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In this paper we present a family of entropy-stable discontinuous Galerkin methods for
the compressible Navier-Stokes equations. The discretization presented here is based on
the mixed formulation, and is designed to preserve entropy stability of an already existing
discretization for the Euler equations. Entropy stable variants of several known schemes
are presented, including BR2, SIPG and LDG.

I. Introduction

The class of nonlinear systems of conservation laws contains many important examples. A case in point
are the Euler equations and the Navier-Stokes equations, governing inviscid and viscous compressible fluid
flow, respectively. In analyzing the stability of numerical schemes for such systems, entropy stability is often
the framework of choice.3–5,11,12,17–19,24,25,33,34 Furthermore, some convergence proofs have been provided
for high order space-time discontinuous Galerkin (DG) schemes and more general hyperbolic systems which
heavily exploit the property of entropy stability.23,39

Compared to entropy stability analysis of hyperbolic conservation laws, much less work has been done
in extending entropy stability of DG schemes to nonlinear convection-diffusion systems and most of the
literature try to mimic the well-known analysis for the linear Poisson problems e.g., in.1 To the best
knowledge of the authors only very few results are available in this direction12,27,35 (also see16). More
specifically, in Ref. 35 a difference formulation based on entropy variables has been presented and the entropy
stability of the method has been proved in the semi-discrete form. In Ref. 12 the symmetric/nonsymmetric
interior penalty DG formulation has been presented for the one-dimensional Navier-Stokes equations realized
in terms of entropy variables, and entropy stability has been proved in the semi-discrete settings. In Ref. 27 a
different formulation of the interior penalty has been presented employing a different penalty scaling, similar
to Ref. 22, for the one-dimensional Navier-Stokes equations. Furthermore, a variant of LDG method is
presented for this problem, as well as an entropy stability proof in space-time fully-discrete settings.

Another work is the Ref. 15 which presents an entropy-stable space-time formulation for turbulent
computation using the Roe flux for the convective part, and the second method of Bassi and Rebay7 for the
viscous part. Though no proof has been provided for entropy stability, the authors have given illustrative
examples by comparison between using conservative and entropy variables. The authors highly emphasized
the importance of having an entropy stable method as a base-line scheme, despite issues arising from inexact
integration. In fact, the authors showed that while de-aliasing process by over-integration26 is sufficiently
helpful for an entropy stable scheme in high Reynolds flow computation, it is unable to provide a stable
formulation for under-resolved turbulent simulation if one realize the formulation in terms of conservative
variables, which does not enjoy the entropy stability.

In this work we consider a more general DG formulation for the Navier-Stokes equations by using a mixed
method for discretizing the viscous flow in addition to the entropy stable formulation for the convective flux
as we presented in our earlier works38,39 (also see e.g.,23), which is able to represent a family of different
known viscous discretization schemes, extended to the nonlinear diffusion of the Navier-Stokes equations in
a canonical way. Most of the schemes in the classic paper by Arnold et al.1 can be included and proved to
be entropy stable. We give a variety of examples in this abstract, augmented with numerical examples.

∗Graduate student.
†Associate professor.
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The outline of this paper is as follows: The governing equations and relevant symmetrization concepts
are recalled in §II. The DG discretization framework is introduced in §III. This section includes the explicit
form of the convective and a variety of viscous discretizations. The stability analysis is presented in §IV,
and §V is reserved for numerical examples.

II. Governing Equations

Let us consider the compressible Navier-Stokes equations in Rd with d = 1, 2, 3 in the divergence form

du

dt
+∇ ·

(
f c(u)− fv(u,∇u)

)
= 0, in Ω, (1)

where Ω ⊂ Rd is open and bounded. Here u ∈ Rm is the vector of conservative variables and by f c and fv
we denote the convective and diffusive fluxes respectively as, e.g. for d = 3 (and m = 5) reads as

u =


ρ

ρV1

ρV2

ρV3

E

 , f ic = Viu+ p


0

δ1,i

δ2,i

δ3i

Vi

 , f iv =


0

τ1,i

τ2,i

τ3,i

τi,jVj + qi

 , i = 1, · · · , d (2)

with V = (V1, V2, V3)t is the velocity vector and the convective/diffusive fluxes f c/v = (f1
c/v,f

2
c/v,f

3
c/v)

t.
Also δi,j is the notation for the Kronecker delta function and we used the convention of summing over
repeated indices.

Here ρ and E are density and internal energy, respectively. Also p denotes the static pressure defined as

p = (γ − 1)(E − 1

2
ρV 2) (3)

where γ = cp/cv is the ratio of specific heat capacities at constant pressure (cp) and constant volume (cv).
For air we have γ = 1.4. Moreover, τ is the viscous shear stress tensor and for Newtonian fluid is

τ = µ
(
∇u+ (∇u)t − 2

3
(∇ · u)I

)
, (4)

and the heat flux q is defined by the Fourier’s law as

qi = κ
∂T

∂xi
, i = 1, · · · , d, (5)

where κ is the heat conductivity and is equal to κ =
µcp
Pr . Here Pr is the Prandtl number, which for air at

moderate conditions has a constant value of about Pr = 0.72. Also the temperature T is defined by the
ideal gas law as

T =
p

(γ − 1)cvρ
.

Moreover, we need to supplement equation (1) with some boundary conditions on the boundary of Ω
denoted by Γ. For simplicity in the formulation we consider here only the Dirichlet boundary conditions in
the form of uΓ = gD and refer to the literature, e.g Ref. 21, for changes required for Neumann boundary
conditions. In order to have a well-posed problem in the hyperbolic settings we need to consider some special
treatment for imposing gD in different part of the boundary. Let us consider the following decomposition of
the boundary Γ as

Γ = ΓD,sup ∪ ΓD, sub-in ∪ ΓD, sub-out ∪ ΓW (6)

to supersonic (inflow/outflow), subsonic inflow, subsonic outflow and the wall boundary conditions, re-
spectively. For brevity we skip the details here and refer again to the literature22 for the treatments of
inflow/outflow and wall boundary conditions. We denote the imposed boundary condition by uΓ(u) or
simply uΓ.
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One can write (1) in the form24

ut +Ai(u)∇iu−∇ · (Ki,j(u)∇ju) = 0, i, j = 1, · · · , d, (7)

where Ai(u) = ∂uf
i(u) and f iv(u) = Ki,j(u)∇ju.

In general Ai(u) and K(u) =
[
Ki,j

]
, i, j = 1, · · · , d (where each Ki,j ∈ Rm×d ) are not symmetric

and this makes the energy analysis somewhat cumbersome. An idea to detour this issue is to using entropy
variables instead of conservative ones; i.e. using the change of variables v(u) = Uu(u) where U is a convex
entropy function of (1). Here we refer for more details to Ref. 24 and just mention that in case of non-
zero heat flux the only admissible entropy for symmetrization is an affine function of the specific entropy
s = log( p

ργ ), e.g.

U = − ρs

γ − 1
, Qi = UVi, (8)

where Qi, i = 1, · · · , d, is the corresponding entropy flux. Note that ∂uQ = ∂uU∂uf c. Then, the symmetric
representation of (7) realized in entropy variables can be written as

uvvt + Ãi(v)∇iv −∇ · (K̃i,j(v)∇jv) = 0, i, j = 1, · · · , d, (9)

such that Ãi(v) is symmetric and K̃(v) is symmetric positive semi-definite. Also note that the matrix uv is
the inversion of the Hessian of the convex entropy function U and is symmetric positive definite. For explicit
form of Ãi and K̃i,j we refer to Ref. 24.

Henceforth, we realize the functions in terms of entropy variables v which are the basic unknowns, and the
dependent conservative variables are derived via mapping u(v). In our notation, this mapping is sometimes
omitted, e.g., f(v) is written rather than f(u(v)). Also for brevity in notation we sometimes might ignore
the dependence of K̃(v) to v and write K̃. We write the argument whenever it might lead to confusion.

III. Discontinuous Galerkin Formulation

In this section we explain the weak formulation and the DG discretization we apply on (1). This includes
the properties of triangulation and the discretization techniques for both the convective and the viscous part.

A. Triangulation

Let us consider the space domain Ω has a polygon boundary Γ. Then we consider a shape-regular triangu-
lation on Ω as Th = {κ} composed of (non-overlapping) triangular or rectangular elements (with possible
hanging nodes). Let define hκ as the diameter of each κ ∈ Th and h := maxκ∈Th hκ. Also we denote νκ to be
the outward normal to ∂κ. In the following we assume that Th is of bounded variation, that is, there exists
a constant l > 1 such that

l−1 ≤ hκ
hκ′
≤ l, (10)

where κ, κ′ ∈ Th share an edge. This bounded variation property means that there is an upper bound for
the number of neighboring elements of each κ ∈ Th, denoted by Nl. In case that Th has no hanging nodes,
Nl = 3 and Nl = 4 for triangular and rectangular elements, respectively. We denote the skeleton of the
triangulation, i.e. the set of all edges of κ ∈ Th, by Eh. Also we denote the set of boundary and interior
edges of Th by Eh,∂ and Eh,I , respectively, and the length of edge e by he.

Following standard definitions,1 let us fix the jump and average of the discontinuous functions on the
skeleton Eh. For any interior edge e ∈ Eh,I , where e is the common edge of κ, κ′ ∈ Th, with wκ,e = wκ|e we
set

{w} =
1

2
(wκ,e +wκ′,e), JwK = wκ,e ⊗ νκ +wκ′,e ⊗ νκ′ (11)

for all w ∈
∏
κ∈Th

[
L2(∂κ)

]m
. Similarly for all τ ∈

∏
κ∈Th

[
L2(∂κ)

](m×d)
we set

{τ} =
1

2
(τκ,e + τκ′,e), Jτ K = τκ,e · νκ + τκ′,e · νκ′ . (12)
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Moreover, for any boundary edge e ∈ Eh,∂ we define

JwK = wκ,e ⊗ νκ, {τ} = τκ,e. (13)

Note that we will use two different notations for inner product; 〈w,v〉 denotes the inner product in the
state space between w,v ∈ Rm, while a · b defines the inner product in the physical space for a, b ∈ Rd.
Moreover we use double inner product notation as τ : ζ =

∑m
i=1

∑d
j=1 τi,jζi,j for τ , ζ ∈ Rm×d. Also for

w ∈ Rm and a ∈ Rd we define the matrix w ⊗ a ∈ Rm×d as (w ⊗ a)i,j = wiaj .

B. Variational Formulation

The finite dimensional space for the approximate weak solution of (1) is defined as

Vh,q := {wh ∈ [L2(Ω)]m : wh|κ ∈ [Pq(κ)]m, ∀κ ∈ Th}, (14)

where Pq(κ) is the space of polynomials of at most degree q on a domain κ ⊂ Rd.
The proposed discontinuous Galerkin method has the following quasi-linear (nonlinear in the first argu-

ment and linear in the second) variational form in terms of entropy variables: Find vh ∈ Vh,q such that

〈uht ,wh〉+ B(vh,wh) = 〈ut,wh〉+ Bc(vh, wh) + Bv(vh, wh) = 0, ∀wh ∈ Vh,q. (15)

Here Bc and Bv correspond to convective and viscous discretization, respectively. We are going to present
the details of the convective and viscous discretization in sections 1 and 2. Note that in (15) we let the time
integration term remain in the semi-discrete form. The reason is that the results we are going to discuss in
this paper are quite independent of the time discretization approach. The only important feature of the time
treatment process that it should keep the entropy stability property (cf. section IV). There are different
types of such time integration methods, e.g. explicit SSP time integration and class of implicit methods like
space-time formulation (cf. Ref. 3).

In our previous work for hyperbolic systems,23,39 one or two additional stabilization terms, in form of
shock capturing and streamline diffusion, were added to guarantee convergence of the method and controlling
the discontinuities. We remark that these terms are not necessary in the entropy analysis of the method, but
they do improve the quality of the result and alleviate oscillations, especially for coarser meshes and high
Reynolds number settings. In this work, however, we do not add such terms in the analysis and numerical
experiments, which focus on simple model equations and smooth solutions, and refer to the literature for
more details on further stabilization techniques.23,27,28,39

In the rest of this section we provide details on each of the terms in (15):

1. Convective Discretization

Using the test function wh ∈ Vq to penalize the interior residual of the cell and jump of the fluxes leads to

Bc(vh,wh) =
∑
κ∈Th

∫
κ

〈∇ · f c,wh〉dx+
∑
κ∈Th

∫
∂κ

〈f̂ c(vh)− f c(vhκ,e) · νκ,wh
κ,e〉ds. (16)

Here, f̂ c(v
h) = f̂ c(v

h
κ,e,v

h
κ′,e; νκ) denotes the convective numerical flux corresponds to physical convective

flux f c on the interfaces of the elements. This numerical flux is a vector-valued function of two interface
states and the interface normal νκ on element κ, and is considered to be conservative and consistent with
f c. Also this flux is required to be entropy stable, i.e. it has the following viscosity form as

f̂ c(v
h) = f̂ c(v

h
κ,e,v

h
κ′,e; νκ) = f?(vh)− 1

2
D(vh)JvhK, on e ∈ Eh,I (17)

where f?(vh) = f∗(vhκ,e,v
h
κ′,e; ν) denotes the entropy conservative flux and D is the numerical diffusion

required to obtain entropy stability. This numerical diffusion is set to be a symmetric and uniformly positive
definite matrix. The main property of such fluxes is

f̂ c(v
h
κ,e,v

h
κ′,e; νκ) : JvhK ≥ CJvhK : JvhK (18)
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where C is some lower bound for the eigenvalues of the uniformly positive definite and symmetric matrix D.
Two interesting choices for diffusion matrix D are Roe and Rusanov diffusion. We refer to the literature for
more details on the diffusion matrix and properties of the entropy stable fluxes, as well as explicit forms of
such fluxes for Euler equations.19,25,34 On the boundary faces f̂ c(v

h) is defined as

f̂ c(v
h
κ,e; νκ) = f c(uΓ(vhκ,e)) · κe, on e ∈ Eh,∂ . (19)

Applying integration by parts on (16) leads to the final variational form of the convective part as

Bc(vh,wh) = −
∑
κ∈Th

∫
κ

f c : ∇wh dx+
∑
e∈Eh,I

∫
e

〈f̂ c(vh),wh
κ,e〉ds+ BcΓ(vh,wh) (20)

where the boundary BcΓ term is

BcΓ(vh,wh) =
∑
e∈Eh,∂

∫
e

〈f c · νκ,wh
κ,e〉ds. (21)

2. Viscous Discretization

For the discretization of the viscous flux fv = ∇ · (K̃(v)∇v) in (9), we follow the formulation presented by
Cockburn and Dawson,13 later used in other work as well,10,30 and consider a first order mixed formulation
for three unknown variables; v, θ = ∇v and σ = K̃θ. Then, restricted to local formulations, we present the
equivalent primal formulation which is solvable for vh and can easily fit into the primal formulation (15).

Note that one can rewrite (9) as the following problem

−∇ · σ = R, x ∈ Ω,

σ = K̃θ, x ∈ Ω,

θ = ∇v, x ∈ Ω.

where R := −(uvvt + Ãi(v)∇iv), is the sum of time derivative and inviscid convective flux in (1).
Here we approximate the exact solution (σ,θ,u) by discrete functions (σh,θh,uh) in the finite element

space (Σh,p × Σh,p × Vh,q), where Vh,q is the same as (14) and Σh,p is defined as

Σh,p := {θh ∈ [L2(Ω)]m×d : θh|κ ∈ [Pp(κ)]m×d, ∀κ ∈ Th},

with q ≥ 1 and p = q or p = q − 1. (To satisfy the property ∇Vh,q ⊂ Σh,p, cf. Ref. 1.) Now we consider the
following weak formulation∑

κ∈Th

∫
κ

K̃θh : ζh dx =
∑
κ∈Th

∫
κ

σh : ζh dx, ∀ζh ∈ Σh,p. (22)

∑
κ∈Th

∫
κ

θh : τh dx+
∑
κ∈Th

∫
κ

〈vh,∇ · τh〉dx =
∑
κ∈Th

∫
∂κ

〈v̂, τh · νκ〉ds, ∀τh ∈ Σh,p, (23)

∑
κ∈Th

∫
κ

σh : ∇wh dx−
∑
κ∈Th

∫
∂κ

〈σ̂ · νκ,wh〉ds = (R,wh), ∀wh ∈ Vh,q. (24)

Note that (R,wh) = −
(
(ut,w

h) + Bc(vh,wh)
)
.

This flux formulation is complete but the definition of the numerical fluxes v̂ and σ̂ which depends
on (σh,θh,uh), and needs to be designed carefully such that the method has good well-posedness and
compatibility properties. We postpone the explicit definition of these numerical fluxes till the end of this
section and now we are going to present the equivalent primal formulation; i.e., a formulation which has vh

as its only unknowns.
In order to obtain the primal formulation we need to solve the unknowns σh and θh in terms of vh. In

the first step, using (22) one can solve for σh as the Galerkin [L2(Ω)]m×d projection

σh = Gh
(
K̃(uh)θh

)
, (25)
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where Gh : [L2(Ω)]m×d → Σh,p has the following property; for all ξ ∈ [L2(Ω)]m×d∑
κ∈Th

∫
κ

ξ : τ dx =
∑
κ∈Th

∫
κ

Gh(ξ) : τ dx, ∀τ ∈ Σh,p. (26)

Moreover, let us remark the following identity; for any v ∈
∏
κ∈Th

[
L2(∂κ)

]m
and ξ ∈

∏
κ∈Th [L2(∂κ)]m×d

the following holds ∑
κ∈Th

∫
∂κ

〈v, ξ · ν〉ds =
∑
e∈Eh,I

∫
e

〈{v}, JξK〉ds+
∑
e∈Eh

∫
e

JvK : {ξ}ds. (27)

Applying (27) in (23) and (24), one can write∑
κ∈Th

∫
κ

θh : τh dx−
∑
κ∈Th

∫
κ

∇vh : τh dx+
∑
e∈Eh,I

∫
e

〈{vh − v̂}, JτhK〉ds+
∑
e∈Eh

∫
e

Jvh − v̂K : {τh}ds = 0,

∑
κ∈Th

∫
κ

σh : ∇wh dx−
∑
e∈Eh

∫
e

{σ̂} : JwhK ds−
∑
e∈Eh,I

∫
e

〈Jσ̂K, {wh}〉ds = (R,wh).

Moreover, let us define two lifting operator r : [L2(Eh)]m×d → Σh,p and l : [L2(Eh,I)]m → Σh,p as,∑
κ∈Th

∫
κ

r(ϕ) : τ dx = −
∑
e∈Eh

∫
e

ϕ : {τ} ds,
∑
κ∈Th

∫
κ

l(ϕ) : τ dx = −
∑
e∈Eh,I

∫
e

〈ϕ, Jτ K〉ds, (28)

for all τ ∈ Σh,p. Using the Riesz representation theorem one can prove the existence and uniqueness of the
lifting operators introduced in (28) (see e.g., [10, Lemma 3.3]). Also we define edge-wise right lifting operator
as re : [L2(e)]m×d → Σh,p ∑

κ∈Th

∫
κ

re(ϕ) : τ dx = −
∫
e

ϕ : {τ} ds, ∀τ ∈ Σh,p (29)

for all edges e ∈ Eh. Also by noting that r(ϕ) =
∑
e∈Eh r

e(ϕ), and by applying Cauchy-Shwarz inequality
and taking the norm over Th, one has

‖r(ϕ)‖2L2(Ω) = ‖
∑
e∈Eh

re(ϕ)‖2L2(Ω) ≤ Nl
∑
e∈Eh

‖re(ϕ)‖2L2(Ω). (30)

Also following30 and10 we define a similar lifting operator on the boundary as∑
κ∈Th

∫
κ

rΓ : τh dx = −
∑
e∈Eh,∂

∫
e

〈vΓ, τ
h · νκ〉ds, ∀τh ∈ Σh,p (31)

Now let us set additional properties for the numerical flux v̂ and σ̂ and require their conservation property.
This property as well as the property of being single valued on the interface e ∈ Eh,I leads to

Jv̂K = 0, {v̂} = v̂, Jσ̂K = 0, {σ̂} = σ̂. (32)

Using (32) and the Dirichlet boundary conditions, one can simplify the weak formulation as∑
κ∈Th

∫
κ

θh : τh dx =
∑
κ∈Th

∫
κ

∇vh : τh dx+
∑
e∈Eh,I

∫
e

〈{vh} − v̂, JτhK〉ds+
∑
e∈Eh

∫
e

JvhK : {τh}ds (33)

+
∑
e∈Eh,∂

∫
e

〈v̂, τh · νκ〉ds = 0,

∑
κ∈Th

∫
κ

σh : ∇wh dx−
∑
e∈Eh

∫
e

σ̂ : JwhK ds = (R,wh). (34)
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Using the definition of lifting operator (28) and (25), we arrive at

θh = ∇vh + r(JvhK) + l({vh} − v̂) + rΓ (35)

σh = Gh
(
K̃(vh)

(
∇vh + r(JvhK) + l({vh} − v̂) + rΓ

))
. (36)

Now (θh,σh) can be solved locally in terms of vh by inserting (35) and (36) in (34). Then, one can obtain
the primal formulation as the following; find vh ∈ Vh,q such that

Bv(vh,wh)− (R,wh) = (ut(v
h),wh) + Bc(vh,wh) + Bv(vh,wh) = 0, ∀wh ∈ Vh,q, (37)

where

Bv(vh,wh) =
∑
κ∈Th

∫
κ

K̃(∇vh + r(JvhK) + l({vh} − v̂) + rΓ) : ∇wh dx−
∑
e∈Eh

∫
e

σ̂ : JwhK ds. (38)

which still needs to become fully defined by setting v̂ and σ̂. In the following, inspired by some well-known
schemes, we examine some choices for these two fluxes:

(i) BR1: This formulation is defined by setting6

v̂ =

{vh} on Eh,I
vΓ on Eh,∂

, σ̂ = {σh} on Eh

which leads to the following primal formulation

Bv(vh,wh) =
∑
κ∈Th

∫
κ

K̃(∇vh + r(JvhK)) : (∇wh + r(JwhK)) dx+ BvΓ(vh,wh). (39)

with the boundary related terms as

BvΓ(vh,wh) =
∑
κ∈Th

∫
κ

K̃rΓ : (∇wh + r(JwhK)) dx. (40)

(ii) BR2: Here v̂ and σ̂ are set as8

v̂ =

{vh} on Eh,I
vΓ on Eh,∂

, σ̂ =

{Gh(K̃(vh)∇vh)} − αr,K̃(JvhK) on Eh,I ,
Gh(K̃(vΓ)∇vh)− α∂

r,K̃

(
(vhκ,e − vΓ)⊗ νκ

)
on Eh,∂ ,

with the notation αr,K̃ defined as (noting vhκ,e ⊗ νκ = JvhK on e ∈ Eh,∂)∑
e∈Eh

∫
e

αr,K̃(JvhK) : JwhK ds =
∑
e∈Eh

ηe
∑
κ∈Th

∫
κ

Gh
(
K̃(vh)re(JvhK)

)
: re(JwhK) dx,

for any e ∈ Eh. Also the notation αΓ
r,K̃

is defined as

∑
e∈Eh,∂

∫
e

α∂
r,K̃

(
(vhκ,e−vΓ)⊗νκ

)
: JwhK ds =

∑
e∈Eh,∂

ηe
∑
κ∈Th

∫
κ

Gh
(
K̃(vΓ)re((vhκ,e−vΓ)⊗νκ)

)
: re(JwhK) dx,

for any e ∈ Eh,∂ . Using the properties of Galerkin projection Gh and the definition of the lifting operator
(28), the primal formulation of BR2 yields as

Bv(vh,wh) =
∑
κ∈Th

∫
κ

K̃∇vh : ∇wh dx+
∑
κ∈Th

∫
κ

(
K̃r(JvhK) : ∇wh + K̃∇vh : r(JwhK)

)
dx

+
∑
e∈Eh

ηe
∑
κ∈Th

∫
κ

K̃re(JvhK) : re(JwhK) dx+ BvΓ(vh,wh). (41)

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 K

U
N

G
L

IG
A

 T
E

K
N

IS
K

A
 H

O
G

SK
O

L
E

N
 K

T
H

 o
n 

Ja
nu

ar
y 

9,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

7-
00

84
 



Here the parameter ηe depends on the properties of the triangulation Th and should be chosen such that
ηe ≥ Nl(Th). We will discuss the rationale behind this choice more detailed in the stability analysis
section IV. Also the additional term for the boundary is

BvΓ(vh,wh) =
∑
κ∈Th

∫
κ

K̃(vh)rΓ : ∇wh dx+
∑
e∈Eh,∂

∫
e

Gh
(
K̃(vhκ,e)∇vh − K̃(vΓ)∇vh

)
: (wh ⊗ νκ) ds

−
∑
e∈Eh,∂

ηe
∑
κ∈Th

∫
κ

Gh
(
K̃(vh)re(JvhK)− K̃(vΓ)re(JvhK)

)
: re(JwhK) dx

−
∑
e∈Eh,∂

ηe
∑
κ∈Th

∫
κ

Gh
(
K̃(vΓ)re(vΓ ⊗ νκ)

)
: re(JwhK) dx.

(iii) SIPG: In this formulation we set

v̂ =

{vh} on Eh,I
vΓ on Eh,∂

, σ̂ =


{Gh(K̃(vh)∇vh)} − µe

he
JvhK on Eh,I ,

Gh
(
K̃(vΓ)∇vh)

)
− µe
he

(vhκ,e − vΓ)⊗ νκ on Eh,∂

with some µe > 0 as a penalty parameter. Similar to32 or,12 this parameter is dependent on the
properties of the triangulation, polynomial order and the diffusion matrix K̃ as

µe = Cp(Th, K̃)q2. (42)

We will discuss about the value of Cp later in section IV. Similar to BR2, the primal formulation reads
as

Bv(vh,wh) =
∑
κ∈Th

∫
κ

K̃∇vh : ∇wh dx+
∑
κ∈Th

∫
κ

(
K̃r(JvhK) : ∇wh + K̃∇vh : r(JwhK)

)
dx

+
∑
e∈Eh

µe
he

∫
e

JvhK : JwhK ds+ BvΓ(vh,wh). (43)

where

BvΓ(vh,wh) =
∑
κ∈Th

∫
κ

K̃(vh)rΓ : ∇wh dx+
∑
e∈Eh,∂

∫
e

Gh
(
K̃(vhκ,e)∇vh − K̃(vΓ)∇vh

)
: (wh ⊗ νκ) ds

−
∑
e∈Eh,∂

µe
he

∫
e

〈vΓ,w
h〉dx

(iv) LDG: In the LDG formulation14 we set

v̂ =

{vh} − β · JvhK on Eh,I
vΓ on Eh,∂

, σ̂ =

{σh}+ β ⊗ JσhK− αJvhK on Eh,I ,
σh − α(vhκ,e − vΓ)⊗ νκ on Eh,∂

where β ∈ Rd is some mesh-dependent parameter and constant on each edge. Also α > 0 is some
parameter which is required for obtaining stability. By some lines of straightforward computations the
following primal formulation can be obtained (also see30 and10)

Bv(vh,wh) =
∑
κ∈Th

∫
κ

K̃(vh)
(
∇vh + r(JvhK) + l(β · JvhK)

)
:
(
∇wh + r(JwhK) + l(β · JwhK)

)
dx

+
∑
e∈Eh

∫
e

αJvhK : JwhK ds+ BvΓ(vh,wh) (44)

where

BvΓ(vh,wh) =
∑
κ∈Th

∫
κ

K̃rΓ :
(
∇wh + r(JwhK) + l(β · JwhK)

)
dx−

∑
e∈Eh,∂

α

∫
e

〈vΓ,w
h〉ds
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Based on the discretizations provided in sections 1 and 2 one might rewrite the discretized variational
problems (15) as, ∀wh ∈ Vh,q

〈ut(vh),wh〉+ B(vh,wh) = 〈ut,vh〉+ BcI(vh, wh) + BvI (vh, wh) + BcΓ(vh, wh) + BvΓ(vh, wh) = 0, (45)

where subscript Γ represents the parts of B(vh,wh) (15) which includes boundary conditions and subscript
I denotes the rest.

We want to remark that due to the discrete nature of the Galerkin projection (26), the viscous for-
mulations presented here are inconsistent with the exact smooth solution of the problem and consequently
adjoint inconsistent as well. However, one might show that in asymptotic limit the consistency and adjoint
consistency can be recovered. For more details we refer to29 and the references cited there, as well as our in
preparation work.37

IV. Entropy Stability Result

In this section we consider the stability result of the approximate solution of scheme (15). The symmet-
ric formulation we obtained through the change of variables simplifies this analysis, for both the infinite-
dimensional weak solution and its finite-dimensional numerical approximation counterpart. Taking inner
products of the (9) with respect to the entropy variables and using the definition of the entropy flux yields∫

Ω

Ut(v) dx+

∫
Ω

∇ ·Q(v) dx+

∫
Ω

K̃(v)∇v : ∇v dx = 0. (46)

From the positive semi-definiteness of matrix K̃ one can conclude the non-negativeness of the third term on
the left. Moreover if by applying appropriate boundary conditions and using the divergence theorem, the
second term is non-negative, the following global entropy inequality is obtained

d

dt

∫
Ω

U(u) dx ≤ 0. (47)

This property can be viewed as an extension of L2 stability for systems of conservation laws and is the
motivation behind entropy stable schemes, which were originally introduced by Tadmor.33 For more details
on these kind of schemes we refer to the seminal review paper.34

From the numerical point of view it is also desirable to retain the entropy stability property for the
approximate solution. We are going to present the following theorem on the entropy stability property on
the numerical solution of the scheme (15):

Theorem 1. Let us consider vh as the approximate solution of (1) produced by scheme (15). Also let us
assume the following holds for the symmetric diffusion matrix K̃; there exists Λ < ∞ such that for any
wh 6= 0

0 ≤ 〈wh, K̃wh〉 ≤ Λ〈wh,wh〉. (48)

Then the following holds
d

dt

∫
Ω

U(vh) dx ≤ 0, (49)

where U is defined as (8); i.e. the method (15) is entropy stable in semi-discrete form.

For simplicity we are going to neglect the contribution of boundary conditions appearing in form of
BcΓ and BvΓ. It’s plausible that by choosing the right stabilization parameters as well as ‘stable’ boundary
conditions, one is able to retrieve the entropy stability for the full scheme. We shall not address this problem
in the present paper and merely concentrate on the main idea of discretization.

Also, before presenting the proof we mention the following lemma which will be used later:

Lemma 1. There exist two positive constants Cr, CR > 0, such that for all e ∈ Eh we have

Crh
−1/2
e ‖JwK‖L2(e) ≤ ‖re(JwK)‖L2(Ω) ≤ CRh−1/2

e ‖JwK‖L2(e), ∀w ∈ Vh,q, (50)

where the constants are h independent and only depend on the minimum angle of the triangles and the
polynomial degree q.
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The proof of this lemma can be found, e.g., in [9, Lemma 2] and we skip it. Also note that the validity
of the assumption (48) lies in our symmetric form.24 Now we are ready to present the proof of Theorem 1:

Proof. The proof can be obtained from the convective discretization properties of entropy stable flux (17),
and the viscous discretization proposed in section 2. Inserting wh = vh in (15) and using the definition of
entropy variables yields

d

dt

( ∑
κ∈Th

∫
κ

U(vh) dx
)

+ Bc(vh,vh) + Bv(vh,vh) = 0. (51)

Now we deal with second and third terms on the left hand side of (51) as below:

(i) Along the same lines as in related work5,23,39 which uses the entropy dissipation structure D and the
properties of entropy conservative flux as (18), one can show

BcI(vh,vh) = −
∑
κ∈Th

∫
κ

d∑
k=1

〈fk(vh),wh
xk
〉dx+

∑
κ∈Th

∫
κ

〈f̂ c(vh),wh
κ,e〉ds ≥ C

∑
κ∈Th

∫
∂κ

|JvhK|2 ds.

(ii) To show the non-negativity of Bv(vh,vh) for different viscous discretization we consider different cases:

(a) BR1: Using the primal formulation (39) and (48) one has

BvI (vh,vh) =
∑
κ∈Th

∫
κ

K̃
(
∇vh + r(JvhK)

)
:
(
∇vh + r(JvhK)

)
dx ≥ 0. (52)

(b) BR2: From (41) one has

BvI (vh,vh) =
∑
κ∈Th

∫
κ

K̃∇vh : ∇vh dx+ 2
∑
κ∈Th

∫
κ

K̃r(JvhK) : ∇vh dx

+
∑
e∈Eh

ηe
∑
κ∈Th

∫
κ

K̃re(JvhK) : re(JvhK) dx (53)

Employing Young’s inequality for symmetric positive semi-definite matrix (eg. see [27, Lemma
4.4.] ), and by setting 0 < δ < 1 we can write

2
∑
κ∈Th

∫
κ

K̃r(JvhK) : ∇vh dx ≤ δ
∑
κ∈Th

∫
κ

K̃∇vh : ∇vh dx+
1

δ

∑
κ∈Th

∫
κ

K̃r(JvhK) : r(JvhK) dx.

which gives

BvI (vh,vh) ≥ (1− δ)
∑
κ∈Th

∫
κ

K̃∇vh : ∇vh dx− 1

δ

∑
κ∈Th

∫
κ

K̃r(JvhK) : r(JvhK) dx

+
∑
e∈Eh

ηe
∑
κ∈Th

∫
κ

K̃re(JvhK) : re(JvhK) dx (54)

On the other hand, in the same fashion as1 and (30), one can show∑
κ∈Th

∫
κ

K̃r(JvhK) : r(JvhK) dx ≤ Nl(Th)
∑
e∈Eh

∑
κ∈Th

∫
κ

K̃re(JvhK) · re(JvhK) dx. (55)

Comparing (54) and (55) one can easily see that Bv(vh,vh) ≥ 0 is guaranteed if ηe > Nl for all
e ∈ Eh .
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(c) SIPG: From the SIPG primal formulation (43) we have

BvI (vh,vh) =
∑
κ∈Th

∫
κ

K̃∇vh : ∇vh dx+ 2
∑
κ∈Th

∫
κ

K̃r(JvhK) : ∇vh dx+
∑
e∈Eh

∫
e

µe
he

JvhK : JvhK ds.

The steps of the proof follow the same lines as for BR2 above. The main difference is the replace-
ment of the relation (55) by using the inequality (50), which gives∑

e∈Eh

∫
e

µe
he

JvhK : JvhK ds ≥
∑
e∈Eh

µe
C2
R

∑
κ∈Th

∫
κ

re(JvhK) : re(JvhK) dx. (56)

Comparing to the argument for BR2 method and by (48), one can obtain the following condition
on the penalty parameter µe

µe ≥ NlΛ(K̃)C2
R. (57)

in order to satisfy Bv(vh,vh) ≥ 0.

Let us remark that the penalty parameter µe in (57) is independent of the condition number of K̃
which would be infinity in case of Navier-Stokes equations. This is in contrast with the analysis
e.g. provided in.27 Actually in27 the specific structure of the K̃ has been exploited to avoid this
technical problem. This has been only done in one dimensional case and the extension to higher
dimensions is not obvious.

(d) LDG: From the primal formulation of LDG (44) we have

Bv(vh,vh) =
∑
κ∈Th

∫
κ

K̃
(
∇vh + r(JvhK) + l(β · JvhK)

)
:
(
∇vh + r(JvhK) + l(β · JvhK)

)
dx

+
∑
e∈Eh

∫
e

αJvhK : JvhK.

Using (48), Bv(vh,vh) for the LDG formulation is obviously non-negative by setting α > 0.

Now, the proof of the theorem follows directly of parts (i)-(ii) and (51).

V. Numerical Results

In this section we provide some numerical results to test and validate the code as well to investigate the
applicability of the method on more realistic problems like flow around an airfoil. In order to avoid the
additional technicalities from the time discretization which we have not considered in the stability analysis
in section IV we consider only steady problems in this section. Moreover, in the numerical result section
we provide the results only for both BR2 and SIPG formulations and we do not test LDG scheme. First in
section A we look into the advection-diffusion problem in the scalar setting to assess the order of accuracy
of the method. Afterwards in section B we apply our formulation to Navier-Stokes equations to present its
performance.

The Netgen/Ngsolve library31 has been used for geometry handling and mesh generation as well as
quadrature rules and the evaluation of basis functions. The nonlinear system obtained from the scheme
is solved using a damped Newton method utilizing the ILU preconditioned GMRES available through the
PETSc library.2 Also note that the additional Galekin projection appeared in σ̂ has not been differentiated
exactly, hence we have non-exact Jacobian in the Newton solver. We provide the convergence history of the
residual to show that the effect (at least in our test cases) is negligible.

A. Scalar Advection-Diffusion

Here we are going to apply the formulation presented in (15) to the following steady linear advection–
nonlinear diffusion problem on Ω = [0, 1]2,

∇ ·
(
f c(u)− fv(u,∇u)

)
= s, in Ω (58a)

u = 0, on ∂Ω (58b)
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where f c(u) = cu and fv(u,∇u) = ε(1 + u)∇u. Here ε > 0 is some constant and c = (1, 1)T is the specified
velocity field. Moreover we set the source term s on the right hand such that the exact solution of the
problem is

u(x, y) =
1

2
sin(2πx) sin(2πy). (59)

The convective flux set for this case is a Lax-Friedrich flux combined with either BR2 or SIPG for discretizing
the viscous flux. Moreover the stabilization parameter for SIPG and BR2 have been set CP = 10 and ηe = 4
respectively. The results provided in Tables 1 and 2 shows that the scheme achieved the optimal q+ 1 order
of accuracy in the asymptotic limit for both both methods .

Table 1: Convergence table for advection-diffusion problem with BR2 scheme, ε = 10

N q ‖e‖L2
order N q ‖e‖L2

order

6 1 2.07e-01 6 2 9.23e-02

24 4.69e-02 2.139 24 3.22e-02 1.518

96 3.40e-02 0.4638 96 2.95e-03 3.448

384 8.99e-03 1.92 384 3.71e-04 2.995

1536 2.28e-03 1.978 1536 4.63e-05 3

6144 5.72e-04 1.996 6144 5.79e-06 3.001

6 3 6.41e-02 6 4 7.48e-03

24 1.17e-03 5.773 24 8.72e-04 3.096

96 2.71e-04 2.113 96 2.02e-05 5.429

384 1.72e-05 3.975 384 6.35e-07 4.995

1536 1.08e-06 3.998 1536 1.98e-08 5.002

6144 6.74e-08 4.001 6144 6.18e-10 5.001

Table 2: Convergence table for advection-diffusion problem with SIPG scheme, ε = 10

N q ‖e‖L2 order N q ‖e‖L2 order

6 1 1.83e-01 6 2 9.75e-02

24 4.42e-02 2.053 24 3.50e-02 1.477

96 3.03e-02 0.5464 96 3.24e-03 3.435

384 8.37e-03 1.854 384 4.16e-04 2.96

1536 2.16e-03 1.954 1536 5.25e-05 2.987

6144 5.45e-04 1.985 6144 6.58e-06 2.997

6 3 7.23e-02 6 4 7.80e-03

24 1.21e-03 5.906 24 1.01e-03 2.954

96 3.00e-04 2.005 96 2.28e-05 5.464

384 1.87e-05 4.001 384 7.27e-07 4.972

1536 1.17e-06 4.008 1536 2.28e-08 4.993

6144 7.26e-08 4.004 6144 7.13e-10 4.999
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B. Navier-Stokes Equations

In this section first in order to see the accuracy of the method for the Navier-Stokes equations (1), we consider
the following manufactured solution similar to22 and,20 as

ρ(x, y) = 4 + sin(2(x+ y))

ρV1(x, y) = ρV2(x, y) = 2 +
sin(2(x+ y))

10

E(x, y) =
(
4 + sin(2(x+ y))

)2
on a domain Ω = [0, π]2. Also we set the viscosity µ such that the Reynolds number defined as

Re =
ρ0u0L0

µ
= 500, (60)

with the reference values u0 = 0.5, ρ0 = 4 and L0 = π. The numerical convective flux is Lax-Friedrich and
the method is tested with ηe = 4 for BR2 and with µe = 0.1q2 for SIPG. On the boundaries we applied
inflow boundary conditions on left and bottom, and outflow on top and right. The results which presented
in Tables 3 and 4 show the optimal order of convergence q + 1 in the asymptotic limit.

Table 3: Convergence table for the Navier-Stokes problems with BR2 scheme, Re = 500

N q ‖e‖L2 order N q ‖e‖L2 order

34 1 4.50e+00 34 2 6.63e-01

136 1.16e+00 1.952 136 1.59e-01 2.061

544 2.97e-01 1.969 544 1.95e-02 3.027

2176 7.51e-02 1.985 2176 2.58e-03 2.919

34 3 3.65e-01 34 4 9.29e-02

136 2.93e-02 3.641 136 5.07e-03 4.197

544 1.83e-03 4.005 544 2.30e-04 4.462

2176 1.21e-04 3.912 2176 7.10e-06 5.017

Table 4: Convergence table for the Navier-Stokes problems with SIPG scheme, Re = 500

N q ‖e‖L2
order N q ‖e‖L2

order

34 1 4.26e+00 34 2 5.65e-01

136 1.14e+00 1.899 136 1.43e-01 1.983

544 2.89e-01 1.983 544 1.79e-02 2.997

2176 7.18e-02 2.009 2176 2.36e-03 2.922

34 3 3.31e-01 34 4 1.07e-01

136 2.71e-02 3.608 136 4.93e-03 4.44

544 1.74e-03 3.962 544 2.18e-04 4.499

2176 1.17e-04 3.9 2176 7.25e-06 4.910

Next we are going to compute an actual flow computation around the NACA 0012 airfoil. The geometry
of the airfoil is defined by

y(x) = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4), 0 ≤ x ≤ 1. (61)

Our settings is laminar viscous flow with a free-stream Mach number of Ma∞ = 0.5, angle of attack α = 2◦

and Reynolds number of Re = 500. Also we set far field conditions as ρ∞ = 1 and p∞ = 1. The mesh is
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shown in Figure 1 consists of 2155 triangular elements which is created using the Netgen mesh generator.31

The far field is a circle, centered at the airfoil mid chord with a radius of 1000 chords.

X

Y

0.5 0 0.5 1 1.5
1

0.5

0

0.5

1

Figure 1: Computational mesh, 2155 elements, zoomed around airfoil

We compute the solution with DG polynomial of degree q = 3 for both BR2 and SIPG method, with
parameters ηe = 4 for BR2 and with µe = 0.01q2 for SIPG. As a reference solution we computed the same
settings with our standard DG code (cf.36). In Figure 2 we compared the distribution of Mach number
around the airfoil for BR2 and SIPG method.
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(a) BR2
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(b) SIPG

Figure 2: Distribution of flow Mach number around the airfoil NACA 0012.

In Figure 3 we compared the pressure coefficient on the airfoil surface, defined as

Cpressure =
p− p∞
1
2ρ∞V

2
∞
, (62)

for both BR2 and SIPG method with our standard BR2 discretization. The results show that the pressure
coefficient obtained from both methods are very similar to the results from the reference solution.
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Figure 3: Pressure coefficient (Cpressure) on the airfoil, computed by BR2 and SIPG (red circles) with q = 3,
versus the reference value computed by our standard DG code36 (dashed blue line)

In order to see the effect of non-exact Jacobian on the convergence, in Figure 4 we present the convergence
history of both SIPG and BR2 method. The y axis is the residual of the right hand side of the Newton
iteration and the x axis is the iteration number. The big increases in the residual shows that steps of ramping
in DG polynomial; i.e., we start by q = 0 and use the computed result as the initial condition for q = 1 and
the process continues till the highest polynomial degree.
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Figure 4: Convergence history of the Newton solver, residual versus the iteration number.

From the result in Figure 4 one can clearly see, that at least in this test case, the effect on non-exactness
of the Jacobian is negligible in the convergence behaviour.

VI. Conclusion and Outlook

We presented a family of entropy-stable discontinuous Galerkin methods for the convection-diffusion
systems, especially designed for the compressible Navier-Stokes equations. The discretization starts from a
mixed formulation and we develop different well-known discretization in a canonical way. We also proved
that all of these discretizations are entropy stable in their primal form. In the numerical experiments we
showed some numerical result with BR2 and SIPG formulation to investigate their order of accuracy as well
as their performance in flow computations in practice. As the results claimed, the order of accuracy of both
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methods are optimal in L2 norm and they perform quite similar to the standard BR2 formulation we already
developed (cf.36). For the future work one might look at the effect of the boundary conditions on the claimed
entropy stability and adjoint consistency.
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