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Abstract

Shape statistics in neuroimaging studies consist in finding variations in brain
structure from a set of segmented contours. Contours in brain images are in-
dicative of numerous boundaries between tissues. Their intrinsic shape is not
more important than the relative position between them, and with the back-
ground which may also contain boundaries, but that are not visible at the
current resolution. We propose here a generic statistical model for such com-
plex of surfaces, which is based on di↵eomorphic deformations that warp the
ambient 3D space while preserving the internal organization of tissues. The
method estimates a template shape complex which integrates shape invari-
ants in a given data set. Variability is quantified by space deformations that
warp the template to each individual complex. Their parameters are used
as shape descriptors for statistical purposes. The method estimates simul-
taneously shape variants from data and an optimal basis of fixed dimension
for the decomposition of the shape descriptors, therefore alleviating the need
for post-hoc dimension reduction technique. The approach is illustrated in
a typical neuroimaging study of Down syndrome. It shows that a complex
of deep brain structures has a statistically significant di↵erent shape accord-
ing to the copy number of chromosome 21 (p < 10�3). The model classifies
subjects with very high specificity and sensitivity, thus showing important
generalization capability, even with a very limited number of samples. These
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results are stable if the dimension of the parameterization is drastically re-
duced, and might even suggest an increased statistical performance in lower
dimension. The method highlights realistic and interpretable patterns of
anatomical variations. It has therefore a great potential to find anatomical
biomarkers of brain disorders or give insights into pathophysiology.

Keywords: morphometry, deformation, varifold, anatomy, shape, statistics

1. Introduction

The blooming of non-invasive imaging methods has made possible the
analysis of anatomical phenotypic variations over larger and larger data col-
lections. Magnetic Resonance Images (MRI) are used to reveal and quantify
e↵ects of pathologies on anatomy, such as hippocampal atrophy in neurode-
generative diseases or change in neuronal connectivity in neurodevelopmental
disorders. In clinical trials, MRIs are used to assess the e↵ectiveness of drugs
or treatments on disease progression. Digital anatomical models are built
from the extraction of structures of interest in images, which usually take
the form of a set of 3D surfaces, called a shape complex. The quantification
of phenotypic variations of shape complexes across individuals or populations
is crucial to gives insights into pathophysiology, to detect early biomarker of
disease onset or to correlate phenotypes with functional or genotypic vari-
ations, for instance. Not only the quantification is important, but also the
description of the significant anatomical di↵erences between individuals or
groups, to interpret the findings and drive the search for hypothesis.

Geometric morphometric methods rely on carefully defined correspon-
dences between homologous positions on surfaces called landmarks (Book-
stein, 1991; Dryden and Mardia, 1998). Landmark-free metrics often make
strong assumptions about the topology of the surface, whether they work
only for genus zero surfaces (Chung et al., 2003; Boyer et al., 2010), use me-
dial representations (Styner et al., 2005; Bouix et al., 2005; Gorczowski et al.,
2010) or Laplace-Beltrami eigenfunctions (Reuter et al., 2006). Therefore,
they can be rarely applied to raw surface meshes resulting from segmenta-
tion algorithms, as they might have small holes, irregular sampling, or may
consist of di↵erent sheets.

More importantly, such metrics deal with individual shape components,
without taking into account the relations among components within a com-
plex. By contrast, we believe that it is crucial to define metric on shape
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complexes, especially to study brain anatomy that consists in an intricate
network of various structures with strong interrelationships. Metrics of indi-
vidual components could be summed up, or correlations among components
could be measured (Gorczowski et al., 2010), but these approaches do not
constrain the preservation of the complex structure in the statistical analysis,
and therefore may yield unrealistic anatomical configurations with collisions
between components.

One way to address this problem is to consider surfaces as a set of con-
tours embedded in the 3D space and to measure shape variations induced by
the deformation of the underlying 3D space. This idea stems from Grenan-
der’s group theory for modeling objects (Grenander, 1994), which revisits
morphometry by the use of 3D space deformations. Similarity between shape
complexes is then quantified by the “amount” of deformation needed to warp
one shape complex to another. Only smooth and invertible 3D deformations
(i.e. di↵eomorphisms) are used, so that the internal organization of the
shape complex is preserved during deformation: neither surface intersection
or shearing may occur. The coherence of the underlying biological tissue is
preserved, which includes structures that might not have been segmented
from the original images, or that might not be visible at image resolution.
Such space deformations integrate correlations among surface components,
while enforcing topological constraints.

This approach contrasts with most shape statistics techniques, which es-
sentially build on the idea that points on surfaces correspond, such corre-
spondences resulting either from manual indication of homologous points
or from surface-to-surface mapping. Here, we assume point correspondence
in the whole 3D volume instead, the surfaces being used as constraints in
the search for those correspondences. As a result, surfaces do not perfectly
match, thus making the method more robust to segmentation errors. This
approach shares similarities with iconic methods that use image intensities
as constraints. However, iconic methods give more weight to high-contrast
contours, such as the ventricles boundaries, and less weight to low-contrast
contours such as those of the deep brain nuclei. Using labeled surfaces adds
also the information about the homology of surfaces. Knowing that homol-
ogous surfaces need to correspond, one alleviates the problem of structure
mismatch that is typical of iconic methods.

In this paper, we propose a generic method for the statistical analysis
of collections of shape complexes, which builds on the implementation of
Grenander’s theory in the LDDMM framework (Miller et al., 2006; Vaillant
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et al., 2007; McLachlan and Marsland, 2007). The method estimates simul-
taneously a template shape complex, which averages out the shape charac-
teristics of every individual, and 3D deformations which warp the template
to each individual’s complex. Template and deformations altogether is called
an atlas.

The template is an ideal representation of the shape complex. The user
freely chooses its structure and sampling: number of connected components,
number of vertices and edges in each component. Then, the method au-
tomatically adjusts the positions of the vertices, integrating shape features
captured in individuals, while preserving the template structure. In contrast
to previous attempts (Glaunès and Joshi, 2006; Durrleman et al., 2009; Ma
et al., 2008), the template can have one connected component per anatomi-
cal structures and its initialization is not biased toward a particular subject.
To measure similarity between the template complex with a given topology
and complexes of individuals which may have di↵erent sampling and mesh
imperfections, we use the metric of varifolds that does not assume point cor-
respondence across surfaces and is robust to variations in meshing (Charon
and Trouvé, 2013). It extends the currents (Vaillant and Glaunès, 2005)
in that it does not need consistent surface orientation across samples, thus
further reducing the need for pre-processing and user intervention. It also
enables to study folded surfaces, such as the cortex, whose folds cancel out
in currents. Conversely, it also prevents smooth surfaces from folding during
deformation instead of pushing their boundary.

This metric is used to drive the estimation of space deformations that
warp the template complex to each individual complex. Deformation param-
eters give the relative position of each individual with respect to the template
on a Riemannian manifold. They are used for the statistical analysis of shape
variations within or between groups (Vaillant et al., 2004; Pennec, 2006). We
adopt here a control point parameterization of space deformations. The num-
ber of control points is fixed by the user and the method automatically ad-
justs their position near the most variable parts of the shape complex. Each
control point integrates information in a 3D neighborhood and is not linked
to a particular surface as in (Vaillant and Glaunès, 2005). In this setting, the
dimension of the shape descriptor used in statistics is controlled, and does
not explode with the number of surfaces and their sampling (Vaillant and
Glaunès, 2005). We show that statistical performance is not altered by this
finite-dimensional approximation and that these parameters can robustly de-
tect fine anatomical di↵erences in a typical low sample size study. In some
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cases, the statistical performance is even increased, as the ratio between the
number of subjects and the number of parameters becomes more favorable.

The originality of the method lies in the combination of di↵erent tech-
niques that have been developed in the recent past within the LDDMM
community. It is the first time that one combines (i) the sparse parameteri-
zation of di↵eomorphisms introduced in the LDDMM literature in Durrleman
et al. (2013), (ii) the technique to control the topology of the template shape
complex introduced in Durrleman et al. (2012) and (iii) the varifold metric
to compare meshes without the need for consistent orientation introduced
in Charon and Trouvé (2013). These techniques are now combined into a
simplified theoretical framework thanks to a formulation inherited from op-
timal control theory. In the following, we give a self-contained presentation
of the method, which can be accessible to readers who might not be familiar
with the LDDMM literature. Then, we will follow with a typical anatomical
study of Down syndrome, which will show the potential of the method.

2. Mathematical Framework

2.1. Kernel formulation of splines

In the spline framework, 3D deformations � are of the form �(x) = x +
v(x), where v is a displacement field that is a sum of radial basis functions
K located at control point positions {ck}k=1,...,N

cp

:

v(x) =

N
cpX

k=1

K(x, ck)↵k, (1)

where ↵
1

, . . . ,↵N
cp

are vector weights and K(x, y) is a scalar function on
R3 ⇥ R3, such as the Gaussian K(x, y) = exp(� |x� y|2 /�2

V ) that we will
use in the applications.

It is beneficial to assume that K is a positive definite symmetric kernel,
namely that K is continuous and that for any finite set of distinct points
{xi}i and vectors {↵i}i:

X

i

X

j

K(xi, xj)↵i
T
↵j � 0, (2)

the equality holding only if all ↵i vanish. Translation invariant kernels are of
particular interest. According to Bochner’s theorem, functions of the form
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K(x�y) are positive definite kernels if and only if their Fourier transform is a
positive definite operator ((2) is then a discrete convolution). This enables to
easily check that the previous Gaussian function is indeed a positive-definite
kernel, among other possible choices.

Assuming K is a kernel allows us to define the pre-Hilbert space V as
the set of any finite sums of terms K(., x)↵ for vector weights ↵. Given two
vector fields v

1

=
P

i K(., xi)↵i and v

2

=
P

j K(., yj)�j, (2) ensures that the
bilinear map

hv
1

, v

2

iV =
X

i

X

j

K(xi, yj)↵i
T
�j (3)

defines an inner-product on V . This also shows that any vector field v 2 V

satisfies the reproducing property:

hv,K(., x)↵iV = v(x)T↵ (4)

As shown in Zeidler (1991) such vector spaces could be “completed” into a
Hilbert space, for which (4) hold, called Reproducing Kernel Hilbert Space
(RKHS).

Using matrix notations, we denote x and ↵ (resp. y and �) in R3N (resp.
R3M) the concatenation of the 3D vectors xi and ↵i (resp. yj and �j), so
that the dot product (3) writes hv

1

, v

2

iV = ↵TK(x,y)�, where K(x,y) is
the N ⇥M matrix with entries K(xi, yj).

2.2. Flows of di↵eomorphisms

The main drawback of spline deformations is its non-invertibility, as soon
as the magnitude of v(x) or its Jacobian is “too” large. The idea to build
di↵eomorphisms is to use the vector field v as an instantaneous velocity
field instead of a displacement field. Formally, one integrates the di↵erential
equation for t 2 [0, 1]:

@�t

@t

= vt � �t, �

0

= IdR3

, (5)

where vt is a time-varying velocity field of the form:

vt(x) =

N
cpX

i=1

K(x, ck(t))↵k(t) (6)

It is shown in Miller et al. (2006) that (5) could be integrated over t 2 [0, 1]
for any square integrable time-varying vectors ↵k(t), and that the solution
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x ! �t(x) is a time-varying flow of 3D di↵eomorphisms. The di↵eomor-
phism at time t = 1 is the deformation of interest. Any point x

0

follows the
trajectory x(t) = �t(x0

) which is the integral curve of ẋ(t) = vt(x(t)) with
x(0) = x

0

. In particular, control points c
0

= {c
0,k} move along the integral

curves of (using matrix notations),

ċ(t) = K(c(t), c(t))↵(t), c(0) = c
0

. (7)

The time-varying vectors ↵(t) which enables to reach a given deformation
�

1

from �

0

= IdR3 are not unique. According to Lagrangian principles, we
choose the time-varying vectors that minimize the kinetic energy along the
path: Z

1

0

kvtk2V dt =

Z
1

0

↵(t)TK(c(t), c(t))↵(t)dt, (8)

considering c(0) and c(1) fixed. We show in Appendix A that minimizing
vectors satisfy geodesic equations that write, combining them with (7):

8
>>>>><

>>>>>:

ċk(t) =

N
cpX

p=1

K(ck(t), cp(t))↵p(t)

↵̇k(t) = �
N

cpX

p=1

↵k(t)
T
↵p(t)r1

K(ck(t), cp(t))

(9)

One could easily check that kvtkV is constant along such geodesic paths.
Therefore, kv

0

kV is the length of the geodesic path which connects �
0

= IdR3

to �
1

.
Denoting S(t) = {c(t),↵(t)} the state of the system of control points at

time t, (9) could be written in short as

Ṡ(t) = F (S(t)), S(0) = {c
0

,↵
0

}. (10)

Given initial position of control points c
0

and initial vectors ↵
0

(called
momenta in this context), the solution of this coupled ODEs parameterizes
a time-varying velocity field vt via (6), and therefore a geodesic flow of dif-
feomorphisms �t(x) via (5). To be more precise, let X

0

be the concatenation
of points in 3D, then these points move in space to �t(X0

) that we denote
X(t). Given (6) and (5), X(t) is the solution of the ODE Ẋ(t) = vt(X(t)) =
K(X(t), c(t))↵(t) with X(0) = X

0

. We write this ODE in short as:

Ẋ(t) = G(X(t),S(t)), X(0) = X
0

(11)
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2.3. Varifold metric between surfaces

To estimate a di↵eomorphism that best matches two surfaces, we need
a similarity metric between any pair of surfaces S and S 0. We adopt the
varifold model (Charon and Trouvé, 2013): a rectifiable surface is seen as

continuous linear form on W , a subspace of smooth scalar fields on R3⇥ !S ,

where
 !S denotes the quotient of the unit sphere in R3 by the two elements

group {±IdR3} (i.e. the set of non oriented directions). In the sequel,  !u
denotes the class of u 2 R3 in

 !S . For a rectifiable surface S seen as a vector
in W

⇤, the dual of W , and ! 2 W , we define the dual bracket as:

S(!) =
Z

S
!(x,

 �!
n(x))d�(x), (12)

where n(x) denotes the normal of S at point x and d�(x) the volume form.
This definition does not require the surface S to be orientable and is invariant
under normal flipping.

For computational reasons (Vaillant and Glaunès, 2005; Durrleman et al.,

2009), we assumeW to be a separable RKHS on R3⇥ !S with kernel K chosen
as:

K ((x, !u ) , (y, !v )) = K

W (x, y)

✓
u

T
v

|u| |v|
◆

2

(13)

where K

W is typically a Gaussian kernel of width �W .
The reproducing property (4) shows that:

S(!) =
D
!,

R
S K((x,

 �!
n(x)), (., .)) |n(x)| dx

E

W
=
⌦
!,L�1

W (S)↵
W
,

where L�1

W maps S to its Riesz representant in W .
Therefore, the inner-product between two rectifiable surfaces S and S 0 is

hS,S 0iW ⇤ = S(L�1

W (S 0)) =

Z

S

Z

S0
K

W (x, x0)

✓
n(x)Tn(x0)

|n(x)| |n(x0)|
◆

2

d�(x)d�(x0) (14)

If S and S 0 are surface meshes, this inner-product could be approximated
by (accounting for cells areas)

hS,S 0iW ⇤ =
X

p

X

q

K

W (cp, c
0
q)
�
u

T
p u

0
q

�
2

(15)
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where cp and np (resp. c

0
q and n

0
q) denotes the centers and normals of the

faces of S (resp. S 0), up = np/ |np|1/2 and u

0
p = n

0
p/

��
n

0
p

��1/2.
For S a rectifiable surface and � a di↵eomorphism, the surface �(S) can

still be seen as a varifold. Indeed, a change of variables shows that for ! 2 W ,

�(S)(!) = S(�?!) where �?!(x, !n ) =
��(dx��1)Tn

��
!(�(x),

 �����!
(dx��1)Tn) (Charon

and Trouvé, 2013). Therefore, the varifold metric can be used to search for
the di↵eomorphism � that best matches S with S 0 by minimizing dW (�(S),S 0)2 =
k�(S)� S 0k2W ⇤ , without the need to find point correspondence between meshes
and in a way which is robust to mesh imperfections at scale smaller than ker-
nel width �W , like noise, small holes, shearing or re-meshing.

2.4. Atlas construction method

Let {Oi} be a set of N
su

surface complexes, each complex being made
of meshes Si,1, . . . ,Si,N . This is typically a set of N anatomical struc-
tures segmented in N

su

subjects. In the context of Fréchet means, the
template complex O

0

is defined as the minimizer of the sample variance:
O

0

= argmin
P

i d�(O0

,Oi)2, where we use as metric d� the length of the
geodesic flow of di↵eomorphisms which connects O

0

to Oi, namely kvi
0

kV
where the velocity v

i
0

parameterize the flow �

vi
0

t such that �
vi
0

0

(O
0

) = O
0

and

�

vi
0

1

(O
0

) = Oi.
Such a flow that exactly connects two surface meshes does not necessarily

exist, and is not even desirable to avoid over-fitting. Therefore, we use the
following relaxed formulation of the criterion to be minimized:

E(O
0

, {vi
0

}) =
N

suX

i=1

(
NX

k=1

1

2�2

k

dW (�
vi
0

1

(S
0,k),Si,k)

2 +
��
v

i
0

��2
V

)
(16)

where �2

k play the role of one Lagrange mutliplier per surface mesh, and
where the metric on varifolds dW is used to constrain the ith deformation
to match the kth shape within the template complex O

0

(i.e. S
0,k) with its

homologous shape within the ith subject’s complex Oi (i.e. Si,k). The sum of

kvi
0

k2V is the sample variance: it attracts the template complex to the “mean”
of the set.

To minimize (16), we make the following assumptions. The template
object O

0

consists of N surface meshes, whose number of vertices and edges
are fixed by the user. The initial velocities vi

0

are parameterized by momenta
↵

i
0,p attached to control points c

0,p whose number is also fixed by the user.
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Control points are the same for all subjects, so that each velocity v

i
0

share the
same parameterization. Momenta ↵i

0,p are subject-specific and parameterize
N

su

di↵erent deformations.
Let Si

0

= {c
0,p,↵

i
0,p} denote the parameters of vi

0

, and X
0

the vertices
of every template surface concatenated into a single vector. The flow of
di↵eomorphisms results from the integration of N

su

di↵erential equations, as
in (10): Ṡi(t) = F (Si(t)) with Si(0) = Si

0

. As in (11), X
0

follows the integral
curve of N

su

di↵erential equations: Ẋi(t) = G(Xi(t),Si(t)) with Xi(0) = X
0

.

The final value being Xi(1) = �

vi
0

1

(X
0

), the criterion (16) becomes:

E(X
0

, {Si
0

}) =
N

suX

i=1

A(Xi(1)) + L(Si
0

) (17)

where A denotes the weighted sum of data attachment terms dW (Xi(1),Si,k)2

and L(Si
0

) = kvi
0

k2V = ↵i
0

T
K(c

0

, c
0

)↵i
0

.
As proven in Appendix B, the gradient of E is given as:

8
><

>:

r↵i
0

E = ⇠↵,i(0) +r↵i
0

L(Si
0

)

rc
0

E =
N

suX

i=1

�
⇠c,i(0) +rc

0

L(Si
0

)
�
, rX

0

E =
PN

su

i=1

✓i(0),

where the auxiliary variables ⇠i(t) = {⇠c,i(t), ⇠↵,i(t)} (of the same size as
Si(t)) and ✓i(t) (of the same size as X

0

) satisfy the linear ODEs (integrated
backward in time):

8
<

:
✓̇
i
(t) = �

⇣
@

1

G(Xi(t),Si(t))
⌘T

✓i(t), ✓i(1) = rXi
(1)

A

⇠̇
i
(t) = ��@

2

G(Xi(t),Si(t)
�T

✓i(t)� dSi
(t)F

T⇠i(t), ⇠i(1) = 0

Data come into play only in the gradient of the varifold metric with re-
spect to the position of the deformed templaterXi

(1)

A (derivation is straight-
forward and given in Appendix C). This gradient shows in which direction
the vertices of the deformed template have to move to decrease the criterion.
This could be achieved in two ways, by optimizing the shape of the template
complex and the deformations matching the template to each complex. The
vector ✓i transports the gradient back to t = 0 where it is used to update the
position of the vertices of the template complex. The vector ⇠i interpolates
at the control points the information in ✓i that is located at the template
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points, and is used at t = 0 to update deformation parameters. A striking
advantage of this formulation is that one single gradient descent optimizes
simultaneously the template shape and deformation parameters.

This gradient has been computed using the L2 metric for template points
X

0

. To prevent self-intersections during template evolution by the gradient
descent s! X

0

(s), we compute the gradient for a metric given by a Gaussian
kernel KX with width �X , so that the gradient used in practice is:

rX
x
0,k
E =

N
suX

i=1

N
xX

p=1

K

X(x
0,k, x0,p)✓

i
p(0). (18)

As shown in Appendix D, this new gradient rX
E is the restriction to X

0

of
a smooth vector field us. Therefore, at any step s of the gradient descent,
X

0

(s) =  s(X0

(0)) where  s is the family of di↵eomorphisms integrating the
flow of us.

Eventually, the criterion is minimized using a line search gradient descent
method. The algorithm is initialized with template surfaces given as ellip-
soids, control points located at the nodes of a regular lattice and momenta
vectors set to zero (i.e. no deformation). At convergence, the method yields
the final atlas: a template shape complex, optimized positions of control
points and deformation momenta (more details in Appendix E). The vectors
↵

i
0,k that are all attached to the same points c

0,k characterize the distribution
of the data around the template. They are the tangent-space representations
of the deformations that are used for statistics.

3. Application to a Down syndrome neuroimaging study

We evaluate our method on a dataset of 3 anatomical structures seg-
mented from MRIs of 8 Down syndrome (DS) subjects and 8 control cases.
The hippocampus, amygdala and putamen of the right hemisphere (respec-
tively in green, cyan and orange in figures) form a complex of grey mat-
ter nuclei in the medial temporal lobe of the brain. This study aims to
detect complex non-linear morphological di↵erences between both groups,
thus going beyond size analysis that already showed DS subjects to have
smaller brain structures than controls (Korenberg et al., 1994). To discard
any linear di↵erences, including size, we co-register all shape complexes us-
ing a�ne transforms. We construct then an atlas from pooled data, setting
�V = 10mm, �W = 5mm, �X = �V /2 and �k = �V for all nuclei, and control
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points initially located at the nodes of regular lattice of step �V , yielding a
set of 105 points (see Appendix F). Rationale behind parameter setting and
robustness of results with respect to their values is discussed in Sec. 3.6 and
Appendix E.2.

3.1. Group di↵erences

The template shape complex resulting from the atlas construction (Fig. 1-
a) averages the shape characteristics of every individual in the data set. The
position of each subject’s anatomical configuration (either DS or controls)
with respect of the template configuration is quantified by initial momentum
vectors located at control point positions (arrows in Fig. 1). Each set of
momentum vectors defines a 3D dense deformation that warp the template
complex to each individual’s complex via the integration of the geodesic
shooting equations (10) followed by the flow equations (11).

To highlight group di↵erences, we compute the sample mean of the mo-
menta for each group separately. We then deform the template complex in
the direction of both means, thus showing anatomical configurations that are
typical of each group (Fig. 2). It shows that DS subjects nuclei are turned
toward the left part of the brain, with an other torque that pushes the hip-
pocampus tail (its posterior part) toward the superior part of the brain, and
the head toward the inferior part. These two torques are more pronounced
near the hippocampus/amygdala boundary than in the hippocampus tail or
upper putamen region. DS subjects amygdala has also lesser lateral extension
than controls.

We perform a Linear Discriminant Analysis (LDA) to exhibit the most
discriminative axis between both groups in the momenta space (more in
Appendix G). The deformation of the template complex in the direction
of the most discriminative axis (Fig. 3) reveals similar thinning e↵ects and
torques as in Fig. 2. It also shows that DS subjects putamens are more
bended.

3.2. Statistical significance

We estimate the statistical significance of the above group di↵erences
using permutation tests. Each subject’s data is characterized by a shape
descriptor of dimension 3 times the number of control points (namely the
concatenation of the momentum vectors), so that we can use multivariate
statistics and then avoid the problem of correction for multiple comparisons.
In our experiments, however, the number of subjects is always smaller than
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Initial Atlas Final Atlas 

a - Atlas construction with 105 control points

Initial Atlas Final Atlas 

b- Atlas construction with 8 control points

Figure 1: Atlas estimated from di↵erent initial conditions. Top: 105
control points with initial spacing equal to the deformation kernel width
�V = 10 mm, Bottom: 8 control points. Arrows are the momentum vectors
of DS subjects (red) and controls (blue)
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Anterior Right 

Figure 2: Template complex deformed
using the mean deformation of controls
(transparent shapes) and DS subjects
(opaque shapes)
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Figure 3: Most discriminative defor-
mation axis. Di↵erences are amplified,
since the distance between the two
configurations is twice the distance be-
tween the means. (black grids have
been mapped to the surface for visual-
ization only)
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the dimension of the descriptor, in which case the distribution Hotelling T

2

statistics cannot be computed.
We address this issue by selecting the first modes of the average of the

two within-class covariance matrices (See Appendix G.3 for details). For a
number of modes N

modes

that is smaller than the number of subjects, the
directions of modes define a subspace of N

modes

dimension in the parameter
space, onto which individual shape descriptors are projected. The Hotelling
T

2 statistics is then computed in this subspace.
To estimate the distribution of the Hotelling statistics under the null

hypothesis of equal means, we repeat the above procedure by permuting the
subjects’ indices 105 times. Each permutation changes the empirical means
and within-class covariance matrices, and then the selected subspace and
the statistics. The p-value which corresponds to the number of modes that
explains 95% of the within-class covariance is p = 10�3.58, thus showing that
anatomical di↵erences highlighted in Fig. 2 are statistically significant.

3.3. Sensitivity and specificity using cross-validation

Over-fitting is a common problem of statistical estimations in high dimen-
sion low sample size setting. We perform leave-out experiments to evaluate
the generalization errors of our model, namely its sensitivity and specificity.

We compute an atlas with the same parameters and initial conditions
but with one control and one DS subject data out, yielding 82 = 64 gradient
descents (note that this is a design choice: one does not necessarily need
to have balanced groups to apply the method). For each experiment, we
register the template shape complex to each of the left-out complex (by
minimizing (16) for N

su

= 1 and considering template and control points of
the atlas fixed). The resulting momentum vectors are compared with those of
the atlas. We classify based on Maximum Likelihood (ML) ratios and LDA
(details in Appendix G). The very high sensitivity and specificity reported
in Table 1 (first row) show that the anatomical di↵erences between DS and
controls that were captured by the model are not specific to this particular
data set, but are likely to generalize well to independent data sets.

3.4. Shape complexes versus bags of shapes

In this section, we aim to emphasize the di↵erences between using a single
model of shape complex and using di↵erent models for each component.

We perform the same experiments as described above, but for each of the
three structures independently. The atlas of each structure has its own set
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LDA ML

specificity sensitivity specificity sensitivity

Shape complex 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)

Hippocampus 97 (62/64) 87 (56/64) 92 (59/64) 100 (64/64)

Amygdala 98 (63/64) 100 (64/64) 91 (58/64) 100 (64/64)

Putamen 75 (48/64) 100 (64/64) 98 (63/64) 100 (64/64)

Composite 97 (62/64) 100 (64/64) 100 (64/64) 100 (64/64)

Table 1: Classification with 105 control points using LDA or ML classifier.
Scores (in percentage) are computed using our descriptor for shape complex
(first row), only one structure at a time (rows 2-4) or a composite descriptor
(fifth row)

of control points and momentum vectors. The hypothesis of equal means
for DS and control subjects is rejected with probability of false positive of
p = 10�2.45 for the hippocampus, p = 10�2.33 for the putamen and p = 10�3.92

for the amygdala. The statistical significance is lower for the hippocampus
and the putamen than for the shape complex (p = 10�3.58), and higher
for the amygdala. The classification scores reported in Table 1 (rows 2 to
4) show that none of the structures alone could predict subject’s status as
well as the shape complex. Although the model for amygdala has a higher
statistical significance, this is at the cost of lower specificity in the Maximum
Likelihood approach.

We deform each structure along their most discriminative axis. Because
the 3 deformations are not combined into a single space deformation, in-
tersections between surfaces occur (Fig. 4). The deformation of the amyg-
dala, though highly significant, is not compatible with the deformation of the
hippocampus. From an anatomical point of view, both parts of the amyg-
dala/hippocampus boundary should vary in the same direction: they could
not intersect and are very unlikely separated by a variable amount of white
matter.

The previous shape complex analysis showed that the most discriminative
e↵ects involve deformations of specific subregions, and in particular the most
lower-anterior part of the complex, where the amygdala is located (Fig. 3).
Therefore, it is not surprising that this structure shows higher statistical per-
formance than the hippocampus and putamen in an independent analysis of
each structure. However, the most discriminative deformations of each struc-
ture are not consistent among themselves, thus misleading the interpretation
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Figure 4: Most discriminative defor-
mation axis computed for each sur-
face independently. Surface intersec-
tion occurs in absence of a global dif-
feomorphic constraint. (black grids
have been mapped to the surface for
visualization only)

of the findings. By contrast, the shape complex analysis shows that the
discriminative e↵ect is not specific to the amygdala but to the whole lower
anterior part of the medial temporal lobe with strong correlations between
parts of the structures within the region. The shape complex model may be
slightly less significant, but it highlights more informative e↵ects that could
be interpreted.

Another way to account for correlations between structures is to build
a composite shape descriptor by concatenating control points and momen-
tum vectors of each atlas (see Appendix G.5). This closely mimics what
usual shape analysis methods would do. This composite descriptor enables
to achieve nearly as good classification as with the single atlas method (Ta-
ble 1, last row) with a very high statistical significance p < 10�5. However,
this composite descriptor does not parameterize one single space deforma-
tion, but still three of them, and surfaces still intersect during deformation
(Supplementary Data Fig. S1). By contrast, the single atlas method inte-
grates topology constraints in the analysis, and therefore could only measure
correlations that preserve the internal organization of the anatomical com-
plex.
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3.5. E↵ects of dimension reduction

Our approach o↵ers the possibility to control the dimension of the shape
descriptor by choosing the number of control points given as input of the
method. In 3D, the dimension of the shape descriptor is 3 times the number
of control points. We evaluate here the impact of this dimension for the atlas
construction and statistical estimations in such a low sample size setting.

A sensible initialization of control points is to place them a the nodes of
a regular lattice. This fixes their number, while their positions are optimized
by the gradient descent. An adequate initial spacing between control points is
given by deformation kernel width �V , in order to avoid too much redundancy
in the deformation parameters (Durrleman et al., 2009). It gives 105 control
points for �V = 10 mm. However, it might be that the variations of the
shapes are constrained enough, so that they belong to small dimensional
space and therefore could be described by much fewer parameters.

We successively down-sample the initial grid of 105 control points. With
only 8 points, the number of deformation parameters is decreased by more
than one order of magnitude and the initial ellipsoidal shapes still converge to
a similar template shape complex (Fig. 1-b). The main reason is that control
points were able to move to the most strategic places, noticeably at the tail of
the hippocampus and the anterior part of the amygdala where the variability
is the greatest. Qualitatively, the most discriminant axis is stable when the
dimension is varied (Supplementary Data Fig. S2), as well as the spectrum of
sample covariance matrices of the momentum vectors (Supplementary Data
Fig. S3). The method was able to optimize the “amount” of variability
captured for a given dimension of deformations parameters. Nevertheless,
the residual data term at convergence increases. The initial data term (i.e.
varifold norm) was decreased by 97.8% for 105 points, and only by 93.3 for 8
points, thus showing that the sparsest model captured less variability in the
data set (Table 2).

Optimizing deformation parameterization in a infinite dimensional set-
ting amounts to place a continuum of control points on the surface meshes,
and in practice, one control points at each vertex (Vaillant and Glaunès,
2005; Ma et al., 2008). At the given resolution of the template meshes, such
a parameterization would involve 23058 control points. Nonetheless, this
number can be arbitrarily increased or decreased by up/down sampling the
initial ellipsoids, regardless of the variability in the data set! We increase
the number of control points to 650 and notice that the estimated template
shapes are the same as with 105 control points (results not shown), and that
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Number of CP 8 12 16 24 36 105 600
Decrease of data term
(in % of initial value)

93.3 94.8 94.6 95.8 96.7 97.9 97.8

Table 2: Decrease of the data term during optimization for di↵erent number
of control points and �V = 10 mm

the atlas explains the same proportion of the initial data term (Table 2).
Therefore, increasing the number of control points does not allow to capture
more information (which is essentially determined by the deformation kernel
size �V , see below), but distributes this information over a larger number of
parameters.

Now, we estimate the e↵ect of this dilution of information in higher di-
mension on the statistical performance of the model. We build an atlas
for di↵erent number of control points that are always located initially at the
nodes of a regular lattice. We compute the p-value associated to the Hotelling
T

2 statistics for each atlas as explained in Sec. 3.2, using the number of modes
that explains 95% of the variance in the post-hoc Principal Component Anal-
ysis (PCA). We notice that the statistical significance is not increased with
higher dimension (Fig. 5-b). It is even smaller than in small dimension, the
maximum being reached for 16 control points (p < 10�5).

We also compute the generalization errors of the model for each set of
control points. Leave-2-out experiments give 100% specificity and sensitivity
using the ML approach, regardless of the number of control points used.
To highlight di↵erences, we performed classification using the hippocampus
shape only. Again, the performance of the classifier does not necessarily
decrease with the number of control points (Table 3). ROC curves in Fig. 6
show that the atlases with 48 and 18 control points have poorer performance
than atlases with 12 and 8 control points.

These results suggest that using atlases of small dimension could have
greater statistical power, especially in a such small sample size setting. Nev-
ertheless, two di↵erent dimension reduction techniques compete with each
other in these experiments. The use of a small set of control points is a
built-in dimension reduction technique, which has the advantage to optimize
simultaneously the information captured in the data and the encoding of this
information in a space of fixed dimension. The post-hoc dimension reduction
using PCA projects shape descriptors on the subspace explaining most of the
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Figure 5: Statistical significance of the group means di↵erence for varying
number of control points. The solid (resp. dashed) line corresponds to the
0.1 (resp. 0.05) significance threshold

variance captured. The variation of the p-values when the number of modes
selected in the PCA is varied shows that this post-hoc dimension reduction
technique has more e↵ects on the statistical significance than the variation
of the number of control points (Fig. G.1). Despite the erratic aspects of the
plots, it is worth noticing that in all cases, the maximum p-value is never
achieved for number of control points greater than 105.

Even with only 8 control points (one point at each corner of a bounding
box), the dimension of the atlas is of 3 ⇤ 8 = 24, thus still larger than the
number of subjects in this study. This means that a post-hoc dimension
reduction technique is applied in all cases, making di�cult a fair comparison
between the two approaches. With a few dozen of subjects, we could esti-
mate full-rank covariance matrices and not rely on the post-hoc reduction
technique at all. Our hypothesis is that, in this regime, the trend of increased
statistical significance when the number of control points is decreased would
be amplified. Indeed, the ratio between the number of variables to esti-
mate and the number of subjects is more favorable in this case, thus making
the statistical estimations more stable. This would be even more crucial,
would we estimate means and covariance matrices during optimization in a
Bayesian framework, in the spirit of Allassonnière et al. (2007); Allassonnière
and Kuhn (2009).

3.6. E↵ects of parameters

We assess here the robustness of the results with respect to parameter
values. The method depends on the deformation parameter �V , the var-
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Figure 6: ROC curves for hippocam-
pus classification using di↵erent num-
ber of control points in the atlas and
ML classifier

ifold parameter �W , the weights �k of each structure in the cost function
and the gradient smoothing parameter �X . The role of each parameter and
rules of thumb for setting their values is explained in E.2. We perform the
same experiments as above, but with di↵erent values of the parameters. Sta-
tistical estimates, and classification scores in particular, vary very smoothly
with changes in deformation and varifold parameters, thus showing the repro-
ducibility of our results without fine parameter tuning (Fig. 5 and Table H.1).

The most important e↵ect is the one of the deformation parameter, which
determines the scale of the variants that can be detected. Deformations build
essentially on elementary deformations of patches of the domain of radius
�V . With smaller values of �V , the deformation captured more local shape
variations. With larger values, it averages variations over larger regions.
This e↵ect is visible on the estimated template shapes. With �V = 5 mm,
the template shapes capture finer details in the data, resulting in less smooth
surface than with �V = 15 mm (Fig. H.1). With fewer details in the atlas,
classification scores decrease (Table H.1).

The dimension of the atlas is intrinsically linked with the deformation
parameter. Deformations with smaller �V need more control points to po-
tentially deform every small regions of the shape complex. Deformations
with larger �V have fewer degrees of freedom and could be decomposed us-
ing fewer control points. Placing one control point at the nodes of lattice
of step �V yields 15 control points for �V = 15 mm, 105 control points for
�V = 10 mm and 650 control points for �V = 5 mm. We build an atlas
for each of these values of �V and with down/up sampling the set of con-
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# Control Points 48 18 12 8 4

LDA
specificity 97 (62/64) 91 (58/64) 92 (59/64) 95 (61/64) 78 (50/64)

sensitivity 87 (56/64) 89 (57/64) 89 (57/64) 89 (57/64) 81 (52/64)

ML
specificity 92 (59/64) 92 (59/64) 97 (69/64) 97 (62/64) 84 (54/64)

sensitivity 100 (64/64) 100 (64/64) 98 (63/64) 100 (64/64) 97 (62/64)

Table 3: Classification ratios based solely on hippocampus shape. LDA and
ML classification are performed with various number of control points in the
atlas. Ratios are in percentage

trol points. All these atlases show a good significance level, far below the
usual threshold of 0.05. On average, the statistical significance is decreased
with increasing �V , as the atlas gives a coarser and coarser description of
variability within the data set (Fig. 5). With �V = 15 mm (Fig. 5-c), the
maximum significance is reached for 8 control points, and the significance is
decreased with increasing dimension. With �V = 5 mm (Fig. 5-a), the same
trend is observed, except an unexpected increase in statistical significance at
very high dimension.

The results for the largest deformation parameter (�V = 15 mm) tend to
confirm our hypothesis that the built-in dimension reduction technique yields
increased statistical power. The number of control points that maximizes the
p-value for any given number of modes is almost never the largest one (Sup-
plementary Data Fig. S4). The results for the smallest deformation kernel
(�V = 5 mm) tend also to show the same trend, though to a lesser extent
(Supplementary Data Fig. S5). In this case, even important downsampling
of the initial set of 650 control points does not decrease the dimension of the
space to the point where it could compare with the number of subjects, thus
making less visible the e↵ect of the built-in dimension reduction technique
compared to larger deformation parameters. This highlights the fact that
the level of anatomical details that one would like to capture is limited by
the number of subjects in the data set. The more local the shape variations
we want to estimate, the more observations we need. The increase in statis-
tical significance (type I error) if �V is decreased may be misleading in this
respect, as it is likely to decrease the statistical power (type II error) for a
given e↵ect size and number of parameters.
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4. Discussion and Conclusion

We presented here a comprehensive method for the statistical analysis of
shape complexes extracted from 3D anatomical images. It can deal with raw
surfaces resulting from nearly any segmentation methods thanks to its ro-
bustness to noise, mesh imperfections and inconsistencies in mesh orientation.
The method estimates a template shape complex with a fixed topology that
is representative of the anatomy, and modes of deformations that preserve
template structure and capture variability in data. Such topology constraints
lead to modes of variations that are anatomically realistic and interpretable.
This approach contrasts therefore with the study of correlations between
shape models that are estimated independently for each component within
a shape complex. A typical neuroimaging study of a complex of deep brain
structures in Down syndrome subjects shows that the method could find dis-
criminative anatomical features with high statistical significance and small
generalization errors, even with a very limited number of observations. We
show the robustness of these results in various experimental setting, demon-
strating the e↵ectiveness of the method without fine parameter tuning.

The method uses control points that are automatically placed at their
optimal positions. This approach has several advantages. It decreases the
complexity of the algorithm, since the optimization in position of control
points allows to decrease the number of points needed to describe the vari-
ability of a particular data set. It links the dimension of the shape descriptor
with the deformation scale �V , namely the scale of the anatomical details that
could be captured by the model, which seems more sensible than linking this
dimension with the resolution of the template meshes. Last but not least,
the choice of the number of control points o↵ers a built-in dimension reduc-
tion technique. As compared with a post-hoc dimension reduction technique
such as PCA, the dimension of the descriptors is known prior to any exper-
iments. This eases power calculations and sample size estimates required in
clinical trials. It may lead to increased statistical performance as suggest by
our results, although they should be strengthened using more subjects and
independent data sets. It also paves the way for estimating mean and covari-
ance matrices during the optimization in a Bayesian framework, in the spirit
of Allassonnière et al. (2007); Allassonnière and Kuhn (2009). Constraining
such a statistical inference to take place in a small dimensional space is likely
to increase the convergence speed of the statistical estimates, as compared to
performing the inference in very high dimension and then perform dimension
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reduction. Indeed, the direction of first modes in very high dimension, and
hence the selected subspace, are not very stable as the number of subjects is
increased, and introduce noise in the statistical estimation.

At the moment, the choice of the number of control points is left to the
user, with a good heuristic that consists in placing one point every defor-
mation parameter �V . Automatic selection of control points in the spirit
of Durrleman et al. (2012, 2013) did not show increased statistical power due
to its penalization in magnitude of momentum vectors. We believe that true
model selection should be investigated instead.

Cross-validation showed a very good prediction capability of our model.
Prediction of Down syndrome based on neuroimaging data has little clinical
interest, since subjects are characterized by their genotype and especially
the copy number of chromosome 21, which is known with very high confi-
dence. Nonetheless, our model is generic and could be applied to di↵erent
pathologies for which the clinical status may be more di�cult to assess. This
prediction capability of the method shows its potential for computer-aided di-
agnosis or prognosis in studies where subjects’ status is based only on clinical
diagnosis with limited reproducibility, such as in neurodegenerative diseases.
The shape descriptors, which encode the shape variability in a small num-
ber of parameters, are also pieces of choice to study correlations between
anatomical phenotypes and genotype, in the spirit of Korbel et al. (2009)
where they can take the place of clinical variables.

Acknowledgments. This work has been partly supported by NIH grants U54
EB005149 (NA-MIC), 1R01 HD067731, 5R01 EB007688 and 2P41 RR0112553-
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Appendix A Geodesic equations

We derive here the minimum action principle of Lagrangian mechanics.
A variation �↵(t) of the time-varying momentum vectors ↵(t) induces a
variation of the control point positions �c(t), which in turn induces a variation
�E of the kinetic energy E =

R
1

0

↵(t)TK(c(t), c(t))↵(t)dt.
Since ċ = K(c, c)↵, we have

�ċ = K(c, c)�↵+ dc (K(c, c)↵) �c, (19)

and

E =

Z
1

0

↵

T ċdt. (20)
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Therefore, we have

ċT �↵ = ↵TK(c, c)�↵ = ↵T
�ċ�↵T

dc (K(c, c)↵) �c (21)

and

�E =

Z
1

0

ċT �↵+↵T
�ċdt

=

Z
1

0

2↵T
�ċ�↵T

dc (K(c, c)↵) �cdt.

(22)

Assuming �c(0) = �c(1) = 0, integration by parts yields:

�E = �
Z

1

0

⇣
2↵̇+ dc (K(c, c)↵)T ↵

⌘T
�cdt (23)

The linear ODE with source term (19) shows that there is a one-to-one
relationship between �c and �↵. Since �↵ is arbitrary, so is �c and

↵̇ = �1

2
dc (K(c, c)↵)T ↵ (24)

along extremal paths.
K(c, c)↵ is a 3N

cp

vector, whose kth coordinate is the 3D vector:
PN

x

p=1

K(ck, cp)↵p.
Therefore,

dci(K(c, c)↵)k =

N
cpX

p=1

↵pr1

K(ck, cp)
T
�(i� k) + ↵ir2

K(ck, ci)
T (25)

Using the fact that K is symmetric (hence r
1

K(x, y) = r
2

K(y, x)) we
have:

↵̇i = �1

2

N
cpX

k=1

(dci(K(c, c)↵)k)
T
↵k = �

 
N

cpX

k=1

r
1

K(ci, ck)↵
T
k

!
↵i (26)

Appendix B Gradient of the atlas criterion

We provide here the di↵erentiation of the criterion for atlas construction:

E(X
0

, c
0

, {↵i
0

}) =
N

suX

i=1

A(Xi(1)) + L(Si
0

) (27)
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subject to: (
Ṡi(t) = F (Si(t)) Si(0) = {c

0

,↵i
0

}
Ẋi(t) = G(Xi(t),Si(t)) Xi(0) = X

0

(28)

where
L(Si

0

) = ↵i
0

T
K(c

0

, c
0

)↵i
0

(29)

X is a vector of length 3N
x

, where N

x

is the number of points in the
template shape, c and ↵ are two vectors of length 3N

cp

each, where N

cp

is
the number of control points, so that S is a vector of length 6N

cp

.

F (S) =

✓
F

c(c,↵)
F

↵(c,↵)

◆
is a vector of length 6N

cp

, which is decomposed

into two vectors of size 3N
cp

. The kth coordinate (among N

cp

) of F c and F

↵

is the 3D vector:

F

c(S)k =

N
cpX

p=1

K(ck(t), cp(t))↵p(t)

F

↵(S)k = �
N

cpX

p=1

↵k(t)
T
↵p(t)r1

K(ck(t), cp(t))

(30)

G(X,S) is a vector of size 3N
x

. Its kth coordinate (among N

x

) is the 3D
vector:

G(X,S)k =

N
cpX

p=1

K(xk(t), cp(t))↵p(t) (31)

Similarly,

L(Si
0

) =

N
cpX

p=1

N
cpX

q=1

↵

i
0,p

T
K(c

0,p, c0,q)↵
i
0,q (32)

B.1 Gradient in matrix form

The di↵erentiation of the criterion can be done for each subject i inde-
pendently. Therefore, we di↵erentiate only one term of the sum in (27) for a
generic subject’s index i that we omit in the following for clarity purposes.

A small perturbation �S
0

induces a perturbation of the motion of the
control points and momenta �S(t), which, in turn, induces a perturbation
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of the template points’ trajectory �X(t) and then of the criterion �E, which
writes thanks to the chain rule:

�E =
�rX(1)

A

�T
�X(1) + (rS

0

L)T �S
0

. (33)

According to (28), the perturbations �S(t) and �X(t) satisfy the linearized
ODEs:

˙
�S(t) = dS(t)F �S(t) �S(0) = �S

0

˙
�X(t) = @

1

G�X(t) + @

2

G�S(t) �X(0) = �X
0

The first ODE is linear. Its solution is given by:

�S(t) = exp

✓Z t

0

dS(u)Fdu

◆
�S

0

. (34)

The second ODE is linear with source term. Its solution is given by:

�X(t) =

Z t

0

exp

✓Z t

u

@

1

Gds

◆
@

2

G(u)�S(u)du+ exp

✓Z t

0

@

1

G(s)ds

◆
�X

0

(35)
Plugging (34) into (35) and then into (33) leads to:

8
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>:
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0
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Z
1

0
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T
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2

G(X(t),S(t))TVt1
TrX(1)

Adt+rS
0

L

rX
0

E = V

01

TrX(1)

A

, (36)

where we denotedRst = exp
⇣R t

s
dS(u)Fdu

⌘
and Vst = exp

⇣R t

s
@

1

G(X(u), S(u))du
⌘
.

Let us denote ✓(t) = Vt1
TrX(1)

A, g(t) = @

2

G(t)T✓(t) and ⇠(t) =
R

1

t
Rts

T
g(s)ds,

so that the gradient (36) can be re-written as:

8
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:
rS

0

E =

Z
1

0

R

0s
T
g(s)ds+rS

0

L = ⇠(0) +rS
0

L

rX
0

E = ✓(0)

.

Now, we need to make explicit the computation of the auxiliary variables
✓(t) and ⇠(t). By definition of Vt1, we have V11

= Id and dVt1/dt = Vt1@1G(t),
which implies that ✓(1) = rX(1)

A and ✓̇(t) = �@
1

G(t)T✓(t).
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For ⇠(t), we notice that Rts = Id� R s

t
dRus

du
du = Id +

R s

t
RusdS(u)F (u)du.

Therefore, using Fubini’s theorem, we get:

⇠(t) =

Z
1

t

Rts
T
g(s)ds

=

Z
1

t

g(s) + dS(s)F
T

Z
1

s

Rsu
T
g(u)duds

=

Z
1

t

g(s) + dS(s)F
T⇠(s)ds.

This last equation is nothing but the integral form of the ODE given in the
main text.

Given the actual values of S
0

and X
0

, one needs to integrate the geodesic
shooting equations and the flow equation in (28) forward in time to give the
full path of parameters S(t) and template shape points X(t). Then, one
needs to compute the gradient of the data term rX(1)

A, which is given in
Appendix C. This term indicates in which direction one has to move the
vertices of the deformed template shape in order to better match the obser-
vations. This term is transported back to time t = 0 by the coupled linear
equations satisfied by ⇠ and ✓. The values of time t = 0 of these auxiliary
variables are used to update the deformation parameters (position of con-
trol points and momenta) and the position of the vertices of the template
surfaces.

B.2 Gradient in coordinates

Expanding the variables Si(t) = {c
0,k(t),↵i

0,k(t)},Xi(t) = {X i
k(t)}, ✓i(t) =

{✓ik(t)} and ⇠i(t) = {⇠c,ik (t), ⇠↵,ik (t)}, we have

rc
0,k
E =

N
suX

i=1

⇠

c,i
k (0) +rc

0,k
L(Si

0

)

r↵i
0,k
E =

N
suX

i=1

⇠

↵,i
k (0) +r↵i

k
L(Si

0

)

rx
0,pE =

N
suX

i=1

✓

i
p(0)
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where the gradient of L is given as (from now on, we omit the subject’s
index i for clarity purposes):

r↵
0,k
L = 2

N
cpX

p=1

K(c
0,k, c0,p)↵0,p

rc
0,k
L = 2

N
cpX

p=1

↵

0,p
T
↵

0,kr1

K(c
0,k, c0,p)

The term @

1

G(X(t),S(t)) is a block-matrix of size 3N
cp

⇥ 3N
x

whose
(k, p)th 3⇥ 3 block is given as:

dXk
G(X(t),S(t))p =

N
cpX

j=1

↵j(t)r1

K(Xp(t), cj(t))
T
�(p� k)

so that the vector ✓(t) is updated according to:

�✓̇k(t) =
N

cpX

p=1

↵p(t)
T
✓k(t)r1

K(Xk(t), cp(t)) (37)

The terms @cgG(X(t),S(t)) and @↵G(X(t),S(t)) are both matrices of size
3N

x

⇥ 3N
cp

, whose (k, p) block is given respectively by:

dckGp = ↵k (r1

K(ck, Xp))
T

d↵k
Gp = K(ck, Xp)I3

The di↵erential of the function F (S) =

✓
F

c(c,↵)
F

↵(c,↵)

◆
can be decomposed

into 4 blocks as follows:

dS(t)F =

✓
@cF

c
@↵F

c

@cF
↵

@↵F
↵

◆
(38)

Therefore, the update rules for the auxiliary variables ⇠c(t) and ⇠↵(t) are
given as:
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8
>>>>>>>>>><

>>>>>>>>>>:

�⇠̇ck(t) =
N

xX

p=1

↵k(t)
T
✓p(t)r1

K(ck(t), Xp(t))

+ (@cF
c)T ⇠c(t)k + (@cF

↵)T ⇠↵(t)k

�⇠̇↵k (t) =
N

xX

p=1

K(ck(t), Xp(t))✓p(t)

+ (@↵F
c)T ⇠c(t)k + (@↵F

↵)T ⇠↵(t)k

with

(@cF
c)T ⇠c(t)k =

N
cpX

p=1

⇣
↵p(t)

T
⇠

c
k(t) + ↵k(t)

T
⇠

c
p(t)
⌘
r

1

K(ck(t), cp(t))

(@cF
↵)T ⇠↵(t)k =

N
cpX

p=1

↵k(t)
T
↵p(t)r1,1K(ck(t), cp(t))

T
⇣
⇠

↵
p (t)� ⇠↵k (t)

⌘

(@↵F
c)T ⇠c(t)k =

N
cpX

p=1

K(ck(t), cp(t))⇠
c
j(t)

(@↵F
↵)T ⇠↵(t)k =

N
cpX

p=1

r
1

K(ck(t), cp(t))
T
⇣
⇠

↵
p (t)� ⇠↵k (t)

⌘
↵p(t)

In these equations, we supposed the kernel symmetric: K(x, y) = K(y, x).
If the kernel is a scalar isotropic kernel of the form K = f(kx� yk2)I

3

, then
we have:

r
1

K(x, y) = 2f 0(kx� yk2)(x� y)

r
1,1K(x, y) = 4f 00(kx� yk2)(x� y)(x� y)T + 2f 0(kx� yk2)I

3

Appendix C Gradient of the varifold metric for meshes

We derive here the gradient of the varifold metric with respect to the
position of the vertex of the mesh. Let S be a triangular mesh. For each
face fk, we denote nk its normal, pk its center and uk = nk/ |nk|1/2. Let T be
another triangular mesh, mk its normal, qk its center and vk = mk/ |mk|1/2.
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Our goal is to compute the gradient of d(S, T )2 with respect to xi, a given
vertex of S. The chain rule gives:

rxi
d(S, T )2 =

X

fk3xi

(dxi
nk)

T (dnk
uk)

Truk
d(S, T )2 + (dxi

pk)
Trpkd(S, T )2,

(39)
where we sum over all the faces that have xi among their vertices.

Given the inner-product between varifolds (see main text), we have:

ruk
d(S, T )2 = 4

 
NSX

i=1

K

W (pk, pi)uiu
T
i �

NTX

j=1

K

W (pk, qj)vjv
T
j

!
uk, (40)

and denoting pk,d the dth coordinate of the 3D vector pk,

�rpkd(S, T )2
�
d
= 2uT

k

 
NSX

i=1

@K

W (pk, pi)

@pk,d

uiu
T
i �

NTX

j=1

@K

W (pk, qj)

@pk,d

vjv
T
j

!
uk

(41)
Finally, for a face fk, we have nk = 1

2

(X
1

� X

0

) ⇥ (X
2

� X

0

) and pk =
1

3

(X
0

+X

1

+X

2

), where we denote X
0

, X
1

, and X

2

the vertices of the face. If
we denote e the edge opposite to the vertex xi (i.e. e = X

2

�X

1

if xi = X

0

),
we have for a generic 3D-vector V :

(dxi
nk)

T
V =

1

2
e⇥ V and (dxi

pk)
T
V =

1

3
V. (42)

and since uk = nk/ |nk|1/2,

dnk
uk =

1

|nk|1/2
✓
I
3

� 1

2

nkn
T
k

|nk|2
◆

=
1

|uk|
✓
I
3

� 1

2

uku
T
k

|uk|2
◆

(43)

The gradient is computed by plugging (40), (41), (42) and (43) into (39).
The gradient is computed by scanning each face of the mesh S and adding
the contribution of this face to each of its vertex.

One can easily check that (39) is independent of the ordering of the ver-
tices, thus showing its invariance with respect to the local orientation of the
mesh.
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Appendix D Di↵eomorphic template evolution

The purpose of this section is to prove that no self-intersection may occur
during the optimization of the template shape, by showing that the updates
of the template follows a geodesic flow of di↵eomorphisms. Using notations
of the main text, rEx

0,p is the gradient of the criterion with respect to the
position of the vertex x

0,p of the current template using the L

2 metric, and
rX

Ex
0,p its smoothed version using a metric given by a Gaussian kernel with

width �X > 0, KX , so that:

rX
x
0

,kE =
NXX

p=1

K

X(x
0,k, x0,p)rEx

0,p = �us(x0,k) ,

where us is a vector field in V

X , the RKHS associated with the Gaussian
kernel KX . In particular, if  s is the flow associated with integration of us,
we get X

0

(s) =  s(X0

(0)). An important point to be verified here is that this
flow exists and generates a continuous curve s!  s of C1 di↵eomorphisms so
that the template components cannot degenerate or self-intersect. Let ⌦X be
the open set of the configurations X

0

such that all the mesh faces associated
with X

0

are non degenerated (positive area) and that any pairs of distinct
vertices do not coincide in space. The total energy E(X

0

, {Si
0

}) is C1 on an
open set ⌦X ⇥RNS so that the local existence of the gradient descent follows
from the Cauchy-Lipschitz theorem. Now, if we consider a maximal solution
on [0, sf [, we will prove below (and this is the key estimate) that

Z sf

0

|us|2V Xds  E

0

.

= E(X
0

(0), {Si
0

(0)}) <1 (44)

so that the flow  s is a flow of C1 di↵eomorphisms staying at a bounded
distance dX(Id, s) 

p
E

0

from the identity and X
0

(s) =  s(X0

(0)) stays in
a compact set of ⌦X . In particular, since the di↵erential d and d 

�1 can be
controlled uniformly by dX(Id, ), we get that no face can degenerate during
the gradient descent, that the distance between two distinct vertices or two
surface patches (up to the continuous limit) cannot vanish.
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Now, we prove (44). From the RHKS property of the kernel we get

|us|2V X =
N

xX

p=1

�rEx
0,p

�T
 

N
xX

q=1

K

X(x
0,p, x0,q)rEx

0,q

!

= �
N

xX

p=1

�rEx
0,p

�T
us(x0,p)

 �
X

p

�rEx
0,p

�T dx

0,p

ds

�
N

suX

i=1

⇣
rSi

0

E

⌘T
dSi

0

ds

| {z }
�0

= �dE

ds

so that
R sf
0

|us|2V Xds  E(X
0

(0)) � E(X
0

(sf ))  E(X
0

(0)) (we use here
that E � 0) and

R sf
0

|us|2V Xds <1.

Appendix E Computational aspects

E.1 Numerical schemes

The criterion for atlas estimation is minimized using a line search gra-
dient descent method combined with Nesterov’s scheme (Nesterov, 1983).
Di↵erential equations are integrated using a Euler scheme with prediction
correction, also known as Heun’s method, which has the same accuracy of
Runge-Kutta scheme of order 2. Sums over the control points or over tem-
plate points are computed using projections on regular lattices and FFTs
using the method in Durrleman (2010) for e�ciency purposes.

We initialize the gradient descent with template surfaces as ellipsoidal
meshes, control points located at the nodes of a regular lattice and momenta
set to zero (i.e. no deformation). During the optimization, the number of
vertices of the template and the number of control points are preserved. The
connectivity between the vertices is also preserved, thus avoiding changes in
meshing of the template. The smoothness over the gradient also guarantees
that no self-intersection of the template meshes occur since the template
evolution is carried by di↵eomorphic transport, as shown in Appendix D.

E.2 Parameters

The method depends on the kernel width for the deformation �V , for
the varifolds �W and for the gradient �X , as well as the weights �k that
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balance each data term against the sum of squared geodesic distances between
template and observations.

The kernel widths �V and �W compare with the shape sizes. The varifold
kernel width needs to be large enough in order to be sensitive to di↵erences in
relative position of a given structure in di↵erent subjects (Durrleman, 2010,
Ch. 1), otherwise too small values tend to make the shapes orthogonal. In
our experiment, the 5mm value is to account for twist of the hippocampus
tail. Would one use the currents metric, the thin tail of the hippocampus
would tend to cancel out at this scale (upper and lower part of the tail
have opposite orientation), which would make the estimation the twist more
challenging. This problem is alleviated here using the varifold metric, in
which the contributions of the upper and lower part of the tail are added
and not subtracted. The deformation kernel width �V compares with the
scale of shape variations that one expects to capture. Deformations are
built essentially by integrating small translations acting on neighborhood
of radius �V . It integrates any shape information in such neighborhoods
and extrapolates it within the whole neighborhood. As we expect to see
local shape variations, we set this parameter to �V = 10mm. With smaller
values, the model considers more independent local variations and does not
integrate so well the information in larger anatomical regions. With larger
values, the model captures more rigid shape di↵erences.

The value of �X is essentially a fraction of �V : �V or 0.5�V work well
in practice. In our experiments, we chose �X = 0.5�V . The weights �k are
chosen so that data terms have the same order of magnitude as the sum of
squared geodesic lengths. Too small values over-weight the importance of
data term and prevent the template to converge to the “mean” of the shape
set, as the criterion becomes insensitive to sum of squared geodesic distances
to each observation. Too large values alter matching accuracy and thus shape
features captured by the model. For �V = 10mm and �W = 5mm, the values
of �k = 10mm for each structure allow the data terms to have roughly the
same order of magnitude than the sum of squared geodesic lengths.

A reasonable sampling of control points is reached for a distance between
two control points being equal to the deformation kernel width �V . Finer
sampling often induces a redundant parameterization of the velocity fields as
shown in Durrleman (2010). Nonetheless, coarser sampling may be also su�-
cient for the description of the observed variability, as shown in the presented
experiments.

Kernel widths were chosen after few trials to register a pair of shape
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complex. The weights �k were then assessed while building an atlas with 3
subjects. The initial distribution of the control points was always chosen as
the nodes of a regular lattice with step �V or down-sampled version of it. We
always keep �X = 0.5�V . We show in Appendix H that similar results are
obtained with other values of kernel widths and weights resulting from the
same rationale. A qualitative discussion about the e↵ects of these parameters
could be found also in Durrleman (2010).

Appendix F Material and Methods

F.1 Data Acquisition

We use data from a project that seeks to link structural changes to the
defects in cognition and to the copy number variation on chromosome 21.
Inclusion criteria for full trisomy are as follows: clinical DS aged 12-25 with
cytogenetic trisomy 21, and inability to complete cognitive studies.

Anatomic T2-weighted images were acquired using a turbo-spin-echo se-
quence with field-of-view 25.6 mm, imaging matrix 256x256, TR 3.2 sec, TE
499 ms, slice thickness 1mm, 160 axial slices with 10 slice oversampling, sig-
nal averages = 1, GRAPPA acceleration factor = 2, bandwidth 574 Hz/Pixel
and echo spacing 3.58 ms. Anatomic T1-weighted images were acquired using
an MPRAGE sequence with field-of-view 25.6 cm, imaging matrix 256x256,
repetition time TR = 2 sec, inversion time TI = 1.1 sec, TE 3.38 ms, slice
thickness 1 mm, flip angle 8 degrees, signal averages = 1, 160 axial slices
with 20% slice oversampling, water-excitation RF pulse, GRAPPA accelera-
tion factor = 2, bandwidth 300 Hz/pixel and echo spacing 6.3ms.

F.2 Mesh generation and a�ne alignment

Segmentations of the structures of interest are initialized using an auto-
matic MRI brain tissue segmentation tool1 based on an expectation maxi-
mization algorithm (Van Leemput et al., 1999; Prastawa et al., 2005) that
uses registration of a probabilistic brain atlas as priors for segmentation of
tissue probabilities from multi-parameter MRI. The tool incorporates co-
registration of multi-contrast MRI using mutual information, brain strip-
ping, bias inhomogeneity correction, and tissue classification. The segmen-
tation is then further refined into segmentations of subcortical and lobar

1
http://www.nitrc.org/projects/abc
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structures by mapping a parcellation template using non-linear deformation,
where we subdivide the brain of each subject via a template that undergoes
high-dimensional fluid deformation (Joshi et al., 2004). Reliability tests on
repeated MRI of test subjects showed less than 1% variability in resulting
regional volumes, which is far better than manual expert segmentations.

The surface meshes representing the subcortical shapes used in this paper
was obtained from the final image segmentations using the marching cube
surface construction method (Lorensen and Cline, 1987). We extract sur-
face meshes for amygdala, hippocampus, and caudate that are standardized
to have the same center of mass and the same general alignment by ensur-
ing that moments of each point cloud in the 3D space are identical. This
standardization was performed to isolate local changes across subjects by
removing global transformations.

F.3 Atlas construction

For each of the three structures, we perform a Principal Component Anal-
ysis (PCA) on the pooled data set. We then map a spherical mesh model
with 2562 vertices and 5120 triangle cells (with isotropic sampling) to an
ellipsoidal mesh, whose center of mass coincides with the one of the data
set, whose axes are aligned with the principal axes of the PCA, and whose
semi-axes length equals 1.5 times the square root of the eigenvalues of the
PCA.

Input control points are located at the nodes of a regular lattice within
data bounding box. For a lattice step of 10 mm, 105 control points are
generated (see Appendix E.2). We also consider regular down-sampling of
this set of 105 control points yielding sets of 36, 24, 16, 12 and 8 control
points.

The atlases are estimated using the deformation kernel width �V =
10 mm, the varifold kernel width �W = 5 mm, the gradient kernel width
�X = 5 mm and the weights �k = 10 mm for the three structures, according
to the rationale given in Appendix E.2.

We also build atlases considering only one structure at a time. For these
experiments, exact same parameters are used, except that the initial lattice
number of control points is restricted to a bounding box adjusted to each
structure.
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Appendix G Statistical analysis

For a given atlas, we denote c = {ck}k=1,...,N
cp

the optimized position of
the control points (concatenated in a 3N

cp

dimensional vector) and ↵i =
{↵i

k}k=1,...,N
cp

the estimated initial momentum vectors (also concatenated in
a 3N

cp

dimensional vector) that parametrize the deformation of the template
to the ith subject’s shape complex (i = 1, . . . , N

su

).
The velocities associated to the momentum vectors are given as vi =

K↵i, where K is 3N
su

⇥ 3N
su

block-matrix whose (p, q)-block is given by
K

V (cp, cq)I3.

G.1 Means and covariance matrices

The sample mean of the controls (resp. the DS subjects) is defined by
↵HC = 1

NHC
su

P
i2HC

↵i (resp. ↵DS = 1

NDS
su

P
i2DS

↵i) where HC (resp. DS) de-

notes the set of indices corresponding to healthy controls (resp. Down syn-
drome subjects). The typical anatomical configuration of the controls (resp.
the DS subjects) is obtained by solving the geodesic shooting equations along
the direction of ↵HC (resp. ↵DS) and deforming the template complex with
the corresponding flow of di↵eomorphisms.

The estimated template complex is “centered”, in the sense that the mean
of all momentum vectors ↵ = (↵DS + ↵HC)/2 is small with respect to the
means of each sub-group and to the variance. Denoting �2 the total variance
explained (i.e. the trace of the matrix (h↵i �↵,↵j �↵iW ⇤ /N

su

= (↵i �
↵)T (vi � v)/N

su

)i,j), we have:

k↵kW ⇤

�

= 0.19 (45)

for the atlas using 105 control points and 0.08 for the atlas using 8 control
points. In comparison, the means of each sub-group satisfy:

��↵HC
��
W ⇤ +

��↵DS
��
W ⇤

2�
= 0.51

��↵DS �↵HC
��
W ⇤

�

= 0.94 (46)

for the atlas using 105 control points and 0.51, 0.99 for the atlas using 8
control points. This shows that the pooled mean is nearly zero, the two
subgroup means are pointing in almost opposite direction and the distance
between both means compare with the standard deviation of the data set.
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We estimate the covariance matrix as:

⌃ =
1

N

su

 
X

i2HC

(vi � vHC)
�
vi � vHC

�T
+
X

i2DS

(vi � vDS)(vi � vDS)T
!
.

Note that if the number of observations is smaller than 3 times the number
of control points, then ⌃ is not invertible, and we use instead the regularized
matrix ⌃ + "I

3

. In practice, we used " = 10�2, which leads to a condition
number of the covariance matrix of order 1000. We show in Appendix H the
robustness of the classification scores when this value is increased.

Remark G.1. Note that we perform the statistical analysis using the ve-
locity field sampled at the control points v = K↵, whereas it would seem
more natural to use the RKHS metric on V instead. Using the RKHS met-
ric amounts to use ṽ = K1/2↵ so that one computes the inner-product as
(ṽi)T ṽj = ↵iTK↵j which is the inner-product between the two continuous
velocity fields in V . One can easily check that without regularization (" = 0),
the most discriminant axis is the same in both cases, as will be the LDA and
ML classification criteria introduced in the sequel. Using the identity matrix
as a regularizer for the sample covariance matrix above amounts to use the
matrix K�1 as regularizer in the RKHS space. More precisely, the matrix
⌃ + "I

3

becomes ⌃̃ + "K�1 where ⌃̃ is the sample covariance matrix of the
ṽi’s. It is natural to use this regularizer, since the criterion for atlas con-
struction precisely assumes the momentum vector to be distributed with a
zero-mean Gaussian distribution with covariance matrix K�1 (which leads
to kvi

0

k2V = ↵i
0

T
K↵i

0

in (17)). For this reason, the same matrix is used
in Allassonnière et al. (2007) as a prior in a Bayesian estimation framework.

G.2 Most Discriminative Axis

According to linear discriminant analysis, the two directions of the most
discriminative axis in the velocity space is defined as vLDA

± = v±⌃�1(vHC�
vDS) where v = 1

2

(vHC +vDS). The associated momentum vectors are given
as: ↵LDA

± = K�1vLDA
± . The anatomical configurations are generated by

solving for the geodesic equations in the two directions ↵LDA
± and deforming

the template complex along these flows of di↵eomorphisms. We normalize the
direction, so that

��↵LDA
±

��
W ⇤ =

p
(↵LDA

± )TK(↵LDA
± ) =

p
(↵LDA

± )T (vLDA
± )

equals the norm between the means:
��↵HC �↵DS

��
W ⇤ . Therefore, the sum of

the geodesic distance between the template complex and each of the deformed
complex is twice the norm between the means.
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G.3 Statistical significance using permutation tests

With the notations of the previous sections, we denote ⌃ the estimate
of the within-class covariance matrix (without regularization in this section,
i.e. " = 0). We denote (uk,�

2

k) the eigenvectors and eigenvalues sorted
in decreasing order of the matrix ⌃. We truncate the matrix up to the
N

modes

largest eigenvalues: ⌃̃ =
PN

modes

k=1

�

2

kuku
T
k whose inverse is given by:

⌃̃�1 =
PN

modes

k=1

1

�2

k
uku

T
k . We compute then the T

2 Hotelling statistics as:

T

2 =
N

su

� 2

4
(vHC � vDS)T ⌃̃�1(vHC � vDS)

To estimate the distribution of the statistics under the null hypothesis of
equal means, we compute the statistics for 105 permutations of the subjects
indices i. This implies that the truncation of the matrix ⌃ selects a di↵erent
small-dimensional space for each permutation. The corresponding p-values
are shown in Fig. G.1 for each model (i.e. di↵erent number of control points)
and di↵erent number N

modes

of modes. Note that the covariance matrix ⌃
has only N

su

non-zero eigenvalues and in all our cases has a bad conditioning
for N

modes

� N

su

� 2. This is the reason why plots in Fig. G.1 stop at
N

modes

= 14.
We repeat the procedure for two other values of the deformation param-

eter �V = 15 mm and �V = 5 mm while keeping other parameters fixed.
Results are reported in Supplementary Data Fig. S4 and S5 respectively.

The plots in Fig. 5 are built by picking among the p-values the ones that
correspond to the number of modes which explains 95% of the trace of the
matrix ⌃ for each number of control points. In all experiments, this number
of modes was either 8 or 9.

G.4 Classification in a leave-2-out setting

With the notations of the previous sections, we compute the regularized
sample means and covariance matrix ⌃ from the atlas built with 7 controls
and 7 DS subjects (among 8 controls and 8 DS subjects). We then regis-
ter the template complex to the left-out shape complexes. Let us denote
↵test the initial momenta parameterizing the deformation of the template
shape complex to a given left-out shape complex (seen as a test data), and
vtest = K↵test. In the framework of the Linear Discriminant Analysis, the
classification criterion writes:

C(vtest) = (vtest � v)T⌃�1(vHC � vDS) (47)
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Figure G.1: P-values computed for di↵erent number of control points and
di↵erent number of selected modes for deformation parameter �V = 10 mm.
Solid (resp. dashed) lines corresponds to the p-value of 10% (resp 5%)
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For a threshold ⌘, the test data is classified as healthy control if C(vtest) > ⌘

and Down syndrome subject otherwise. ROC curves are built when the
threshold ⌘ is varied. For estimating classification scores, we estimate the
threshold ⌘ on the training data set so that the best separating hyperplane
(orthogonal to the most discriminative axis ⌃�1(vHC�vDS)) is positioned at
equal distance to the two classes. This threshold value is used for classifying
the test data.

For classifying in a Maximum Likelihood framework, we compute the
sample covariance matrices ⌃DS = 1

NDs
su

P
i2DS

(vi�vDS)(vi�vDS)T and ⌃HC =

1

NHC
su

P
i2HC

(vi � vHC)(vi � vHC)T . The classification criterion, also called

Mahalanobis distance, is given by:

C(vtest) = (vtest�vDS)T⌃�1

DS(v
test�vDS)� (vtest�vHC)T⌃�1

HC(v
test�vHC)

(48)
and the classification rule remains the same.

Note that in both cases, we used regularized covariance matrices by
adding "I

3

for " = 10�2 (see Remark G.1).

G.5 Composite Analysis

In the composite analysis, we compute an atlas for each of the three
structures. We end up with 3 sets of control points cs, and 3 ⇥ N

su

sets of
initial momenta ↵i

s for s = 1, 2, 3. We denote vi
s = Ks↵i

s the associated
velocities and build a composite shape descriptor vi by concatenating vi

1

,
vi
2

and vi
3

. We use this composite descriptor to compute means, sample
covariance matrices, most discriminative axis and classification criteria as
above.

The composite vector v does not parameterize a single di↵eomorphism,
but each of its three component does. For instance, the direction of the
most discriminative axis vLDA takes into account the correlations between
the variability of each of the components. To display these correlations,
we compute the initial momentum vectors associated to each component:
↵LDA

s = K�1

s vLDA
s for s = 1, 2, 3, and then solve three geodesic shooting

equations and deform each structure using a di↵erent di↵eomorphism.
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Appendix H Robustness of the results with respect to parameter
values

We assess the robustness of the results with respect to parameter values.
The values were first chosen given the rationale in Appendix E.2. Then, we
change the values of the deformation and varifold kernel widths by ±50%,
namely by setting �V = 5, 10 or 15mm and �W = 2.5, 5, or 7.5mm. Other
parameters are kept fixed, namely the weights �k = 10mm, the gradient ker-
nel width �X = 0.5�V and the initial distance between control points equal
to �V . Classification scores are reported in Table H.1 and show a great ro-
bustness of the statistical estimates, noticeably for the ML method. We note
a decrease in the specificity in the LDA classifier for the large deformation
kernel width �V = 15mm. With large deformation kernel widths, the atlas
captures more global shape variations, which might not be as discriminative
as more local changes. This e↵ect is more pronounced with increased varifold
width �W , as surface matching accuracy decreases, thus reducing the vari-
ability captured in the atlas. The number of generated control points was
equal to 650 for �V = 5mm, 105 for �V = 10mm and 15 for �V = 40mm.

We show in Fig. H.1 two template complexes, one estimated with �V =
5mm and the other one with �V = 15mm, while fixing the other parameters
to �W = 7.5mm, �k = 10mm for the three structures and �X = 0.5�V . One
notices that the atlas captures more local shape variations with the smaller
parameter, whereas it captures more global and rigid variations with the
larger parameter, thus leading to much smoother surfaces.

We also assess the influence of the amount of regularization in the covari-
ance matrices ", which otherwise are singular. In the previous experiments,
we chose " = 10�2, for which the regularized covariance matrices had a con-
dition number of order 1000. We increase the regularization to " = 0.1 and
" = 1, for which the condition number is of order 100 and 10 respectively.
Classification scores still show the robustness of the method with respect to
this parameter (Supplementary Data Table S1 and S2). The sensitivity in the
LDA approach is also decreased if the amount of regularization is increased.
This is not surprising, since the e↵ect of the regularization, like increase in
deformation kernel width, tends to reduce the sensitivity of the statistical
model. For " = 10, the condition number is of order 1, meaning that the
regularization is of the same order as the largest eigenvalues of the sample co-
variance matrix, which obviously alters classification scores (Supplementary
Table S3).
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a - �V = 5mm b- �V = 15mm

Figure H.1: Template shape complex estimated with two di↵erent deforma-
tion kernel widths �V . The smaller the width, the more local the variations
captured by the model. The larger the width, the more global and rigid
variations captured by the model, resulting in much smoother surfaces

LDA ML

specificity sensitivity specificity sensitivity

�W = 2.5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 5 �W = 5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 7.5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 2.5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 10 �W = 5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 7.5 94 (60/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 2.5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 15 �W = 5 83 (53/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 7.5 84 (54/64) 100 (64/64) 100 (64/64) 100 (64/64)

Table H.1: Classification scores when deformation and varifold kernel sizes
are varied. Regularization of the covariance matrices " = 10�2.

It is clear that the weights �k’s should have been also adjusted. As noted
in Akin and Mumford (2012), adjusting the weights could increase match-
ing accuracy, and possibly increase statistical performance when deformation
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smoothness is varied. We did not adapt these values for several reasons. First,
not adjusting values is the least favorable case, thus strengthening our conclu-
sions regarding robustness of the method with respect to parameter values.
Second, our rationale for setting these weights, as given in Appendix E.2,
requires to perform few tests on a reduced data set to assess the relative
importance of the data term with respect to the sum of squared geodesic
distances. We mimic here a use of the method on a routine basis where one
could not finely tune parameters. Last but not least, it is clear from a statis-
tical point of view, that these weights are noise variance in data. For a given
model (�V and �W fixed), there is an optimal value of this noise variance that
should be estimated from data, and not fixed by the user. The estimation
of such parameter for image data has been proposed in Allassonnière et al.
(2007, 2010) using a Bayesian framework. Extending this framework for sur-
faces modeled as varifolds is not straightforward. Nonetheless, we believe
that the determination of these weights should be done in this framework.
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Charon, N., Trouvé, A., 2013. The varifold representation of non-
oriented shapes for di↵eomorphic registration. CoRR abs/1304.6108 URL:
http://adsabs.harvard.edu/abs/2013arXiv1304.6108C.

Chung, M.K., Worsley, K.J., Robbins, S., Paus, T., Taylor, J., Giedd, J.N.,
Rapoport, J.L., Evans, A.C., 2003. Deformation-based surface morphom-
etry applied to gray matter deformation. NeuroImage 18, 198 – 213.
doi:10.1016/S1053-8119(02)00017-4.

Dryden, I., Mardia, K., 1998. Statistical Shape Analysis. Wiley.

Durrleman, S., 2010. Statistical models of currents for measuring the vari-
ability of anatomical curves, surfaces and their evolution. Thèse de sciences
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Figure S1: Most Discriminative Axis computed using a composite descriptor.
The direction takes into account the correlations among the three structures.
However, it does not parameterize a single space deformation, but three of
them. Therefore, intersections between surfaces occur. Moreover the pat-
terns of shape variations are rather di↵erent from the results using a single
atlas of shape complex, in particular the relative position of the amygdala
(in blue) with respect to the hippocampus (in green)
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Figure S2: Most Discriminative Axis in the atlas with 8 control points. The
patterns of shape variations are qualitatively similar with the axis shown
using 105 control points, especially for the hippocampus and amygdala (in
green and cyan), and to a lesser extend for the putamen. This shows the
robustness of the findings with respect to di↵erent initial conditions

LDA ML

specificity sensitivity specificity sensitivity

�W = 2.5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 5 �W = 5 97 (62/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 7.5 97 (62/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 2.5 98 (63/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 10 �W = 5 97 (62/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 7.5 92 (59/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 2.5 83 (53/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 15 �W = 5 83 (53/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 7.5 84 (54/64) 100 (64/64) 100 (64/64) 100 (64/64)

Table S1: Classification scores when deformation and varifold kernel sizes
are varied. Regularization of the covariance matrices " = 0.1.
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Figure S3: Cumulative variance explained using the sample covariance matrix
of the momentum vectors. The spectrum is slightly more concentrated with
8 control points than with 105. The total variance explained in both cases is
similar: �2 = 27.1 for 105 points and �2 = 23.6 for 8 points

LDA ML

specificity sensitivity specificity sensitivity

�W = 2.5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 5 �W = 5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 7.5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 2.5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 10 �W = 5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 7.5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 2.5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

�V = 15 �W = 5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

�W = 7.5 89 (57/64) 100 (64/64) 100 (64/64) 100 (64/64)

Table S2: Classification scores when deformation and varifold kernel sizes
are varied. Regularization of the covariance matrices " = 1.
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Figure S4: P-values computed for di↵erent number of control points and
di↵erent number of selected modes for deformation parameter �V = 15 mm.
Solid (resp. dashed) lines corresponds to the p-value of 10% (resp 5%)

LDA ML

specificity sensitivity specificity sensitivity

�W = 2.5 88 (56/64) 92(59/64) 88 (56/64) 97(62/64)
�V = 5 �W = 5 88 (56/64) 92(59/64) 88 (56/64) 97(62/64)

�W = 7.5 88 (56/64) 95(61/64) 88 (56/64) 98(63/64)

�W = 2.5 88 (56/64) 92(59/64) 88 (56/64) 98(63/64)
�V = 10 �W = 5 88 (56/64) 92(59/64) 88 (56/64) 98(63/64)

�W = 7.5 88 (56/64) 98(63/64) 88 (56/64) 100(64/64)

�W = 2.5 88 (56/64) 89(57/64) 88 (56/64) 100(64/64)
�V = 15 �W = 5 88 (56/64) 94(60/64) 88 (56/64) 100(64/64)

�W = 7.5 88 (56/64) 94(60/64) 88 (56/64) 100(64/64)

Table S3: Classification scores when deformation and varifold kernel sizes
are varied. Regularization of the covariance matrices " = 10.
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Figure S5: P-values computed for di↵erent number of control points and
di↵erent number of selected modes for deformation parameter �V = 5 mm.
Solid (resp. dashed) lines corresponds to the p-value of 10% (resp 5%)
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