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Abstract This paper proposes an original approach for the
statistical analysis of longitudinal shape data. The proposed
method allows the characterization of typical growth pat-
terns and subject-specific shape changes in repeated time-
series observations of several subjects. This can be seen as the
extension of usual longitudinal statistics of scalar measure-
ments to high-dimensional shape or image data. The method
is based on the estimation of continuous subject-specific
growth trajectories and the comparison of such temporal
shape changes across subjects. Differences between growth
trajectories are decomposed into morphological deforma-
tions, which account for shape changes independent of the
time, and time warps, which account for different rates of
shape changes over time. Given a longitudinal shape data
set, we estimate a mean growth scenario representative of
the population, and the variations of this scenario both in

Electronic supplementary material The online version of this
article (doi:10.1007/s11263-012-0592-x) contains supplementary
material, which is available to authorized users.

S. Durrleman (B)· G. Gerig
Scientific Computing and Imaging (SCI) Institute,
72 S. Central Drive, Salt Lake City, UT 84112, USA
e-mail: stanley.durrleman@gmail.com, stanley@sci.utah.edu

S. Durrleman · X. Pennec · N. Ayache
Asclepios team-project, INRIA Sophia Antipolis, 2004 route des
Lucioles, 06902 Sophia Antipolis, France

S. Durrleman · A. Trouvé
Centre de Mathématiques et Leurs Applications (CMLA),
CNRS-ENS Cachan, 61 avenue du Président Wilson,
94235 Cachan, France

J. Braga
Laboratoire de paléoanthropologie assistée par ordinateur,
CNRS-Université de Toulouse (Paul Sabatier), 37 allées Jules Guesde,
37073 Toulouse, France

terms of shape changes and in terms of change in growth
speed. Then, intrinsic statistics are derived in the space of
spatiotemporal deformations, which characterize the typical
variations in shape and in growth speed within the studied
population. They can be used to detect systematic devel-
opmental delays across subjects. In the context of neuro-
science, we apply this method to analyze the differences
in the growth of the hippocampus in children diagnosed
with autism, developmental delays and in controls. Result
suggest that group differences may be better characterized
by a different speed of maturation rather than shape dif-
ferences at a given age. In the context of anthropology, we
assess the differences in the typical growth of the endocra-
nium between chimpanzees and bonobos. We take advan-
tage of this study to show the robustness of the method with
respect to change of parameters and perturbation of the age
estimates.

Keywords Longitudinal data · Statistics · Growth ·
Shape regression · Spatiotemporal registration · Time warp

1 Spatiotemporal Variability of Longitudinal Data

Many scientific questions can be expressed in terms of
changes or alterations of a dynamical process. In camera sur-
veillance, one aims at distinguishing normal from abnormal
behaviors in video sequences. In clinical studies, one wants to
characterize anatomical or functional changes due to disease
progression, clinical intervention or therapy. In neuroscience,
one studies the neurodevelopment or the neurodegeneration
of the brain and its related structures. In cardiac imaging, one
looks for abnormal patterns in the heart motion. What make
these questions so challenging is that the evolving object of
interest changes in appearance in different situations. In video
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Fig. 1 Synthetic example of a longitudinal data set with 3 subjects.
Each subject has been observed a few times and at different time-points.
The aim of the spatiotemporal variability analysis is to describe the
variability of this population in two ways: the geometrical variability
(there is a circle, a square and a triangle), and the variability in terms
of change of dynamics of evolution (for instance, the square grows first
at a faster rate than the circle and then slows down.)

sequences for instance, we want to distinguish a normal from
an abnormal behavior behind the large variety of the shapes
and the motions of the silhouettes. Similarly, every brain has
a different shape, whereas its maturation may follow some
common patterns that we would like precisely to describe
and quantify.

From the point of view of data analysis and pattern theory,
these problems can be addressed by the statistical analysis of
longitudinal data sets. A longitudinal data set consists of the
observation of a set of homologous objects (such as silhou-
ettes of people or anatomical structures), each object being
observed repeatedly at several time points. An abstract exam-
ple of such a data set is given in Fig. 1, which illustrates the
sampling of individual growth trajectories of different sub-
jects. The analysis of such longitudinal data sets should lead
to the qualitative and quantitative assessment of change tra-
jectories, to the detection of common growth patterns shared
in a population, and to the characterization of their appear-
ances in different subjects.

Longitudinal analysis differs from the usual cross-
sectional variability analysis in that it takes into account the
inherent correlation of repeated measurements of the same
individuals. It must also provide a model of how an individual
subject’s trajectory changes relative to another subject. At the
population level, we typically analyze how the subjects are
distributed within a group by estimating a mean configuration
and its variance. For longitudinal data, the mean configura-
tion may be a “mean growth scenario”, which averages the
growth patterns in the population. The analysis of its vari-
ance explains how each subject’s trajectory differs from the
mean growth scenario. Such a statistical approach based on
mean and variance is well-known for scalar measurements

and for analysis of cross-sectional shape data, for which
the mean is usually called “template” or “atlas”. The exten-
sion of these concepts for longitudinal shape data is chal-
lenging, as no consensus has emerged about how to com-
bine shape changes over time and shape changes across
subjects.

In this paper, we propose a consistent conceptual and com-
putational framework to address these questions: (i) the esti-
mation of subject-specific trajectories via the introduction
of a growth model as a smooth deformation of the baseline
shape, (ii) the comparison of different trajectories via spa-
tiotemporal mappings which align both the shape of different
subjects and the tempo of their respective evolution, (iii) the
estimation of a “mean growth scenario” representative of a
given population, and (iv) the statistical analysis of the typi-
cal variations of this mean scenario in the studied population.
The proposed methodology does not require that the subjects
are observed with the same number of samples or at the same
time-points.

One of the main contributions of this methodology is that
it models the changes in individual trajectories both as mor-
phological changes, which account for the different appear-
ances of the object, and as dynamical changes, which account
for different paces of evolution. At the population level, this
assumes that the development of different subjects shares the
same growth patterns, up to changes in shape and changes in
the tempo of the development. This enables in particular the
characterization of the effect of a pathology as a systematic
developmental delays in the growth of a given organ.

The detailed explanation of the method and its related
algorithms is given in Sect. 3. Section 2 explains how the
proposed framework consistently embeds different concepts
introduced in the literature and highlights different possible
modeling choices. In Sect. 4, we show how the method can
be used to characterize the effect of autism and developmen-
tal delay in the growth speed of the hippocampus. In Sect. 5,
the method will be used to quantitatively assess the rela-
tive developmental delay of the endocranial growth between
bonobos and chimpanzees. We will show that this estima-
tion is robust to parameter changes and changes in the age
estimates of the samples.

2 An Emerging Framework for the Analysis of
Longitudinal Shape Data

This section presents a survey of the literature on the topic
of longitudinal analysis of shape data. This will highlight
which tools and concepts need to be linked into a common
statistical framework. We will also make clear that different
modeling choices are possible. We will propose to follow
the approach that seems the more adapted to the targeted
applications.
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2.1 Previous Research to Design 4D Statistical Analysis

2.1.1 4D Analysis Meant as Regression or Tracking

The first kind of so-called 4D-analysis proposes to estimate
a continuous sequence from a set of time-indexed shapes or
images of the same subject. In Mansi et al. (2009), one esti-
mates a cross-sectional atlas from time series data and then
analyzes the correlations between the modes of variability
and the age of the subject, considered as an explanatory vari-
able. These correlations may be used to estimate a synthetic
growth scenario for a given individual. Other approaches,
which do not rely on a cross-sectional atlas, include work
by de Craene et al. (2009), in which the authors use Large
Diffeomorphic Free Form Deformations to estimate time-
varying deformations between the first and the last sample
of a sequence of images. In the same spirit, Davis et al.
(2007) propose to perform the regression of a sequence of
images via a generalization of the kernel regression method
to Riemannian manifolds. Growth scenarios could also be
estimated based on stochastic growth models as in Grenan-
der et al. (2007) and Trouvé and Vialard (2010) or on twice
differentiable flows of deformations as in Fishbaugh et al.
(2011).

These methods are pure regression methods. If they are
used with several subjects scanned several times, these
regression methods return a single evolution, the most prob-
able evolution in some sense. They do not take into account
that data at different time points may come from the same
subject or from different subjects. It averages shape evolu-
tions without discarding the inter-subject variability, which
leads to “fuzzy” estimation like the average of a set of non-
registered images. By contrast, in Thompson et al. (2000)
and Gogtay et al. (2008), registrations between baseline and
follow-up scans of the same subject are performed and the
evolutions of scalar measurements extracted from the regis-
tration are compared across subjects. A main contribution of
our paper will be to extend this framework for scalar mea-
surements to the high-dimensional space of shapes. In Khan
and Beg (2008), the authors propose to perform a regres-
sion of the image sequence of every subject separately and
then to average the time dependent velocity field of each
regression to estimate a typical scenario of evolution. This
approach is limited to situations where each sequence is reg-
istered in the same reference frame, but no details of how
to perform registration of time-indexed sequences of images
is given.

2.1.2 3D-Registration of 4D-Sequences

The problem of registering individual trajectories has been
investigated in different communities. In Chandrashekara et
al. (2003), the motion of the heart of each subject is tracked

through time. Then the registration between the baseline
image of two subjects is used to transport the velocity field
of the tracking from one subject’s space to the other. This
approach could also include the estimation of a template
image at the baseline time-point using usual cross-sectional
atlas construction methods, like in Ehrhardt et al. (2008)
and Qiu et al. (2008, 2009). All these methods assume that
the inter-subject variability can be captured considering only
the baseline images. Using these deformations for register-
ing the whole time-indexed sequence of images is arguable,
since they do not take into account anatomical features which
may appear later in the sequence.

This issue has been addressed in Peyrat et al. (2008) who
proposed to register a time-indexed sequence by computing
deformations between any pair of successive scans of the
same subject and between any pair of scans of two different
subjects at the same time-point. Such an approach takes all
temporal information into account and therefore leads to a
much more robust registration scheme. However, this method
assumes that every time-indexed sequence has exactly the
same number of images, which are acquired at time points
which correspond across subjects. By contrast, in longitu-
dinal studies, only a few scans per subject are available,
and the number of scans may vary for different subjects.
This issue has been addressed in Hart et al. (2010), who
proposed an interpolation scheme to average individual tra-
jectories at every time-point independently. However, none
of these approaches take into account the inherent tempo-
ral correlations between successive inter-subject registration.
From a statistical point of view, this means that the inter-
subject variability at two different time points are consid-
ered as independent variables. As the sampling of the image
sequence becomes finer and finer, the number of variables to
estimate becomes larger and larger. A main contribution of
this paper will be precisely to define a generative statistical
model, which takes into account the temporal correlations
between inter-subject registrations at different time points,
and to provide a way to estimate these correlations from a
finite set of observations.

In Gerig et al. (2006), a template image is built at every
time-point independently. Then, the deformations between
the baseline scan and the follow-up of any subjects are com-
pared to the deformation between the baseline atlas and
the follow-up atlas. This approach focuses on the analy-
sis of the cross-sectional variability over time. However,
since the template image is built at each time point inde-
pendently, it is not clear whether the difference between
the baseline atlas and the follow-up atlas is the average
of every subject’s evolution. Moreover, such a method
requires that the distribution of age in the longitudinal
data set is clustered at two distinct ages, which is a spe-
cial case. A similar approach has also been proposed in
Aljabar et al. (2008).
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2.1.3 Taking into Account Temporal Re-alignment

The methods cited previously propose a way to combine
the subject-specific growth with the inter-subject variability:
time-series image sequence are processed by a combination
of 3D deformations. In particular, the age at which the sub-
jects are scanned is considered an absolute time which cor-
responds across subjects. This assumes that at a given age,
every subject is at the same development stage and that their
anatomy can be compared. Such procedures neglect possible
developmental delays between subjects, or some pathology
affecting the cardiac pace, for instance, a key feature that
we precisely want to detect. A spatiotemporal registration
scheme should register individual growth scenarios both in
space (usual geometrical variations of the anatomy) and in
time (change of the speed of evolution). Time changes should
put the ages of the subjects into correspondence, which rep-
resents the same developmental stage.

In Declerck et al. (1998), a deformation of the 4D domain
is provided via 4D planispheric transformations for the reg-
istration of the heart motion. In Perperidis et al. (2005), spa-
tiotemporal deformations are computed. The temporal part
is a 1D function showing the change of cardiac dynamics
between the source and the target subject. This temporal
alignment is performed jointly with the registration of the
anatomy. These methods focus on the registration between
a pair of individual trajectories, and requires a fine tempo-
ral sampling of the trajectories. A main contribution of our
paper will be to use such spatiotemporal deformations for the
inference of statistical properties at the population level, via
the estimation of spatiotemporal atlases.

2.1.4 Ingredients for a Spatiotemporal Statistical Model

This review of the literature shows that several aspects of the
design of a 4D statistical analysis have been addressed sep-
arately by different authors, in different contexts and with
different tools. There is a lack of a consistent framework
to embed these concepts together, covering the estimation
of individual trajectories and the inference of population
statistics.

In light of this review, a statistical framework for longitu-
dinal data analysis might include:

– The estimation of a continuous shape evolution from a set
of observations sparsely distributed in time. These indi-
vidual trajectories could be used to compare the anatomy
of two subjects, who have not been scanned at the same
age. They could also be used to analyze the speed of
evolution of a given subject at any time-point.

– The comparison between individual trajectories, which
should measure not only morphological differences
(commonly described by 3D deformations) but also

the temporal re-alignment which put the developmen-
tal stages of different subject into correspondence. This
temporal re-alignment will detect different speeds of
evolution and therefore possible developmental delays
between subjects.

– A generative statistical model, which combines the two
previous concepts to estimate evolution patterns that are
shared among a given population. The estimated statistics
should include a mean (a growth scenario representative
of the population) and variance (the typical variations of
this mean growth scenario evident in the population).

2.1.5 Terminology

The survey of the current literature also raises the problem
of terminology: there is no consensus among authors about
which words refer to which concepts. In this paper, we will
use the following definitions:

Data:

– cross-sectional data is a set of samples, which are sup-
posed to be comparable, or homologous (like samples
drawn from a healthy adult population, for instance). No
notion of time is involved, or equivalently, the effect of
time or age on the data can be neglected.

– time-series data is a set of data that are indexed by
any temporal marker like age, indicator of developmental
stage, disease progression or index of a frame in a movie,
for instance. No assumption is made that a sub-set of the
samples correspond to the same object seen at different
time-points.

– longitudinal data is a time-series data set, which con-
tains repeated observations of individual subjects over a
period of time. As a consequence, each subject in the data
set should have been observed more than once at different
time-points.

Methods:

– shape/image regression, also called tracking, refers to
the estimation of a continuous evolution model from a
time-series data set. This tool estimates shape changes
between discrete temporal observations or averages time-
indexed observations into a single evolution.

– spatiotemporal registration puts two individual tra-
jectories into correspondence. This involves the notion
of correspondence between shapes and between time-
points.

– spatiotemporal or longitudinal data analysis measures
the similarities and the differences between individual
trajectories. It takes into account the fact that individ-
ual subjects were observed several times, which makes it
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Fig. 2 Illustration of the hypotheses underlying the subject- and time-
specific approaches. In the subject-specific approach (left), one consid-
ers that one subject is “circle” and the other is “square”: the difference
is described by a single function φ, which maps circles to squares. The
evolution of the first subject is described by a function χ which maps a
small circle to big circle. As a consequence, the evolution of the second
subject is described by another function χφ which maps a small square

to a big square. In the time-specific approach (right), one describes the
evolution by a universal function χ , which tends to scale the shapes. At
the first-time point, the difference between subjects is described by a
function φ which maps the small circle to the small square. At a later
time, the inter-subject variability has changed according to χ : now the
difference between subjects is described by φt which maps a big circle
to a big square

more constrained than the analysis of the effect of time
on the observations.

According to these definitions, shape or image regression
may be performed on time-series data, whereas spatiotem-
poral analysis can only be performed on longitudinal data.

2.2 Two Possible Generative Models for Longitudinal Data

2.2.1 Spatiotemporal Variations of a Typical Growth Model

A generative statistical model is a set of hypotheses, which
explain how individual trajectories could be derived one from
the others. In other words, it should provide an answer to the
two fundamental questions: given the anatomy of one subject
at time t ,

– how can we predict the anatomy of this subject at a later
time t ′ > t?

– how can we derive the typical anatomy of another subject
at the same time-point?

Once these answers are provided, we can easily define
a generative statistical model at the population level. This
model will assume the existence of a mean growth scenario
representative of the population, such that the individual tra-
jectories can be seen as a derivation of this mean scenario.
The mean scenario captures the invariants in the population
and detects the growth patterns, which are shared among the
subjects. The derivation of the mean scenario captures the
variance of this mean configuration within the population.

In light of the literature survey, there are at least two dif-
ferent ways to answer these questions. We refer to these

two paradigms as a “subject-specific approach” and a “time-
specific approach”.

2.2.2 Subject-Specific Approach

In the subject-specific approach, a specific reference frame is
attached to each subject. The whole evolution of each subject
is described within the same reference frame: the reference
frames are atemporal. We assume that there is a template
reference frame in which the evolution is written by a time-
varying shape M(t): the prototype scenario of evolution in
the population, which can be seen as the 4D analog to the tem-
plate shape in 3D. We usually assume that the time-varying
shape derives continuously from a template shape M0 at a
reference time point t0. This is written as: M(t) = χt (M0),
where χt is a smoothly varying 3D deformation called the
growth function (χt0 = id so that M(t0) = M0).

Change of coordinates from the template reference frame
to each subject’s reference frame is modeled by 3D defor-
mations φs . Since these reference frames are atemporal, the
deformations φs do not depend on time. As a consequence,
the evolution function M(t) has a different expression in each
coordinate system: the evolution of a subject S is given as
S(t) = φ(M(t)), also written as S(t) = φ(χt (M0)). It is as if
a single object (M(t)) is seen by different observers in differ-
ent coordinate systems. As illustrated in Fig. 2a, the change
of coordinates φs transports the evolution function χ(t) from
the template frame to the subject’s frame: χ S

t = φs ◦ χt , so
that S(t) = χ s

t (M0). The evolution mapping is therefore
specific to each subject.

In this modeling, we can include time as an additional vari-
able, so that the reference frame of each subject is described
by 3 spatial coordinates and 1 temporal coordinate. This
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means that both the anatomy and the age is relative to the
subject. This specific time variable can be called the “physi-
ological age” of the subject, as if each subject has their own
biological clock. In the reference frame of the prototype, the
time would be the absolute age, computed from the date of
birth. Then, the 3D warp φ(x, y, z) needs to be generalized
to a deformation of the underlying 4D space: Φ(x, y, z, t).

The most general form of a 4D-deformation isΦ(x, y, z, t)
= (φ(x, y, z, t), ψ(x, y, z, t)), where φ(x, y, z, t) denotes
the 3 spatial coordinates of Φ(x, y, z, t) (the morphological
deformation) and ψ(x, y, z, t) its temporal coordinate (the
time warp).

Assuming that ψ(x, y, z, t) depends on the spatial vari-
ables (x, y, z) means that different parts of the anatomy of a
given subject would evolve at different speeds. This is defi-
nitely possible in applications involving multi-shape compar-
isons. However, in this paper, we will assume that all points
of the anatomy of a given subject have always the same phys-
iological age over time. In this case, ψ depends only on the
time variable t : ψ(t). This assumption is likely to be valid in
most longitudinal studies, focusing on one specific structure.
The time warp ψ(t) maps the absolute age in the reference
frame of the prototype to the physiological age of a given
subject. Note that this function should be monotonic, assum-
ing that the sequence of events in every individual trajectory
occur in the same order (from birth onwards) but at a different
pace.

Since the change of coordinate maps φ are independent
of time, they are of the form: φ(x, y, z). Therefore, in the
subject-specific setting, the 4D deformations are written as:

Φ(x, y, z, t) = (φ(x, y, z), ψ(t)).

The morphological deformation φ is used to measure the
geometrical variability. The time warp ψ is used to detect
possible developmental delays between subjects.

Note that the most general form of 4D deformations, with-
out any assumptions on the temporal dependency of the spa-
tial part φ(x, y, z, t), cannot be used in a statistical model.
Indeed, such models will be not identifiable, as there would
be an infinite number of different spatial/temporal combina-
tions to explain the same data set.

2.2.3 Time-Specific Approach

In the time-specific approach, every subject is embedded into
the same reference frame, which transports everyone over
time. It is as if different objects are seen by a single observer.
More precisely, there is a common reference frame at ref-
erence time t = 0 (the “origin of the world”) in which the
anatomy of every subject is described. The evolution func-
tion χt changes the geometry of this reference frame over
time. At each time t , there is one single reference frame
which embeds the anatomy of every subject: this frame is

universal. The same function χt applies for each subject, so
that the evolution of any subject is given by S(t) = χt (S0),
where S0 represents the anatomy of the subject at the refer-
ence time t0.

In the common reference frame at t = 0, we assume that
each subject’s anatomy S0 results from a deformation of the
prototype anatomy M0: S0 = φs(M0). The deformations
φs describe the inter-subject variability at time t = 0. In
this framework, the mapping between the template and the
subject shape changes over time according to the evolution
function χt . At a later time t , the template has evolved as
M(t) = χt (M0) and the subject shape has evolved as S(t) =
χt (S0). This shows that the template-to-subject registration
has become: S(t) = φt (M(t)) where φt = χt ◦ φ ◦ χ−1

t , as
illustrated in Fig. 2b. Whereas the evolution function is inde-
pendent of the subject, the inter-subject variability is specific
to time.

We can also include possible developmental delays in
this framework. If χt is a universal function which carries
the anatomies over time, we can imagine that every sub-
ject follow this universal scenario at its own pace. There
is a subject specific time warp ψ , so that the evolution of
this subject is given by χψ(t). However, we must admit that
this time-realignment fits less naturally into this time-specific
framework than for the subject-specific framework. In par-
ticular, it is not clear how to distinguish a developmental
delay from a variation of the inter-subject variability in this
setting.

This time-specific approach also defines a deformation of
the underlying 4D-space Φ(x, y, z, t). The morphological
deformations φ now depend on time according to the evolu-
tion function χt . This leads to the particular form of the 4D
mapping:

Φ(x, y, z, t) = (φ(x, y, z, ψ(t)), ψ(t)),

where the geometrical part has the form:

φ(x, y, z, t) = χt ◦ φ0 ◦ χ−1
t (x, y, z).

This last equation is the constraint, which eventually makes
the statistical model identifiable.

2.2.4 Which Method for Which Problem?

The subject-specific approach focuses on the variations of a
growth scenario from subjects to subjects. One is interested
in analyzing how individual trajectories vary across subjects.
The time-specific approach focuses on the evolution of the
inter-subject variability over time. One is more interested in
the evolution of the statistical properties (mean and variance)
of the population over time, as illustrated in Fig. 3. These
two approaches are based on different assumptions and lead
to different statistical estimations.
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Fig. 3 Subject- versus time-specific approach. In the subject-specific
approach (left) the mean scenario averages the individual trajectories.
The inter-subject variability is supposed to be constant over time. In
the time-specific approach (right), every subject is supposed to follow

the same mean scenario of evolution, up to a change of the initial con-
ditions. The mean scenario describes how the inter-subject variability
evolves over time

The subject-specific approach is the only one to take
into account change of coordinates between subjects, and
therefore the only one to accommodate for scaling effects
across subjects. The time-specific paradigm uses a single dif-
feomorphic deformation to describe the evolution of every
subject. This assumes that the structure of two different
subjects, which are superimposed at one time, will remain
superimposed in the future. Such topological constraints are
often unrealistic. Moreover, the statistical estimations in the
subject-specific paradigm are more robust when the num-
ber of subjects is greater than the number of observations
per subjects, which is the case with the longitudinal data set
on which we aim at applying this methodology in Sects. 4
and 5. For these reasons, the presented work will focus on
the subject-specific paradigm.

3 A Subject-Specific Approach using 3D

Diffeomorphisms and 1D Time Warps

In this section, we propose an instance of the subject-specific
paradigm for the analysis of longitudinal shape data, given
as point sets, curves or surfaces. Among several other pos-
sible choices, we will build our methodology on the large
diffeomorphic deformations setting for defining the registra-
tion between shapes. This setting is particularly adapted to
define statistical models using deformations due to the metric
properties of the considered space of diffeomorphisms
(Vaillant et al. 2004; Durrleman et al. 2009a). In partic-
ular, we will propose an extension of this framework to
construct monotonic 1D functions for our “time warp” in
a very generic way. We will also consider the geometrical
shape like curves and surfaces as currents (Glaunès 2005).
This allows us to inherit from the statistical and compu-
tational tools introduced in Durrleman et al. (2009a) and

Durrleman (2010) for the estimation of representative shapes,
called templates.

We follow the approach in three steps outlined in the Intro-
duction: (i) the estimation of individual growth trajectories
via the inference of a growth model, (ii) the comparison of
individual trajectories based on a morphological map and a
time warp, (iii) the estimation of statistics from a set of indi-
vidual trajectories: mean scenario of evolution and analysis
of the spatiotemporal variability.

3.1 Sketch of the Method

3.1.1 Growth Model for Individual Shape Evolution

Our purpose is to fit a continuous shape evolution to a discrete
set of shapes (Si ) of the same subject acquired at different
time points (ti ). To infer such a continuous shape evolu-
tion, we need a prior on the growth of the shape, called
a “growth model”. Here, we hypothesize that the baseline
shape S0 observed at time t = 0 continuously and smoothly
deforms over time. To be more precise, our growth model
assumes that the evolution of the shape S0 can be described
by a continuous flow of diffeomorphisms χt . This means that
for each t varying in the interval of interest [0, T ], χt is a
diffeomorphism of the underlying 2D or 3D space, which
models the smooth and invertible deformation which maps
the baseline at t = 0 to its actual shape at time t . The dif-
feomorphisms vary continuously over time (the deformation
χt+δt is close to χt ). Mapping the baseline shape S0 with the
time-varying functions χt leads to a continuously deforming
shape S(t) = χt (S0): the individual trajectory of the consid-
ered subject. Note that this imposes that χ0 = Id, the identity
map, so that S(0) = S0.

Given the set of discrete observations (Si ) at time-points ti ,
one needs to estimate the flow of diffeomorphisms χt , which
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Fig. 4 Shape regression of a set of five 2D profiles of hominid skulls
(in red). The Australopithecus profile is chosen as the baseline S0. The
temporal regression computes a continuous flow of shapes S(t) (here
in blue) such that the deforming shape matches the observations at the

corresponding time-points. It is estimated by fitting a growth model,
which assumes a diffeomorphic correspondence between the baseline
and every stage of evolution (S(t) = χt (S0)), with the diffeomorphism
χt varying continuously in time

may have led to these observations. A Maximum A Posteriori
(MAP) estimation, in the same framework as in Durrleman
(2010, Chap. 5) leads the minimization of the discrepancy
between the growth model at time ti (S(ti ) = χti (S0)) at
the actual observation Si , up to a regularity constraint on the
smoothness of the flow of diffeomorphisms (χt )t∈[0,T ]:

E(χ) =
∑

ti

d(χti (M0), Si )
2 + γ χReg(χ) (1)

where d is a similarity measure between shapes, which will
be the distance on currents in the following, Reg(χ) a regu-
larity term, which will be the total kinetic energy of the defor-
mation, and γ χ a scalar parameter quantifying the trade-off
between regularity and fidelity to data. The optimization of
this criterion will be explained in Sect. 3.2.2.

As an illustrative example, we used five 2D profiles of
hominid skulls which consist of six lines each,1 as shown
in Fig. 4. Each profile correspond to a hominid (Australop-
ithecus, Homo habilis, Homo erectus, Homo Neandertalensis
and Homo sapiens sapiens) and is associated to an age (in
millions of years). The regression infers a continuous evo-
lution from the Australopithecus to the H. sapiens sapiens
which matches the intermediate stages of evolution.

If there is only one data S1 at time t1 = T , the criterion (1)
defines the registration of S0 to S1. In the LDDMM frame-
work, the result of such a registration is a geodesic flow of
diffeomorphism between t = 0 and t = T that maps S0 close
to S1 (Miller et al. 2002). With several data at successive time
points, we will show in Sect. 3.2.2 that the result is a flow
of diffeomorphism which is geodesic only between succes-
sive time points (i.e. piecewise geodesic). We will also show
that the computation of the regression functions χt takes into
account all the observations Si in the past and future simul-
taneously. Therefore, it differs from pairwise registration

1 Source: www.bordalierinstitute.com.

between consecutive shapes. For instance, if the trade-off γ χ

tends to infinity (no fidelity-to-data term) the regression is a
constant map χt = Id for all t . As γ χ decreases, the piece-
wise geodesic regression matches the data with increasing
“goodness of fit”. This framework allows us also to perform
the regression even if several data are associated to the same
time-point. This will be used in Sect. 5 to estimate a mean
growth scenario of a time-series cross-sectional data set.

Note that if T is greater than the latest time-point of the
data tmax, then the regression function χ is constant over
the interval: [tmax, T ]. Therefore, the method extrapolates
with constant shape outside the time interval [0, tmax]. Such
an extrapolation will be needed to compare the evolution of
two subjects, whose latest observation correspond to different
time-points. Similarly, we can also extrapolate the evolution
function at time earlier than 0 with a constant map, so that
the evolution function can be defined on any arbitrary time
interval.

3.1.2 Spatiotemporal Registration Between Pairs of Growth
Scenarios

We suppose now that we have two subjects S and U which
have been scanned several times each (but not necessarily
the same number of times and possibly at different ages). Let
Sti (resp. Ut j ) be the shapes of subject S (resp. U ) at ages ti
(resp. t j ). We define a time-interval of interest which contains
every ti ’s and t j ’s. Without loss of generality, we can assume
that this time interval of interest is of the form [0, T ].

We infer an individual growth model S(t) from the data of
the source subject {Sti }, using the procedure of the previous
section. As a result, the continuous shape evolution S(t) is
of the form: S(t) = χt (S0) for t ∈ [0, 1].

Our goal is to define a spatiotemporal deformation of the
continuous evolution S(t) into S′(t) so that the deformed
shapes S′(t j ) at the time-points of the target t j match the
shape Ut j (thanks to the continuous regression, we can define
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Fig. 5 Illustrative pairwise registration: data preparation. The data-
base is cut in two to compare the evolution {H. habilis-erectus-
neandertalensis} (red shapes) to the evolution {H. erectus-sapiens sapi-
ens} (green shapes). The later evolution is translated in time, so that both

evolutions start at the same time. Then, one performs a shape regression
of the source shapes (blue shapes). The spatiotemporal registration of
this continuous source evolution to the target shapes is shown in Figs. 6
and 7

S(t j ) for the target time point t j even if the source has not
been observed at this age.) For this purpose, we introduce two
functions (using the subject-specific paradigm in Sect. 2):
the 3D morphological deformation φ and the 1D time warp
ψ . The morphological deformation is a 3D-function, which
maps the geometry of the source to the geometry of the tar-
get (change of reference frame). Every frame of the source
sequence S(t) is deformed using the same function. The time
warpψ maps the time-points t within the time interval [0, T ]
to ψ(t). This function does not change the frames of the
sequence S(t) but change the speed at which the frames are
displayed. It models the change of the dynamics of the evo-
lution of the source with respect to the evolution of the target.
We impose this 1D function to be monotonic, assuming that
the shape changes occur in the same order, even if at a dif-
ferent pace between source and target. The combination of
these two functions gives the spatiotemporal deformation of
the continuous evolution S(t), defined as:

S′(t) = φ (S (ψ(t))) . (2)

Using the fact that S(t) = χt (S0), this becomes:2

S′(t) = φ(χψ(t)(S0)). (3)

In a MAP setting, the estimation of the best possible
spatiotemporal deformation (φ,ψ) of the source evolution
which fits the the target observations, leads to the minimiza-
tion of the discrepancy between the deformed source at tar-
get’s time-points S′(t j ) = φ(S(ψ(t j )) and the target’s shape
Ut j :

2 We notice that in the time-specific paradigm, this would be S′′(t) =
χψ(t)(φ(S0)) (see Sect. 2).

E(φ,ψ) =
∑

t j

d
(
φ(S(ψ(t j ))),Ut j

)2 + γ φReg(φ)

+γ ψReg(ψ), (4)

where d is a distance between shapes, Reg(φ) and Reg(ψ)
the measure of regularity of the deformation φ and ψ and
γ φ, γ ψ the usual scalar trade-offs between regularity and
fidelity to data.

An illustration of spatiotemporal registration is shown in
Figs. 5, 6 and 7. We use the same set of profiles of 2D
hominids skulls as in Fig. 4. Here we want to compare the evo-
lution {H. habilis-Homo erectus-H. neandertalensis} (called
earlier evolution) with the evolution {H. erectus-H. sapiens
sapiens} (called later evolution). The differences may be due
to a change of the shape of the skull, as well as a change of
the dynamics of evolution between the earlier and the later
evolution. Therefore, we divide the database into two groups,
considered as two different subjects, and translate the target
back four million years, so that both evolutions start at the
same time (this can be seen as a “rigid” temporal alignment
as a pre-processing). See Fig. 5.

The regression of the source data leads to a continuous
source evolution S(t) shown in blue in the first row of Fig. 5.
The estimation of the spatiotemporal deformation between
the source and the target results in a morphological defor-
mation φ and a time warp ψ , see Fig. 6. The morphological
deformation shows that the jaw is less prominent and the skull
larger and rounder during the later evolution than during the
earlier evolution (second row in Fig. 6). The effect of the
time warp is to accelerate the source evolution to adjust to
the rate of shape change between the target shapes (third
row in Fig. 6). The graph of the time warp is plotted in
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Fig. 6 Illustrative pairwise registration: morphological deformation
and time warp. Top row The input data as prepared in Fig. 5 with the
continuous source evolution (blue) superimposed with the target shapes
(green). Middle row The morphological deformationφ is applied to each
frame of the source evolution. It shows that, independently of time, the
skull is larger, rounder and the jaw less prominent during the later evo-
lution relative to the earlier evolution. Bottom row The time warp ψ is
applied to the evolution of the second row. The blue shapes are moved

along the time axis (as shown by dashed black lines), but they are not
deformed. This change of the speed of evolution shows an acceleration
of the later evolution relative to the earlier evolution. Taking this time
warp into account enables a better alignment of the source to the target
shapes than only the morphological deformation. Note that the morpho-
logical deformation and the time warp are estimated simultaneously, as
the minimizers of a combined cost function

Fig. 7a. It shows an almost linear increase in speed. The
slope of the curve is of 1.66, thus meaning that the later
evolution evolves 1.66 times faster than the earlier evolu-
tion. This value is compatible with the growth speed of the
skull during this period according to the values reported in
the literature and in Fig. 7b: between Homo erectus and H.
sapiens sapiens the skull volume had grown at a rate of
(1500− 900)/0.7 = 860 cm3 per millions of years, whereas
between H. habilis and Homo neandertalensis, it had grown
at (1500−600)/1.7 = 530 cm3 per millions of years, namely
1.62 times faster.

3.1.3 Atlas Estimation from Longitudinal Data Sets

In this section, we want to combine the previously introduced
growth model and spatiotemporal deformations to estimate
statistics from a longitudinal database. Given the repeated
observations of a group of subjects, we assume that each sub-
ject’s evolution derives from the same prototype evolution,
called a “mean scenario of evolution”. Each subject-specific
evolution is derived from the mean scenario via its own spa-
tiotemporal deformation. The analysis of the set of all the
spatiotemporal deformations in the population will lead to
the estimation of the typical variations of the mean scenario
in the population (the variance of the population in a sense to
be defined). We assume that the mean scenario of evolution

is given by the growth model of an unknown prototype shape
M0, called template in the sequel.

Formally, this means that there is a growth function χt for
t ∈ [0, T ] and a template shape M0, so that the mean scenario
of evolution is written as: M(t) = χt (M0)with M(0) = M0.
For each subject s (s = 1, . . . , Nsubj), the subject-specific
spatiotemporal deformation of the mean scenario is written
as: Ss(t) = φs (M (ψ s(t))) for all t ∈ [0, T ]. φs is the mor-
phological deformation for subject s and ψ s its time warp.
These two functions model how the anatomy of the subject
and the dynamics of evolution can be derived from the pro-
totype scenario of evolution. Eventually, we suppose that the
observation of the subject s at time-point t s

j , denoted Ss
j , is the

temporal sample from Ss(t) at time point t s
j , up to a random

Gaussian noise: Ss
j = Ss(t s

j )+ εs
j :

Ss
j = φs

(
χψs (t s

j )
(M0)

)
+ εs

j , (5)

where the Gaussian variables εs
j are independent and identi-

cally distributed over the subject-index s and the time-index
j .

This equation is our generative statistical model, which
explains how the observations can be seen as instances of
a random process. The fixed parameters are the prototype
shape M0 and the growth functionχt . The random parameters
are the spatiotemporal deformations (φ,ψ) (each estimated
(φs, ψ s) is an instance of these random deformations). Both
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Fig. 7 Illustrative pairwise registration: analysis of the time warp. Top
plot of the 1D time warp ψ(t) putting into correspondence the time-
points of the target shapes with that of the source. The x = y line (dashed
in black) would correspond to no dynamical change between source and
target (ψ(t) = t). The slope indicates that the shape changes between
target data occur 1.66 times faster than the changes in the source evo-
lution, once morphological differences has been discarded. Right the
graph of the skull volume over the human evolution as found in the lit-
erature (source www.bordalierinstitute.com). This curve shows that the
increase in skull volume between H. erectus and H. sapiens sapiens was
1.62 times faster than between H. habilis and H. neandertalensis (ratio
between the slope of the two straight lines). This value is compatible
with the acceleration measured by the time warp: 1.66

the fixed and the random parameters are unknown and should
be estimated given the actual observations.

In the same MAP setting as in the previous section, the
estimation of the unknown parameters can be done by mini-
mizing the following combined cost function:

E
(
(ψ s)s=1,...,Nsubj , (φ

s)s=1,...,Nsubj , χ,M0
) =

Nsubj∑

s=1

{∑

t s
j

d(φs(χψs (t s
j )

M0), Ss(t s
j ))

2

+γ φReg(φs)+ γ ψReg(ψ s)+ γ χReg(χ)

}
(6)

The output is the prototype shape M0, the growth func-
tion χt and the set of spatiotemporal deformations φs, ψ s for
every subject s. These variables are called a “spatiotempo-
ral atlas”. In Sect. 3.3, we will show how we can perform
statistics on the estimated deformations (φs, ψ s), like Prin-
cipal Component Analysis for instance. Such statistics will
describe the changes in shape and the variations of the speed
of evolution across subjects.

To illustrate the method, we run the atlas estimation given
the two “subjects” in Fig. 5: the first subject (in red) con-
sists of three shapes, the second subject (in green) consists
of two shapes. From these five shapes, the method returns the
estimated template, the mean scenario and the two spatiotem-
poral registrations of this mean scenario to each subject. The
estimated template M0 is given as a current, which does not
form a set of curves anymore (Durrleman et al. 2009a). To
give an illustration of the atlas, we map the youngest shape of
each subject to this current and pick the deformed shape that
is the closest to the estimated template. Then, one runs one
more iteration of the atlas algorithm, to show the mean sce-
nario and the spatiotemporal registrations as deformations
of this template shape. This is shown in Fig. 8. In particular,
the two time warps which put into correspondence the evolu-
tion stages of each subject to the ones of the estimated mean
scenario are shown in Fig. 9b.

Let us denote S1(t) the spatiotemporal deformation
of the mean scenario, which is supposed to match the
shape of the first subject: S1(t) = φ1(M(ψ1(t))). Simi-
larly, S2(t) = φ2(M(ψ2(t))) matches the shapes of the
second subject. Then, by definition, we have: S2(t) =
φ2

(
φ−1

1 (S1(ψ
−1
1 (ψ2(t))))

)
. At the first glance, this suggests

that (φ2 ◦ φ−1
1 , ψ−1

1 ψ2) corresponds to the spatiotemporal
registration between the first subject (considered then as the
source) to the second subject (considered as the target). We
superimposed in Fig. 9c the graph ofψ−1

1 ◦ψ2 with the graph
of the time warp estimated in the previous section and shown
in Fig. 7a. As expected, the two curves show a similar pattern,
namely the overall acceleration of the source relative to the
target. However, noticeable differences appear, in particular
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Fig. 8 Spatiotemporal atlas estimation given the two “subjects” in
Fig. 5. On the middle row is shown the estimated mean scenario of
evolution. The first frame of this scenario (far left) is the estimated tem-
plate shape. Two upper rows represents the morphological deformation
and then the time warp, which jointly maps the mean scenario to the

shapes of the first subject (red shapes). Tow lower rows represents the
spatiotemporal deformation of the mean scenario to the shapes of the
second subject (green shapes). Black arrows indicate areas where the
most important shape deformations occur

in the slope of the curves. This can be explained by at least
two reasons. First, what we called here S1(t) is not the same
shape evolution as the one computed in the pairwise regis-
tration case (first row in Fig. 5): the regression of the source
subject in the registration case did not take into account any
information about the target shapes, whereas the mean sce-
nario M(t) (and consequently its deformation S1(t)) averages
the growth patterns of both subjects. Second, the reason-
ing above does not take into account the residual errors into
account: assuming that S̃1(t) and S̃2(t) are the true evolution
of each subject, then we have: S̃1(t) = φ1(M(ψ1(t)))+ε1(t)
and S̃2(t) = φ2(M(ψ2(t))) + ε2(t), where ε1(t) and ε2(t)
models the residuals shape which contains noise, small-scale
variations and everything else, which cannot be explained by
the model. The squared norm in the criterion to be optimized
shows that we assume these residuals to be Gaussian random
variables (see Durrleman 2010 for more details). This shows
therefore that S̃2(t) = φ2 ◦ φ−1

1 (S̃1(ψ
−1
1 ◦ ψ2)(t) + φ2 ◦

φ1(ε(ψ
−1
1 ◦ψ2(t))), meaning that the residual error between

the two scenarios S̃1(t) and S̃2(t) is no more Gaussian.

Therefore, to retrieve the same deformations and time warps,
one would need to change the squared norm in the registration
criterion to take into account the distortion in the distribution
of the residuals induced by the deformations.

The discussion above highlights the main features of the
atlas construction method. The main assumption is that the
different subjects derive from the same prototype scenario,
and therefore share common growth patterns even if altered
in their shape and timing. The atlas aims precisely at detect-
ing these common features and the variations of their shape
and pace in the population. Every pattern, which is specific to
a given individual, is discarded from the atlas and remains in
the residuals. In this sense, the atlas is a statistical tool, which
detects the reproducible patterns in the population. Compared
to pairwise registration, the advantages of the atlas construc-
tion is that it can be applied to more than two subjects and
that it does not favor any particular subject in the population.

Remark 1 (On the assumption of diffeomorphic maps) In this
modeling, we suppose that the evolution function χ and the

123

Author's personal copy



Int J Comput Vis

a

b

c

Fig. 9 Spatiotemporal atlas estimation: template and time warp. (a)
The template and its morphological deformation to the first subject
(red) and the second subject (green). This corresponds to the far left
frames in the second, third and fourth row in Fig. 8. (b) The graphs
of the two time warps, mapping the subjects’ growth speed to that of
the mean scenario. When the curve is above x = y axis, the subject’s
evolution is in advance relative to the rate of shape changes given by
the mean scenario. (c) Graph of the function:ψ−1

1 ◦ψ2 (in blue), which
maps the dynamics of the two subjects. The dashed red curve is the
time warp given by the pairwise registration as shown in Fig. 7a

morphological deformations φ are 3D diffeomorphisms and
that the time warps ψ are 1D diffeomorphisms. The motiva-
tion and consequences of choosing diffeomorphic maps are
different in each case.

The evolution function χ maps the anatomy of a subject
over time. Setting χ as a diffeomorphism assumes a smooth
one-to-one correspondence between any observed shapes of
the same subject. This includes modes of growth like atrophy,
dilatation, torque, etc. However, this cannot model a tearing
of the shape, its division or the creation of another discon-
nected component over time. This assumption is realistic in
many practical case, like for the heart over a cycle or the
macroscopic observation of a brain structure during infancy.

The morphological deformations φ model the geometri-
cal inter-subject variability. Assuming a smooth one-to-one
correspondence between the anatomies of two different sub-
jects is more questionable. As highlighted in Durrleman et al.
(2011) and Durrleman (2010, Chap. 5), the diffeomorphism
is used to decompose the inter-subject variability into two
terms: the diffeomorphic geometrical variability captured in
the deformations and the non-diffeomorphic variability in
terms of “texture” captured in the residuals (modeled by the
random Gaussian variables). Both terms can be used for the
statistical analysis, whereas in this work we will focus only
on the geometric variability captured by the deformations.
Extending the work of Durrleman et al. (2011) to analyze
the non-diffeomorphic variations would be possible but out
of the scope of this paper.

The time warp ψ model the change of speed of evo-
lution between subjects. The diffeomorphic assumption in
1D implies that the function is smooth and monotonic. The
monotonic property assumes that the sequence of the events
during evolution occur in the same order for every subject
(from birth to death). This is a very realistic (if not desirable)
hypothesis, at least from a biological point of view. More-
over, assuming the evolution of a structure is smooth (at least
differentiable) like its inverse is also very realistic, so that one
can speak about the speed of an evolution. Therefore, the time
warps ψ are intrinsically diffeomorphic.

Remark 2 (On the noise model) In (5), we assumed the
noise of the data to be Gaussian. This choice leads to the
squared distance between the deformed template and each
observation in the criterion (6). The same assumption is
made by the registration schemes that are driven by “sum of
squared differences”-like metrics. Though convenient, this
noise model is arguable. In the framework of currents, the
simulation of a Gaussian noise is equivalent to adding random
Dirac delta currents at the nodes of a regular lattice, whose
covariance matrix is given by the kernel (momenta close to
each others tend to be correlated), which is not unlike a sen-
sor noise (see Durrleman 2010, Chap. 3 for more details).
Other noise models that are more closely related to the mesh
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structure of the surfaces could be used, at the cost of a more
complex MAP derivation.

Note that, in our model, we supposed the subjects’ data
to be corrupted by noise, and not the template which is sup-
posed to be a noise free ideal representation of the shape.
Therefore, the resulting cost function (6) is not symmetric,
as the observed subjects’ shapes do not play the same role as
the template.

3.2 Computational Framework and Algorithms

3.2.1 A Generic Way to Build Diffeomorphisms

In this section, we explain a way to build generic 3D and 1D
flows of diffeomorphisms which will be used as a model for
the deformations χt , φ and ψ in the following. We use here
the LDDMM framework (Trouvé 1998; Dupuis et al. 1998;
Miller et al. 2002) for constructing 3D diffeomorphisms. We
propose to adapt this framework to the construction of 1D
diffeomorphisms.

3D diffeomorphisms In the LDDMM framework, 3D dif-
feomorphisms are generated by integrating time-varying vec-
tor fields. Letvt (x)be a time-varying speed vector field which
gives the velocity of a particle which is at position x at time
t . A particle which is at position x at time t = 0 moves to
the position φt (x) at time t . The function φt (x) follows the
differential equation for t ≥ 0:

{ dφt (x)
dt = vt (φt (x))

φ0(x) = x
(7)

Under some conditions on the regularity of the speed vec-
tor field explained in Trouvé (1998), the set of deformation
φt is a flow of diffeomorphisms of the 3D domain. Fol-
lowing this theory, we assume that the speed vector field
belongs to a reproducible kernel Hilbert space (RKHS),
meaning the speed vector fields result from the convolution
between a square integrable vector field and a smoothing
kernel K , which plays the role of a low-pass filter. In our
applications, we will use a Gaussian kernel, which writes
K (x, y) = σ 2exp

(− |x − y|2 /λ2
)

I for any points (x, y) in
space and I the identity matrix. The spatial scale λ determines
the typical scale at which points in space have a correlated
speed, and therefore move in a consistent way. It determines
the degree of smoothness of the deformations. Large scale
means almost rigid deformations. Small scales favor defor-
mations with many small-scale local variations. The parame-
ter σ is a scaling factor, which in some cases cancels out with
the trade-offs in the criterion, as we will discuss later.

In this setting, we define the measure of regularity of the
flow of diffeomorphisms as the total kinetic energy of the
flow between t = 0 and t = T :

Reg(φ) =
T∫

0

‖vt‖2V dt (8)

where ‖.‖V denotes the RKHS norm associated to the kernel
K .

An important property, (proven in Joshi and Miller
(2000),Glaunès (2005) and extended in Durrleman (2010),
Chap. 4 in case of the matching term involves several time-
points), states that the vector field in the RKHS V which
achieves the best trade-off between this regularity term and
a fidelity-to-data term has a finite-dimensional parameteri-
zation, if the fidelity-to-data term depends only on a finite
number of points:

Proposition 1 (Finite dimensional parameterization of min-
imizing vector field) Let E be a criterion of the form:

E(v) =
∑

i

Ai (φ
v
ti (S))+ γ

T∫

0

‖vt‖2V dt (9)

where vt denotes a time-varying speed vector field, φvt the
flow generated by this vector field in the sense of (7), S a
discrete set of N points xi in the 3D domain and Ai a set of
positive and continuous functions from R

3N to R.
Then, the criterion E admits at least one minimum and the

vector field which minimizes E over all possible vector field
in the RKHS V is parameterized by a set of N time-varying
vectors (αi (t)), such that:

vt (x) =
N∑

i=1

K (x, xi (t))αi (t) (10)

for any points x, where xi (t) = φvt (xi ) satisfies the flow
equations:

dxi (t)

dt
= vt (xi (t))

=
N∑

j=1

K (xi (t), x j (t))α j (t) with xi (0) = xi (11)

The couples (xi (t), αi (t)) are called momenta.

The norm of the minimizing vector field in the RKHS V
is given as:

‖vt‖2V =
N∑

i=1

N∑

j=1

αi (t)
t K (xi (t), x j (t))αi (t), (12)

The criterion depends therefore only on the set of L2 func-
tions αi (t). Given these functions and the initial positions xi ,
one can integrate (11) to generate the trajectories xi (t). Then
the criterion E involves only the couples (xi (t), αi (t).

1D diffeomorphisms We can adapt this framework to the
construction of 1D diffeomorphisms, which will be used as

123

Author's personal copy



Int J Comput Vis

time warps in our method. Let the variable t ∈ R play the role
of the spatial variable x in the construction of 3D diffeomor-
phisms. We can build a flow of 1D diffeomorphisms ψu(t)
for the parameter u in [0, 1] (here u plays the previous role
of t , since now t denotes a ‘real’ time and not the integration
variable) by integrating the flow equation:
{ dψu(t)

du = vu(ψu(t))
ψ0(t) = t

(13)

where vu is now a scalar function, which gives the speed
at which the time ψu(t) evolves. If it is positive, time tends
to accelerate. If it is negative, time tends to slow down. We
impose that vu is in 1D RKHS, determined by the kernel

K (t, t ′) = σ 2 exp
(
− ∣∣t − t ′

∣∣2 /λ2
)

. The scalar parameter λ

determine the typical time-length at which two time-points
t and t ′ are changed in a correlated manner. An illustration
of the construction of such 1D diffeomorphism is given in
Fig. 10.

Then, the same property as Proposition 1 applies. If E is
a criterion of the form:

E(v) = A(ψ1(t))+ γ
1∫

0

‖vu‖2V du (14)

where t denotes a vector of time-points t1, . . . , tN and A a
positive and continuous scalar function, then the minimum of
E over the RKHS exists and is achieved for a speed function
vu of the form:

vu(t) =
N∑

i=1

K (t, ψu(ti ))βi (u) (15)

where the time-varying scalars βi (u) are L2 functions from
[0, 1] to R. The norm of the speed function vu in the RKHS
is given by:

‖vu‖2V =
N∑

i=1

N∑

j=1

K (ψu(ti ), ψu(t j ))βi (u)β j (u) (16)

3.2.2 Optimization of the Regression Criterion

We optimize the regression criterion (1) assuming that the
regression function χt is generated by a time-varying veloc-
ity field vχ , which belongs to the RKHS V χ determined
by the 3D Gaussian kernel K χ with standard deviation λχ .

Defining the regularity criterion as Reg(χ) = ∫ T
0 ‖vt‖2V χ dt ,

the criterion to be minimized becomes:

E(χ) =
∑

ti

d(χti (S0), Si )
2 + γ χ

1∫

0

‖vt‖2V χ dt (17)

where d is a similarity measure between shapes. Here we
assume that the baseline S0 and the shape Si are sets of

points, polygonal lines or meshes. We denote (x1, . . . , xN )

the vertices of the baseline S0. Would d be either the sum
of squared differences between point positions or the dis-
tance on currents in absence of point correspondence, the
conditions of Proposition 1 are satisfied (Glaunès 2005): the
minimizing vector field vt is parameterized by the momenta
(x p(t), αp(t)): v

χ
t (x) =

∑N
p=1 K χ (x, x p(t))αp(t).

As noticed in Sect. 3.2.1, the regression criterion E is a
function of the N L2 functionsαp(t). We provide this set of N
functions with the metric induced by the kernel K χ , meaning
that the inner-product between two sets of L2 functions αp(t)
and α′p(t) is given by:

1∫

0

N∑

p=1

N∑

q=1

(α′p(t))t K χ (x p(t), xq(t))αq(t)dt.

The gradient of E with respect to the pth function αp(t) is
an L2 function denoted ∇αp E(t), which is such that for all:

d

dτ
E(α1(t), . . . , αp(t)+ τεp(t), . . . , αN (t)) =

1∫

0

N∑

q=1

εp(t)
t K χ (x p(t), xq(t))∇αq E(t)dt.

In “Appendix A”, we show that this gradient is equal to:

∇αp E(t) = 2γ χαp(t)+ ηχp (t) (18)

where ηχp (t) is the solution of the linear set of backward
integral equations for all p:

ηp(t) =
∑

ti

(∇x p(ti )Ai )1{t≤ti }

+
T∫

t

N∑

q=1

(
αp(u)

tηq(u)+ αq(u)
tηp(u)

+2γ χαp(u)
tαq(u)

)
∇1kχ (x p(u), xq(u))du

(19)

where 1{t≤ti } = 1 if t ≤ ti and 0 otherwise, Ai =
d(χti (S0), Si )

2 seen as a function of the points positions

x p(ti ) and kχ (x, y) = exp
(
− |x − y|2 /λ2

χ

)
.

The gradient descent scheme for the computation of the
regression S(t) = χt (S0) is summarized in Algorithm 1
in “Appendix C”. We start the gradient descent by setting
αp(t) = 0 for all t and p (χt = Id and S(t) = S0, for all t).
Computing the gradient requires first to integrate of the flow
equation (Eq. 11) forward in time and then to compute the
auxiliary variable ηχ (Eq. 19) backward in time. In this last
case, the initial conditions at t = T is given by ∇x p(T )AT .
Then the ODE is integrated for decreasing time t . As soon as
a new time point ti is reached, a new contribution ∇x p(ti )Ai

is added to ηχ(t). As a consequence,∇αp E(t) (and therefore
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Fig. 10 Construction of 1D diffeomorphisms by integration of speed
functions. In this illustration, we suppose the speed function to be con-
stant (v independent of u): ∂ψu (t)

dt = v (ψu(t)). Left The speed profile
v is set as the convolution of 3 constant momenta (βi ) with a Gaussian
kernel with standard deviation λψ = 4 (in red). The integration of the
flow equation with the initial condition ψ0(t) = t is shown in blue:

the bold blue curve corresponds to the final diffeomorphism at u = 1,
light blue curves correspond to ψ1/6(t), ψ1/3(t), ψ1/2(t), ψ2/3(t) and
ψ5/6(t). Right Illustration of the numerical integration of the flow:
ψun+1 (t) = ψun (t) + τv

(
ψun (t)

)
. The speed profile in red is shown

along the y-axis. One can show easily that this scheme produces only
increasing function (invertible 1D function), when τ is chosen small
enough

the momenta αp(t) and the vector field vχt ) at time t depend
on all the data which appear later than t . Once the momenta
are updated, the new positions x p(t) are computed by the
integration of the flow Eq. (11) forward in time (the initial
condition is given at time t = 0 by x p(0) = x p). These
positions at time t depend on the vector field vχt for all time
earlier than t . As a result, the positions x p(t) depend on all
the data in past and future. This regression fits the best trajec-
tory (χt (S0)) to all the data globally. This differs, for instance,
from pairwise registrations between consecutive time-points,
although both techniques result in a piecewise geodesic
flow.

For better numerical accuracy, we replace the Euler
scheme in Algorithm 1 to integrate ODEs by a Euler scheme
with prediction/correction, which has the same accuracy as
a Runge–Kutta method of order 2. The computational bot-
tleneck of this algorithm is the computation of every sum
of the form

∑N
p=1 K (xq , x p)αp that need to be computed

for all q. These computations of complexity N 2 (where N
is number of points in the baseline shape) can be efficiently
approximated using a linearly spaced grid and FFT (Dur-
rleman 2010), or Fast Multipole Approximations (Glaunès
2005), with a nearly linear complexity.

The computation of the gradient requires to compute the
differentiation of the fidelity-to-data term:∇x p(ti )d(φti (S0)−
Si )

2. If Si have the same number of points as S0 (i.e. N
points), then d can be defined as the sum of squared dif-

ferences: Ai = ∑N
p=1

∣∣∣x p(ti )− si
p

∣∣∣
2
, where si

p denotes the

points of Si . In this case, ∇x p(ti )Ai = 2(x p(ti ) − si
p). In

absence of point correspondence, the distance on currents is
used, which can be differentiated as explained in Glaunès
(2005) and Durrleman (2010).

3.2.3 Optimization of the Spatiotemporal Registration
Criterion

As explained in Sect. 3.2.1, the morphological deformation
φ and the time warp ψ are generated by the integration of
flows of 3D and 1D velocity fields respectively. This means
that they are the end-points φ = φ1 and ψ = ψ1 of the
differential equations:

∂φu(x)

∂u
= vφ(φu(x))

∂ψu(t)

∂u
= vψ(ψu(t))

(20)
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Fig. 11 Illustrative scheme for the notations: x p denotes a generic
point of the source shape, x p(t) = χt (x) the continuous evolution
of the source point, (ψu)u∈[0,1] is a flow of 1D-diffeomorphism which
moves the time-labels along the time-axis (in red), (φu)u∈[0,1] is a flow
of 3D-diffeomorphism which moves the points of the source evolution
(in magenta), independently at each time-point

with the initial conditions: φ0(x) = x and ψ0(t) = t .
Now, we assume that for every parameter u, the 3D veloc-

ity fields vφu and 1D velocity profile vψu belong to a RKHS
with Gaussian kernel K φ and Kψ , with standard deviationλφ
and λψ respectively. We denote {x p}p=1,...,N the set of points
of the discrete shape S0. The source trajectory S(t) = χt (S0)

is described by the moving points x p(t). Let {t j } j=1,...,Ntarget

be the time-points associated to target shapes.
The fidelity-to-data term in (4) depends on the variables

φ1
(
x p(ψ1(t j ))

) = φ1(x p, j ), where we denote (see Fig. 11
for an illustrative scheme):

x p, j = x p(ψ1(t j )) (21)

Therefore, the application of Proposition 1 leads to the
following parameterization of the minimizing velocity fields:

vφu (x) =
N∑

p=1

Ntarget∑

j=1

K φ(x, φu(x p, j ))αp, j (u) (22)

and

vψu (t) =
Ntarget∑

j=1

Kψ(t, ψu(t j ))β j (u) (23)

The criterion (4) is a function of the N × Ntarget L2 func-
tions αp, j and the Ntarget L2 functions β j . Like for the regres-
sion case, we provide this set of functions with the metric
induced by the kernel K φ and Kψ .

For the sake of simplicity, we introduce the notations
x p,t (u) and t j (u) such that:

φu(x p, j ) = x p, j (u)

x p, j (0) = x p, j = x p(ψ1(t j ))

x p, j (1) = φ(x p, j )

ψu(t j ) = t j (u)

t j (0) = t j

t j (1) = ψ(t j )

(24)

The regularity parameters in (4) are given by:

Reg(φ) =
1∫

0

∥∥vφu
∥∥2

V φ du

=
1∫

0

∑

p, j,p′, j ′
αp, j (u)

t K φ(x p, j (u),

x p′, j ′(u))αp′, j ′(u)du (25)

and

Reg(ψ) =
1∫

0

∥∥vψu
∥∥2

Vψ du

=
1∫

0

∑

j, j ′
β j (u)

t Kψ(t j (u), t j ′(u))β j ′(u)du (26)

As shown in “Appendix B”, the gradient of the criterion
with respect to the functions αp, j (u) (denoted ∇αp, j E(u))
and to the functions β j (u) (denoted ∇β j E(u)) is given by:

∇αp,i E(u) = 2γ φαp,i (u)+ ηp,i (u)

∇β j E(u) = 2γ ψβ j (u)+ ξ j (u)
(27)

where ηi,p(u) satisfies the backward integral equation:

ηp,i (u) = ∇x p,i (1)A +
1∫

u

N∑

q=1

Ntarget∑

j=1

×
(
αp,i (s)

tηq, j (s)+ ηp,i (s)
tαq, j (s)

+2γ φαp,i (s)
tαq, j (s)

)
∇1kφ(x p,i (s), xq, j (s))ds

(28)

where A denotes the matching term
∑Ntarget

j=1 d(φ1(S(ψ1(t j )))

−U j )
2 which is a function of the variablesφ1(x p(ψ1(t j ))) =

x p, j (1).
and where ξ j (u) satisfies the backward integral

equation:
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ξ j (u) =
N∑

p=1

(
dx p(t)

dt

∣∣∣∣
t=t j (1)

)t

ηp, j (0)

+
1∫

u

Ntarget∑

k=1

(
β j (s)

tξk(s)+ ξ j (s)
tβk(s)

+2γ ψβ j (s)
tβk(s)

)
∇1kψ(t j (s), tk(s))ds (29)

The auxiliary space variable η(u) pulls the gradient of
the matching term from u = 1 back to u = 0 along
the space axis. Then, the value η(0) is used in the final
conditions of the auxiliary time variable ξ(u) in combina-
tion with the local speed of the source growth scenario,
thus showing the spatiotemporal coupling. The variable ξ(u)
pulls back this condition at u = 1 back to u = 0 along
the time axis. The gradient transports the driving force
in the target space, namely the gradient of the data term,
back to source space along the spatiotemporal deforma-
tion. This transport is used to update the momenta αp, j (u)
and β j (u), which parameterize the spatiotemporal deforma-
tion.

In (28), the gradient of the matching term is computed
as for the regression function. For instance, if the distance
between source and target is the sum of squared differences:

A = ∑Ntarget
j=1

∑N
p=1

∣∣x p, j (1)−Up, j
∣∣2, then the gradient is

simply ∇x p,i (1)A = 2(x p, j (1)−Up, j ).
In (29), one needs to compute the speed of the source

growth scenario: dx p(t)
dt . If one has stored the parame-

terization of the regression function (i.e. the momenta
(x p(t), α

χ
p (t))), then one can compute explicitly:

dx p(t)

dt
= dχt (x p)

dt
= vχt (x p(t))

=
N∑

q=1

K χ (x p(t), xq(t))α
χ
q (t)

(30)

In our implementation, we only stored samples of the trajec-
tories x p(t) and not the vectors αχ(t). So, we estimate this

speed by a finite difference scheme: dx p(t)
dt (t j ) = (x p(t j+1)−

x p(t j−1))/2. This allows us to still use this spatiotemporal
registration even if the source evolution has been computed
with another regression method than the one presented in
Sect. 3.2.2.

The sketch of the gradient descent for this spatiotempo-
ral registration scheme is given in Algorithm 2 in “Appen-
dix C”. Note that we minimize the criterion with respect
to the geometrical and the temporal parameters jointly, thus
avoiding alternated minimization. The differentiation of the
criterion proposed here is here, whereas an approximation
was involved in Durrleman et al. (2009b) and Durrleman
(2010). In practice, both differentiations leads to similar
results.

Remark 3 Note that since the growth model χt is piece-
wise geodesic, the evolution S(t) generated by χt is not
differentiable at the time-points t j : the continuous S(t) may
have different left and right derivatives. This point is dis-
cussed in depth in Durrleman (2010), where an alternative
optimization procedure is proposed, which ensures that an
extremum of the registration criterion is achieved at conver-
gence, even in presence of discontinuous velocities. Another
way to address the problem is to use the twice-differentiable
growth model proposed in Fishbaugh et al. (2011).

3.2.4 Optimization of the Criterion for Atlas Construction

The estimation of the 4D-atlas relies on one regression func-
tion χt and Nsubj spatiotemporal deformations (φs, ψ s) for
s = 1, . . . , Nsubj, where Nsubj is the number of subjects. We
use the framework of Sect. 3.2.1 to construct the 3D diffeo-
morphisms χ and φs and the 1D diffeomorphisms ψ s . As a
consequence, every deformation satisfies a flow equation as
follows:

∂χt (x)

∂t
= vχt (χt (x)), t ∈ [0, T ]

∂φs
u(x)

∂u
= vφs

u (φ
s(x)), u ∈ [0, 1], s = 1, . . . , Nsubj

∂ψ s
u(t)

∂u
= vψs

u (ψ s(t)), u ∈ [0, 1], s = 1, . . . , Nsubj

(31)

where we suppose that the velocity fields vχ (resp. vφ
s

and
vψ

s
) belong to a RKHS V χ (resp. V φ and Vψ ) determined

by the Gaussian kernel K χ (resp. K φ and Kψ ) with standard
deviation λχ (resp. λφ and λψ ).

We suppose that the prototype shape M0 (to be estimated)
is given by a finite set of points {x p}. In this case, the appli-
cation of Proposition 1 leads to the parameterization of the
time-varying velocity fields by momenta as follows:

v
χ
t (x) =

∑

p

K χ
(
x, x p(t)

)
αχp (t)

vφ
s

u (x)=
∑

p,t s
j

K φ
(

x, xs
p, j (u)

)
αs

p, j (u), for s=1, . . . , Nsubj

vψ
s

u (t) =
∑

t s
j

Kψ
(

t, t s
j (u)

)
βs

j (u), for s = 1, . . . , Nsubj

(32)

where we denote:

x p(t)=χt (x p) xs
p, j (u)=φs

u(x
s
p(t

s
j (1))) t s

j (u)=ψ s
u(t

s
j )

(33)

for all t ∈ [0, T ] and u ∈ [0, 1]. t s
j denotes the N s

target time-
points at which the sth subject has been observed, which
might be different for every subject.
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The criterion for atlas estimation depends therefore on
the N points of the template M0 = {x p}p=1,...,N , the
Ntime t-varying vectors αp(t) for the regression function, the

N×∑Nsubj
s=1 N s

target u-varying vectors αs
p, j (u) for the morpho-

logical deformations and the
∑Nsubj

s=1 N s
target u-varying vectors

βs
j (u) for the time warps. This criterion can be written now as:

J
(
{αs

p, j (u)}, {βs
j (u)}, {αχp (t)},M0

)
=

Nsubj∑

s=1

{ Nsubj∑

s=1

N s
target∑

j=1

A
(
{xs

p, j (1)}
)
+ γ φ

1∫

0

∥∥∥vφ
s

u

∥∥∥
2

V φ
du

+γ ψ
1∫

0

∥∥∥vψ
s

u

∥∥∥
2

Vψ
du + γ χ

T∫

0

∥∥vχt
∥∥2

V χ dt

}

(34)

where the matching term A
(
{xs

p, j (1)}
)
= d(φs(χψs (t s

j )

M0), Ss
j )

2 depends on the positions φs
1(M(ψ1(t s

j ))) ={(xs
p, j (1)}p=1,...,N .
To minimize this criterion, we adopt a 3-step alternating

minimization procedure:

– If the template M0 and the growth function χt are fixed,
the criterion is divided into Nsubj independent functions.
Their minimum is achieved for the spatiotemporal defor-
mations (φs, ψ s), which maps the mean scenario χt (M0)

to the set of data Ss
j for each subject s. These Nsubj spa-

tiotemporal registrations are computed using Algorithm
2.

– If the Nsubj spatiotemporal deformations (φs, ψ s) and the
growth functionχt are fixed, the criterion to be minimized
with respect to M0 is reduced to:

J (M0) =
∑

s, j

d(Φs, j (M0), Ss
j )

2,

where we denoteΦs, j = φs◦χψs (t s
j )

. These deformations
are 3D-diffeomorphisms. This criterion has exactly the
form of the criterion for usual 3D template estimation. If d
is the distance on currents, a solution for the minimization
of this convex criterion has been proposed in Durrleman
et al. (2009a) and Durrleman (2010, Chap. 5, Algorithm
4). As a consequence, the template M0 is always given
as a finite set of points {x p}p=1,...,N .

– If the template M0 and the Nsubj spatiotemporal defor-
mations (φs, ψ s) are fixed, the criterion to be minimized
becomes:

∑

s, j

d(φs(χψs (t s
j )

M0), Ss(t s
j ))

2 + γ χReg(χ).

This is not exactly the regression problem stated in
Sect. 3.1.1 because of the deformation φs in the matching
term. To turn it into a regression problem, we approx-
imate the matching term d(φs(χψs (t s

j )
M0), Ss(t s

j )) by

d(χψs (t s
j )
(M0), (φ

s)−1(Ss(t s
j ))), meaning that the shapes

of each subject are matched back to the mean anatomy.
This approximation is valid only for diffeomorphisms φs

whose Jacobian is close to the identity, since the usual
metrics d are not left-invariant. As a result, the evolu-
tion function χt performs the temporal regression of the
set of shapes (φs)−1(Ss

j ) located at time-points ψ s(t s
j ).

This regression problem can now be solved using Algo-
rithm 1. Further investigations are needed in order to
perform this regression without this approximation, so
that we can be consistent throughout the minimization
procedure.

To initialize the minimization, we set M0 as the mean
current of the earliest data ((Ss

1) for every subject s) and set
all the momenta to zeros (χ, φs, ψ s equal identity map). The
whole minimization procedure is summarized in Algorithm
3 in “Appendix C”.

3.2.5 Parameters

The overall framework depends on several parameters. There
are 3 kernels of 3 distinct RKHS: K χ , K φ and Kψ . We
use Gaussian kernels determined by their standard devia-
tions:λχ , λφ andλψ respectively. They determine the degree
of smoothness (i.e. the scale at which points have a cor-
related speed) of the mean scenario of evolution, the mor-
phological deformations and the time warp. The first one
compares with the scale of the geometrical variations of the
structure over time for a typical subject (scale of the intra-
subject variability). The second one compares with the scale
of geometrical variations between different subjects (geomet-
rical inter-subject variability). The third one compares with
the typical time-scale at which the dynamics of evolution
changes from subject to subject.

The user must also set the 3 trade-offs between regularity
and fidelity to data: γ χ , γ φ, γ ψ . In addition, one needs to set
the metric d between shapes. In the framework of currents,
this metric depends on a kernel K W . We choose a Gaussian
kernel with standard deviation λW . This parameter sets the
typical scale at which shape variations are smoothed (see
Durrleman (2010)).

The dimension of the trade-off γ χ , γ φ and γ ψ depends on
the kinds of data that we deal with. The dimension of the data
term in the criterions is L2 (i.e. squared length) for curves
and L4 (i.e. squared area) for surfaces, where L denotes the
dimension of a length. The parameter t has the dimension
of time (denoted T ) and the parameter u is an integration
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parameter, which is normalized to fall in the unit interval
[0, 1] and therefore has no physical dimension. Therefore,
the velocities vχt , v

φ
u , v

ψ
u are of dimension LT−1, L and T

respectively and the regularity terms (integral of the squared
norm of the velocities) Reg(χ), Reg(φ) and Reg(ψ) are of
dimension: L2T−1, L2 and T 2 respectively. Eventually, the
dimension of the trade-off γ is that of the ratio between the
data term and the regularity terms:

Curves Surfaces

γχ T L2T
γφ None L2

γψ L2T−2 L4T−2

In the future, we plan to normalize these constants so
that their values can be compared for different applications.
More generally, one needs to better understand the balance
between the spatial and temporal constraints and to find an
automatic way to estimate this parameters (which could be
considered as fixed effects in a Bayesian framework along
the lines of Allassonnière and Kuhn (2009)).

3.3 Statistical Measures of Spatiotemporal Variability

The construction of the spatiotemporal atlas leads to the mean
scenario M(t), which gives a representative mean of the stud-
ied population, and the spatiotemporal deformations of this
mean scenario to each subject, which estimates the variance
within the population. The criterion for the atlas construction
is not unlike the estimation of a Fréchet mean on the “man-
ifold” of the individual trajectories, the distance between
two individual trajectories being given by the cost of the
spatiotemporal deformation which connects them (see Miller
et al. (2002) for this interpretation in the 3D case). In this sec-
tion, we explain how one can compute intrinsic statistics on
the spatiotemporal deformations: the mean and the princi-
pal modes of the morphological deformations and the time
warps are defined as 3D and 1D diffeomorphisms themselves.
Due to the definition of the mean scenario, the mean of all
deformations vanishes. Nevertheless, one can compute the
means of population sub-groups to detect significant differ-
ences between them. The modes show the typical variations
of the mean scenario within the population or within one
sub-group. They can be used to drive the search for anatom-
ical characterization of sub-groups. Besides the quantifica-
tion of group differences and the usual hypothesis testing,
one important aspect of intrinsic statistics is that means and
modes can be displayed as movies of shape evolutions, which
is crucial for qualitative interpretation purposes. This can be
used to better understand the effect of a pathology and drive
the search for bio-markers.

3.3.1 Statistics on Initial Momenta

As shown in Miller et al. (2002), the flow of diffeomorphisms
which minimize the registration criterion (4) or the atlas con-
struction criterion (6) are geodesic: they are the ones which
minimize the length of the path (φu, ψu)u∈[0,1] between the
identity map Id and the actual diffeomorphisms (φ1, ψ1).
These initial velocity plays the role of a tangent-space rep-
resentation as in finite-dimensional Riemannian geometry
(Pennec et al. 2006): they are the equivalent of the logarithm
of the deformations. Since we perform template-to-subjects
registration (and not subjects-to-template), every flows of
diffeomorphisms φs (resp. ψ s) starts from the same space,
the one of the mean scenario, and therefore share the same
tangent-space V φ (resp. Vψ ). As a consequence, one can
perform intrinsic statistics on these common vector spaces.
Since the initial velocities are parameterized by a finite num-
ber of momenta, the statistics on deformations reduces to
statistics in an Euclidean space.

For each subject s, the 3D diffeomorphisms φs are
parameterized by momenta αs

p, j (0) located at the points
x p, j (0) = x p(t s

j (1)), which is a subset of the whole point
set x p,k (the trajectories of every template point). Using
zero-padding, every φs is parameterized by a vector of the
same dimension αs = {αs

p,k}p,k . Similarly, each 1D diffeo-
morphism ψ s is characterized by momenta βs

j (0) located at
time-points t s

j (0) = t s
j , which is a subset of the set of all

time-points {tk}. Using zero-padding, every 1D diffeomor-
phism is characterized by a vector of the same dimension:
βs = {βs

k}k .
One can compute a Principal Component Analysis (PCA)

on the vectors αs and βs according to the metric on the RKHS
V φ and Vψ as follows (see Durrleman 2010, Chap. 5 for more
details). One builds the mean vectors α =∑s αs/Nsubj and
β = ∑s βs/Nsubj and the centered vectors α̃s = αs − α

and β̃
s = βs − β. Then, one builds the empirical matri-

ces Σφ and Σψ of size Nsubj × Nsubj whose term s, s′ is
given by:

Σ
φ

s,s′ =
〈
α̃s, α̃s′

〉

V φ

=
∑

k,k′

N∑

p,p′=1

(α̃s
p,k)

t K φ(x p,k, x p′,k′)α̃
s′
p′,k′

Σ
ψ

s,s′ =
〈
β̃

s
, β̃

s′
〉

Vψ

=
∑

k,k′
Kψ(tk, tk′)β̃

s
k β̃

s
k′

(35)

Let Eφm and Eψm the eigenvectors of the matrices Σφ

and Σψ associated to the mth largest eigenvalues λ
φ
m

and λ
ψ
m (these are vectors of dimension Nsubj). Then, as

shown in Durrleman (2010, Chap. 5), the mth eigenmode is
given by:
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αm = α +
Nsubj∑

s=1

Eφm,s(α
s − α)

βm = β +
Nsubj∑

s=1

Eψm,s(β
s − β)

(36)

such that ‖αm − α‖2V φ = λφm and
∥∥βm − β

∥∥2
Vψ = λψm .

3.3.2 Geodesic Shooting for Computing Intrinsic Means
and Modes

Once one has computed the statistics on the tangent-spaces
V φ and Vψ , one needs to use the geodesic shooting equations
(the equivalent of the exponential map in Riemannian man-
ifold) to generate the 3D and 1D diffeomorphisms, whose
initial velocities are parameterized by the computed mean or
modes. The computed diffeomorphisms are called the mean
or the modes of the deformations.

Given vectors α and β (located at the points {x p,k}p,k and
{tk}), the diffeomorphisms, whose initial velocities are para-
meterized by these vectors, are re-constructed by integrating
over the interval u ∈ [0, 1]:
⎧
⎨

⎩

dαp,k (u)
du = −

(
dx p,k (u)v

φ
u

)t
αp,k(u)

dx p,k (u)
du = vφu (x p,k(u))

(37)

where vφu (x) =∑p,k K φ(x, x p,k(u))αp,k(u) (see Miller et
al. 2006 for the proof). The positions of the points x p,k(1) =
φ1(x p,k) builds a movie, which shows the mean (if α is used
as initial conditions) or the mth mode (if ±αm is used as
initial conditions) of the morphological deformations within
the population or one of its sub-group.

The equivalent equations for 1D diffeomorphisms are
given as:

{
dβk (u)

du = −
(

dtk (u)v
ψ
u

)t
βk(u)

dtk(u)
du = vψu (tk(u))

(38)

where vψu (t) = ∑k Kψ(t, tk(u))βk(u). The integration of
this set of ODEs leads to the 1D diffeomorphism tk(1) =
ψ1(tk), called the mean time warp (if the mean vector β is
used as initial conditions) or the mth mode of the time warps
(if the mth mode ±βm is used as initial conditions).

The geodesic shooting of the mean and the princi-
pal modes of the momenta leads to diffeomorphisms. In
this sense, they are “intrinsic” statistics on an infinite-
dimensional “manifold” of diffeomorphisms. In particular,
the mean or the modes of the time warps are all smooth
monotonic functions. This differs from computing the point-
by-point mean of the real-values functions ψ s(t). Examples
will be shown in the next sections.

4 Measures of Developmental Delays of Deep Brain
Structures in Autism

In this section, we apply the tools introduced in Sect. 3 to
analyze a longitudinal database of deep brain structures seg-
mented from images of autistic, developmental delayed and
control children (Hazlett et al. 2005, 2011). Each child has
been scanned twice: a baseline at about age 3 years and a
follow-up at about age 5 years. The segmentation provides
a set of 24 meshes for each structure: 12 subjects divided
on 3 groups of 4 subjects (autistics, developmental delays
and controls), each subject having two meshes (a baseline
and a follow-up). As a pre-processing, all the meshes were
co-registered via rigid transformations using gmmreg (Jian
and Vemuri 2005).

Our purpose is to show how our methodology can be used
to give a description of the effect of the pathology on the
maturation of the hippocampus and the amygdala of the right
hemisphere. Due to the limited number of subjects involved,
this study is mostly a proof of concept, aiming at showing
the strengths and the limitations of our approach.

4.1 Spatiotemporal Atlas Estimation

We estimate a spatiotemporal atlas by minimizing the cri-
terion in (6) using the algorithms described in Sect. 3.2.4.
We set the time-interval of interest to [0.5, 7.1] years with a
time-step of 0.2 years. The parameters of the Gaussian ker-
nels were set to λχ = 10 mm for the regression function,
λφ = 10 mm and σφ = 1 for the morphological deforma-
tion and λψ = 1.5 years and σψ = 1 for the time warp.
The typical scale on currents λW is set to 5 mm. The trade-
offs were set to γ χ = 10−4 mm2year, γ φ = 10−4 mm2 and
γ ψ = 10−6 mm4year−2. The diameter of the hippocampus
is about 25 mm. We refer the reader to Sect. 3.2.5 for a dis-
cussion about the parameters used (an empirical study of the
impact of these parameters will be presented in the next sec-
tion about endocranial data).

The output of the algorithm is a prototype shape, a mean
scenario of evolution of this prototype shape, and 12 spa-
tiotemporal deformations of this mean scenario to the pair
of meshes of each subject. The analysis of the value of the
criterion at the minimum shows that one autistic patient has a
residual significantly larger than the other subject. This sub-
ject can be considered as an outlier, as will discuss later on.
As shown in Durrleman et al. (2009a), the prototype shape is
given as a current, which does not correspond to a mesh. For
visualization purposes, and for the following volume compu-
tations, we mapped one instance of the data to the prototype
shape and used it as a template. As a consequence, the mean
scenario and its spatiotemporal deformations can be seen as
the continuous evolution of a mesh.

123

Author's personal copy



Int J Comput Vis

Fig. 12 Mean growth scenario of the hippocampus. Four significant frames are shown (lateral view). Color indicates the instantaneous speed of
the surface deformation (best seen as a movie: see Online Resource 1)

Fig. 13 Evolution of the
volume of the hippocampus. (a)
Volume evolution of the mean
scenario. (b–d) Volume of the
mean scenario, after it has been
registered to each subject
(magenta curves). Black
asterisks indicate the volume of
the original data. Red, green and
blue curves indicate the volume
evolution given by the pairwise
registration between each
subject’s data pair. The autistic
outlier corresponds to the
decreasing red curve in (b)
(decrease of volume between the
two observations of this subject)
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Significant samples of the estimated mean growth sce-
nario are shown in Fig. 12. The complete scenario can be
seen in the companion movie (see Online Resource 1). This
mean scenario of evolution shows that the prototype growth
of the structure is much more complex than a pure volume

scaling over time, and involves several non-linear growth pat-
terns. The visual inspection of the companion movie shows
mainly 3 phases of growth: from 1.5 to 2.5 years, the hip-
pocampus tends to “unfold” giving it less curved aspect; from
2.5 to 4.5 years, the hippocampus strongly elongates in the
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antero/posterior direction; from 4.5 to 6 years, the extremi-
ties of the hippocampus tends to bend: the head toward the
bottom and the tail toward the top, thus stretching the body
of the hippocampus (red blob in the third frame in Fig. 12).

This mean scenario of evolution has been estimated along
with its spatiotemporal deformation to each subject. The
spatiotemporal deformation takes into account all the shape
information and not only the size. Nevertheless, to illustrate
the method, we compute the volume of the original meshes,
of the template mesh and the deformed meshes. The evo-
lution of the volume of the mean hippocampal growth is
shown in Fig. 13a. Although the growth involves different
non-linear patterns in shape as highlighted in Fig. 12, the
volume extracted from this mean scenario evolves quite lin-
early between age 2 and 6 years. Outside this interval, the
volume remains constant due to the boundary conditions (the
growth function χt equals identity). In Fig. 13b–d, we plot
the volume evolution of the mean scenario, once it has been
registered to each subject, taking into account both the mor-
phological deformation and the time warp: the morphologi-
cal deformation changes the values of the curve in Fig. 13a,
whereas the time warp stretches or shortens the curve along
the time axis. We superimpose the volume of the original
pairs of data for each subject, as well as the volume evolu-
tion computed from the pairwise registration between these
pairs of surfaces.

Note that there is no reason that the volume of the reg-
istered mean scenario corresponds to the volume evolution
computed from the pairwise registration. Indeed, the pairwise
registration take into account only a pair of data, whereas
the mean scenario integrates the information of the whole
database: the mean scenario may contain growth patterns
which are not present in a given subject’s evolution. More-
over, the pairwise registration aims at minimizing the discrep-
ancy between the two surfaces, whereas the deformed mean
scenario is more constrained by the fact that we assume each
subject’s pair of surfaces to result from a smooth deformation
of a mean scenario.

Having said that, we notice that volume evolution of the
deformed scenario does not deviate too much from the vol-
ume evolution computed from pairwise registration. This
means that the morphological deformation accounts well for
the different sizes of the structures and that the time warp
enables to adjust the slope of the curves to the different
growth speed of each subject.

We notice that the curves for one autistic patient are
not properly aligned (the patient for which the the volume
decreases between the two observations in Fig. 13b). This
is the patient detected as an outlier. With the current set of
parameters, it was too costly to deform the mean scenario
to this subject, which present a unique pattern of size reduc-
tion over time (this volume reduction might be real or might
be due to a segmentation inaccuracy as well). We run the

atlas estimationwith a more important weight for the time
warp than for the morphological deformation (σψ/σφ up to
10 instead of 1) and for larger scales for the time warps
(λψ = 1.5–2.5), which reduces the cost of time warps of
large amplitude. We observe that the estimated mean scenario
tends to show a volume reduction near age 6 years (after a
phase of volume increase from 2 to nearly 6 years) and the
outlier is registered to the later part of the mean growth sce-
nario: its time warp shows a strong advance in development
of this subject relative to the mean scenario. Nevertheless,
this was done at the cost of less accurate registration of all
other subjects and the atlas with such parameters was not
optimal. Our statistical model prefers to treat this particular
subject as an outlier. However, would more subjects be avail-
able showing a decreasing volume over time, the atlas would
be likely to take this into account by estimating a growth
scenario decomposed into a first phase of increasing volume
and a second phase of decreasing volume. Then, the subject
with decreasing volume would be systematically considered
as delayed with respect to the subject with increasing volume
at the same age. Such a population, however, would probably
violate our main assumption that the growth of the subjects
are homologous, in the sense that they derive from a com-
mon prototype scenario. It would be better to consider the
two sub-groups as two different populations.

4.2 Analysis of the Spatiotemporal Variability

Now, we analyze the spatiotemporal variability of the mean
scenario in the population, and not only its effect on the vol-
ume distribution. This variability is decomposed into a geo-
metrical part captured by the morphological deformations φs

and a temporal part captured by the time warps ψ s . Prelimi-
nary tests performed on the initial momenta of the 3D diffeo-
morphisms φs (see Sect. 3.3) do not show any correlations
between the morphological deformations and the class of the
subject (autistics, developmental delays and controls). The
mean initial momenta of the morphological deformations of
each group do not differ significantly from zero. The direc-
tion of the first mode of deformation is similar for each group,
but the variance is larger for the autistics and developmen-
tal delays than for the controls. This mode essentially shows
important variations in the elongation of the hippocampus
along with an enlargement of the body. By contrast, the depth
of the hippocampus almost does not vary.

The time warps are plotted in Fig. 14a for every subject.
When the curve is above the y = x axis (resp. below the
y = x axis), the evolution of the subject is in advance (resp.
is delayed) relatively to the mean scenario. A slope greater
than 1 (resp. smaller than 1) denotes an acceleration (resp. a
speed reduction) of the evolution of the subject compared to
the evolution of the mean scenario. The mean of the curves
for each group is plotted in Fig. 14b. Although the mean of
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Fig. 14 Estimated time warps
from the hippocampus database.
(a) The monotonic curves
indicates how the real age of
each subject maps to the virtual
physiological stage estimated in
the mean growth scenario.
When curves are above the
x = y axis, the subject is in
advance with respect to the
mean scenario. The dashed red
curve corresponds to the outlier.
(b) Intrinsic means of each
group (also monotonic
functions). (c) Limits of the first
mode of variation at ±1
standard deviation. (d) Same as
c, but excluding the outlier. It
shows that autistics tend to be in
advance with respect to the
control and that the
developmental delays have a
much greater variance than the
other two groups
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all curves seem to be biased (overall over the x = y axis),
this bias is not proven to be statistically significant (ratio
of mean over standard deviation being equal to 1.21). We
compute the intrinsic first mode of variations in the space
of smooth monotonic functions (see Sect. 3.3) in Fig. 14c,
and in Fig. 14d by excluding the autistic outlier. From these
results, we cannot conclude that an autistic or a developmen-
tal delayed patient is systematically delayed or in advance
compared to controls, even at a given age. However, both
the autistics and the controls has a much narrower variabil-
ity interval than the developmental delays. It seems also that
the autistic on average are more advanced than the control at
the earlier stages of growth (between 2 and 3 years of age).
This suggests that the hippocampus develops faster among
autistic children.

To investigate this more in depth, we also compute the spa-
tiotemporal atlas for the amygdala of the right hemisphere
(using the the parameters λχ = 15 mm, λφ = 15 mm, σφ =
1, λψ = 1 year, σψ = 1, λW = 3 mm, γ χ = 10−3 mm2

year, γ φ = 10−3 mm2 and γ ψ = 10−6 mm4year−2). Again,

the analysis of the morphological deformations does not
highlight informative patterns. By contrast, the analysis of
the time warps shown in Fig. 15 reveals that the autistics and
the controls share a similar pattern, namely a strong acceler-
ation of the growth with respect to the mean scenario, but at
a different age. The acceleration occurs between age 2.5 and
3.5 years for the autistics and between age 4 and age 5 years
for the controls. The developmental delays also display a sim-
ilar pattern, but it occurs at a more variable age. This confirms
the hypothesis of an over-growth of the autistics compared
to the controls at the earlier stages of development. This also
confirms that fact that the developmental delays do not build
a very homogeneous group because of much more variable
patterns.

These preliminary results on both the geometrical and
temporal parts of the variability suggest that the discrimina-
tive information between classes might not be inferred from
the anatomical variability at a given age, but rather from vari-
ations of the growth process. It suggests that autism may more
strongly affect the growth speed of the deep brain structures
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Fig. 15 Estimated time warps
from the amygdala database (a)
time warps for the 12 subjects,
(b) limits of the first mode of
variation at ±1 standard
deviation for each group.
Autistics and controls show the
same evolution pattern, namely
a reduction of speed with
respect to the mean scenario
(slope smaller than 1) and then a
quick acceleration (slope greater
than 1). This pattern for the
autistics group seems to occur
later than for the control group.
The developmental delays
presents also such pattern but at
an arbitrary age. Mean and
modes are computed as
monotonic functions within the
space of 1D diffeomorphisms
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rather than its shape, a finding related to brain overgrowth dis-
cussed in Hazlett et al. (2011). Note that the hypothesis of an
over-growth of the brain of autistic patient has been reported
in the literature, for instance in Courchesne et al. (2011).
We believe that this new methodology is well adapted to test
this hypothesis thanks to the introduction of the time warps,
which models explicitly the possible developmental delays
between subjects both in shape and in size. Of course, one
would need to test it on much larger database: the more time-
points per subjects, the more constrained the mean scenario
estimation; the more subjects, the more robust the statistics.

5 Comparison of the Endocast Growth Between
Chimpanzees and Bonobos

5.1 Framework of the Study

In this section, we aim at using our methodology to character-
ize the differences of growth patterns between the two closest
human relatives: the bonobo (Pan paniscus) and the chim-
panzee (Pan troglodytes). We will also assess the robustness
of the method with respect to parameter changes and changes
in age labels.

Since bonobos were discovered to science in 1929, the
analysis of what distinguishes them from the common chim-
panzee has been controversial. After several morphological
and behavioral studies (Kuroda 1989; Shea 1989; Kano 1992;
de Waal 1995), the hypothesis has emerged that the bonobos
may be a “juvenilized” version of the chimpanzee, in the
sense that the growth of the bonobos may share common
patterns with the one the chimpanzees but with a different
tempo. The tools that we have developed, and in particular
the introduction of the time warps, seem to be well adapted
to test this hypothesis.

For this purpose, we will use one the largest collections of
endocasts available for the two species, which comes from
the collection of the “Musée de l’Afrique centrale” in Ter-
vuren, Belgium. The endocast is a mold of the endocranium,
which provides a replica of the inner surface of the skull and
therefore has often played an important role for the analysis
of the evolution of the brain in fossil mammals. This data set
consists of samples from wild-shot animals: 59 chimpanzees
and 60 bonobos, with approximately equal numbers of male
and female. They have been scanned with slice thickness
between 0.33 and 0.50 mm. The segmentation of the endo-
casts using itkSNAP (Yushkevich et al. 2006) leads to sur-
face meshes. These surfaces have been rigidly co-registered
using gmmreg (Jian and Vemuri 2005).

It has been observed in Kinzey (1984) that the sequences
of teeth emergence in bonobos and chimpanzees are essen-
tially identical. This gives a way to estimate the “dental age”
of each skull. We will use this dental age as a common proxy
of growth, and not the true age of the specimen, which is
not available. As a consequence, each skull has been associ-
ated to one the 6 dental ages defined in Shea (1989): infant,
child, young juvenile, old juvenile, sub-adult and adult. To
refine the classification, we associated some skulls with the
intermediate class ‘child/young juvenile’. Age distribution
is shown in Fig. 1. Without loss of generality, we assume
that each dental development stage lasts the same amount
of time, namely 1 unit of time. Each unit of time has been
discretized with 5 time-points, so that the samples are asso-
ciated to the time-points ti = 5, 10, 15, 20, 25, 30 accord-
ing to the dental development of the specimen. The age
child/young juvenile has been associated to the time-point
13 (Table 1).

Obviously, this database is cross-sectional by nature. It is
unthinkable to have several observations of the same wild
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Table 1 Distribution of the
dental ages across samples for
both species: chimpanzee and
bonobo

No. of samples Infant Child Child/young
juvenile

Young juvenile Old juvenile Sub-adult Adult Total

Bonobos 4 8 3 11 7 9 18 60
Chimpanzees 2 6 4 10 13 10 14 59

Fig. 16 Temporal shape regression of endocast of the chimpanzees
(top) and the bonobos (bottom) estimated from the original endocasts.
In each species, the endocast seems to evolve from a spherical geometry
at infancy to an ellipsoidal one at adulthood. However, the dynamics
of such changes seem to differ for both species. The quite unrealistic

evolution of the chimpanzee endocast at infancy is due to the small
amount of data at this age (2). Here, only 6 stages of the growth are
shown, although the estimated scenario is continuous. Best seen as
movies: see Online Resource 2 (chimpanzees) and 3 (bonobos)

animals over time. To make the best of this situation, we
choose to estimate first a typical growth scenario for each
species independently, applying the regression tool to the
cross-sectional data. Second, we analyze the differences
between the two growth scenarios using the spatiotempo-
ral registration to measure both morphological differences
and possible developmental delays, a key feature we aim at
detecting in regards to the bonobos hypothesis.

An alternative approach would consist in using the spa-
tiotemporal atlas construction to estimate an hybrid growth
scenario and its deformations to each species, considered as
2 subjects. One the one hand, this would prevent biasing the
analysis by choosing a reference species and the inter-species
comparison would take into account the fact that the differ-
ent age groups have a different number of samples. On the
other hand, the methodology we choose enables a more direct
comparison between species. In particular, the estimation of

the species’ specific growth scenario, which is done indepen-
dently for each species, is not constrained by the assumption
that the two growth scenarios should derived from the same
hybrid scenario.

5.2 Typical Growth Scenario Estimation for Each Species

We choose the smallest endocast within the child class as the
baseline S0 and associate it to the time point t = 2. Then, we
perform a temporal shape regression of the endocasts (inde-
pendently for each species), as explained in Sect. 3.1.1 and
Algorithm 1. We set the typical spatial interaction between
currents λW = 10 mm, the spatial scale of deformation con-
sistency λχ = 20 mm and the trade-off between fidelity-
to-data and regularity γχ = 10−3 mm2(unit of time). The
diameter of the endocasts are typically between 60 and
70 mm.
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Significant samples of the species specific growth sce-
narios are shown in Fig. 16. The complete scenarios can be
seen in the companion movies (see Online Resource 2 (chim-
panzees) and 3 (bonobos)). Besides the increase of volume,
the most salient effect in both scenarios is an elongation along
the posterior/anterior axis and a slight contraction along the
superior/inferior axis. As a consequence, the endocast which
has an almost spherical geometry at birth has an increasingly
ellipsoidal geometry. However, it seems that the chimpanzee
endocasts have a stronger anisotropy and that this anisotropy
increases faster in time. The subsequent spatiotemporal reg-
istration will measure the differences in both scenarios more
precisely.

The two growth scenarios differ considerably during
infancy and childhood, mainly because of the small amount
of data in infancy. The two infant chimpanzees have a larger
endocasts compared to both the infant bonobos and the chil-
dren chimpanzees. To have a more relevant estimation of
the growth in infancy, we expect to scan more infant chim-
panzees skulls in the future. Note that in the next section we
will not take the infancy data into account and will consider
the growth scenarios starting at childhood.

We can deduce from the growth scenario an estimation of
the evolution of the endocranial volume across ages, as shown
in Fig. 17 (Note that we have not performed a regression of
the volume but of the shapes instead). Besides the evolution
in infancy, one intriguing feature is the apparent decrease in
endocranial volume of bonobos at sub-adulthood. This fea-
ture is also present in the endocranial volume distribution

!

x 10

Fig. 17 From the continuous shape regression shown in Fig. 16, we
deduce an estimation of the evolution of the endocast volume during
growth. Mean and standard deviation of the volume of the original endo-
casts are superimposed. The intriguing decrease of volume of bonobos
at sub-adulthood is not shown to be statistically significant. The unre-
alistic regression at infancy of chimpanzees is due to the very small
number of samples at this age (2)

in the original endocasts (mean and standard deviation are
shown in Fig. 17): the mean of the volume at sub-adulthood
is smaller than the one of old juveniles. However, the Mann–
Whitney U test gives a p value of 0.47 when comparing
the volume distribution of old juveniles and sub-adults: the
median of the two distributions are not proved to be statis-
tically different. The test run for every pair of consecutive
distributions shows a significant increase of volume in only
three occasions: (i) between infancy and childhood for the
bonobos (p value: 9 × 10−3); (ii) between childhood and
young juvenility for the chimpanzees (p value: 0.07); (iii)
and between old-juvenility and sub-adulthood for the chim-
panzees (p value: 0.02).

5.3 Spatiotemporal Registration Between the Two Growth
Scenarios

We perform a spatiotemporal registration between the two
estimated growth scenarios as explained in Sect. 3.1.2 and
Algorithm 2. For the reasons explained in the previous sec-
tion, we consider the part of these scenarios—between child-
hood and adulthood—discarding the portion between infancy
and childhood. We consider the chimpanzee growth scenario
as the reference scenario (i.e. the source). The bonobo sce-
nario is sampled every 2 time-steps. These samples play
the role of the target shapes. We set the scale of currents
to λW = 10 mm as for the regression estimation. We run
the registration for different sets of parameters and pick the
ones which enable to achieve the smallest discrepancy term
in (4). This gives the scale of the morphological deforma-
tion: λφ = 10 mm, the scale of the time warp λψ = 1 unit
of time (i.e. duration of one time-point), the spatial power
σφ = 40, the temporal power σψ = 5, the morphologi-
cal trade-off γ φ = 10−5 mm2 and the temporal trade-off
γ ψ = 10−5 mm4/(unit of time).

The morphological deformation changes the shape of each
frame of the chimpanzee growth as shown in Fig. 18 (this is
the equivalent figure to the first and second row in Fig. 6,
although we plot here an intermediate step of the deforma-
tion). It shows that, independently of the age, the bonobos
endocasts are rounder than the chimpanzees. The movie of
this deformation clearly shows a twist at the anterior and
posterior part of the endocast (see companion movie: Online
Resource 4).

The graph of the estimated time warp is shown in Fig. 19.
This plot shows the correspondence between the ages of the
bonobos and the chimpanzees. It mostly shows an important
speed reduction of the growth of the bonobos with respect to
the chimpanzees between old-juvenility and sub-adulthood.
The almost constant slope of the curve during this period
of time indicates that the bonobos growth speed is 0.25
times that of the chimpanzees. The graph shows also that the
bonobos seem to be slightly in advance with respect to the
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Fig. 18 Morphological part of the spatiotemporal registration between
chimpanzees and bonobos growth scenarios. The morphological defor-
mation maps the morphological space of the chimpanzees to that of the
bonobos, independently of the age. It is applied here to the chimpanzees
endocasts at old juvenility: endocasts from the chimpanzees growth sce-
nario (top row), their deformation to the bonobos space (bottom row)
with an intermediate stage of deformation (middle row). This shows
that, on average, the endocast of a chimpanzee is more elongated and
less round than the one of a bonobo. Note that the deformed endocasts
do not match the ones of the bonobo growth at the same age, but at the
age given by the correspondence graph shown in Fig. 19. Best seen as
a movie: see Online Resource 4

chimpanzees at childhood and that the delay of the bonobos
growth at sub-adulthood seems to be reduced at adulthood.

We show the effect of this spatiotemporal registration
on the evolution of endocast volume of the chimpanzees
in Fig. 20 (left). It shows that the spatiotemporal warping
enables to match the volume evolution of the chimpanzees
endocast closer to that of the bonobos endocast. Besides vol-
ume, we also analyze the differences of a measure of the
shape, namely the ratio between the height (in the superior-
inferior direction) and the width (in the anteroposterior direc-
tion) of the endocast. Ratio close to 1 indicates a rounded
endocast in the sagittal plane. The evolution of the ratio com-
puted from the species specific scenario is shown in Fig. 20
(right): the decrease of the curves indicates that the endo-
cast become more and more asymmetric (ellipsoidal) dur-
ing growth. This ratio is always smaller for the chimpanzees
than for the bonobos, thus showing a stronger asymmetry for
the chimpanzees. As expected, the morphological deforma-
tion moves the curves of the chimpanzees closer to the one
of the bonobos, except between sub-adulthood and adult-
hood. Indeed, we have shown in Fig. 18 that the morpholog-
ical deformation tends give the endocast a more ellipsoidal
aspect. The time warp tends to align the slope of the chim-
panzee curve to the slope of the bonobos curve. However, we
notice that the spatiotemporal warping aligns the evolution

Fig. 19 Time warp between chimpanzee and bonobo growth. It shows
that the growth of the bonobos is in advance with respect to the chim-
panzees at childhood and then that it drastically slows down during
juvenility (almost linearly by a factor 0.24 between old-juvenility and
sub-adulthood). This delay seems to decrease at adulthood. Dashed
magenta lines indicate the limits of the 90 % confidence interval (95 %
CI) estimated by bootstrap. Dashed cyan lines indicate the limits of the
90 % variation intervals due to random age shifts

of this ratio with less accuracy than that of the volume (see
Fig. 20 (left)). It is likely that the registration is primar-
ily driven by the volume information, which may act as a
stronger constraint than the shape asymmetries. Multi-scale
approaches, with decreasing rigidity scale of the morpholog-
ical deformation λφ for instance, should be able to achieve
a better matching, which would show an alignment of the
measures of shape asymmetries with the same accuracy as
the volume.

5.4 Impact of the Temporal Scale

Here, we analyze the variability of the spatiotemporal reg-
istration with respect to variations of the temporal scale λψ ,
while keeping the other parameters fixed. This parameter
determines the scale at which the time warp may vary. A
large scale means a nearly rigid time warp with very slow
variations. A small scale allows quick variations of the time
warp during small time intervals.

Figure 21 shows the different values of the data term
obtained for different values of the temporal scale λψ . It
shows that the optimal value is for λψ = 1 unit of time,
namely the the duration of one age group. This is the value
chosen in this study. Figure 22 shows the impact of this tem-
poral scale on the profile of the time warp. The larger the
scale, the more rigid the time warp, the less its ability to
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Fig. 20 Effects of the spatiotemporal deformation on the evolution
of the volume and the geometry of the endocasts. Top Evolution of
the endocast volume for the original growth scenarios of both species
starting at childhood (in red and blue as in Fig. 17). Dashed cyan curve
correspond to the volume of the chimpanzee growth scenario after the
morphological deformation. Magenta curve is derived from the cyan
curve by applying the time warp. The combination of the morphological
deformation and the time warp approximate the volume evolution of the
bonobos. Bottom Same experiments but for the evolution of the ratio
between the elongation in superior–inferior direction and that in the
anteroposterior direction, which gives an indication of how the endocast
deviates from a circular shape in the sagittal plane. The closer the ratio
to 1, the “rounder” the endocast

capture highly non-linear variations. The smaller the scale,
the more expensive the cost of a regular deformation.

5.5 Estimation of Confidence Intervals via Bootstrap

In this section, we aim at studying the robustness of the esti-
mation of the growth scenario with respect to the samples we
have. We use here a bootstrap procedure: a resampling with
replacement procedure is applied within each age group of
each species, yielding a new data set of the same size as the

Fig. 21 Effect of the temporal scale λψ on the registration accuracy.
Value of the residual data term after registration for different values
of the temporal scale λψ (the other parameters being fixed to λφ =
10 mm, σφ = 40, σψ = 5, γφ = 10−5 and γψ = 10−5). It indicates
the optimal value of λψ = 1 unit of time

Fig. 22 Effect of the temporal scale λψ on the time warp. If λψ is
too large, it cannot capture fast variations in the dynamics of growth of
both species. If λψ is too small, it costs more to capture the large-scaled
variations. Optimal solution is for λψ = 1 unit of time

original. Then, we estimate the two growth scenarios using
this new set of data. We repeat the procedure 100 times, so
that we end up with 100 growth scenarios for each species,
which simulates the variability of these scenarios with respect
to the choice of the samples.

For each simulation, we compute the evolution of the
endocranial volume given by the estimated growth scenario.
Fig 23 (top, left) shows the 95 % CI of the volume evolu-
tions. It shows that the variability of the volume estimation
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is relatively small, in particular with respect to the difference
in volume between the two species at adulthood.

To gain more insight into the variability of the geometry
of the growth scenario, we compute the distance between the
endocast of a simulated growth scenario and the reference
one at each time-step, using the norm on currents. In Fig. 23
(top,right), we show the 95 % CI of this difference expressed
in terms of percentage of the norm of the endocast of the
reference scenario. It shows a large deviation in bonobos
infancy and chimpanzees childhood. This large variability is
expected due to the small number and the large variability of
data at those ages. This confirms that more data are needed for
a more robust estimation of the endocranial growth at these
ages. The variance of the endocranial geometry during old-
juvenility and sub-adulthood is much larger for the bonobos
than for the chimpanzees. This may explain the decrease of
volume at bonobos sub-adulthood, as many more samples
would be needed to converge to the “true” mean. This might
also indicate a bi-modal distribution for male and female.

Eventually, we notice that the estimation of the volume
seems much less variable than the estimation of the geometry.
This is not surprising since one needs much more data to
robustly estimate the whole geometry (which has potentially
an infinite number of degrees of freedom) than the scalar
measure of volume.

Then, we compute the spatiotemporal registration between
every pair of growth scenarios. The estimation of the 95 %
CI of the time warp is shown in Fig. 19. These experiments
allow us to give also a confidence interval of the develop-
mental delay between the bonobos and the chimpanzees: the
slope of the time warp at old juvenility falls into the interval
[0.14, 0.34] in 90 % of the cases.

5.6 Estimation of Variability Intervals via Random Age
Shifts

Here, we study the robustness of our estimations to pertur-
bations of the age estimates. For this purpose, we simulate
age perturbations by adding a zero-mean Gaussian variable
with standard deviation 1 time-point to the dental age of each
sample. This means that in 50 % of the cases the dental ages
have been shifted by +1 or −1 time-point, in 10 % of the
cases they have been shifted by more than one time-point,
and in 40 % of the cases they have not moved. We recall
that the duration of every dental age group was of five time-
points (i.e. 1 unit of time) in the original experiments, which
means that in 10 % of the cases, the age estimate was shifted
at or beyond the boundaries its group. Given these new age
estimates, we compute two growth scenarios and then the
spatiotemporal deformations between the portion of the sce-
narios between childhood and adulthood. We repeat this pro-
cedure 100 times. We define a 90 % variability interval by

discarding the five largest and five smallest values of any
scalar measurements taken out of these simulations.

In Fig. 23 (bottom,left), we show the limits of the 90 %
variability interval of the volume evolution measured from
the growth scenario. In Fig. 23 (bottom,right), we show the 90
% variability interval of the distance between the perturbed
growth scenario and the reference one.

We compute the spatiotemporal registration between
every pair of perturbed growth scenarios. The 90 % variabil-
ity interval of the estimated time warp is shown in Fig. 19.

All these experiments show that the perturbations induced
by randomly shifting the age estimates are always smaller
than the perturbations due to the bootstrap resampling. There-
fore, these perturbations are not statistically significant, thus
illustrating the robustness of our method to the uncertainty
of the age estimates.

6 Conclusion

In this paper, we introduced a new growth model for shape
evolution, as a continuous diffeomorphic deformation of a
baseline shape over time. Its estimation allows us to infer a
continuous shape trajectory from few observations sparsely
distributed in time.

We introduced a new registration scheme for the com-
parison of individual growth trajectories. We proposed to
model the differences between individual trajectories as a
combination of time-independent shape differences and a
difference in the pace of shape changes over time. For this
purpose, we introduced the generic construction of 1D dif-
feomorphisms: smooth and monotonic functions called time
warps. This model supposes that the individual trajectories
are comparable, in the sense that they contain the same
growth patterns, but with a different appearance and a dif-
ferent timing. The presence of new growth patterns in one
of the trajectories would not be considered by the registra-
tion and would lead to a large residual misalignment after the
registration.

Eventually, we introduced an original statistical model for
the study of longitudinal databases. This model assumes that
the consecutive observations of different subjects derive from
a spatiotemporal deformation of an unknown prototype sce-
nario of evolution. The estimation of this models leads to
an atlas, which consists of (i) a prototype shape called the
template, (ii) the continuous diffeomorphic deformation of
this prototype shape over time, called the mean scenario of
evolution and (iii) the spatiotemporal deformations of this
mean scenario, which map the set of time-dependent obser-
vations of each subject. The template shape and the mean
scenario of evolution captures the invariants in the popula-
tion: common shape features and common growth patterns.
The spatiotemporal deformations summarize the variations
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Fig. 23 Bootstrap confidence intervals due to resampling (top) and due
to random age shifts (bottom). Left Evolution of the endocranial vol-
ume given by the reference growth scenario (bold line) and its 95 % CI
estimated via a bootstrap procedure. Right Discrepancy between the ref-
erence growth scenario and the ones estimated by bootstrap, measured

as the current norm between the frames. 90 % confidence interval is
shown at every time-step. On average, the bootstrap makes the frames
to vary in the space of currents within a neighborhood of radius 10 %
the norm of the reference frames

of these invariants in terms of various appearances and var-
ious paces of shape change. The characteristics, which are
specific to a given individual, are not taken into account and
are considered as outliers since it does not comply with the
hypotheses of the model.

In addition, we provided a statistical framework to
compute intrinsic statistics in the space of spatiotemporal
deformations (space of 3D diffeomorphisms for the morpho-
logical deformation and space of smooth monotonic func-
tions for the time warp). Mean and modes of deformations
are computed as deformations themselves. This is not only
useful to perform statistical processing like hypothesis test-
ing or classification for instance, but also gives a way to visu-
alize and interpret the geometrical features captured by the
model. Our method could be seen as a longitudinal extension
of the concept of Karcher mean, which estimates at the same
time the mean (first moment) and the covariance (second

moment) from data lying on a manifold. Extensions of other
manifold-related methods for shape averaging could be also
investigated (Gerber et al. 2010; Xie et al. 2010)

We illustrated our approach with two biological examples.
The study of a longitudinal database of deep brain structures
from autistic, developmental delays, and controls, shows that
a given pathology might be characterized more by the differ-
ences in the pace of maturation of a structure, rather than the
differences in shapes at a given age. The study of a time-series
data set of endocast of bonobos and chimpanzees allows us
to give new insights into the differences in terms of devel-
opment of the endocranium between these genetically very
close species. In particular, we were able to give an estimate
of the expected developmental delay of bonobos relative to
chimpanzees at juvenility. Moreover, we show the robust-
ness of this estimation with respect to variations in the age
estimates.
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The principle approach that we proposed leads to the def-
inition of new objective functions, for which we proposed
efficient algorithms. The shape regression and the spatiotem-
poral registration are solved using a single gradient descent
scheme. The estimation of the spatiotemporal atlas relies
on an alternated minimization procedure. Future work will
investigate the possibility to derive a single gradient scheme
for the estimation of the whole atlas. This should lead to
a faster and more controllable procedure. Another important
direction of research is to include the residuals into the statis-
tical analysis in the spirit of Durrleman et al. (2009a, 2011),
in order to better characterize possible outliers, or to detect
consistent subgroups in the population.

We emphasized that our approach relies on a set of explicit
hypotheses and that alternatives models are also worth inves-
tigating. We hope that this approach, which has been driven
more by methodological considerations than by the appli-
cations, will help to better appreciate the challenges, which
are inherent to the joint modeling of time and shape varia-
tions. This might contribute to the emergence of an axiomatic
approach for the statistical analysis of longitudinal shape
data.
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A Differentiation of the Temporal Shape Regression
Criterion

A.1 Matrix Notations

For the sake of simplicity, we introduce matrix nota-
tions: x0 = {x p}p=1,...,N denotes the 3N vector which
is the concatenation of the coordinates of N vertices of
the baseline shape M0. Using the notations of Sect. 3.2.2,
we denote the moving points x(t) (resp. the parameter-
izing vectors α(t)) the 3N vector: (x p(t))p=1,...,N (resp.
(αp(t))p=1,...,N ). We denote also Kχ (x(t), x(t)) the 3N -by-
3N block matrix whose block p, q is given by the 3-by-3
matrix (K χ (x p(t), xq(t))). This matrix is symmetric, posi-
tive definite by definition of the kernel K χ .

Thanks to these notations, the norm of the speed vector
vt is written: ‖vt‖2V χ = α(t)t Kχ (x(t), x(t))α(t). For A, a

function from R
3 to R, we denote by dx A its Jacobian matrix

at point x , so that for any vector V : (dx A)V = (∇x A)t V . By
extension, ∇x A denotes the 3N vector (∇x1 A, . . . ,∇xN A).

With these notations, the regression criterion (17) becomes:

E
(
(α(t))t∈[0,T ]

) =
∑

ti

Ai (xti )+
T∫

0

Lχ (x(t),α(t))dt (39)

subject that:

dx(t)
dt
= f (x(t),α(t)) with x(0) = x0 (40)

where we denote:

f (x(t),α(t)) = Kχ (x(t), x(t))α(t)

Lχ (x(t),α(t)) = γχα(t)t f (x(t),α(t))
(41)

For the sake of simplicity, we will denote in the sequel,
f (t) and Lχ (t) instead of f (x(t),α(t)) and Lχ (x(t),α(t)).

A.2 Gradient in a matrix form

Let δE be a variation of the criterion E with respect to a
variation δα(t) of the momenta α(t):

δE =
∑

ti

(
dx(ti )Ai

)
δx(ti )+

T∫

0

(∂x Lχ (t))δx(t)

+(∂α Lχ (t))δα(t)dt (42)

where δx(t) denotes the variations of the positions x(t) with
respect to the variations of the momenta α(t). The differen-
tiation of the flow Eq. (40) shows that these variations δx(t)
satisfy a linear ODE with source term:

d

dt
δx(t) = (∂x f (t))δx(t)

+(∂α f (t))δα(t) with δx(0) = 0 (43)

We introduce the flow Rut for u, t ∈ [0, T ] which is solu-
tion of the homogeneous equation:

d Rut

dt
= Rut (∂x f (t)) with Rtt = Id (44)

The method of the variations of the parameters leads to
the following solution of the ODE:

δx(t) =
t∫

0

Rut∂α f (u)δα(u)du (45)

In particular, this shows that we can write the variations
δx(ti ) as:

δx(ti ) =
T∫

0

Rtti ∂α f (t)δα(t)1{t≤ti }dt (46)

where 1{t≤ti } = 1 if t ≤ ti and 0 otherwise.
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Now, we can plug these last two equations into (42). Using
Fubini’s theorem, which implies that

∫ T
0

∫ t
0 F(u, t)dudt =∫ T

0

∫ T
u F(u, t)dtdu = ∫ T

0

∫ T
t F(t, u)dudt for any L2 func-

tion F(u, t), this leads to:

δE =
T∫

0

(
∂α Lχ (t)

+
(∑

i

dx(ti )Ai Rtti 1{t≤ti } +
T∫

t

∂x Lχ (u)Rtudu
)

︸ ︷︷ ︸
η(t)t

∂α f (t)

)

δα(t)dt

(47)

This gives the gradient of E with respect to the L2 metric
as:

∇α E(t) = ∂α Lχ (t)t + ∂α f (t)tη(t) (48)

where we denote the auxiliary variable η(t):

η(t) =
∑

i

(Rtti )
t∇x(ti )Ai 1{t≤ti }

+
T∫

t

(Rtu)
t∂x Lχ (u)t du (49)

The auxiliary variable η(u) depends on the flows Rut and
therefore satisfies an ODE. To make this ODE explicit, we
write the inverse flow Rut in integral form. Noticing that
Rtu Rut = Id, we have d Rut

du = −∂x f (u)Rut , which gives in
integral form (noticing that Rut and f commute):

Rut = Id+
t∫

u

Rst∂x f (s)ds. (50)

Now, we can plug this equation into the definition of η(t)
in (49). Writing Rtti = Id + ∫ T

t Ruti ∂x f (u)1{u≤ti }du and
noticing that for any L2 function F(u, s), the Fubini’s theo-
rem implies that

∫ T
t

∫ u
t F(u, s)dsdu = ∫ T

t

∫ T
u F(s, u)dsdu,

this leads to:

η(t) =
∑

i

∇x(ti )Ai 1{t≤ti } +
T∫

t

∂x Lχ (u)t +

∂x f (u)t

⎛

⎜⎝
∑

i

(Ruti )
t∇x(ti )Ai 1{u≤ti }1{t≤ti } +

T∫

u

(Rus )
t ∂x Lχ (s)t ds

⎞

⎟⎠

︸ ︷︷ ︸
(�)

du

(51)

Now, we notice that t ≤ u within the integral, which
implies that 1{t≤ti }1{u≤ti } = 1{u≤ti }. Hence, (�) is exactly

equal to ηu . Therefore, ηt is the solution of the integral equa-
tion (integrated upstream in time):

η(t) =
∑

i

∇xti
Ai 1{t≤ti } +

T∫

t

∂x Lχ (u)t

+∂x f (u)tη(u)du (52)

A.3 Gradient in Coordinates

Due to the definition of the functions f and Lχ in (41), we
have:

∂x f = (∂1 + ∂2)(K
χ (x, x)α) ∂α f = Kχ (x, x)

∂x Lχ = γχαt ((∂1 + ∂2)K
χ (x, x)α

)
∂α Lχ = 2γχαt Kχ (x, x)

(53)

Therefore, the gradient of the regression criterion with
respect to the L2 metric given in (48) is now equal to:

∇α E(t) = Kχ (x(t), x(t))
(
2γχα(t)+ η(t)

)
.

The matrix Kχ (x(t), x(t)) is precisely the Sobolev met-
ric induced by the kernel on the set of L2 functions (see
Sect. 3.2.2), so that the gradient with respect to this metric is
given by:

∇αp E(t) = 2γχαp(t)+ ηp(t) (54)

The auxiliary variable η(t) satisfies the ODE (52), now
written as:

η(t) =
∑

i

∇xti
Ai 1{t≤ti } +

T∫

t

(
(∂1 + ∂2)Kχ (x(u),

x(u))α(u)
)t (

γχα(u)+ η(u)
)

du (55)

The 3N vector ∇xti
Ai is equal to (∇x1(ti )Ai , . . . ,∇xN (ti )

Ai ). For generic 3N vectors x, y and α, the kth coordinate
of the 3N -vector Kχ (x, y)α is given as: (Kχ (x, y)α)k =∑N

p=1 K χ (xk, yp)αp. The kernel K χ is scalar, namely of
the form K χ (x, y) = kχ (x, y)Id for a scalar function kχ .
We have therefore for every i, j = 1, . . . , N :

∂xi (K
χ (x, y)α) j =

N∑
p=1

αp
(∇1kχ (xi , yp)

)t
δ(i − j)

∂yi (K
χ (x, y)α) j = αi

(∇2kχ (x j , yi )
)t

(56)

Therefore, for a generic 3N -vector β, we have:

(
(∂1 + ∂2)

(
Kχ (x, y)α

)t
β
)

k
=

N∑

p=1

αt
pβk∇1kχ (xk, yp)

+αt
kβp∇2kχ (x p, yk) (57)

Now, we can apply this equation with y = x and β =
γχα+η and combine it with (55). Noticing that for a symmet-
ric kernel, we have∇1k(x, y) = ∇2k(y, x), we get eventually
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the set of ODEs satisfied by the functions ηp(t) as given
in (19).

B Differentiation of the Spatiotemporal Matching
Criterion

B.1 Matrix Notations

Let t0 = {t j } j=1,...,Ntarget be the vector of time-points associ-
ated to the target shapes. The 1D diffeomorphismψu changes
t0 into t(u) = {t j (u)} j=1,...,Ntarget for u ∈ [0, 1]. This vec-

tor satisfies the ODE: dt
du (u) = Kψ(β(u),β(u))t(u) with

t(0) = t0, where β(u) is the concatenation of the vectors
β j (u) defined in (23), Kψ(β(u),β(u)) is the block matrix
whose block (i, j) is given by: Kψ(βi (u), β j (u)).

Similarly, we denote x0(t) = {x p(t)}p=1,...,N be the con-
catenation of the positions of all the points of the source
evolution S(t) for any time-point t and x0(t(1)) the con-
catenation of the x0(t j (1)) for j = 1, . . . , Ntarget. The dif-
feomorphism φu maps this vector to x(u), which satisfies
the ODE: dx

du = Kφ(x(u), x(u))α(u) with initial condition:
x(0) = x0(t(1)) (which depends on the final time-points
t(1)), where α(u) is the concatenation of the vectors αp, j (u)
defined in (22) for p = 1, . . . , N and j = 1, . . . , Ntarget.

Therefore, we can write the matching criterion (4) as:

E(α(u),β(u)) = A(x(1))+
1∫

0

Lφ (x(u),α(u)) du

+
1∫

0

Lψ (t(u),β(u)) du (58)

subject to:

⎧
⎪⎨

⎪⎩

dx(u)
du
= f (x(u),α(u)) with x(0) = x0(t(1))

dt(u)
du
= g(t(u),β(u)) with t(0) = t0

(59)

where we denote:

f (x(u),α(u)) = Kφ(x(u), x(u))α(u)

g(t(u),β(u)) = Kψ(t(u), t(u))β(u)

Lφ(x(u),α(u)) = γφα(u)t f (x(u),α(u))

Lψ(t(u),β(u)) = γψβ(u)t g(t(u),β(u))

(60)

For the sake of simplicity, we will write in the sequel
f (u), g(u), Lφ(u) and Lψ(u) instead of f (x(u),α(u)),
g(t(u),β(u)), Lφ(x(u),α(u)) and Lψ(t(u),β(u))
respectively.

B.2 Gradient in a Matrix Form

Now, let δE be a variation of the criterion E induced by a
variation of the momenta δα(u) and δβ(u):

δE = (dx(1)A)δx(1)+
1∫

0

(∂x Lφ(u))δx(u)

+(∂α Lφ(u))δα(u)+ (∂t Lψ(u))δt(u)

+(∂β Lψ(u))δβ(u)du (61)

where we denote δx(u) and δt(u) the variations of the path
x(u) and t(u) induced by the variations of the momenta δα(u)
and δβ(u). These vectors satisfy the linear ODEs with source
term derived from (59):

d

du
δx(u) = (∂x f (u))δx(u)

+(∂α f (u))δα(u) with δx(0) = δx0(t(1))
d

du
δt(u) = (∂tg(u))δt(u)

+(∂βg(u))δβ(u) with δt(0) = 0 (62)

We introduce the flows Psu and Rsu for all s, u ∈ [0, 1],
which are solution of the homogeneous equations:

d

du
Psu = Psu(∂x f (u)) with Puu = Id

d

du
Rsu = Rsu(∂tg(u)) with Ruu = Id

(63)

The method of variations of the parameters leads to the
following solution of the ODEs:

δx(u) = P0uδx(0)+
u∫

0

Psu∂α f (s)δα(s)ds

δt(u) =
u∫

0

Rsu∂βg(s)δβ(s)ds

(64)

where the variations of the initial condition δx(0) =
δx0(t(1)) equals:

δx(0)=(dt(1)x0)δt(1)=(dt(1)x0)

1∫

0

Ru1∂βg(u)δβ(u)du,

(65)

according to (64).
Plugging (64) into (61) leads to the variation of the

criterion (noticing that for any L2 function F(s, u) we
have that

∫ 1
0

∫ u
0 F(s, u)dsdu = ∫ 1

0

∫ 1
s F(s, u)duds =∫ 1

0

∫ 1
u F(u, s)dsdu):
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δE =
(
(dx(1)A)P01 +

1∫

0

∂x Lφ(u)P0udu

︸ ︷︷ ︸
η(0)t

)
δx(0)

+
1∫

0

(
∂α Lφ(u)

+
(
(dx(1)A)Pu1 +

1∫

u

∂x Lφ(s)Pusds

︸ ︷︷ ︸
η(u)t

)
∂α f (u)

)

δα(u)du +
1∫

0

(
∂β Lψ(u)+

1∫

u

∂t Lψ(s)Rusds

∂βg(u)
)
δβ(u)du (66)

Now, we denote,

η(u)t = (dx(1)A)Pu1 +
1∫

u

∂x Lφ(s)Pusds (67)

which appears twice in (66) as η(0) and η(u). Given the
expression of δx(0) in (65), we have:

δE =
1∫

0

(
∂α Lφ(u)+ η(u)t∂α f (u)

)

δα(u)du +
1∫

0

(
∂β Lψ(u)

+
(
η(0)t (dt(1)x0)Ru1 +

1∫

u

∂t Lψ(s)Rusds

︸ ︷︷ ︸
ξ(u)t

)
∂βg(u)

)

δβ(u)du (68)

Denoting

ξ(u)t = η(0)t (dt(1)x0)Ru1 +
1∫

u

∂t Lψ(s)Rusds, (69)

we end up with the gradient of the criterion with respect to
the L2 metric written as:

{∇α E(u) = ∂α Lφ(u)t + ∂α f (u)tη(u)
∇β E(u) = ∂β Lψ(u)t + ∂βg(u)tξ(u)

(70)

The auxiliary variables η(u) and ξ(u) depend on the flows
Rus and Pus . Therefore they satisfy a ODE, which we need to
make explicit now. The inverse flows are written in integral

form as:

Pus= Id+
s∫

u

Prs∂x f (r)dr Rus= Id+
s∫

u

Rrs∂tg(r)dr,

(71)

so that the auxiliary variable η(u) satisfies:

η(u) = ∇x(1)A +
1∫

u

∂x Lφ(s)t ds +
1∫

u

∂x f (s)t (Ps1)
t

×(∇x(1)A)ds+
1∫

u

s∫

u

(∂x f (r))t (Prs)
t (∂x Lφ(s))t drds

(72)

where we denote ∇x A = (dx A)t for any scalar function A.
Since we have for any L2 functions F(r, s),

∫ 1
u

∫ s
u F(r, s)

drds = ∫ 1
u

∫ 1
s F(s, r)drds by permuting the two integrals,

we have:

η(u) = ∇x(1)A +
1∫

u

∂x Lφ(s)t + ∂x f (s)t

(
(Ps1)

t∇x(1)A +
1∫

s

(Psr )
t (∂x Lφ(r))t dr

︸ ︷︷ ︸
η(s)

)
ds (73)

The term in the brackets is exactly η(s), so that the integral
equation satisfied by η(u) is eventually given by:

η(u) = ∇x(1)A +
1∫

u

(∂x Lφ(s))t + (∂x f (s))tη(s)ds. (74)

Similar computations using the integral form of the flow
Rus leads to the integral equation satisfied by ξ(u):

ξ(u) = (dt(1)x0)
tη(0)+

1∫

u

(∂t Lψ(s))t + (∂tg(s))
tξ(s)ds.

(75)

B.3 Gradient in Coordinates

Given the definition of the functions f, g, Lφ and Lψ , we
have:

∂x f = (∂1 + ∂2)(Kφ(x, x)α) ∂α f = Kφ(x, x)

∂tg = (∂1 + ∂2)(Kψ(t, t)β) ∂β g = Kψ(t, t)

∂x Lφ = γφαt
(
(∂1 + ∂2)Kφ(x, x)α

)
∂α Lφ = 2γφα

t Kφ(x, x)

∂t Lψ = γψβ t
(
(∂1 + ∂2)Kψ(t, t)β

)
∂β Lψ = 2γψβ t Kψ(t, t)

(76)
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so that the gradient with respect to the Sobolev metric (the
matrices Kφ(x, x) and Kψ(t, t) factorize in (70)) is given as:
{∇α E(u) = 2γφα(u)+ η(u)
∇β E(u) = 2γψβ(u)+ ξ(u)

(77)

where

η(u) = ∇x(1)A +
1∫

u

(
(∂1 + ∂2)Kφ(x(s), x(s))α(s)

)t
(γφα(s)+ η(s))ds

(78)

and

ξ(u) = (dt(1)x0)
tη(0)+

1∫

u

(
(∂1 + ∂2)Kψ(t(s), t(s))β(s)

)t
(γψβ(s)+ ξ(s))

(79)

The 3N Ntarget vector ∇x(1)A is the concatenation of
the vectors ∇x p(t j (1))A for p = 1, . . . , N and j =
1, . . . , Ntarget. Similarly, the 3N Ntarget vector is the concate-
nation of the vectors {x p(t j (1))}p=1,...,N , j=1,...,Ntarget . dt(1)x0

is the 3N Ntarget-by-Ntarget matrix: (dt1(1)x0, . . . , dtNtarget
x0).

In the vector dt j (1)x0 almost every coordinate vanishes
except the ones corresponding at the jth block of size 3N :
(dt j (1)x1(t j (1)), . . . , dt j (1)xN (t j (1))) (since dt j (1)x p(ti (1))=
0 when i 	= j). Therefore, we have: (dt j (1)x0)

tη =
∑N

p=1

(
dx p
dt (t j (1))

)t
ηp, j , which is the jth coordinate of the

Ntarget vector (dt(1)x0)
tη.

Eventually, using the generic expression (57) for scalar
kernels K φ(x, y) = kφ(x, y)Id and Kψ(x, y) = kψ(x, y)Id,
the evolution of η(u) and ξ(u) in (78) are written in coordi-
nates as in (28) and (29).

C Algorithms

Algorithm 1 Temporal shape regression
1: Input:
2: A set of time-indexed shapes {(S j , t j )}
3: A baseline S0 = {x p}p=1,...,N
4: A discretization of the interval [0, T ]: t0 = 0, . . . , tNtime = T
5:
6: Initialization:
7: for all p = 1, . . . , N , for all n = 0, . . . , Ntime, αp(tn)← 0
8:
9: {Gradient descent}
10: repeat
11: {Compute positions of the moving baseline (forward integra-

tion)}
12: x p(t0)← x p
13: for n = 0, . . . , Ntime − 1 do
14: for i = 1, . . . , N do
15: v =∑N

q=1 K χ (x p(tn), xq (tn))αq (tn)
16: x p(tn+1)← x p(tn)+ v
17: end for
18: end for
19:
20: {Compute Gradient (backward integration)}
21: ηp(tNtime )← 0
22: for n = Ntime, . . . , 1 do
23: if tn is one of the t j (time-points associated to the shape S j )

then
24: for p = 1, . . . , N do
25: ηp(tn)← ηp(tn)+∇p An (gradient of the matching term)
26: end for
27: end if
28: for p = 1, . . . , N do

29: vη =∑N
q=1

(
αp(tn)tηq (tn)+ αq (tn)tηp(tn)

30: +2γ χαp(tn)tαq (tn)
)
∇1kχ (x p(tn), xq (tn))

31: ηp(tn−1)← ηp(tn)+ vη
32: end for
33: end for
34:
35: {Update momenta α according to the gradient}
36: for n = 0, . . . , Ntime do
37: for p = 1, . . . , N do
38: αp(tn)← αp(tn)− τ

(
2γ χαp(tn)+ ηp(tn)

)

39: end for
40: end for
41: until convergence
42:
43: Output: the shape evolution x p(tn).
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Algorithm 2 Spatiotemporal Registration
1: Input:
2: A source growth scenario x p(tn) for p = 1, . . . , N and n =

1, . . . , Ntime
3: Target shapes U j associated to time-points t j , j = 1, . . . , Ntarget
4: Discretization of the interval [0, 1]: u0 = 0, . . . , uNu = 1
5:
6: Initialization:
7: for p = 1, . . . , N , for j = 1, . . . , Ntarget do αp, j ← 0 end for end

for
8: for j = 1, . . . , Ntarget do β j ← 0 end for
9:
10: {Gradient descent}
11: repeat
12: {Compute spatiotemporal deformation of the source (forward inte-

gration: time then space)}
13: t j (u0)← t j
14: for k = 0, . . . , Nu − 1 do
15: for j = 1, . . . , Ntarget do

16: v =∑Ntarget
i=1 Kψ(t j (uk ), ti (uk ))βi (uk )

17: t j (uk+1)← t j (uk )+ v
18: end for
19: end for
20: x p, j (u0)← x p(t j (uNu ))

21: for k = 0, . . . , Nu − 1 do
22: for j = 1, . . . , Ntarget, p = 1, . . . , N do

23: v =∑Ntarget
i=1

∑N
q=1 Kφ(x p, j (uk ), xq,i (uk ))αq,i (uk )

24: x p, j (uk+1)← x p, j (uk )+ v
25: end for
26: end for
27:
28: {Compute Gradient (backward integration: space then time)}
29: ηi,p(uNu )← ∇x p,i (1)A {Gradient of the matching term}
30: for k = Nu , . . . , 1 do
31: for p = 1, . . . , N , i = 1, . . . , Ntarget do

32: vη = ∑N
q=1

∑Ntarget
j=1

(
αp,i (uk )

tηq, j (uk ) +
ηp,i (uk )

tαq, j (uk )

33: +2γ φαp,i (uk )
tαq, j (uk )

)
∇1kφ(x p,i (uk ), xq, j (uk ))

34: ηi,p(uk−1)← ηi,p(uk )+ vη
35: end for
36: end for
37: ξ j (uNu )←

∑N
p=1

dx p(t)
dt (t j (uNu ))

tηp, j (u0)

38: for k = Nu , . . . , 1 do
39: for j = 1, . . . , Ntarget do

40: vξ ←∑Ntarget
i=1

(
β j (uk )

t ξi (uk )+ ξ j (uk )
tβi (uk )

41: +2γψβ j (uk )
tβi (uk )

)
∇1kψ(t j (uk ), ti (uk ))

42: ξ j (uk−1)← ξ j (uk )+ vξ
43: end for
44: end for
45:
46: {Update momenta α and β according to the gradient}
47: for k = 0, . . . , Nu do
48: for p = 1, . . . , N , j = 1, . . . , Ntarget do

49: αp, j (uk )← αp, j (uk )− τ
(

2γ φαp, j (uk )+ ηp, j (uk )
)

50: β j (uk )← β j (uk )− τ
(

2γψβ j (uk )+ ξ j (uk )
)

51: end for
52: end for
53: until convergence
54:
55: Output:
56: the registered source shapes φ(x p(ψ(t j ))) = x p, j (uNu )

57: the parameterization of the morphological deformation
(x p, j (uk ), αp, j (uk ))

58: the parameterization of the time warp (t j (uk ), β j (uk ))

Algorithm 3 Spatiotemporal Atlas Construction

1: Input: A set of time-indexed shapes {(Ss
j , t s

j )}
s=1,...,Nsubj

j=1,...,N s
target

, where Ss
j

is the jth scan (out of N s
target) of the sth subject (out of Nsubj) at age

t s
j .

2:

3: M0 ← 1

Nsubj

Nsubj∑
s=1

Ss
1

4: M(t)← χt (M0) the regression of every shapes Ss
j at time points t s

j
(using Algorithm 1)

5: repeat
6: {Template-to-subject registration}
7: for s = 1 . . . Nsubj do
8: (φs , ψ s)← spatiotemporal registration of M(t) to Ss

j for j =
1, . . . , N s

subj (using Algorithm 1)
9: end for
10:
11: {Center the template}
12: Φs, j ← φs ◦ χψs (t s

j )
for all s = 1, . . . , Nsubj and j =

1, . . . , N s
target

13: M0 ← CenterTemplate(M0, {Φs, j }, {Ss
j }) (Algorithm 4 of Dur-

rleman (2010))
14:
15: {Update the mean scenario}
16: M(t) ← χt (M0) the regression of every shapes (φs)−1(Ss

j ) at
time points ψ s(t s

j ) (using Algorithm 1)
17: until convergence
18:
19: Output:
20: One mean scenario M(t) = χt (M0)

21: Nsubj spatiotemporal deformations (φs , ψ s)
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