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In this paper we present a space-time computational framework for solution of nonlinear
hyperbolic systems of conservation laws. The framework is based on a previously proposed
space-time discontinuous Galerkin discretization, realized in terms of entropy variables.
Building on previous stability and convergence analysis, the main aim of the present paper
is to address the increased complexity of the high-order implicit space-time formulation.
We propose a time-marching scheme of the tent-pitching type, maintaining the implicit
nature of the solution algorithm, as well as high order temporal accuracy, while avoiding
global space-time coupling of the degrees of freedom. The algorithm is introduced and
numerical experiments for different linear and nonlinear test cases are presented.

I. Introduction

The class of nonlinear systems of conservation laws contains many important examples. A case in point are
the Euler equations and the Navier-Stokes equations, governing inviscid and viscous compressible fluid flow,
respectively. When analyzing the stability of numerical schemes for such systems, entropy stability is often the
framework of choice.3–5,7, 9, 15,17,18,23,24,36,37 For finite element schemes in particular, space-time formulation
often facilitates establishing stability and, as the case might be, convergence. Space-time formulations of the
continuous Galerkin (CG) type with streamline diffusion stabilization are classic.26,27,34,35 An extension of
these classic schemes to discontinuous Galerkin (DG) methods, which are of particular interest in the present
work, is also available.25 These schemes can be proved convergent for the case of scalar conservation laws. For
systems of conservation laws various entropy stable DG schemes have been presented.3–5,9 Recently, space-
time DG Schemes of arbitrary order for hyperbolic systems of conservation laws that (under appropriate
assumptions) converge at least to an entropy-measure-valued (EMV) solution have been proposed.22,42

In particular, our recently proposed class of DG schemes for nonlinear hyperbolic systems of conserva-
tion laws42 uses merely a suitable entropy-stable flux,37 as well as a nonlinear shock-capturing term, for
stabilization. We have proved that our method is entropy stable and satisfies a suitable global entropy in-
equality. Also, we have proved that uniformly bounded solutions convergence to an entropy measure-valued
solution for arbitrary (fixed) order of polynomial approximation. The schemes in22 are similar in nature,
and yield the same analytical results. The main difference is that in our formulation, no streamline diffusion
is needed. Adding streamline diffusion stabilization facilitates proofs (especially) of entropy consistency and
convergence, but does not really reflect the way DG schemes are most often implemented for compressible
flow simulation.6,8, 20,21,40

While a space-time formulation is very convenient from an analysis point of view, a naive implementation
as a steady problem on a d + 1-dimensional space-time mesh (where d = 1, 2, 3 is the spatial dimension),
may be computationally costly. This is potentially true even if one takes advantage of time-causality by pure
upwinding in time on space-time slabs. Even in this case, one still solves a nonlinear system globally coupled
in space (on each space-time slab) with additional degrees of freedom for the resolution on the time variable.
At the very least the storage requirements may be dramatic. A potentially attractive alternative are the
so-called tent pitcher algorithms14 which take advantage not only of time-causality but also of finite speed of
propagation in hyperbolic problems in a constructive way. Tent pitching algorithms generate advancing front
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time dependent local meshes, such that one can solve the problem locally element by element, or in practice
on a very small local patch of elements. This is possible if new local elements are constructed in such a
manner that all new boundary faces of the patch of elements are causal faces,30 i.e. faces with no information
coming into the cell. The faces which are not causal are called coupled. There are numerous examples of
tent-pitching methods.1,14,29,39,41 In this paper we apply the tent pitcher algorithm39 for simplex elements
to construct a computationally efficient framework of the method presented in Zakerzadeh and May.42

The outline of this paper is as follows: The governing equations and relevant solution concepts are
recalled in §II. The space-time DG framework is introduced in §III. This section also includes the general
form of the numerical diffusion and shock capturing operators. For more details on these we refer to §IV and
Reference 42. Also in this section, the fully discrete entropy inequality of the solution and its BV-estimate
are presented as well as the L2 stability result. Furthermore, in §IV we provide some numerical examples to
show the applicability and efficiency of the method.

II. Governing equations

The general form of a nonlinear m×m-system of conservation laws in several space dimensions is

ut +

d∑
k=1

fk(u)xk
= 0, (1)

where the unknowns u = u(x, t) : Rd × [0,∞) → Rm are the conserved variables and fk : Rm → Rm, k =
1, . . . , d are (nonlinear) smooth flux functions with d = 1, 2, 3.

The conservation laws have to be augmented with initial conditions, as well as suitable boundary con-
ditions. In this introductory section, we assume that (1) is solved as a Cauchy problem on Rd, with initial
conditions u0(x), assumed to have compact support, to avoid technicalities arising from boundary condi-
tions. (Finite speed of propagation in hyperbolic problems then implies that the solution u(x, t) has compact
support for any finite time t and vanishes for |x| large.)

For the numerical experiments considered, we solve one-dimensional (d=1) model equations, the shallow-
water equations, as well as the Euler equations of compressible gas dynamics. The specific equations are
given in §IV.

A. Weak and measure-valued solution

It is well-known that equations of the type (1) can produce discontinuities in finite time; hence the solution
cannot be interpreted in the classical sense. This motivates one to introduce the concept of weak solution
which is defined as a bounded function u that satisfies (1) in distributional sense, i.e.∫ ∞

0

∫
Rd

(
〈u,ϕt〉+

d∑
k=1

〈fk(u),ϕxk
〉
)

dxdt+

∫
Rd

〈ϕ(x, 0),u0(x)〉dx = 0, (2)

for all functions ϕ ∈ (C∞c (Rd × [0,∞)) )m. Here the notation 〈u,w〉 denotes the inner product between
vectors u and v in state space Rm. Also we will use the notation a · b as the notation for the inner product
of vectors a and b in physical space Rd.

Weak solutions are not necessarily unique nor physical; an entropy inequality condition is used to single
out the physically admissible solutions. Assume that there exists a pair of functions (U,F ), U : Rm → R and
F = (F 1, . . . , F d)T : Rm → Rd such that U is convex and ∂uF

k(u) = ∂uU(u)∂uf
k(u) for all 1 ≤ k ≤ d.

Then, U and F are called entropy function and entropy flux, respectively, and the admissibility for weak
solutions depends on the consistency with the entropy inequality

U(u)t +

d∑
k=1

F k(u)xk
≤ 0, (3)

in the distributional sense for all entropy-entropy flux pairs corresponding to the system (1). Applying this
admissibility condition, one can select a unique solution for a scalar conservation law, termed the entropy
weak solution (see Kružkov28). This is basically the result of ‘richness’ of the family of entropy pairs; while
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the lack of enough entropies for general systems is the main reason why the well-posedness of the weak
solution is still an open problem for general systems.

By defining entropy variables as v = (Uu)T one can recast (1) in symmetric form as

uvvt +

d∑
k=1

fkvvxk
= 0, (4)

such that the matrix uv is symmetric positive definite and the matrices fkv are symmetric. This formulation
simplifies the analysis of entropy stability, for both the infinite-dimensional weak solution and its finite-
dimensional numerical approximation counterpart, as well as the implementation of entropy-stable numerical
schemes. Integrating (3) for a solution with compact support leads to the following global entropy inequality

d

dt

∫
Rd

U(u) dx ≤ 0 =⇒
∫
Rd

U(u(x, T )) dx ≤
∫
Rd

U(u(x, 0)) dx. (5)

This property can be viewed as an extension of L2 stability for systems of conservation laws and is desirable
to be retained for the approximate solution uh as well. This is the motivation behind entropy stable schemes,
which were originally introduced by Tadmor.36

Satisfying entropy stability, however, is not at all sufficient to conclude any sort of convergence for a
numerical scheme in the general case. In particular, for arbitrary-order DG schemes, results are not easy to
come by. In fact, trying to obtain some sort of convergence for systems of conservation laws leads to an even
weaker notion of solution, the so-called entropy measure-valued (EMV) solutions. These types of solutions,
introduced by DiPerna,12 are more general than weak solutions. The solution is essentially viewed as a
probability measure which satisfies the governing equations are satisfied in a moment sense (and still in the
sense of distributions.) This permits a meaningful convergence theory for numerical schemes approximating
(1). In the present paper, however, we shall focus on more practical issues. We give a brief summary of the
stability properties of our scheme in §III.D, but we shall not discuss convergence here. For a brief review of
measure-valued solutions and convergence results for numerical approximation we refer to Zakerzadeh and
May,42 or Hiltebrand and Mishra.22

III. Shock-capturing DG formulation

Here, we introduce the shock capturing discontinuous Galerkin (SC-DG) method for nonlinear systems
of conservation laws (1). A space-time framework, similar to that used in22,26,27,34,35,42 is proposed for
discretization of the problem. First we introduce the space-time triangulation and present the DG approxi-
mation, including the structure of the shock capturing term. Then we outline the tent pitcher method and
how it exploits the causality to solve a hyperbolic problem in an element-by-element (or in fact tent-by-tent)
manner.

A. Space-time triangulation

Adopting the compact support assumption for the solution in a finite time interval [0, T ], we consider the
space domain Ω ⊂ Rd such that suppu(·, t) ⊂ Ω at each time t ∈ [0, T ]. In order to discretize (1), let
0 = t0 < t1 < ... < tN = T be a sequence representing discrete time steps, and let In = [tn, tn+1) be the
corresponding time intervals. We also denote the space-time domain by Ω× [0, T ].

Let consider a subdivision Tn = {κ} of Sn into disjoint convex finite elements on each space-time slab,
Sn = Ω× In, with interface members κj ∩ κj , i 6= j of measure d′− 1. Here, d′ denotes the dimension of the
space-time which is equal to d+ 1.

Without loss of generality, let us assume that

h = sup
κ,n

hκ <∞, κ ∈ Tn, n ∈ {0, . . . , N − 1}, (6)

where hκ is the exterior diameter of a space-time cell κ. The interior diameter of an element (the diameter
of the inscribed circle) is denoted by ρκ. We assume the following quasi-uniformity condition

h

ρκ
≤ σ, ∀κ ∈ Tn, (7)
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with σ > 0 independent of h. The perimeter of κ is defined by pκ = Σe∈∂κ|e|, where |e| is the d-measure of
the face. The uniformity assumption (7) implies that10

1

µ
≤ pκhκ
|κ|

≤ µ, ∀κ ∈ Tn, (8)

for some µ > 0 independent of h. Typically, κ might be a tetrahedron or a prism defined as K × In, where
K corresponds to spatial triangulation on Rd. In Ref.42 we presented the formulation for prism elements
merely to avoid more complicated notation for simplices. Here, due to the tent pitcher time marching we
are presenting, it is required to have simplex space-time elements, and we need to modify the formulation
of Ref. 42 somewhat. Moreover, note that in the tent pitcher approach there is no longer the need to use
time slabs and the computation can be done tent-by-tent until the final time T is reached. Also, as e.g. in
Ref. 19, time slabs can be used safely with tent pitching algorithms. (In this case there will simply be no
global coupling in each time interval.) For convenience, we will stick to the slab notation. If no time slabs
are used, one can simply set n = 1, tn = T and Sn = Ω× [0, T ] to be consistent.

B. Variational formulation

The finite dimensional space for the approximate solution is defined as

Vqn = {w ∈ (L2(Sn))m : w|κ ∈ (Pq(κ))
m
,∀κ ∈ Tn}, n = 0, . . . , N − 1, (9)

where Pq(κ) is the space of polynomials of at most degree q for a domain κ ⊂ Rd′ . We also denote

Vq =
∏N−1
n=0 Vqn as the approximation space in global space-time domain. The approximating functions are

considered discontinuous both in space and time.
The proposed shock capturing discontinuous Galerkin method has the following quasi-linear (nonlinear

in first argument and linear in the second one) variational form in terms of entropy variables: Find vh ∈ Vq
such that for each n = 0, . . . , N − 1,vh|Sn ∈ Vqn satisfies,

B(vh,wh) = BDG(vh, wh) + BSC(vh,wh) = 0, ∀wh ∈ Vq. (10)

Note that we realize the functions in terms of entropy variables vh which are the basic unknowns and the
dependent conservative variables are derived via mapping u(vh). In our notation, this mapping is sometimes
omitted, e.g., f(vh) is written rather than f(u(vh)).

Using the test function wh ∈ Vq to penalize the interior residual of the cell and jump of the fluxes which
leads to

BDG(vh,wh) =−
∑
κ,n

∫
κ

〈∇ · f̃ ,wh〉dx̄+
∑
κ,n

∫
∂κ

〈f̂(vh)− f̃(vh−) · n,wh
−〉ds, (11)

where f̃ = (u,f(u)) is the space-time flux, and at every point x̄ ∈ Rd′ on ∂κ we define the notation
wh
±(x̄) = limε→0 w

h(x̄ ± εn) for values on element interfaces. Here n = (nt, nx1
, · · · , nxd

) is the outward
pointing normal on ∂κ at x̄. Also we assume that the initial data vh0,− = vh(x, 0−) is obtained from a
suitable projection of the initial data v0(x) = v(u0(x)).

Here, f̂(vh) = f̂(vhκ,−,v
h
κ,+;n) denotes the space-time numerical flux function, a vector-valued function

of two interface states vh± and the interface normal n, which is considered to be conservative and consistent

with f̃ . In order that the variational problem is independently solvable at each time slab level (and also
at tent level), on the interfaces where (±1, 0, · · · , 0) we assume that the numerical flux reduces to the pure
upwinding in time. Also the spatial part of this numerical flux is supposed to be entropy stable, i.e. we
consider it in the viscosity form as

f̂(vh)spatial = f̂(vh−,v
h
+; (0, nx1

, · · · , nxd
)) = f?(vh)− 1

2
D(vh)

(
vh+ − vh−

)
, (12)

where f?(vh) = f∗(vh−,v
h
+;n) denotes the entropy conservative flux andD is the numerical diffusion required

to obtain entropy stability, which is a set to a symmetric and uniformly positive definite matrix. Two
interesting choices for diffusion matrix D are Roe and Rusanov diffusion. We refer to18,24,37 for more details
on the diffusion matrix and properties of the entropy stable fluxes as well as explicit forms of such fluxes for
shallow water and Euler equations.

4 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
M

B
R

ID
G

E
 o

n 
Ju

ne
 1

5,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
34

96
 



C. Shock capturing operator

In order to stabilize the scheme in the presence of discontinuities we need to add a form of artificial viscosity.
We expect this operator to add a significant stabilization effect close to discontinuities, while only a little
viscosity is added in smooth regions. In this formulation, the residual of the finite element solution is used
as a sensor for presence of discontinuities. Let introduce the shock capturing operator as

BSC(vh,wh) =
∑
κ,n

∫
κ

εκ

(
〈wh

t , ũvv
h
t 〉+

d∑
k=1

〈wxk
, ũvvxk

〉
)

dx̄, (13)

where the viscosity εκ is defined as

εκ =
hαCSC1 Resκ

∇vκ + hθ
. (14)

Here, Res
2

κ and ∇vκ are weighted residual and gradient of the solution vh, respectively and defined as the
following

∇v2

κ =

∫
κ

〈vht , ũvv
h
t 〉+

d∑
k=1

〈vhxk
, ũvv

h
xk
〉dx̄, (15)

Res
2

κ =

∫
κ

〈Res,vu(vh(x, t))Res〉dx̄. (16)

Here ũv denotes uv(ṽκ) and ṽκ is the cell average defined as

ṽκ =
1

|κ|

∫
κ

vh(x, t) dx̄. (17)

Moreover, the local residual is defined as Res = u(vh)t +
∑d
k=1 f

k(vh)xk
.

In (13), CSC is a positive constants and hθ is added as the regularization parameter with parameter

θ ≥ d′−α
2 . Also the viscosity strength parameter α ∈ (0, 2). The rationale behind the specific form of

the shock-capturing operator, and the choices for θ and α are discussed in our original publication of the
scheme.42 In essence, these choices are such that we can guarantee the convergence of the approximate
solution to an EMV solution.

D. Energy analysis

We have previously proved that the approximate solution of (1), coming from the proposed scheme (10),
satisfies the global entropy inequality in the fully discrete sense.42 Then, by adopting some additional
assumptions, a weak BV-estimate was also proved. Here we just present the results and refer to Ref. 42 for
more details on the proofs.

The entropy stability result is given as the following theorem:

Theorem 1 (Theorem 4.1 of Ref. 42). Consider the system of conservation laws (1), equipped with strictly
convex entropy function U and corresponding entropy flux functions F k, k = 1, . . . , d. Furthermore, assume
that the exact and approximate solutions have compact support inside the spatial domain Ω. Then, the shock
capturing discontinuous Galerkin scheme (10) approximating (1) has the following properties:

(i) The scheme (10) is conservative in the following sense: If uh = u(vh) is the approximate solution,
then ∫

Ω

u(vh(x, tN− )) dx =

∫
Ω

u(vh(x, t0−)) dx. (18)

(ii) The scheme (10) is entropy stable i.e., the approximate solution uh admits the following fully discrete
global entropy bounds,∫

Ω

U(u∗(t0−)) dx ≤
∫

Ω

U(u(vh(x, tN− ))) dx ≤
∫

Ω

U(u(vh(x, t0−))) dx, (19)

where u∗(t0−) is called the minimum total entropy state of the projected initial data and is defined as

u∗(t0−) =
1

|Ω|

∫
Ω

u(vh(x, t0−)) dx. (20)
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Now let assume that there exist some constants independent of vh such that ∀w 6= 0

0 < c〈w,w〉 ≤ 〈w,uv(vh(x, t))w〉 ≤ C〈w,w〉. (21)

as well as a uniform spectral upper bound for fv, i.e.

〈w,fvw〉 ≤ C〈w,w〉, ∀w 6= 0, (22)

where C is uniform and independent of w. Then, we can prove the following weak BV-estimate for the
approximation solution of the scheme (10):

Corollary 1 (Corollary 4.4. of Ref. 42). Let the assumptions of Theorem 1 as well as (21), (22) and
the uniform positive definiteness of D hold. Then the approximate solution vh satisfies the following weak
BV-estimate: ∑

κ,n

∫
κ

|vh+ − vh−|2 ds+ hα
∑
κ,n

Resκ‖∇vh‖L2(κ) ≤ C, (23)

where C is a positive constant dependent on the initial condition u0.

Another interesting result one can look at, is the L2 stability of the solution. This result is trivially given
for scalar case or symmetric systems by the proven entropy stability with U(u) = 1

2 |u|
2 as the provided

entropy function. It is desired to extract some sort of familiar L2 stability for general nonlinear cases. We
have:

Corollary 2 (cf. Ref. 5). Under the assumption (21) the following L2 stability is readily obtained

‖u(vh(x, tN− ))− u∗(t0−)‖L2(Ω) ≤
√
C

c
‖u(vh(x, t0−))− u∗(t0−)‖L2(Ω), (24)

where u∗ is defined as (20) and c, C are same constants as in (21).

E. Tent-pitcher algorithm

As mentioned in §I, the goal of a tent-pitcher algorithm at each step is to make a mesh such that it has only
causal boundary faces and is therefore solvable independently. In general, it is not practical to generate an
element-wise mesh with this property. However, it is possible to construct a tent made of M elements such
that it has only causal new boundary faces, while the elements within each tent are coupled to each other
and thus need to be solved simultaneously. One can prove39 that if the maximum number of neighbours in
the subdomain d-dimensional mesh is M , the the algorithm guarantees that we do not need to construct
tents containing more than M elements as time evolves. Since M is independent of the total number of
elements, N , this property ensures that the workload of solving each tent remains N -independent, and the
total complexity for fixed q is O(N).

For details we refer to numerous references on tent pitching1,1, 29,39 and the references cited therein. In
order to give an overview of the algorithm, let us start by considering a triangulation Th of the spatial domain
Ω, into some disjoint convex d-dimensional elements. We denote the set of vertices of this triangulation as
{pi}i=1,··· ,NT where NT is the total number of vertices of Th. Let us define the advancing front function as

τ : Ω→ R+, τ ∈ Q1(Th), τi = τ(pi), (25)

where by Q1(Th), we mean continuous linear polynomials defined on Th. The graph of τ represents the
evolution front of the solution, i.e. for any x ∈ Ω, u(x, t) is known for 0 ≤ t ≤ τ(x).

The general structure of the algorithm is to find an adequate vertex pi for the base of the tent and an
admissible update of τi, denoted by τnew

i . Then it generates a tent made of τnew
i and all τ(pj); where pj,j 6=i

are the neighbouring vertices connected to pi by a single edge, as well as the old value of advancing front at
pi, denoted by τold

i .
Note that we call an update admissible when the corresponding tent of such an update has only causal

external faces. Moreover, choosing of an adequate base pi can be done using various criteria,39 which influence
the quality of the final mesh. Here we just mention the main criterion that we do not allow the base point
to be located on the peak or slope on the old advancing front graph; i.e. the admissible pi must be the local
minimum of the neighbouring region.

In particular we apply the following steps:
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(i) At the initial time we set τ ≡ 0 for all x ∈ Ω and calculate the maximum initial speed of data
propagation at each element.

(ii) We choose an adequate base node, pi and construct a tent by updating the τ value of its apex as
τnew
i = τold

i +δτi alongside the time axis and connecting it to pi and all its neighbouring vertices pj,j 6=i.

(iii) The update value δτi is calculated based on the maximum wave speed that reaches the tent. While
in linear problems this can be precomputed and it would be local, in nonlinear problems we need to
search globally. For this reason we used the global maximum wave speed on all (integration) points
residing on (τ(x), x) for all x ∈ Ω in space-time domain. Another approach is efficiently based on a
binary search and is explained in detail in Reference 38.

(iv) The resulting tent composed of at most M coupled elements which are solved simultaneously. Then
we update the τ function and repeat steps (ii)-(iv) till the final time tn (which may be simply tn = T
if no time slabs are used.) is achieved, i.e. τi = tn for all i.

IV. Numerical results

In this section we present some numerical experiments in one space dimension to validate the code and
assess the efficiency of the scheme. Extension of the code to higher spatial dimensions is planned for future
work. First, in section A, we solve a linear system of the one dimensional wave equation to show that the
order of convergence is optimal. For the proof of convergence to the unique entropy solution in this case we
refer to Hiltebrand and Mishra.22 As examples of more general systems, we present in section B a numerical
solution of the dam break test case for the shallow water equations, as well as solutions of the one dimensional
Euler equations in section C. As test cases of Euler equations we present results for the Sod and Lax shock
tube, the 123 problem,13 as well as the Shu-Osher entropy wave interaction.33

The Netgen/Ngsolve library32 has been used for geometry handling and mesh generation as well as
quadrature rules and the evaluation of basis functions. The nonlinear system obtained from the implicit
space-time scheme is solved using a damped Newton method utilizing the ILU preconditioned GMRES
available through the PETSc library.2

There are some free parameters in the scheme which need to be selected, including CSC , α and θ. Unless
otherwise mentioned explicitly we set them as CSC = 1 and θ = 0.5. The value of α is set to 1.5 for the case
of wave equation and 1.1 for the rest to be more diffusive. These settings give us acceptable result in most
cases.

A. Wave equations

The wave equation system in one dimension can be written as the following form

ht + cux = 0, (26)

ut + chx = 0, (27)

where c is some constant value. In this case the system is linear and symmetric in its original form and by
choosing the entropy function as U(u) = 1

2 (h2 + u2) the entropy variables are the same as the conservative
variables.

Hence, the entropy conservative flux would be the simple average of the flux values at the edge and the
diffusion operator is set to Rusanov type. In our numerical test cases the boundary conditions are set to
Dirichlet, the wave speed to c = 1 and the final time to T = 0.5. Also the calculation domain is considered
as [−1, 1]. We use the following initial settings:

h(x, 0) = sin(2πx), u(x, 0) = sin(2πx)/3, (28)

and solve for polynomial degrees q = 0, 1, 2, 3. The results are presented in Table 1. One can observe that
adding the shock capturing term does not affect the accuracy of the scheme in terms of rate-of-convergence
and asymptotically, we get the optimal order q + 1 in convergence of the error in L1 norm. In general with
refining the mesh, the order of convergence will be the order of consistency of the scheme, and the error
levels are not significantly compromised by the SC term. The only exception is in the case q = 3 that we
saw the reduced order of convergence in the last refinement which might come from the round off errors.
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Table 1: Smooth wave problem

q = 0 q = 1 q = 2 q = 3

h Elements ‖e‖L1
order ‖e‖L1

order ‖e‖L1
order ‖e‖L1

order

0.0025 300100 3.55e-2 0.959 2.85e-4 1.803 9.35e-7 2.888 7.82e-9 2.656

0.005 74900 6.91e-2 0.925 9.96e-4 1.702 6.94e-6 2.869 4.94e-8 3.876

0.01 18810 1.31e-1 0.861 3.23e-3 1.574 5.04e-5 2.827 7.19e-7 3.894

0.02 4700 2.38e-1 0.763 9.62e-3 0.854 3.58e-4 2.961 1.07e-5 4.427

0.04 1222 3.98e-1 1.71e-2 2.63e-3 2.11e-4

Regarding the efficiency in terms of runtime using tent pitcher method, we solve the same test case by
our previous version of the code,42 which all degrees of freedom are coupled at each time slab, and the
tent pitcher version looks considerably more efficient. For example running the case q = 3 with h = 0.005
(which leads to 86356 space-time elements in the old version) leads to a nearly two-fold increase in efficiency
(measured in run-time.)

B. Shallow water equations

The shallow water equations which describe the disturbance propagation in incompressible fluids under the
influence of gravity can be written as

ht + (hu)x = 0, (29)

(hu)t + (hu2 +
1

2
gh2)x = 0, (30)

where h and u are the depth and the velocity of the water, respectively and g = 1 is the gravity acceleration.
The entropy function in this case is defined as the total energy U = 1

2

(
hu2 + gh2

)
. Hence, the corresponding

entropy variables and entropy conservative flux can be set as in Fjordholm et al.18 Also we choose Rusanov
type for the diffusion operator of the entropy stable flux.

Moreover, we set the initial condition for dam break problem as follows

(h, u)|t=0 =

(3, 0), x < 0,

(1, 0), x > 0.
(31)

We take the computational domain as [−1, 1], with Dirichlet boundary condition, and the final time is
set to T = 0.2. In Figure 1, we present the result with q = 0, 1, 2 versus the exact solution calculated by the
SWASHES code.11

The result and their comparison with the exact solution shows a good control of the shock with acceptable
overshoot, and the shock is quite sharp.
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Figure 1: Comparison of the solution of different polynomial order DG versus exact solution, Dam break
problem, height is plotted at time t = 0.2 on a spatial mesh of 400 elements
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C. Euler equations for polytropic gas

The one-dimensional Euler equations can be written as

ρt + (ρu)x = 0, (32)

(ρu)t + (ρu2 + p)x = 0, (33)

Et + (u(E + p))x = 0, (34)

where ρ, u and E correspond to density, velocity and total energy of the gas, respectively. Here p is the
pressure of the gas and is defined as p = (γ − 1)(E − 1

2ρu
2), where γ is the adiabatic exponent which is set

to 1.4 in all experiments here.
Following Ismail and Roe,24 the entropy function is defined as

U(u) = − ρs

γ − 1
, (35)

where s is the specific entropy defined as s = ln p− γ ln ρ. The corresponding definition of entropy variables
and entropy conservative flux f∗, as well as that of the diffusion operator is defined according to Reference
24. We consider four types of Riemann problems for our numerical test in the domain [−1, 1]. The boundary
conditions are set to Dirichlet type with the following initial conditions

(ρ, u, p)t=0 =

(ρL, uL, pL) x < 0,

(ρR, uR, pR) x ≥ 0,
(36)

which we define as the right and left states for different cases that we present in the following sections. The
exact solution is computable for all cases except the Shu-Osher test case, for which the reference solution
is computed by the Compac code.16 The type of numerical diffusion in the entropy flux is set to Roe’s
diffusion.24

1. Sod shock tube

Here the initial condition is in the form (36) with the values

(ρL, uL, pL) = (1, 0, 1), (ρR, uR, pR) = (0.125, 0, 0.1). (37)

The results are presented in Figure 2. We observe that the shock capturing mechanism acts effectively near
the shock wave and the contact discontinuity. Our solution compares well to the results by Hiltebrand and
Mishra,22 who use additional pressure scaling, as well as streamline diffusion stabilization. Moreover while
increasing the polynomial degree from q = 0 to q = 1 improves the solution quality significantly the quadratic
polynomial solution is quite similar to linear one, and only improves the overshooting in shock wave.
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(c) q = 2

Figure 2: Comparison of the solution of different polynomial order DG versus exact solution, Sod shock tube
problem, density is plotted at time t = 0.2 on a spatial mesh of 400 elements.

Also in this case, a comparison with the old scheme in terms of runtime shows that the tent pitcher
method outperform the old version; e.g. the case q = 2 with approximately same number of elements takes
272s using the previous version, compared to only 20s using the tent pitcher.
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2. Lax shock tube

The Lax shock tube problem is more demanding of the robustness of the scheme than the Sod problem, due
to stronger shock waves. Here the initial condition is in the form (36) with values

(ρL, uL, pL) = (0.445, 0.698, 3.528), (ρR, uR, pR) = (0.5, 0, 0.571). (38)

Moreover we set the final time as T = 0.2. Again, comparing the result in Figure 3 with Hiltebrand and
Mishra22 shows that the shock capturing mechanism is effective in alleviating the oscillations. The general
behaviour here looks the same as for the Sod case but with larger overshoot in the q = 1 case due to the
stronger shock.
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(c) q = 2

Figure 3: Comparison of the solution of different polynomial order DG versus exact solution, Lax shock tube
problem, density is plotted at time t = 0.2 on a spatial mesh of 400 elements

.

3. 123 problem

This problem is designed in Einfeldt et al.13 to test the performance of a scheme at low densities. It consists
of two symmetric strong rarefaction waves and a contact wave of zero speed in the middle. Also this test case
can demonstrate the ability of a method to preserve the symmetry. The initial condition of this Riemann
problem of the form (36) is set to

(ρL, uL, pL) = (1,−2, 0.4), (ρR, uR, pR) = (1, 2, 0.4). (39)

We set the final time as T = 0.15 and the problem is solved for different DG polynomial order q = 0, 1, 2.
In general there isn’t a control mechanism in our tent pitcher algorithm to keep the mesh symmetric. Since
symmetric results are a feature of this test case, the tent pitcher choice criteria were modified to ensure the
symmetry of the final mesh for this test case to make the results comparable in terms of their symmetry.
The results provided in Figure 4 show the symmetry of the numerical results as well as acceptable handling
of the low density contact wave in the middle.
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(c) q = 2

Figure 4: Comparison of the solution of different polynomial order DG versus exact solution, 123 problem,
density is plotted at time t = 0.15 on a spatial mesh of 400 elements.

4. Shock-entropy wave interaction

This problem was designed by Shu and Osher33 in order to assess the ability of the scheme to handle the
interaction of the shock and sine waves. The initial condition of this Riemann problem of the form (36) is
set to

(ρL, uL, pL) = (3.857143, 2.629369, 10.33333), (ρR, uR, pR) = (1 + εsin(25x), 0, 1). (40)

When ε = 0, the problem is a pure Ma = 3 shock moving to the right, otherwise there are some sine waves
that interact with this shock. Here ε is set to 0.2. Also note that in the original test case33 the frequency of
the wave is 5

2π while in our settings is increased to 25
2π for the purpose of scaling down the problem in x− t

plane.
The problem is solved for different polynomial order q = 0, 1, 2 when the final time is set to T = 0.36.

The results are provided in Figure 5. Since this problem does not have an exact solution we compare our
results with a reference solution obtained using a finite volume scheme developed by Fjordholm16 with 2000
points. Here we see an acceptable performance of q = 1, 2 in resolving the wave interaction structure while
q = 0 looks more diffusive.
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(c) q = 2

Figure 5: Comparison of the solution of different polynomial order DG versus exact (reference) solution,
Shu-Osher shock-entropy wave interaction problem, density is plotted at time t = 0.36 on a spatial mesh of
200 elements.

D. Viscosity scaling

Based on the observations in the numerical experiment, results with q = 2 usually look more diffusive than
with q = 1, which might seem somehow counter intuitive. As an explanation for this we looked at the scaling
of artificial viscosity proposed by Persson and Peraire.31 They claim that the viscosity should be chosen as
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a function of the resolution accuracy of the approximation space; hence, εκ should be scaled of O(hq ) and

not just O(h). Applying this change to (14) yields

εκ =
(h/q)αCSCResκ

∇vκ + hθ
. (41)

We have not redone all of the test cases with the new scaling. Only to give an example of the effect of such
a scaling on the diffusive behaviour, we present the comparison of two scaling for Sod and Lax shock tube.
Since the scaling (41) reduces to (14) in case q = 1 we just present the results for quadratic DG polynomials.
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Figure 6: Comparison of the O(h/q) scaling proposed in31 versus O(h) of22 on the diffusive behaviour. Sod
and Lax shock tube with q = 2 and on a spatial domain mesh of 400 elements.

As it is clear from Figure 6, the scaling is considerably effective on the diffusive behaviour of the scheme.
As the new scaling makes the shocks much sharper and the solution would be more oscillatory in general
and with stronger overshoots. This, or a similar scaling, may be considered for a p convergence study of the
scheme proposed in our original publication of the scheme,42 i.e. as p → ∞ incorporating the p scaling in
the convergence analysis to EMV solutions.

V. Conclusion

In this work we presented a high order entropy stable DG scheme in the space-time framework. Our
scheme, unlike its predecessors, used residual-based nonlinear shock capturing as the only stabilization
mechanism and no streamline diffusion is added to control the residual. Also in order to have computational
efficiency we propose to use the tent pitcher algorithm to handle the time marching process.

The timing results look promising compared to the older version of the code which couples all the space-
time degrees of freedom at each time slab. In terms of memory usage the tent pitcher method outperforms
dramatically due to much fewer degrees of freedom at each level of solution. Considering the fact that the
current version of tent pitcher is a preliminary version and not efficient in terms of allocation of the finite
element space for each tent, we can expect even better efficiency in future versions. An option to avoid such
an excessive allocation cost is to map all elements to a reference element and solve a mapped version of (1)
in that element. For more details we refer to the recent work by Gopalakrishnan.19
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tersteiger in TU Wien for the discussion on NetGen/NGSolve and tent pitcher methods during his stay in
Vienna in March 2016.

12 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
M

B
R

ID
G

E
 o

n 
Ju

ne
 1

5,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
34

96
 



References

1R. Abedi, S.-H. Chung, J. Erickson, Y. Fan, M. Garland, D. Guoy, R. Haber, J. M. Sullivan, S. Thite, and
Y. Zhou, Spacetime meshing with adaptive refinement and coarsening, in Proceedings of the twentieth annual symposium on
Computational geometry, ACM, 2004, pp. 300–309.

2S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik,
M. Knepley, et al., Petsc users manual revision 3.5, tech. rep., Argonne National Laboratory (ANL), 2014.

3T. J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in An introduction to recent devel-
opments in theory and numerics for conservation laws, Springer, 1999, pp. 195–285.

4 , Simplified discontinuous Galerkin methods for systems of conservation laws with convex extension, in Discontin-
uous Galerkin Methods, Springer, 2000, pp. 63–75.

5 , On discontinuous Galerkin approximations of Boltzmann moment systems with Levermore closure, Computer
Methods in Applied Mechanics and Engineering, 195 (2006), pp. 3311–3330.

6N. K. Burgess and D. J. Mavriplis, hp-Adaptive discontinuous Galerkin solver for the Navier-Stokes equations, AIAA
journal, 50 (2012), pp. 2682–2694.

7M. H. Carpenter, T. C. Fisher, E. J. Nielsen, and S. H. Frankel, Entropy stable spectral collocation schemes for
the navier-stokes equations: Discontinuous interfaces, Siam Journal on Scientific Computing, 36 (2014), pp. B835–B867.

8M. Ceze and K. J. Fidkowski, Anisotropic hp-adaptation framework for functional prediction, AIAA Journal, 51 (2012),
pp. 492–509.

9P. Chandrashekar, Discontinuous galerkin method for navier–stokes equations using kinetic flux vector splitting, Jour-
nal of Computational Physics, 233 (2013), pp. 527–551.

10B. Cockburn, F. Coquel, and P. LeFloch, An error estimate for finite volume methods for multidimensional conser-
vation laws, Mathematics of Computation, 63 (1994), pp. 77–103.

11O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T.-N.-T. Vo, F. James, and S. Cordier, Swashes:
a compilation of shallow water analytic solutions for hydraulic and environmental studies, International Journal for Numerical
Methods in Fluids, 72 (2013), pp. 269–300.

12R. J. DiPerna, Measure–valued solutions to conservation laws, Archive for Rational Mechanics and Analysis, 88 (1985),
pp. 223–270.
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19J. Gopalakrishnan, J. Schöberl, and C. Wintersteiger, Mapped tent pitching schemes for hyperbolic systems, arXiv

preprint arXiv:1604.01081, (2016).
20R. Hartmann and P. Houston, Adaptive discontinuous galerkin finite element methods for the compressible euler

equations, J. Comp. Phys., 183 (2002), pp. 508–532.
21R. Hartmann and P. Houston, Symmetric interior penalty dg methods for the compressible navier–stokes equations i:

Method formulation, Int. J. Num. Anal. Model., 3 (2006), pp. 1–20.
22A. Hiltebrand and S. Mishra, Entropy stable shock capturing space–time discontinuous galerkin schemes for systems

of conservation laws, Numerische Mathematik, 126 (2014), pp. 103–151.
23T. J. Hughes and M. Mallet, A new finite element formulation for computational fluid dynamics: III. the generalized

streamline operator for multidimensional advective-diffusive systems, Computer Methods in Applied Mechanics and Engineer-
ing, 58 (1986), pp. 305–328.

24F. Ismail and P. L. Roe, Affordable, entropy-consistent euler flux functions ii: Entropy production at shocks, Journal
of Computational Physics, 228 (2009), pp. 5410–5436.

25J. Jaffre, C. Johnson, and A. Szepessy, Convergence of the discontinuous Galerkin finite element method for hyper-
bolic conservation laws, Mathematical Models and Methods in Applied Sciences, 5 (1995), pp. 367–386.

26C. Johnson and A. Szepessy, On the convergence of a finite element method for a nonlinear hyperbolic conservation
law, Mathematics of Computation, 49 (1987), pp. 427–444.

27C. Johnson, A. Szepessy, and P. Hansbo, On the convergence of shock–capturing streamline diffusion finite element
methods for hyperbolic conservation laws, Mathematics of Computation, 54 (1990), pp. 107–129.
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