖w‖2 ≤ L∥∥∥∥∥Jwγ(t)(h)
h

− Exp[hγ̇(t) + εhw]− Exp[hγ̇(t)]
εh

∥∥∥∥∥
2

≤ Cεh.

633
Term (2). We rewrite the Hamiltonian equation ẋ(t) = F1(x(t), α(t)) and α̇(t) =634

F2(x(t), α(t)). We denote xε, αε the solution of this equation (in the global sys-635
tem of coordinates) with initial conditions xε(0) = x0 = γ(t) and αε(0) = αε0 =636
K(x0)−1(γ̇(t)+εw). We denote x̃ε the result after one step of length h of the integra-637
tion of the same equation using a second-order Runge-Kutta method with parameter638
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δ ∈]0, 1]. The term (2) rewrites639

1
εh‖(x

ε(h)− x0(h))− (x̃ε − x̃0)‖2.640

First, we develop xε in the neighborhood of 0:641

(29) xε(h) = x0 + hẋ0 + h2

2 ẍ0 +
∫ h

0

(h− t)2

2
...
xε(t)dt.642

We have, for the last term:643 ∥∥∥∥∥
∫ h

0

(h− t)2

2
...
xε(t)dt−

∫ h

0

(h− t)2

2
...
x0(t)dt

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ h

0

∫ +ε

0

(h− t)2

2 ∂ε
...
xε(u, t)dudt

∥∥∥∥∥
2

,644

xε being solution of a smooth ordinary differential equation with smoothly varying645
initial conditions, it is smooth in time and with respect to ε. Hence, when the initial646
conditions are within a compact, ∂ε

...
xε is bounded, hence there exists D > 0 such that647 ∥∥∥∥∥

∫ h

0

(h− t)2

2
...
xε(t)dt−

∫ h

0

(h− t)2

2
...
x0(t)dt

∥∥∥∥∥
2

≤ Dh3ε.648

After computations of the first and second order terms, we get:649

(30)
xε(h) =x0 + h(γ̇(0) + εw) +

h2

2

(
(∇xK)(x0)[K(x0)αε0]αε0 +K(x0)F2(x0, α

ε
0)
)

+ O
(
h3|ε|

)650

Now we focus on the approximation x̃ε. One step of a second-order Runge Kutta with651
parameter δ gives:652

x̃ε = x0 + h
[(

1− 1
2δ
)
F1(x0, α

ε
0) + 1

2δF1
(
x0 + δhF1(x0, α

ε
0), αε0 + δhF2(x0, α

ε
0)
)]

= x0 + h
[(

1− 1
2δ
)
K(x0)αε0 + 1

2δK
(
x0 + δhK(x0)αε0

)(
αε0 + δhF2(x0, α

ε
0)
)]653

We use a Taylor expansion for K:654

K
(
x0+δhK(x0)αε0

)
= K(x0) + δh(∇xK)(x0)[K(x0)αε0]+

(δh)2

2 (∇xK)2[K(x0)αε0,K(x0)αε0] + O
(
h3)655

Injecting this into the previous expression for xε, we get after development:656

x̃ε = x0 + hK(x0)(αε0)

+ h2

2
[
K(x0)F2(x0, α

ε
0) + (∇xK)(x0)[K(x0)αε0]αε0

]
+ h3δ

4
[
(∇xK)(x0)[αε0]F2(x0, α

ε
0) + (∇xK)2[K(x0)αε0,K(x0)αε0]αε0

]
+ O

(
h4)657

The third order terms of x̃ε − x0 is then proportionnal to:658

(∇xK)(x0)[αε0]F2(x0, α
ε
0)− (∇xK)(x0)α0

0F2(x0, α
0
0)

+ (∇xK)2[K(x0)αε0,K(x0)αε0]αε0 − (∇xK)2[K(x0)α0
0,K(x0)α0

0]α0
0

659
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Both these terms are the differences of smooth functions at points whose distance is660
of order ε‖w‖2. Because those functions are smooth, and we are only interested in661
these majorations for points in Ω and tangent vectors in a compact ball in the tangent662
space, this third order term is bounded by Eh3ε‖w‖2 where E is a positive constant663
which does not depend on the position on the geodesic. Finally, the zeroth, first and664
second-order terms of xε and x̃ε cancel each other, so that there exists D ≥ 0 such665
that:666

‖(xε(h)− x0(h))− (x̃ε(h)− x̃0(h))‖2 ≤ (h3ε+ Eh3ε)667

which concludes.668

B.7. Numerical approximation with two perturbed geodesics. We sup-669
pose here that the computation to get the Jacobi field is done using two perturbed670
geodesics, and a second-order differentiation as described in equation (8).671

Lemma B.7. For all L > 0, there exists A > 0 such that for all t ∈ [0, 1[, for672
all h ∈ [0, 1 − t] and for all w ∈ Tγ(t)M with ‖w‖2 < L –in the global system of673
coordinates – we have674 ∥∥∥∥∥Jwγ(t)(h)− J̃wγ(t)(h)

h

∥∥∥∥∥
2

≤ A(h2 + εh),675

where J̃wγ(t)(h) is the numerical approximation of Jwγ(t)(h) computed with two perturbed676
geodesics and a central finite differentiation method. We consider that this approxi-677
mation is computed in the global system of coordinates.678

The proof is similar to the one above.679
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