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ANALYSIS OF MIXED DISCONTINUOUS GALERKIN FORMULATIONS FOR

QUASILINEAR ELLIPTIC PROBLEMS

MOHAMMAD ZAKERZADEH† AND GEORG MAY†∗

Abstract. In this manuscript we present an approach to analyze the discontinuous Galerkin solution for general
quasilinear elliptic problems. This approach is sufficiently general to extend most of the well-known discretization
schemes, including BR1, BR2, SIPG and LDG, to nonlinear cases in a canonical way, and to establish the stability
of their solution. Furthermore, in case of monotone and globally Lipschitz problems, we prove the existence and
uniqueness of the approximated solution and the h-optimality of the error estimate in the energy norm as well as in
the L2 norm.
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1. Introduction. A great amount of research has been devoted to the analysis of discontinu-
ous Galerkin (DG) schemes for (non)linear elliptic and parabolic problems. This goes back to work
of Babuska [4], Wheeler [41], Arnold [2] and Dupont et al. [29] for interior penalty (IP) methods.
In later work, e.g. [9, 37], a non-symmetric IP scheme was presented and analyzed. Other classes
of discretization techniques have also been introduced, e.g., the first and second method of Bassi–
Rebay [7, 8], or Shu and Cockburn’s LDG method [16]. For a comprehensive literature study of
these problems we refer to [15] and [3].

In their seminal paper [3], Arnold et al. provided a unified framework for obtaining different
classes of DG methods for the linear Poisson problem. For nonlinear problems the picture is more
complicated, and obtaining different classes of methods usually follows very different approaches;
while IP methods often have been introduced and analyzed in the primal form [17, 23, 24, 34, 28],
for LDG methods the usual approach is to start from a mixed formulation, e.g., [11, 22, 12] or [42].
Originating from this, different techniques are usually employed in the analysis of each family. The
LDG methods [22, 11, 12, 42] have been formulated by using three unknowns in the mixed form
as proposed in [14], which yields an inconsistent primal formulation as analyzed, e.g., in [11] (and
[35] for the simpler linear case). In contrast, IP methods like [24, 23, 28, 34, 17] usually enjoy a
consistent primal form.

On the other hand, the nonlinear versions of the Bassi-Rebay methods are often obtained by
ad-hoc extension, mimicking the linear counter part, e.g. [6], and to the best knowledge of the
authors, there does not exist rigorous analysis of the second Bassi–Rebay method for nonlinear
problems, although they are widely used for nonlinear problems like the Navier–Stokes equations.

This manuscript aims to extend the discussion presented in [11, 24, 22, 23, 28, 34] in two
ways: Firstly, we try to treat different types of discretization in a canonical way, starting from a
mixed formulation as [3]. We will show that our formulation leads to a slightly modified version
of previously proposed nonlinear formulations for symmetric IP (SIPG) [23], and Bassi–Rebay [6],
while we recover the LDG formulation of [11]. Here we are interested in these methods since, among
the methods investigated in [3], these are the only ones that are stable and consistent for primal and
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adjoint solutions, and we might hope for extending these properties to the corresponding nonlinear
discretization. Also we prove that the approximate solution of the discontinuous Galerkin problem
is well-posed; i.e, unique and stable, provided that the diffusion operator is strongly monotone and
globally Lipschitz continuous. This is comparable to analysis of [11] for LDG and somewhat similar
to [17] for IP; however our results cover different formulations. It is plausible that the same kind of
analysis is applicable to cases which do not satisfy either strong monotonicity or global Lipschitz
continuity as in [34, 24, 23]; nevertheless, we do not address this extension here and restrict our
analysis to these two assumptions.

Secondly, we are going to provide an optimal error estimate for SIPG and Bassi–Rebay methods
in terms of mesh size, both in energy norm and in the L2-norm. Such estimates have previously been
derived for LDG methods, in [11] for monotone and globally Lipschtitz continuous problem, and in
[22] for cases which neither of these two assumptions hold. For the SIPG method, error estimates
have been presented in [23, 24] and for incomplete penalty (IIPG) in [34], for non-monotone and
not globally Lipschitz operators. Also we have the results of [17] for IIPG in case of monotone and
globally Lipschitz operators. Let us remark that since the formulations presented in [34, 17] are
adjoint inconsistent, they derived the error estimate only in the energy norm and did not deal with
the corresponding adjoint problem.

Besides the canonical approach of discretization we present here, the rigorous analysis of the
second method of Bassi–Rebay is novel in the literature, as well as the different approach we adopted
in the L2 error estimate for an asymptotically adjoint consistent formulation. Furthermore, we
present explicit conditions of stability for all formulations. To the best knowledge of the authors
this has not been done before for a nonlinear version of Bassi–Rebay methods and is similar to the
explicit bounds for the SIPG method in [39, 18] and [31]. It is worth mentioning that for the SIPG
method, unlike the cited literature, our stability analysis remains valid for degenerate diffusion.

The structure of this paper is as follows: In §2 we provide a short review on the quasi-linear
elliptic problems and the properties of the diffusion operator. In §3 we review some approximation
results as well as the properties of triangulation of the computational domain. Section 4 deals with
our canonical approach for obtaining different DG formulation in the primal form, and later in §5,
we analyze the consistency and adjoint consistency of the presented formulations. The sections 6
and 7 are devoted to the stability and uniqueness of the DG approximate solution, respectively.
Note that before reaching section 7 we do not require the monotonicity of the operator and the
stability result is valid for more general problems. Section 8 presents the optimal error convergence
estimate in both energy and L2 norms.

2. Quasi-linear elliptic problems. We consider the following quasilinear elliptic problem

−∇ · a(x, u,∇u) = f, in Ω,(2.1)

u = uD, on ∂Ω,(2.2)

where f ∈ L2(Ω) and uD ∈ H1/2(∂Ω). For simplicity we will set uD ≡ 0 in later analysis. Also
Ω is a bounded and simply connected domain in R

2. For brevity one might use the notation
a(·, ζ) = a(·, u,∇u) where ζ ∈ R

3, such that ζ0 ≡ u and ζi ≡ uxi, i = 1, 2. Moreover, by au and

az :=
[∂ai(·,ζ)

∂ζj

]

i,j=1,2
, we denote the derivative of a(x, u,∇u) with respect to its second and third

arguments.

In the general theory of nonlinear elliptic problems (see [32, 45]), it is usually assumed that the
function a(·, ζ) = (a1(·, ζ), a2(·, ζ)) satisfies some conditions:
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A(i) The functions ai(x, ζ), i = 1, 2 are continuous in Ω × R
3 and satisfy the following growth

condition;

(2.3) |ai(x, ζ)| ≤ c1

(

1 +
2

∑

i=0

|ζi|
)

+ |φi(x)|, ∀ζ ∈ R
3, ∀x ∈ Ω,

where c1 > 0 and φi ∈ L2(Ω), for i = 1, 2.
A(ii) There exist two constants 0 < λ ≤ Λ <∞ such that for all ζ,ψ ∈ R

3

(2.4) 0 < λ

2
∑

k=1

ψ2
k ≤

2
∑

j=1
k=0

∂aj(·, ζ)

∂ζk
ψjψk ≤ Λ

2
∑

k=1

ψ2
k.

We also might consider a relaxed version of (2.4) as the following

(2.5) 0 < λ

2
∑

k=1

ψ2
k ≤

2
∑

j=1
k=1

∂aj(·, ζ)

∂ζk
ψjψk ≤ Λ

2
∑

k=1

ψ2
k.

For simplicity in the later analysis we assume that az is symmetric. Then we can interpret
(2.5) as imposition of lower and upper bound on the eigenvalues of az; λ and Λ, respectively.

A(iii) The functions ai(x, ζ), i = 1, 2 are in C2
b (Ω×R

3), i.e., they are twice continuously differen-
tiable functions with all the derivatives through second order being bounded.

Note that A(i) is required to guarantee the meaningfulness of the of the definition of the discrete
problem. On the other hand the assumptions A(ii) and A(iii) need to be valid only for the arguments
provided in sections 7 and 8 for uniqueness of the discrete solution and error estimate, respectively.
Furthermore, the relaxed version of assumption A(ii) in (2.5) is required in the stability analysis in
section 6.

Let us note the following important definition for nonlinear elliptic PDEs, the so-called strong
monotonicity and global Lipschitz continuity property of the diffusion operator (as [19], [44, p. 476]):

Definition 2.1. We say a diffusion operator a(x, u,∇u) satisfies strong monotonicity prop-
erty, if there exists a constant Csm > 0 such that

(2.6)
(

a(x, ξ′,η′)− a(x, ξ,η)
)

· (η′ − η) ≥ Csm|η − η′|2

for all ξ, ξ′ ∈ R and η,η′ ∈ R
2. Moreover we call it a globally Lipschitz operator if there exists a

constant Clc <∞ such that

(2.7) a(x, ξ′,η′)− a(x, ξ,η) ≤ Clc

[

|ξ − ξ′|2 + |η − η′|2
]1/2

,

for all ξ, ξ′ ∈ R and η,η′ ∈ R
2.

One can show that if the left and right inequalities in (2.4) are satisfied, the diffusion operator
a is strongly monotone and globally Lipschitz continuous in the sense of Definition 2.1. We skip
the proof here and refer to [5, Lemma 2.1] or [17, Lemma 4].

As examples of problems settled in the category of (2.1) we have
(a) Newtonian flow model

(2.8) a(x, u,∇u) = a(x, u)∇u
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(b) Non-Newtonian flow model

(2.9) a(x, u,∇u) = a(x, |∇u|)∇u

with an specific case of mean curvature flow

(2.10) a(x, u,∇u) =
∇u

(1 + |∇u|)1/2

We remark that for the case (b), following [11, 28], we typically assume the monotonicity of
the diffusion operator (see Definition 2.1), while the diffusion operator in case (a) is not usually
a monotone operator (only under very restrictive assumptions, see [1]). Since the presentation of
the primal form of DG formulations in section 4 and stability result in section 6 are not affected
by the monotonicity property, we do not exclude this case now. But in obtaining a priori error
estimate in section 8, we will only consider monotone cases and one can refer to [34], [24] or [23] for
a priori estimate for non-monotone cases. One may check that the mean curvature flow example
satisfies the assumption A(ii); hence it is strongly monotone and globally Lipschitz continuous, see
[23, section 5].

3. Preliminaries. First let us set a notation convention and suppress the dependence of the
diffusion operator on the space variable x; henceforth we write a(v, z) instead of a(x, v, z), while
we still allow explicit dependence on x.

Now, as a tool that we will use later in sections 6 and 8, let us consider the following integral
form of Taylor’s formula; for u, v ∈ R and z,w ∈ R

2 one has

a(v, z)− a(u,w) = au(u,w)(v − u) + az(u,w)(z −w) +Ra(u− v,w − z)

= ãu(u,w)(v − u) + ãz(u,w)(z −w)(3.1)

where Ra(u − v,w − z) = (Ra1
(u− v,w − z), Ra2

(u − v,w − z)) is defined as

(3.2) Rai = ãuu(u− v)2 + (w − z)tãzz(u,w)(w − z) + 2ãuz(u,w)(z −w)(u − v).

for i = 1, 2. Moreover we define ãu, ãz, ãuu, ãuz, ãzz as

ãu(u,w) =

∫ 1

0

au(v(t), z(t)) dt, ãz(u,w) =

∫ 1

0

az(v(t), z(t)) dt

ãuu(u,w) =

∫ 1

0

(1 − t)au(v(t), z(t)) dt, ãuz(u,w) =

∫ 1

0

(1 − t)au(v(t), z(t)) dt,

ãzz(u,w) =

∫ 1

0

(1 − t)au(v(t), z(t)) dt

where v(t) = u+ t(v − u) and z(t) = w + t(z −w).
Seeking clarity, sometimes we denote ãu, ãz, ãuu, ãuz, ãzz by all four arguments,

e.g. ãu(u,w, v, z) instead of ãu(u,w).

3.1. Triangulation and finite element space. Here we are going to consider the boundary
of the domain Ω sufficiently smooth (in order to apply the duality argument, see section 5.2), e.g.
a convex polygon. Then we consider a shape-regular triangulation on Ω as Th = {κ} composed of
(non-overlapping) triangular or rectangular elements (with possible hanging nodes) and hκ is the
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diameter of each κ ∈ Th. Also we define h := maxκ∈Th
hκ and νκ is the outward normal to ∂κ. In

the following we assume that Th is of bounded variation, that is, there exists a constant l > 1 such
that

(3.3) l−1 ≤
hκ
hκ′

< l,

where κ, κ′ ∈ Th share an edge. This bounded variation property means that there is an upper
bound for the number of neighboring elements of each κ ∈ Th, denoted by Nl. In case that Th has
no hanging nodes Nl = 3 and Nl = 4 for triangular and rectangular elements, respectively. We also
need the following quasi-uniformity property of the mesh in the L2 error analysis in section 8.2,
that is

(3.4) h ≤ Chκ, ∀κ ∈ Th.

We denote the skeleton of the triangulation Th, i.e. the set of all edges of κ ∈ Th, by Eh. Also
we denote the set of boundary and interior edges of Th by Eh,∂ and Eh,I , respectively, and the
length of edge e by he. Following [3], let us fix some definitions for the jumps and average of the
discontinuous functions on the skeleton Eh. Let us set the trace values as wκ,e = wκ|e. For any
interior edge e ∈ Eh,I , where e is the common edge of κ, κ′ ∈ Th, and for all w ∈

∏

κ∈Th
L2(∂κ), we

define

(3.5) {{w}} =
1

2
(wκ,e + wκ′,e), JwK = wκ,eνκ + wκ′,eνκ′

and similarly for all τ ∈
∏

κ∈Th
[L2(∂κ)]

2

(3.6) {{τ}} =
1

2
(τκ,e + τκ′,e), Jτ K = τκ,e · νκ + τκ′,e · νκ′ .

For any boundary edge e ∈ Eh,∂ we define

(3.7) JwK = wκ,eνκ, {{τ}} = τκ,e,

for all w ∈
∏

κ∈Th
L2(∂κ) and τ ∈

∏

κ∈Th
[L2(∂κ)]

2.
Moreover, let us consider the following broken Sobolev space on the triangulation Th; for

1 ≤ r <∞

(3.8) W s
r (Ω, Th) = {v ∈ Lr : v|κ ∈W s

r , ∀κ ∈ Th},

with the corresponding norm and seminorm

(3.9) ‖v‖W s
r (Ω,Th) =

(

∑

κ∈Th

‖v‖rW s
r (κ)

)1/r

, |v|W s
r (Ω,Th) =

(

∑

κ∈Th

|v|rW s
r (κ)

)1/r

,

and for the case r = ∞ the associated norm and seminorm are defined as

(3.10) ‖v‖W s
∞

(Ω,Th) = max
κ∈Th

‖v‖W s
∞

(κ), |v|W s
∞

(Ω,Th) = max
κ∈Th

|v|W s
∞

(κ),

when ‖ · ‖W s
r (κ)

and | · |W s
r (κ)

are the standard Sobolev norms on κ. Also we denote W s
2 as Hs by

tradition.
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Now let define the following finite dimensional approximation spaces

Vh,q := {uh ∈ L2(Ω) : uh|κ ∈ Pq(κ), ∀κ ∈ Th},(3.11)

Σh,p := {θh ∈ [L2(Ω)]
2 : θh|κ ∈ [Pp(κ)]2, ∀κ ∈ Th},(3.12)

with q ≥ 1 and p = q or p = q − 1 (To satisfy the inclusion property ∇Vh,q ⊂ Σh,p as [3].) Here by
Pq(κ) we denote the space of the polynomials of total degree q on R

2 and restricted to κ.
Moreover, let us define two lifting operator r : [L2(Eh)]2 → Σh,p and l : L2(Eh,I) → Σh,p as

∫

Ω

r(ϕ) · τ dx = −
∑

e∈Eh

∫

e

ϕ · {{τ}}ds,

∫

Ω

l(ϕ) · τ dx = −
∑

e∈Eh,I

∫

e

ϕJτ Kds,(3.13)

for all τ ∈ Σh,p. Using the Riesz representation theorem one can prove the existence and uniqueness
of the lifting operators introduced by (3.13) (see e.g., [11, Lemma 3.3]). Also we define an edge-wise
version of right and left lifting operators as re : [L2(e)]

d → Σh,p and le : L2(e) → Σh,p, such that

∫

Ω

re(ϕ) · τ dx = −

∫

e

ϕ · {{τ}}ds, ∀τ ∈ Σh,p, ∀e ∈ Eh,(3.14)

∫

Ω

le(ϕ) · τ dx = −

∫

e

ϕJτ Kds, ∀τ ∈ Σh,p, ∀e ∈ Eh,I(3.15)

for all edges e ∈ Eh. Also by noting that r(ϕ) =
∑

e∈Eh
re(ϕ) and, by applying Cauchy-Schwarz

inequality and taking the norm over Th, one has

(3.16) ‖r(ϕ)‖2L2(Ω) = ‖
∑

e∈Eh

re(ϕ)‖2L2(Ω) ≤ Nl

∑

e∈Eh

‖re(ϕ)‖2L2(Ω).

Furthermore, one might note that for any e ∈ Eh,I and e ⊂ ∂κ, κ ∈ Th it holds le(ϕ) = 2re(ϕνκ)
and consequently

(3.17) ‖l(ϕ)‖2L2(Ω) = ‖
∑

e∈Eh

le(ϕ)‖2L2(Ω) ≤ Nl

∑

e∈Eh

‖le(ϕ)‖2L2(Ω) ≤ 4Nl

∑

e∈Eh

‖re(ϕνκ)‖
2
L2(Ω).

using Cauchy-Schwarz inequality.
Also let us introduce the space V (h) := Vh,q +H2(Ω)

⋂

H1
0 (Ω) and the corresponding energy

norm ||| · |||h : V (h) → R as

(3.18) |||v|||2h := |v|21,Ω +
∑

e∈Eh

||re(JvhK)||2L2(Ω), ∀v ∈ V (h)

as well as the following seminorm |·|∗,h : V (h) → R as

(3.19) |v|2∗,h :=
∑

e∈Eh

||re(JvK)||2L2(Ω), ∀v ∈ V (h).

From the structure of (3.19), using (3.16) and (3.17) reads, there exists Cs <∞ such that

(3.20) ‖r(v)‖2L2(Ω) + ‖l(v)‖2L2(Ω) ≤ Cs|v|
2
∗,h
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for all v ∈ V (h). Moreover, we have the following estimate from [10, Lemma 2]
Lemma 3.1. There exist two positive constants Cr, CR > 0, such that for all e ∈ Eh we have

(3.21) Crh
−1/2
e ‖JwK‖L2(e) ≤ ‖re(JwK)‖L2(Ω) ≤ CRh

−1/2
e ‖JwK‖L2(e), ∀w ∈ V (h),

where the constants are h independent and only depend on the minimum angle of the triangles and
the polynomial degree q.

Proof. The original proof in [10] was presented for wh ∈ Vh,q, while in [3] the extended version
to V (h) was given, exploiting the Sobolev embedding to deduce V (h) \ Vh,q ⊂ H2 ⊂ C(Ω) in R

2.
Then (3.21) trivially holds for all w ∈ V (h) \ Vh,q. For the details on the explicit value of Cr and
Cr we refer to [10] and [40].

In order to see the relation between ||| · |||h and ‖ · ‖L2(Ω), let us remark the following relation
from [2, Lemma 2.1], for all v ∈ H1(Ω, Th)

(3.22) ‖v‖2L2(Ω) ≤ C(Ω, Th)
[

‖∇v‖2L2(Ω) +
∑

e∈Eh

h−1
e ‖JvK‖2L2(e)

]

,

which holds when Ω is convex. For a similar result on non-convex domains we refer to [11, 21, 38].
Now, restricted to v ∈ V (h) and by using (3.21), (3.22) reduces to the following Poincaré-type

inequality

(3.23) ‖vh‖
2
L2(Ω) ≤ Cen|||vh|||

2
h,

with some Cen <∞, and by the definition of the energy norm (3.18) one can write

(3.24) ‖vh‖
2
H1(Ω,Th)

≤ (Cen + 1)|||vh|||
2
h.

Also we will need the following inverse inequality
Lemma 3.2. Let consider vh ∈ Vh,q, then for r ≥ 2 there exists a constant Cinv > 0 such that

(3.25) ‖vh‖Lr(κ) ≤ Cinvh
2/r−1
κ ‖vh‖L2(κ).

The proof of this lemma can be found, e.g., in [13, p. 140] and we skip it.

3.2. Approximation properties. First, let state some approximation properties in the next
two lemmas

Lemma 3.3. [23, Lemma 2.1] For φ ∈ Hs(κ), there exists a positive constant CA, depending
on s and q, but independent of φ and hκ, and a sequence φhκ ∈ Pq(κ), q = 1, 2, · · · such that

(i) for any s ≥ l + 1
2

(3.26) ‖φ− φhκ‖Hl(e) ≤ CAhκ
µ−l−1/2‖φ‖Hs(κ)

(ii) for any 0 ≤ l ≤ s− 1 + 2
r

(3.27) ‖φ− φhκ‖W l
r(κ)

≤ CAhκ
µ−l−1+2/r‖φ‖Hs(κ)

where µ = min(q + 1, s).
For the proof of this lemma we refer to [23, Lemma 2.1] and the references cited therein.
Using Lemma 3.3 and the properties of the energy norm (3.18), we present the following ap-

proximation result
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Lemma 3.4. For ∀φ ∈ V (h) there exists a constant C′
A > 0 independent of h and φ, and a

mapping πh : V (h) → Vh,q such that

(3.28) |||φ− πhφ|||h ≤ C′
A

(

∑

κ∈Th

h2(µ−1)
κ |φ|2Hs(κ)

)1/2

,

where µ = min(q + 1, s).
Proof. The proof exploits Lemmas 3.1 and 3.3 and the definition of V (h) which provides

continuity of w ∈ V (h) \ Vh,q. Then the proof follows the same lines as [3, section 4.3.].
Note that in our analysis in this work, we do not need to specify the explicit type of projection

πh. Hence we leave it undefined with merely assuming that it satisfies the approximation property
described in Lemmas 3.3 and 3.4. We refer to [11] and [23] for explicit examples of such projections.
Let us remark that the Galerkin [L2]

2 projection that we introduce in (4.9) also satisfies these
approximation properties.

4. Discontinuous Galerkin formulation. Here we follow the formulation presented in [11]
(also see [14] and [35]). Let us start with writing the nonlinear elliptic problem (2.1) as a system
of first order nonlinear PDEs in terms of new variables (σ, θ, u):

−∇ · σ = f, in Ω,(4.1)

σ = a(u, θ), in Ω,(4.2)

θ = ∇u, in Ω,(4.3)

u = 0, on ∂Ω.(4.4)

Our goal is to approximate the exact solution (σ, θ, u) by discrete functions (σh, θh, uh) in the
finite element space Σh,p × Σh,p × Vh,q. The weak formulation can be written as

∫

Ω

a(uh, θh) · ζh dx =

∫

Ω

σh · ζh dx, ∀ζh ∈ Σh,p,(4.5)

∫

Ω

θh · τh dx+

∫

Ω

uh(∇h · τh) dx =
∑

κ∈Th

∫

∂κ

ûτh · ν ds, ∀τh ∈ Σh,p,(4.6)

∫

Ω

σh · ∇hvh dx−
∑

κ∈Th

∫

∂κ

vh(σ̂ · ν) ds =

∫

Ω

fvh dx, ∀vh ∈ Vh,q.(4.7)

Here ∇h and ∇h· are the element-wise version of the gradient and divergence operator, respectively.
This flux formulation is complete but the definition of the numerical fluxes û and σ̂ which

depends on (σh, θh, uh), and needs to be designed carefully. We postpone the explicit definition
of these numerical fluxes till the next section, where we present the equivalent primal formulation;
i.e., a formulation which has uh as its only unknown.

The only requirement we impose here is that the û should be independent of θh and σh, i.e.,
û = û(uh), which provides the availability of the primal formulation. All the formulations we are
going to present have this local property. For examples of other forms of non-local formulation and
their analysis we refer to [42], [22] and [20].

4.1. Primal formulation. In order to obtain the primal formulation we need to solve the
unknowns σh and θh in terms of uh. In the first step, by using (4.5), one can solve for σh as the
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Galerkin [L2(Ω)]
2 projection,

(4.8) σh = Gh

(

a(uh, θh)
)

,

where Gh : [L2(Ω)]
2 → Σh,p has the following property; for all ξ ∈ [L2(Ω)]

2

(4.9)
∑

κ∈Th

∫

κ

ξ · τ dx =
∑

κ∈Th

∫

κ

Gh(ξ) · τ dx, ∀τ ∈ Σh,p.

Moreover, let us remark the following identity; for any v ∈
∏

κ∈Th
L2(∂κ) and ξ ∈

∏

κ∈Th
[L2(∂κ)]

2

the following holds

(4.10)
∑

κ∈Th

∫

∂κ

vξ · ν ds =
∑

e∈Eh,I

∫

e

{{v}}JξKds+
∑

e∈Eh

∫

e

JvK · {{ξ}}ds.

Applying (4.10) in (4.6) and (4.7), one can write
∫

Ω

θh · τh dx−

∫

Ω

∇huh · τh dx+
∑

e∈Eh,I

∫

e

{{uh − û}}JτhKds+
∑

e∈Eh

∫

e

Juh − ûK · {{τh}}ds = 0,

∫

Ω

σh · ∇hvh dx−
∑

e∈Eh

∫

e

{{σ̂}} · JvhK ds−
∑

e∈Eh,I

∫

e

Jσ̂K{{vh}}ds =

∫

Ω

fvh dx.

Now let us require the numerical fluxes û and σ̂ to be conservative, which leads to

(4.11) JûK = 0, {{û}} = û, Jσ̂K = 0, {{σ̂}} = σ̂,

on any e ∈ Eh,I . Also in accordance with the Dirichlet boundary condition (4.4), we set û = 0 on
e ∈ Eh,∂ . Using (4.11), one can simplify the weak formulation as

∫

Ω

θh · τh dx−

∫

Ω

∇huh · τh dx+
∑

e∈Eh,I

∫

e

({{uh}} − û)JτhKds+
∑

e∈Eh

∫

e

JuhK · {{τh}}ds = 0,(4.12)

∫

Ω

σh · ∇hvh dx−
∑

e∈Eh

∫

e

σ̂ · JvhKds =

∫

Ω

fvh dx.(4.13)

Using the definition of lifting operator (3.13) and (4.8), we arrive at

θh = ∇huh + r(JuhK) + l({{uh}} − û),(4.14)

σh = Gh

(

a(uh,∇huh + r(JuhK) + l({{uh}} − û))
)

.(4.15)

Now (θh,σh) can be solved locally in terms of uh by inserting (4.14) and (4.15) in (4.13). Then
one can obtain the primal formulation as the following; find uh ∈ Vh,q such that

(4.16) B(uh, vh) = F(vh), ∀vh ∈ Vh,q,

where F(vh) =

∫

Ω

fvh dx, and

(4.17) B(uh, vh) =

∫

Ω

a
(

uh,∇huh + r(JuhK) + l({{uh}} − û)
)

· ∇hvh dx−
∑

e∈Eh

∫

e

σ̂ · JvhKds.
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Note that in the rest of the paper we might abuse the notation θh defined in (4.14) in the
operator form as θh(·) := ∇h(·) + r(J·K) + l({{·}} − û(·)).

The only undefined part in the primal formulation (4.17) is the explicit definition of the nu-
merical fluxes. We are going to consider four different formulations by adopting different û and
σ̂:

(i) BR1. The BR1 formulation is defined as in [7],

û =

{

{{uh}} on Eh,I

0 on Eh,∂
, σ̂ = {{σh}} on Eh.

Hence, θh = ∇huh + r(JuhK). This leads to the following quasi-linear formulation

B(uh, vh) =

∫

Ω

a(uh, θh(uh)) · θh(vh) dx.(4.18)

(ii) BR2. The BR2 formulation, inherited from the original definition [8], is defined as

û =

{

{{uh}} on Eh,I

0 on Eh,∂
, σ̂ = {{Gh

(

a(uh,∇uh) + ηea(uh, r
e(JuhK))

)

}} on Eh

with some ηe > 0 as the stabilization parameter. Here, θh is the same as in BR1, and the
primal formulation reads

B(uh, vh) =

∫

Ω

a(uh, θh) · ∇hvh + a(uh,∇huh) · r(JvhK) dx(4.19)

+
∑

e∈Eh

ηe

∫

Ω

a(uh, r
e(JuhK)) · re(JvhK) dx.

(iii) SIPG. Similar to [3], we choose the fluxes as

û =

{

{{uh}} on Eh,I

0 on Eh,∂
, σ̂ = {{Gh(a(uh,∇uh)}} −

µe

he
JuhK on Eh

with some penalty parameter µe > 0. Similarly to BR2, the primal formulation is given as

B(uh, vh) =

∫

Ω

a(uh, θh) · ∇hvh + a(uh,∇huh) · r(JvhK) dx+
∑

e∈Eh

µe

he

∫

e

JuhK · JvhKds.

(4.20)

(iv) LDG. The LDG formulation, inherited from the original version in [16], can be obtained
by setting

û =

{

{{uh}} − β · JuhK on Eh,I

0 on Eh,∂
, σ̂ =

{

{{σh}}+ βJσhK − µe

he
JuhK on Eh,I

{{σh}} −
µe

he
JuhK on Eh,∂

where β ∈ [L2(Eh,I)]2 is some mesh-dependent parameter and constant on each edge.
Also like SIPG, we have the penalty parameter µe > 0. Note that in LDG formulation
θh = ∇huh + r(JuhK) + l(β · JuhK). Finally, the primal formulation reads

B(uh, vh) =

∫

Ω

a(uh, θh(uh)) · θh(vh) dx+
∑

e∈Eh

µe

he

∫

e

JuhK · JvhKds.(4.21)
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Remark 1. Seeking comparison of the current formulations with the already proposed versions
in the literature, let us record a few observations. Firstly, it is worth pointing out that those fluxes
which depend only on uh and σh (BR1, LDG) do not require any formal modification compared to
the linear case. Furthermore, our LDG formulation is similar to [11] and the discretization proposed
in [22] for a simpler form of nonlinearity in the diffusion.

For the SIPG formulation, looking at (4.20) and exploiting Taylor’s expansion (3.1), we can
write

B(uh, vh) =

∫

Ω

a(uh,∇huh) · ∇hvh dx+
∑

e∈Eh

∫

e

µe

he
JuhK · JvhKds

+

∫

Ω

ãz(uh,∇huh, θh)r(JuhK) · ∇hvh + a(uh,∇huh) · r(JvhK) dx

=

∫

Ω

a(uh,∇huh) · ∇hvh dx+
∑

e∈Eh

∫

e

µe

he
JuhK · JvhKds

−
∑

e∈Eh

∫

e

JuhK · {{Gh(ãz(uh,∇uh, θh)∇vh)}}+ {{Gh(a(uh,∇uh))}} · JvhK ds.

Ignoring the boundary terms, the primal formulation proposed in [23] (or [27] in simpler case) reads
as

B(uh, vh) =

∫

Ω

a(uh,∇huh) · ∇hvh dx+
∑

e∈Eh

∫

e

µe

he
JuhK · JvhK ds

−
∑

e∈Eh

∫

e

JuhK · {{az(uh,∇huh, θh)∇vh}}+ {{a(uh,∇huh)}} · JvhKds

which shows two differences in the second term: in [23] there is az instead of the average ãz, which
is a consequence of the direct consideration of the primal form. Also in our formulation we have an
additional Galerkin projection, which seems essential to later proofs in the paper. Also one might
notice that while az needs to be computed explicitly in [23], in our formulation ãz only appears in
the analysis and there is no need to compute and implement this term.

Furthermore, comparing the current primal BR2 formulation with the version proposed in [6]
for the case of nonlinear Helmholtz equation, and by following similar arguments to those shown
for SIPG, one observes that the only difference of two formulations is in the application of the
additional Galerkin projection in our formulation.

5. Consistency and adjoint consistency. It is clear that due to the discrete nature of the
lifting operator and the Galerkin projection, the primal formulation (4.16) is inconsistent with the
exact solution (for all four presented methods). This is also the case for the formulations presented
in [11] and [35]. Moreover, the scheme is inconsistent with the smooth solution of its corresponding
adjoint problem constructed by the linearization in the neighborhood of the exact solution.

In order to investigate these consistency errors, we consider a smooth solution to (2.1). In sec-
tions 5.1 and 5.2 we prove that, despite of the primal and adjoint inconsistency of the formulations,
and in case of sufficiently regular solutions, one obtains asymptotic consistency in the mesh refining
limit, for primal as well as for the adjoint problem.

In the following of this paper, due to the required regularity in the adjoint analysis, we assume
that the exact solution of the problem (2.1), denoted by u, belongs to W 2

∞(Ω).
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5.1. Consistency. Due to the assumption A(i), the fact that f ∈ L2(Ω) and −∇·a(·, u,∇u) =
f on Ω for the exact solution u, we know that a(u,∇u) ∈ H(div; Ω). Hence, Ja(u,∇u)K = 0 on
each e ∈ Eh,I . Also note that we have θh(u) = ∇u for all schemes. Let us first consider the schemes
BR1, BR2, and SIPG. For these schemes, and for any v ∈ V (h), one can rewrite the left hand side
of (4.17) as

B(u, v) =

∫

Ω

a(u,∇u) · ∇hv dx+ a(u,∇u) · r(JvK) dx

=

∫

Ω

a(u,∇u) · ∇hv dx−
∑

e∈Eh

∫

e

{{a(u,∇u)}} · JvK ds+
∑

e∈Eh

∫

e

{{(I − Gh)(a(u,∇u))}} · JvK ds.

Applying the divergence theorem on the first two terms on the right hand side, and using the
continuity of a(u,∇u) · νκ on the interfaces yield

B(u, v) = −

∫

Ω

∇ · a(u,∇u)v dx+
∑

e∈Eh

∫

e

{{(I − Gh)(a(u,∇u))}} · JvK ds.

Noting (2.1), the consistency error for the primal formulation is the same for BR1, BR2 and SIPG;
that is

Ep(u, v) := B(u, v)−F(v) =
∑

e∈Eh

∫

e

{{(I − Gh)(a(u,∇u))}} · JvK ds, ∀v ∈ V (h).(5.1)

Similarly, for LDG scheme, following the same lines as [11] we obtain

(5.2) Ep(u, v) :=
∑

e∈Eh

∫

e

{{(I − Gh)(a(u,∇u))}} · JvK ds−
∑

e∈Eh,I

∫

e

βJ(I − Gh)(a(u,∇u))K · JvKds.

In general, even for very regular solutions, or in case of linear diffusion a(u,∇u) = ∇u, this consis-
tency error is not zero and in fact is equal to the Galerkin projection error into the polynomial space
Σh,p. However, provided that the diffusion a is regular enough, the formulations are asymptotically
consistent; i.e., ‖Ep(u, ·)‖V ′(h) → 0 as h → 0. Note that ‖ · ‖V ′(h) is the dual norm on space V (h)
defined as

(5.3) ‖A(·)‖V ′(h) := sup
06=w∈V (h)

|A(w)|

|||w|||h
,

where A : V (h) → V ′(h) is a linear continuous operator on V (h).
In order to prove this asymptotic consistency, one might find an upper bound for Ep(u, v)

which vanishes as h goes to zero. Here we present a generalized form of [11, Lemma 5.2] for
different discretizations, which provides us with such an estimate:

Lemma 5.1. Assume a(u,∇u) ∈ Hs∗(Ω, Th) with some non-negative integer s∗. Then, there
exists Ccon > 0, independent of h but dependent on q and s∗, such that for the schemes presented
in section 4 the following holds

(5.4) |B(u,w)−F(w)| ≤ Ccon

(

∑

κ∈Th

h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

|||w|||h,

for all w ∈ V (h), where µ∗ = min(s∗, q + 1).
Proof. The proof is provided in [11] for the LDG scheme, which in case β = 0 gives the desired

result for BR1, BR2, and SIPG.
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5.2. Adjoint consistency. Adjoint consistency is an important property in obtaining the
optimal L2 convergence rate for the solution, and super-convergence of the target functionals (cf.
[26] or [36]). In order to apply Aubin-Nitsche duality argument, let us consider the following
auxiliary dual problem

−∇ · (az(u,∇u)∇ψ) + au(u,∇u) · ∇ψ = u− uh, in Ω,(5.5)

ψ = 0, on ∂Ω,(5.6)

where u is the exact solution of (2.1). From assumption A(iii) and u ∈W 2
∞(Ω), and provided that

uh ∈ L2(Ω) (cf. section 6) one can check that

(5.7) au(u,∇u) ∈ W 1
∞(Ω), az(u,∇u) ∈ W 1

∞(Ω), u− uh ∈ L2(Ω).

Using (5.7) combined with the convexity of Ω, it is a classical result that the unique solution
of the adjoint problem, ψ ∈ H2 ∩H1

0 satisfies the following elliptic regularity [25, Theorem 9.1.22]

(5.8) ‖ψ‖H2(Ω) ≤ C‖u− uh‖L2(Ω).

Moreover, from (5.7) and the structure of (5.5), one can conclude that az(u,∇u)∇ψ ∈ H(div,Ω).
Therefore one gets Jaz(u,∇u)∇ψK = 0, on any interior edge e ∈ Eh,I .

In order to do the linearization, we take the Fréchet derivative of B(u, v) around the exact
solution u. For the BR1 formulation one might get

B′[u](w, v) =

∫

Ω

(

au(u,∇u)w + az(u,∇u)(∇hw + r(JwK))
)

·
(

∇hv + r(JvK)
)

dx.(5.9)

Similarly, for BR2 and SIPG one has

B′[u](w, v) =

∫

Ω

(

au(u,∇u)w + az(u,∇u)(∇hw + r(JwK))
)

·
(

∇hv + r(JvK)
)

dx

+

∫

Ω

az(u,∇u)r(JwK) · r(JvK) dx+ F (u,w, v),(5.10)

where the term F is the Fréchet derivative of the penalty term; there holds

(5.11) F (u,w, v) =
∑

e∈Eh

∫

e

µe

he
JwK · JvK ds, F (u,w, v) =

∑

e∈Eh

ηe

∫

Ω

re(JwK) · re(JvK) dx

for SIPG and BR2, respectively. For the LDG formulation we have

B′[u](w, v)=

∫

Ω

(

au(u,∇u)w + au(u,∇u)(∇w + r(JwK) + l(β · JwK))
)

·(∇hv + r(JvK) + l(β · JvK)) dx

+
∑

e∈Eh

∫

e

µe

he
JwK · JvK ds.

Now, let us consider B′[u](w,ψ) for the smooth exact solution of the dual problem, ψ ∈ H2(Ω); one
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might write for BR1, BR2 and SIPG,

B′[u](v, ψ) =

∫

Ω

(

au(u,∇u)v + az(u,∇u)(∇v + r(JvK))
)

· ∇hψ dx

=

∫

Ω

au(u,∇u)v · ∇hψ + (az(u,∇u)∇hψ) · ∇hv dx+

∫

Ω

(az(u,∇u)∇hψ) · r(JvK) dx

=

∫

Ω

(

au(u,∇u) · ∇hψ −∇h · (az(u,∇u)∇hψ)
)

v dx

+
∑

e∈Eh

∫

e

{{(I − Gh)(az(u,∇u)∇ψ)}} · JvK ds

=

∫

Ω

(u− uh)v dx+ Ed(u, v, ψ)

for all v ∈ V (h), with the following definition of the consistency error for the dual problem (5.5)

(5.12) Ed(u, v, ψ) :=
∑

e∈Eh

∫

e

{{(I − Gh)(az(u,∇u)∇ψ)}} · JvK ds.

Similarly, for the LDG formulation one can show

Ed(u, v, ψ) =
∑

e∈Eh

∫

e

{{(I − Gh)(az(u,∇u)∇ψ)}}·JvK ds−
∑

e∈Eh,I

∫

e

βJ(I − Gh)(az(u,∇u)∇ψ)K·JvK ds.

Presence of a non-zero consistency error for the dual problem reveals the dual inconsistency of the
proposed scheme, but as we are going to show that one can obtain the asymptotic dual consistency
of the scheme as proposed in [30]; the quasilinear form B is called asymptotic dual consistent with
the target functional J : R → R if the following holds

(5.13) lim
h→0

‖B′[u](·, ψ)− J ′[u](·)|‖V ′(h) = 0,

where u and ψ are the exact solutions of the primal and dual problems, (2.1) and (5.5) respectively.
Here J ′[u] is the Fréchet derivative of J , which in our analysis and according to (5.5) is,

(5.14) J (u) =
∑

κ∈Th

∫

κ

1

2
(u− uh)

2 dx, J ′[u](w) =
∑

κ∈Th

∫

κ

(u− uh)w dx, ∀u,w ∈ V (h).

As we will prove later in section 8.2, such an asymptotic adjoint consistency leads to the optimal
convergence rate in L2 norm. This property has been already investigated e.g., in [33] by numerical
tests. Let us present the following lemma for the adjoint consistency error

Lemma 5.2. Assume that the exact solution of the adjoint problem (5.5) has elliptic regularity,
i.e., (5.8) holds. Then, there exists C̃con > 0, independent of h but dependent on q, such that

(5.15) Ed(u, v, ψ) ≤ C̃conh‖az(u,∇u)‖W 1
∞

(Ω)‖ψ‖H2(Ω)|||v|||h,

for all v ∈ V (h).
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Proof. Using assumption A(iii) and Lemmas 3.1 and 3.3, for BR2 and SIPG we have

|Ed(u, v, ψ)| =
∣

∣

∣

∑

e∈Eh

∫

e

{{(I − Gh)(az(u,∇u)∇ψ)}} · JvK ds
∣

∣

∣

≤
(

∑

e∈Eh

‖(I − Gh)(az(u,∇u)∇ψ)‖
2
L2(e)

)1/2( ∑

e∈Eh

‖JvK‖2L2(e)

)1/2

≤
(

CA

∑

κ∈Th

hκ‖(az(u,∇u)∇ψ)‖
2
H1(κ)

)1/2(

C−1
r

∑

e∈Eh

he‖r
e(JvK)‖2L2(Ω)

)1/2

≤ Ch‖(az(u,∇u)∇ψ)‖H1(Ω,Th)|v|∗,h.

For LDG there exists additional term which can be bounded similarly as

∣

∣

∣

∑

e∈Eh,I

∫

e

βJ(I − Gh)(az(u,∇u)∇ψ)K · JvK ds
∣

∣

∣
≤ Ch‖β‖[L∞(Eh,I )]2‖az(u,∇u)∇ψ‖H1(Ω,Th)|v|∗,h.

Using the boundedness of parameter β and the fact that

‖az(u,∇u)∇ψ‖H1(Ω,Th) ≤ ‖az(u,∇u)‖W 1
∞

(Ω,Th)‖ψ‖H2(Ω,Th) ≤ C,

completes the proof of the lemma with sufficiently large C̃con.
Using the result of the Lemma 5.2, smoothness of az and elliptic regularity of ψ yields

(5.16) lim
h→0

‖Ed(u, ·, ψ)‖V ′(h) = 0,

which shows the asymptotic adjoint consistency of the proposed formulations.

6. Stability. In this section we prove the stability of the approximated solution of (4.16).
Let us remark that in this section we do not assume neither the monotonicity nor the Lipschitz
continuity of the diffusion operator. The only additional assumption we need is mentioned as the
following remark:

Remark 2. Based on the examples in section 1, and our main interest to interpret these
problems as nonlinear diffusion phenomenon, it looks natural to assume the following

(6.1) a(x, η, 0) ≡ 0, ∀x ∈ R
2, η ∈ R,

which tells that there is no diffusive behavior in the absence of the gradient.
Using (6.1) and the Taylor’s expansion (3.1), as well as assumption A(iii) in form of (2.5),

one may write

(6.2) a(x, η, ξ) · ξ = ãz(x, η, ξ) · ξ ≥ λ|ξ|2, ∀x ∈ R
2, η ∈ R, ξ ∈ R

2.

We will exploit this result in the rest of this section.
It is well-known that the BR1 method is only weakly-stable (cf. [3]), so we only present the

stability result for BR2, SIPG and LDG as the following lemma:
Lemma 6.1. Let us assume uh ∈ Vh,q is the solution of the primal formulation (4.16). Then

for LDG, BR2 and SIPG methods the following stability result holds

(6.3) |||uh|||h ≤
CF

Cco

‖f‖L2(Ω).



16 M. ZAKERZADEH AND G. MAY

Here, CF is the continuity constant of linear form F(·), that is

(6.4) |F(v)| ≤ CF‖f‖L2(Ω)|||v|||h, ∀v ∈ V (h),

while Cco > 0 is the following coercivity constant of the operator B as

(6.5) Cco|||vh|||
2
h ≤ B(vh, vh), ∀vh ∈ Vh,q.

Proof. For different formulations, we insert the test function vh = uh and investigate if (6.5)
actually holds. Using the fact that B(uh, uh) = F(uh), the rest of the proof is complete by the
following line

(6.6) |||uh|||
2
h ≤

1

Cco
F(uh) ≤

CF

Cco
‖f‖L2(Ω)|||uh|||h.

So the only missing step is the coercivity proof, for which we check B(uh, uh) for different formula-
tions:

(i) LDG: From (4.21) and (4.14) one has

B(uh, uh) =

∫

Ω

a
(

uh, θh
)

· θh dx+
∑

e∈Eh

µe

he

∫

e

JuhK · JuhKds.

From the property (6.1) we have

∫

Ω

a
(

uh, θh
)

· θh dx ≥ λ‖∇huh + r(JuhK) + l(β · JuhK)‖2L2(Ω)

≥ λ
[

(1 − δ)‖∇huh‖
2
L2(Ω) + (1−

1

δ
)‖r(JuhK) + l(β · JuhK)‖2L2(Ω)

]

(6.7)

using Young’s inequality with δ ∈ (0, 1). Now using (3.20) and the boundedness of β, one
has

∫

Ω

a
(

uh, θh
)

· θh dx ≥ λ
[

(1− δ)‖∇huh‖
2
L2(Ω) + C(1 −

1

δ
)|uh|

2
∗,h

]

,(6.8)

for some constant C. Then (3.21) gives the following

B(uh, uh) ≥ λ(1− δ)‖∇huh‖
2
L2(Ω) +

( µe

C2
R

+ λC(1 −
1

δ
)
)

|uh|
2
∗,h,(6.9)

which indicates the condition µe > 0 as the coercivity requirement of LDG formulation.
This coincides with the result for the Poisson problems (cf. [3]) and the version of LDG
discussed in [31].

(ii) BR2, SIPG: We combine the proof for these two methods by writing them as a variation of
BR1 method. This treatment will be used once more in section 7.1. Using (4.18), (4.19) and
(4.20), one may write the following decomposition of primal formulation; for all v, w ∈ V (h)

(6.10) BSIPG,BR2(v, w) = BBR1(v, w) + T (1)(v, w) + T
(2)
SIPG,BR2(v, w),
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where BBR1 is the primal formulation of BR1 scheme and the next two terms are defined
as

T (1)(v, w) = −

∫

Ω

(

a(v, θh(v))− a(v,∇hv)
)

· r(JwK) dx,(6.11)

T
(2)
SIPG(w, v) =

∑

e∈Eh

µe

he

∫

e

JvK · JwK ds,(6.12)

T
(2)
BR2(w, v) =

∑

e∈Eh

ηe

∫

Ω

a(v, re(JvK)) · re(JwK) dx.(6.13)

Using (6.2) one can easily show the positive semi-definiteness of BBR1(uh, uh) as (4.18).
For T (1)(uh, uh) using the Taylor’s expansion (3.1) we have

T (1)(uh, uh) = −

∫

Ω

ãz(uh,∇huh, θh)r(JuhK) · r(JuhK) dx,

and for the remaining term T
(2)
BR2,SIPG one can obtain

T
(2)
SIPG(uh, uh) =

∑

e∈Eh

µe

he
‖JuhK‖2L2(e)

≥
∑

e∈Eh

µe

C2
R

‖re(JuhK)‖2L2(Ω),

T
(2)
BR2(uh, uh) ≥ ληe

∑

e∈Eh

‖re(JuhK))‖2L2(Ω).

Here we have used (3.21) and (6.2) in the first and second equation, respectively. Hence-
forth, we adopt the following notation for a constant CT > 0

(6.14) SIPG : CT := min
e∈Eh

{µe/C
2
R}, BR2 : CT := min

e∈Eh

{ληe}.

Hence, using (6.10), (6.2) and (6.14), one might write

BSIPG,BR2(uh, uh) ≥

∫

Ω

a(uh, θh) · θh dx−

∫

Ω

ãz(uh,∇huh, θh)r(JuhK) · r(JuhK) dx

+ CT

∑

e∈Eh

‖re(JuhK))‖2L2(Ω)

≥ λ‖θh(uh))‖
2
L2(Ω) − Λ‖r(JuhK)‖2L2(Ω) + CT|uh|

2
∗,h.

Applying Young inequality with 0 < δ < 1 and (3.16), we arrive at

BSIPG,BR2(uh, uh) ≥ λ(1− δ)‖∇huh‖
2
L2(Ω) −Nl

(

Λ + λ(
1

δ
− 1)

)

|uh|
2
∗,h + CT|uh|

2
∗,h

This leads to the following criterion Nl(Λ + λ(
1

δ
− 1)) ≤ CT, and since δ can be arbitrary

chosen close to 1, the margin for stability is CT > NlΛ which can be written separately for
BR2 and SIPG as

SIPG : µe > C2
RΛNl, BR2 : ηe > Nl

Λ

λ
.(6.15)

This shows that by choosing sufficiently large penalty parameter, as (6.15) suggests, one
can ensure the stability of the solution of SIPG and BR2 formulations.
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This completes the proof of coercivity as well the proof of the lemma.
Remark 3. The result of Lemma 6.1 shows that the stability estimate is available in the

degenerate case, i.e. where λ = 0, for SIPG method while for BR2 the uniform lower bound λ
should be uniformly larger than zero. In the special case when a(u,∇u) = a(u)∇u, by the same
lines of argument as in [43], one can check that the stability criteria for SIPG remains unchanged
while the BR2 one reduces to ηe ≥ Nl, which is consistent with the result of Poisson problem (cf.
[3]).

7. Existence and uniqueness of the discrete solution. In the following sections of this
paper, we only consider the BR2 and SIPG formulations. The reason for doing this is the fact that
our discussions on the LDG method will follow basically the arguments presented in [11]. Moreover,
the BR1 method is not so common due to non-compact stencil and instability [3].

We first prove the strong monotonicity and Lipschitz continuity of the nonlinear operator
corresponding to the primal formulation in sections 7.1 and 7.2, respectively. Then we prove the
uniqueness of the discrete solution and present a Strang type error estimate.

7.1. Strong monotonicity. Let us start with the following lemma
Lemma 7.1. If the diffusion operator a satisfies the strong monotonicity property as (2.6),

then there exists CSM > 0 such that

(7.1) B(v, v − w) − B(w, v − w) ≥ CSM|||v − w|||2h

for all w, v ∈ V (h).
Before stating the proof, let us remark the following estimate which later will be used in the

analysis:
Lemma 7.2. For all w ∈ V (h), the following holds

(7.2) ‖θh(w)‖
2
L2(Ω) ≥

1

2
|||w|||2h − η|w|2∗,h,

for η ≥ Nl +
1
2 .

Proof. Using Young’s inequality with 0 < δ < 1, (4.14) and (3.16), one can write

‖θh(w)‖
2
L2(Ω) = ‖∇hw‖

2
L2(Ω) + ‖r(JwK)‖2L2(Ω) −

∫

Ω

2r(JwK) · ∇hw dx

≥ (1− δ)‖∇hw‖
2
L2(Ω) +Nl(1−

1

δ
)
∑

e∈Eh

‖re(JwK)‖2L2(Ω).

Hence, by setting δ = 1/2 we arrive at

‖θh(w)‖
2
L2(Ω) ≥

1

2
‖∇hw‖

2
L2(κ)

−Nl|w|
2
∗,h.

Using the definition of energy norm (3.18), one can add ±1/2|w|2∗,h to the right hand side and the
result is obtained.

Now we are ready to present the proof of Lemma 7.1:
Proof. [of Lemma 7.1] Using the decomposition (6.10), and setting ξh = vh − wh one gets

B(vh, ξh)− B(wh, ξh) =
[

BBR1(vh, ξh)− BBR1(wh, ξh)
]

+
[

T (1)(vh, ξh)− T (1)(wh, ξh)
]

+
[

T (2)(vh, ξh)− T (2)(wh, ξh)
]

=
[

BBR1(vh, ξh)− BBR1(wh, ξh)
]

+ F1 + F2.(7.3)
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Strong monotonicity (2.6) and (4.18) readily imply

(7.4) BBR1(vh, ξh)− BBR1(wh, ξh) ≥ Csm‖θh(vh)− θh(wh)‖
2
L2(Ω).

For the term F1, using (2.7), (6.11) and a Young inequality with δ > 0, one has

F1 ≥ −
1

δ

(

‖a(vh, θh(vh))− a(wh, θh(wh))‖
2
L2(Ω)

)

−
1

δ

(

‖a(vh,∇hvh)− a(wh,∇hwh)‖
2
L2(Ω)

)

−
δ

2
‖r(JξhK)‖2L2(Ω)

≥ −
2C2

lc

δ
‖ξh‖

2
L2(Ω) −

C2
lc

δ
‖θh(ξh)‖

2
L2(Ω) −

C2
lc

δ
‖∇hξh‖

2
L2(Ω) −

δ

2
‖r(JξhK)‖2L2(Ω)

Using the fact that −|∇hξh|2 ≥ −2|θh(ξh)|2 − 2|r(JξhK)|2 and (3.16), we arrive at

F1 ≥ −
2C2

lc

δ
‖ξh‖

2
L2(Ω) −

3C2
lc

δ
‖θh(ξh)‖

2
L2(Ω) −Nl

(2C2
lc

δ
+
δ

2

)

∑

e∈Eh

‖re(JξhK)‖2L2(Ω).

For the remaining term F2, using the definitions (6.12) and (6.13), as well (3.21) and (2.6), one has

F2 ≥ C−2
R

∑

e∈Eh

µe‖r
e(JξhK)‖2L2(Ω), F2 ≥ Csm

∑

e∈Eh

ηe‖r
e(JξhK)‖2L2(Ω)

for SIPG and BR2 methods, respectively. Similar to (6.14), we define C′
T such that, for both

methods

(7.5) F2(wh, vh) ≥ C′
T

∑

e∈Eh

‖re(JξhK)‖2L2(Ω).

Hence, combining all terms one can write

B(vh, ξh)− B(wh, ξh) ≥ Csm‖θh(ξh)‖
2
L2(Ω) + C′

T|ξh|
2
∗,h

−
2C2

lc

δ
‖ξh‖

2
L2(Ω) −

3C2
lc

δ
‖θh(ξh)‖

2
L2(Ω) −Nl

(2C2
lc

δ
+
δ

2

)

|ξh|
2
∗,h

Let us set η to be a constant larger than Nl + 1/2; then using Lemma 7.2 and (3.23) give

B(vh, ξh)− B(wh, ξh) ≥
1

2

[

Csm −
3C2

lc

δ
−

4C2
lcCen

δ

]

|||ξh|||
2
h

+
[

C′
T −

(

Csm −
3C2

lc

δ

)

η −Nl

(2C2
lc

δ
+
δ

2

)

]

|ξh|
2
∗,h.

Now consider arbitrary 0 < CSM < Csm

2 and set δ large enough such that the following holds

Csm −
C2

lc(3 + 4Cen)

δ
> 2CSM, or δ >

Csm − 2CSM

C2
lc(3 + 4Cen)

.

The only remaining free parameter is the stabilization parameter C′
T and one can choose it suffi-

ciently large, such that

C′
T ≥ (Csm −

3C2
lc

δ
)η +Nl

(2C2
lc

δ
+
δ

2

)

.

Finally we arrive at B(vh, ξh) − B(wh, ξh) ≥ CSM|||ξh|||2h, for both BR2 and SIPG and the proof
completes.
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7.2. Lipschitz continuity. For the Lipschitz continuity we have the following lemma
Lemma 7.3. If the diffusion operator a satisfies the Lipschitz continuity property as (2.6),

there exists CLC <∞ independent of the mesh size such that

(7.6) |B(z, w)− B(v, w)| ≤ CLC|||z − v|||h|||w|||h,

for all z, v, w ∈ V (h).
Proof. Using the decomposition (6.10) and similar to Lemma 7.1 one gets

B(z, w)− B(v, w) =
[

BBR1(z, w)− BBR1(v, w)
]

+ F1 + F2.(7.7)

where

F1 = T (1)(z, w)− T (1)(v, w), F2 = T (2)(z, w)− T (2)(v, w).(7.8)

It is straightforward to show the Lipschitz continuity of BBR1(v, w) using (2.7). For F1, noting the
fact that one may write

|a(z,∇hz)− a(v,∇hv)− a(z, θh(z)) + a(v, θh(v))| ≤ Clc

(

|z − v|2 + |θh(z)− θh(v)|
2
)1/2

+ Clc

(

|z − v|2 + |∇hz −∇hv|
2
)1/2

≤ C
(

|z − v|+ |∇h(z − v)|+ r(Jz − vK)|
)

,

and readily

F1 ≤ C

∫

Ω

(

|z − v|+ |∇h(z − v)|+ r(Jz − vK)|
)

|r(JwK)| dx ≤ CLC|||z − v|||h|||w|||h.

For BR2 scheme one may note, for any e ∈ Eh

|a(z, re(JzK)) − a(v, re(JvK))| ≤ Clc

(

|z − v|2 + |re(Jz − vK)|2
)1/2

≤ Clc

(

|z − v|+ |re(Jz − vK)|
)

.

On the other hand, using the fact the re vanishes outside two neighbor elements, for the corre-
sponding F2 term we have,

F2 ≤
∑

e∈Eh

ηe

∫

Ω

Clc

(

|z − v|+ |re(Jz − vK)|
)

|re(JwK)| dx ≤ CLC|||z − v|||h|||w|||h.

Finally, for SIPG method one can easily write

F2 =
∑

e∈Eh

µe

he

∫

e

Jv − zK · JwK ds ≤ CLC|||z − v|||h|||w|||h.

Combining the results for BBR1, F1 and F2 concludes the proof.
Now we present the existence, uniqueness and stability result for the approximated solution

uh as well as a Strang type error estimate. Though we discussed the stability of the solution in
section 6, note that the result of Lemma 7.4 requires stronger condition on the diffusion operator
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(strong monotonicity and global Lipschitz continuity) than the more general result already discussed
in section 6.

Lemma 7.4. There exists a unique uh ∈ Vh,q solution of (4.16), which satisfies

(7.9) |||uh|||h ≤
1

CSM

[

CF‖f‖L2(Ω) + ‖B(0, ·)‖V ′(h)

]

.

Moreover, the following error estimate holds

(7.10) |||u− uh|||h ≤
(

1 +
CLC

CSM

)

inf
vh∈Vh,q

|||u − vh|||h +
1

CSM

sup
06=wh∈Vh,q

|B(u,wh)−F(wh)|

|||wh|||h
,

where u is the exact solution of (2.1).
Proof. Using the strong monotonicity and Lipschitz continuity (Lemmas 7.1 and 7.3) the unique

solvability of (4.16) can be proved by a well-known result as [32, Theorem 3.2.23] or [45, Theorem
35.4], also see [28]. For the stability proof we refer to [11, Theorem 4.5] and here we only present
the proof of Strang type error estimate due to its application in the rest of our analysis.

Consider the error e = u−uh and decompose it as e = η+ ξ, where η = u− vh and ξ = vh−uh
where vh ∈ Vh,q. From Lemma 7.1 one has

CSM|||uh − vh|||
2
h ≤ B(uh, ξ)− B(vh, ξ) =

[

B(uh, ξ)− B(u, ξ)
]

+
[

B(u, ξ)− B(vh, ξ)
]

While the first group of terms is the consistency error, applying Lemma 7.3 gives

(7.11) |||uh − vh|||h ≤
CLC

CSM
|||u − vh|||h +

1

CSM
sup

06=wh∈Vh,q

|B(u,wh)− F(wh)|

|||wh|||h

Applying a triangle inequality completes the proof.

8. A priori error estimates. In this section, we provide the error estimate of the BR2 and
SIPG methods illustrated in section 4. In section 8.1, we prove the optimal error estimate in the
energy norm |||·|||h using the Strang type error estimate in Lemma 7.4 and the asymptotic consistency
result in section 5.1. In section 8.2, we prove the optimal error estimate in L2 norm exploiting the
result on asymptotic adjoint consistency already provided in section 5.2.

8.1. Energy norm error estimate. Combining the result of Lemmas 7.4 and 5.1, gives the
following corollary for the error estimate in the energy norm:

Corollary 8.1. Let uh and u be the solution of (4.16) and the exact solution of (2.1),
respectively. Also assume that u ∈ Hs(Ω, Th) and a(u,∇u) ∈ Hs∗(Ω, Th). Then the following holds

(8.1) |||u − uh|||
2
h ≤ Cerr

(

∑

κ∈Th

h2(µ−1)
κ ‖u‖2Hs(κ) +

∑

κ∈Th

h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)

with some Cerr > 0, µ = min(s, q + 1) and µ∗ = min(s∗, q + 1).
Proof. Using Lemmas 7.4 and 5.1 one can easily write

(8.2) |||u− uh|||h ≤
(

1 +
CLC

CSM

)

inf
vh∈Vh,q

|||u− vh|||h +
Ccon

CSM

(

∑

κ∈Th

h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

.

Choosing vh = πhu and applying the approximation result in Lemma 3.4 completes the proof with
choosing a sufficiently large Cerr.



22 M. ZAKERZADEH AND G. MAY

Using the error decomposition e = η+ ξ (as in Lemma 7.4), we also are interested in obtaining
an estimate for ξ = πhu−uh. By setting vh = πhu in (7.11) and similar to the proof of Corollary 8.1
one might get

(8.3) |||uh − πhu|||h ≤
CLC

CSM
|||u− πhu|||h +

Ccon

CSM

(

∑

κ∈Th

h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

,

which yields, for some C̃err > 0

(8.4) |||uh − πhu|||h ≤ C̃err

(

∑

κ∈Th

h2(µ−1)
κ ‖u‖2Hs(κ) +

∑

κ∈Th

h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

.

Moreover, using the definition of σh and θh as (4.15) and (4.14), one can prove the corresponding
lemma for their error estimate

Lemma 8.1 (Theorem 5.5 in [11]). Under the same assumptions as those of Corollary 8.1,
there exists C̃err > 0 independent of the mesh size, such that

(8.5) ‖θ − θh‖[L2(Ω)]2 ≤ C̃err

(

∑

κ∈Th

h2(µ−1)
κ ‖u‖2Hs(κ) +

∑

κ∈Th

h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

,

and, not necessarily with the same C̃err,

(8.6) ‖σ − σh‖[L2(Ω)]2 ≤ C̃err

(

∑

κ∈Th

h2(µ−1)
κ ‖u‖2Hs(κ) +

∑

κ∈Th

h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

,

where µ = min(s, q + 1) and µ∗ = min(s∗, q + 1).
The proof follows the same lines as [11] and we skip it here.

8.2. L2 norm error estimate. In this section, we present the error estimate of the solution
uh in the L2 norm. Recalling the adjoint problem (5.5), and by inserting w = u−uh as the (infinite
dimensional) test function in (5.10) and (5.14), to obtain

‖uh − u‖2L2(Ω) = B′[u](uh − u, ψ)−
(

B′[u](uh − u, ψ)− J ′[u](uh − u)
)

= B(uh, ψ)− B(u, ψ)−N (u, uh, ψ)±
(

B(u, ψh)− B(uh, ψh)
)

+ Ed(u, e, ψ)

= B(uh, ψ − ψh)− B(u, ψ − ψh)− Ep(u, ψh) + Ed(u, e, ψ)−N (u, uh, ψ)(8.7)

where Ep and Ed are defined in (5.1) and (5.12) as the consistency errors of the primal and the dual
problem, respectively, while N (u, uh, ψ) is the second order linearization error. Here, ψh = πhψ ∈
Vh,q. By the Taylor’s formula in section 3.2 we have (note that θh(e) = ∇he + r(JeK) as already
defined)

N (u, uh, ψ) =
∑

κ∈Th

∫

κ

Ra(u− uh,∇u−∇uh) · ∇ψ dx(8.8)

=

∫

Ω

[

ãuu(u,∇u)e
2 + θh(e)

tãzz(u,∇u)θh(e) + 2ãuz(u,∇u) · θh(e)e
]

· ∇hψ dx.

First let us handle the error estimate of the last three terms on the right hand side of (8.7),
N (u, uh, ψ), Ep(u, ψh) and Ed(u, uh, ψ), in the following steps:
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(i) Using (8.8) and very similar arguments as [23, Lemma 3.10] we have

|N (u, uh, ψ)| ≤ C
[

‖e‖L4(Ω) + ‖θh(e)‖L4(Ω)

][

‖e‖L2(Ω) + ‖θh(e)‖L2(Ω)

]

‖ψ‖W 1

4
(Ω,Th)

≤ C
[

‖e‖W 1

4
(Ω,Th) + ‖r(JeK)‖L4(Ω)

][

‖e‖W 1

2
(Ω,Th) + ‖r(JeK)‖L2(Ω)

]

‖ψ‖W 1

4
(Ω,Th).

From the embedding theorem, the last term is bounded since we know H2(Ω) ⊂ W 1
4 (κ),

i.e., ‖ψ‖W 1

4
(Ω,Th) ≤ C‖ψ‖H2(Ω,Th) by a uniform constant C. Using (3.24) gives, since

u− uh ∈ V (h)

(8.9) ‖e‖W 1

2
(Ω,Th) + ‖r(JeK)‖L2(Ω) ≤ C|||u− uh|||h.

Now, the only term to handle (to obtain an additional order of h) is ‖u− uh‖W 1

4
(Ω,Th) and

‖r(JeK)‖L4(Ω). By writing u− uh = u− πhu+ πhu− uh = η + ξ, one gets

‖u− uh‖W 1

4
(Ω,Th) + ‖r(JeK)‖L4(Ω) ≤ ‖η‖W 1

4
(Ω,Th) + ‖ξ‖W 1

4
(Ω,Th) + ‖r(JeK)‖L4(Ω).

In case of q ≥ 2 and u ∈ H5/2(Ω) (note that q + 1 > 5/2), application of Lemma 3.3 gives

‖η‖W 1

4
(Ω,Th) ≤ C

(

∑

κ∈Th

h4κ‖u‖
4
H5/2(κ)

)1/4

≤ Ch
(

∑

κ∈Th

‖u‖2H5/2(κ)

)1/2

≤ Ch‖u‖H5/2(Ω).

On the other hand using the inverse inequality (3.25) one has

‖ξ‖W 1

4
(Ω,Th) ≤

(

∑

κ∈Th

C2
invh

−1
κ ‖ξ‖2W 1

2
(κ)

)1/2

.

Then, application to (8.4) for term ‖ξ‖W 1

2
(κ) with µ = min{s, q+1} and µ∗ = min{s∗, q+1},

and quasi-uniformity condition (3.4) yield

‖ξ‖W 1

4
(Ω,Th) ≤ C

(

∑

κ∈Th

h2(µ−1)−1
κ ‖u‖2Hs(κ) +

∑

κ∈Th

h2µ∗−1
κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

≤ Chµ−3/2‖u‖Hs(Ω,Th) + Chµ∗−1/2‖a(u,∇u)‖Hs∗(Ω,Th).(8.10)

Hence, ‖ξ‖W 1

4
(Ω,Th) ≤ Ch for u ∈ H5/2(Ω, Th) and q ≥ 2, provided that a(u,∇u) ∈

H3/2(Ω, Th). Similarly, since r(JeK) ∈ Σh,p one can employ (3.25) to write

‖r(JeK)‖L4(Ω) ≤
(

∑

κ∈Th

C2
invh

−1
κ ‖r(JeK)‖2L2(κ)

)1/2

.

Using (3.16), (3.4), Corollary 8.1, and with similar arguments as (8.10) yield

‖r(JeK)‖L4(Ω) ≤ Chµ−3/2‖u‖Hs(Ω,Th) + Chµ∗−1/2‖a(u,∇u)‖Hs∗(Ω,Th) ≤ Ch.(8.11)

Combining all terms we have

(8.12) |N (u, uh, ψ)| ≤ Ch|||u− uh|||h‖ψ‖H2(Ω)
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(ii) Using Lemma 5.1 and noticing that Ep(u, ψ) = 0 (see (5.1) for smooth ψ as well as the
boundary condition of (5.5)), one has the following upper bound for Ep(u, ψh)

(8.13) |Ep(u, ψh)| = |Ep(u, ψ − ψh)| ≤ Ccon

(

∑

κ∈Th

h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

|||ψ − ψh|||h.

The approximation result of Lemma 3.3 and H2-regularity of ψ give

(8.14) |Ep(u, ψh)| ≤ Ch
(

∑

κ∈Th

h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

‖ψ‖H2(Ω).

(iii) For the adjoint consistency error Ed(u, e, ψ), from Lemma 5.2 one has

|Ed(u, e, ψ)| ≤ C̃conh‖az(u,∇u)‖W 1
∞

(Ω)‖ψ‖H2(Ω)|||u− uh|||h,

Combining steps (i)-(iii), with the energy error estimate in Corollary 8.1, one can write

|N (u, uh, ψ)|+ |Ep(u, ψh)|+ |Ed(u, e, ψ)| ≤ Ch‖ψ‖H2(Ω)

(

∑

κ∈Th

h2(µ−1)
κ ‖u‖2Hs(κ) + h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

The remaining term in (8.7) can be bounded using Lipschitz continuity (2.7) and Lemma 3.4

(8.15) B(uh, ψ − ψh)− B(u, ψ − ψh) ≤ CLC|||uh − u|||h|||ψ − ψh|||h ≤ CLCC
′
Ah|||uh − u|||h‖ψ‖H2(Ω).

Application to the elliptic regularity of ψ and Corollary 8.1 gives

‖uh − u‖L2(Ω) ≤ Ch
(

∑

κ∈Th

h2(µ−1)
κ ‖u‖2Hs(κ) + h2µ∗

κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

which can be summarized as the following lemma for the optimal L2 error estimate
Lemma 8.2. Assume that uh and u are the solutions of (4.16) and the exact solution of (2.1),

respectively. Also assume that u ∈ Hs(Ω, Th) and a(u,∇u) ∈ Hs∗(Ω, Th) with s ≥ 5
2 and s∗ ≥ 3

2 .
Then, there exists C′

err > 0 such that the following holds

(8.16) ‖u− uh‖L2(Ω) ≤ C′
err

(

∑

κ∈Th

h2µκ ‖u‖2Hs(κ) +
∑

κ∈Th

h2(µ∗+1)
κ ‖a(u,∇u)‖2Hs∗(κ)

)1/2

,

where µ = min(s, q + 1) and µ∗ = min(s∗, q + 1) and q ≥ 2.

9. Conclusion. In this work, we have analyzed different DG formulations of a quasilinear el-
liptic problem by introducing appropriate numerical flux functions inspired by their original version
in linear problems. We showed that in spite of the fact that all of these formulations are inconsis-
tent, they have the asymptotic consistency property for both primal and dual problem. Moreover,
we also proved the stability of the solution in L2 norm under mild assumptions on the problem.

Furthermore, for BR2 and SIPG discretizations, we proved the existence and uniqueness of the
discrete solution in case of monotone and globally Lipschitz diffusion operator. Afterwards, under
regularity assumptions for the exact solution, we proved the optimal convergence rate in energy
norm as well as L2 norm.
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