Lightweight Construction of S-Boxes

Sébastien Duval

Inria Paris

 $8~\mathrm{nov}.$ 2016

Table of Contents

- 1 Introduction
- 2 Lightweight Cryptography
- 3 State of the Art
- 4 New Results
- 5 Lightweight Construction
 - 6 Conclusion

Encryption

Send a secret message...

 Introduction
 Lightweight Crypto.
 State of the Art
 New Results
 Lightweight Construction
 Conclusion

 •0000000000
 0000
 000000
 00000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000<

Encryption

But mind the enemy!

Eve

Sébastien Duval	Lightweight Construction of S-Boxes	8 nov. 2016	
-----------------	-------------------------------------	-------------	--

Encryption

Use encryption

Eve

Sébastien Duval	Lightweight Construction of S-Boxes	8 nov. 2016	
-----------------	-------------------------------------	-------------	--

/ 32

Encryption

Private key encryption

Eve

Sébastien Duval	Lightweight Construction of S-Boxes	8 nov. 2016	

Encryption

Public key encryption

Eve

Sébastien Duval Lightweight Construction of S-Boxes	
---	--

Lightweight Crypto. State of the Art New Results Introduction 000000000 0000

Symmetric Encryption: Security Criteria

Shannon's Criteria

$$\mathbf{p} \in \mathbb{F}_2^n \Rightarrow \mathbf{c} \in \mathbb{F}_2^n$$

- 1 Diffusion
 - $\forall i, j, p_i \text{ affects } c_i$.
 - Can be achieved using linear functions.

2 Confusion

- Relation between p and c must be complex.
- Requires non-linear functions.
- Implemented as tables: S-Boxes.

SPN Encryption

IntroductionLightweight Crypto.State of the ArtNew ResultsLightweight ConstructionConclusion00000000000000000000000000000

Stream & Block Ciphers

Stream Cipher

Block Cipher

Feistel Ciphers

- Lucifer/DES (H. Feistel, IBM, 1974)
- R built recursively
- Involution up to key ordering

SPN Ciphers

- Rijndael/AES (J. Daemen, V. Rijmen, 1988)
- Succession of confusion/diffusion layers
- Good for parallelism and easy to implement

Proven Security?

No NP-Complete Problem

- No reduction to an NP-complete problem
- No proven security
- > Hypothesis: distinguishing from a random permutation is hard

Hard to Formalise

- Formal definition:
 - Chosen Plaintext Attack.
 - Cipher indistinguishable from a PRP \Rightarrow secure against CPA.
 - ▶ i.e.: No Turing machine gives a different answer if given the cipher or a PRP.
- ▶ In practice:
 - ▶ How to define a "random" permutation ?
 - \blacktriangleright New property of random permutations \Rightarrow new attack
 - We need cryptanalysis

Statistical Attacks

- Distinguish from random \Rightarrow attack
- Lots of properties:
 - Differential attacks
 - Linear attacks
 - Algebraic attacks
 - Subset attacks
 - • •
- ▶ Most efficient: differential and linear
- Very similar

Differential Attacks

Definition: Differential Uniformity

Let F be a function over \mathbb{F}_2^n . The table of differences of F is:

$$\delta_{\mathrm{F}}(\mathbf{a} \to \mathbf{b}) = \#\{\mathbf{x} \in \mathbb{F}_2^{\mathrm{n}} | \mathrm{F}(\mathbf{x} \oplus \mathbf{a}) = \mathrm{F}(\mathbf{x}) \oplus \mathbf{b}\}.$$

Moreover, the differential uniformity of F is

$$\delta(\mathbf{F}) = \max_{\mathbf{a} \neq 0, \mathbf{b}} \delta_{\mathbf{F}}(\mathbf{a} \rightarrow \mathbf{b}).$$

We will also consider:

$$\delta_{\min}(\mathbf{F}) = \min_{\mathbf{a} \neq 0} \max_{\mathbf{b}} \delta_{\mathbf{F}}(\mathbf{a} \rightarrow \mathbf{b}).$$

F is resistant against differential attacks if δ(F) is small
δ_F(a → b) is even
δ(F) = 2 for APN functions

Sébastien Duval

Lightweight Construction of S-Boxes

Introduction Lightweight Crypto. State of the Art New Results Lightweight Construction Conclusion 00000000000 0000

Table of Differences

a\b	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	2	0	0	0	0	2	2	0	4	0	4	2	0	0
2	0	0	2	4	2	0	0	0	2	4	0	0	0	0	2	0
3	0	2	2	0	4	0	0	0	2	0	0	2	0	0	4	0
4	0	2	0	0	0	0	0	2	0	4	0	2	4	2	0	0
5	0	4	0	0	2	0	0	2	0	0	0	4	0	2	2	0
6	0	0	0	4	0	4	0	0	0	4	4	0	0	0	0	0
7	0	0	2	0	0	4	0	2	2	4	0	0	0	2	0	0
8	0	2	2	2	0	2	0	0	2	0	0	0	2	0	2	2
9	0	0	2	2	2	0	2	0	0	0	0	0	0	2	2	4
10	0	4	2	0	0	0	4	2	0	0	2	0	0	0	0	2
11	0	0	0	0	0	2	2	0	0	0	2	2	2	4	2	0
12	0	0	2	2	2	2	0	0	2	0	0	2	2	0	0	2
13	0	0	0	2	2	0	2	2	2	0	0	0	0	0	2	4
14	0	0	0	0	0	0	4	0	2	0	2	4	0	2	0	2
15	0	2	0	0	2	2	2	4	0	0	2	0	2	0	0	0

All values are even:

 $S(x) \oplus S(x \oplus a) = b \iff S((x \oplus a) \oplus a) \oplus S(x \oplus a) = b$

Sébastien Duval

Lightweight Construction of S-Boxes

IntroductionLightweight Crypto.State of the ArtNew ResultsLightweight ConstructionConclusion00000000000000000000000000000000

Linear Attacks

Definition: Linearity

Let F be a function over \mathbb{F}_2^n . The table of linear biases of F is:

$$\lambda_{\mathrm{F}}(\mathrm{a},\mathrm{b}) = \sum_{\mathrm{x}\in\mathbb{F}_2^{\mathrm{n}}} (-1)^{\mathrm{a}\cdot\mathrm{x}\oplus\mathrm{b}\cdot\mathrm{F}(\mathrm{x})}.$$

Moreover, the linearity of F is

$$\mathcal{L}(\mathbf{F}) = \max_{\mathbf{a}, \mathbf{b} \neq 0} |\lambda_{\mathbf{F}}(\mathbf{a}, \mathbf{b})|.$$

F is resistant to linear attacks if $\mathcal{L}(S)$ is small

What Now?

We have good ciphers, considered secure and well studied with a powerful background theory: What now ?

- Still a lot of theory
- ▶ Cryptanalysis: Find new attacks
- **>** ...
- ▶ Fit constrained specifications:
 - ► FHE
 - Side-channel attacks
 - Lightweight
 - • •

Lightweight Cryptography

- Secure and fast ciphers
- ▶ But too costly for dedicated environments...
- ▶ Useful for connected devices

- Size of an RFID chip:< 10000 GE
- Smallest implementation of AES: ~ 10 000 GE

Directions for Building S-Boxes

Problem: S-Box implementations are expansive

- Standard S-Box size: 8 bits (operations on bytes)
 - ▶ Implementation remains costly
- Smaller S-Boxes for a lesser cost:
 - ▶ Software implementation (table): Smaller table
 - ▶ Hardware implementation: Less logic gates
- ▶ But requires more rounds for same security
- Can we find a trade-off ?

Building Bigger S-Boxes From Small Ones

Objective of this Work

Construction of S-Boxes using Feistel and MISTY networks

- Construction of 8-bit S-Boxes from 4-bit ones
- ▶ Trade-off between implementation cost and security

Results

- > Determine the best properties reachable using MISTY and Feistel
 - Applied to 8-bit S-Boxes
- From theory to practice: Contruction of lightweight S-Boxes

Introduction Lightweight Crypto. State of the Art New Results Lightweight Construction Conclusion 00000000000 0000 0000 0000

Feistel and MISTY to Build Ciphers

- ▶ Initially used to define block ciphers (keyed networks)
- ▶ Well studied, many known results:

$$MEDP(F_K) = \max_{a \neq 0, b} \frac{1}{2^k} \sum_{K \in \mathbb{F}_2^k} \frac{\delta_{F_K}(a \to b)}{2^n}$$

$$\mathrm{MELP}(F_{\mathrm{K}}) = \max_{\mathrm{a}, \mathrm{b} \neq 0} \frac{1}{2^{\mathrm{k}}} \sum_{\mathrm{K} \in \mathbb{F}_{2}^{\mathrm{k}}} \left(\frac{\lambda_{\mathrm{F}_{\mathrm{K}}}(\mathrm{a}, \mathrm{b})}{2^{\mathrm{n}}} \right)^{2}$$

For MISTY and Feistel:

- $MEDP(S_i) \le p \Rightarrow MEDP(F) \le p^2$
- $\mathrm{MELP}(S_i) \leq q \Rightarrow \mathrm{MELP}(F) \leq q^2$

Caution! Doesn't work when the key is fixed !

Feistel and MISTY with Fixed Key: Limits of MEDP

Example

- 3-round MISTY network.
- $S_1 = S_2 = S_3 = [A, 7, 9, 6, 0, 1, 5, B, 3, E, 8, 2, C, D, 4, F].$
- $\delta(S_i) = 4$, MEDP(S_i) = 2^{-2} .
- $MEDP(F) \le 2^{-4}.$
- For every key, there exists a differential with probability 2^{-3} .
- A bound on MEDP means:
 - 1 Choose an input and an output difference.
 - For any chosen key, differential probability is low.
- No bound when the key is chosen before the differences!
- When building S-Boxes, there is no key, i.e. K = 0.

Feistel: Prior Results

Theorem (Li et Wang, CHES 2014)

Let F be a 3-round Feistel network with internal functions S_1 , S_2 et S_3 , then

$$\flat \ \delta(\mathbf{F}) \ge 2\delta(\mathbf{S}_2)$$

•
$$\delta(\mathbf{F}) \ge 2^{n+1}$$
 if \mathbf{S}_2 is not a permutation

▶ Pour n = 4,
$$\delta(F) \ge 8$$
, and if $\delta(F) = 8$, then $\mathcal{L}(F) \ge 64$

$$\delta(\mathbf{F}) = 8$$
 and $\mathcal{L}(\mathbf{F}) = 64$ is reachable

Feistel: New Results

Theorem

- $\flat \ \delta(\mathbf{F}) \ge \delta(\mathbf{S}_2) \max(\delta_{\min}(\mathbf{S}_1), \delta_{\min}(\mathbf{S}_3))$
- ► $\delta(\mathbf{F}) \ge 2^{n+1}$ if \mathbf{S}_2 is not a permutation
- $\delta(F) \ge \max_{i \ne 2, j \ne i, 2} (\delta(S_i) \delta_{\min}(S_j), \delta(S_i) \delta_{\min}(S_2^{-1}))$ if S₂ is a permutation with $\delta_{\min}(S) = \min_{a \ne 0} \max_b \delta_S(a \rightarrow b)$
- ▶ This bounds depend on all 3 S-Boxes

Pour n = 4

$$\triangleright \delta(\mathbf{F}) \geq 8$$
, tight

$$\succ \mathcal{L}(F) \ge 48, \, \mathcal{L}(F) \ge 64 \text{ if } \delta(F) < 32$$

MISTY: New Results

Theorem

- $\flat \ \delta(\mathbf{F}) \ge \delta(\mathbf{S}_1) \max(\delta_{\min}(\mathbf{S}_2), \delta_{\min}(\mathbf{S}_3))$
- ► $\delta(\mathbf{F}) \ge 2^{n+1}$ if \mathbf{S}_1 is not a permutation
- ► $\delta(\mathbf{F}) \ge \max_{i \ne 1, j \ne i, 1} (\delta(\mathbf{S}_i) \delta_{\min}(\mathbf{S}_j), \delta(\mathbf{S}_i) \delta_{\min}(\mathbf{S}_1^{-1}))$ if \mathbf{S}_1 is a permutation with $\delta_{\min}(\mathbf{S}) = \min_{a \ne 0} \max_b \delta_{\mathbf{S}}(a \rightarrow b)$
- ▶ There was no prior result for MISTY with fixed key

Pour n = 4

$$\delta(\mathbf{F}) \geq 8$$
, tight

$$\succ \mathcal{L}(F) \ge 48, \, \mathcal{L}(F) \ge 64 \text{ if } \delta(F) < 32$$

Introduction Lightweight Crypto. State of the Art New Results Lightweight Construction Conclusion

000000

Sketch of Proof

Proposition

$$\delta_{\mathrm{F}}(0\,\|\,a\rightarrow b\,\|\,c)=\delta_{\mathrm{S}_1}(a\rightarrow c)\times\delta_{\mathrm{S}_3}(c\rightarrow b\oplus c)$$

Proof

$$\begin{split} F(x_L \| x_R) \oplus F(x_L \| (x_R \oplus a)) &= b \| c \\ \Leftrightarrow \begin{cases} S_3(S_1(x_R) \oplus x_L) \oplus S_3(S_1(x_R \oplus a) \oplus x_L) = b \oplus c, \\ S_2(x_L) \oplus S_1(x_R) \oplus x_L \oplus S_2(x_L) \oplus S_1(x_R \oplus a) \oplus x_L = c \\ \Leftrightarrow \begin{cases} S_3(S_1(x_R) \oplus x_L) \oplus S_3(S_1(x_R \oplus a) \oplus x_L) = b \oplus c, \\ S_1(x_R) \oplus S_1(x_R \oplus a) = c \\ \Leftrightarrow \begin{cases} x_R \in D_{S_1}(a \to c) \\ x_L \in S_1(x_R) \oplus D_{S_3}(c \to b \oplus c) \end{cases} \end{split}$$

Introduction Lightweight Crypto. State of the Art New Results 0000000000 0000 0000 0000

Sketch of Proof

Proposition

$$\delta_{F}(0 \parallel a \rightarrow b \parallel c) = \delta_{S_{1}}(a \rightarrow c) \times \delta_{S_{3}}(c \rightarrow b \oplus c)$$

Application: if S_1 is not bijective

Fix
$$b = c = 0$$
, $\delta_{S_3}(0 \to 0) = 2^n$

- Choose a such that $\delta_{S_1}(a \to 0) \ge 2$
- $\blacktriangleright \ \delta(F) \ge \delta_F(0 \parallel a \to 0 \parallel 0) \ge 2^{n+1}$

Introduction Lightweight Crypto. State of the Art 0000000000 0000

New Results Lightweight Construction Conclusion 000000 0000

Sketch of Proof

Proposition

$$\delta_F(0 \, \| \, a \to b \, \| \, c) = \delta_{S_1}(a \to c) \times \delta_{S_3}(c \to b \oplus c)$$

Application: if S_1 is bijective

- Choose a, c such that $\delta_{S_1}(a, c) = \delta(S_1)$
- ► Choose b with $\delta_{S_3}(c, b \oplus c) \ge \delta_{\min}(S_3)$
- $\blacktriangleright \ \delta(\mathbf{F}) \geq \delta_{\mathbf{F}}(0 \parallel \mathbf{a}, \mathbf{b} \parallel \mathbf{c}) \geq \delta(\mathbf{S}_1) \times \delta_{\min}(\mathbf{S}_3)$
- Choose b, c such that $\delta_{S_3}(c, b \oplus c) = \delta(S_3)$
- Choose a with $\delta_{S_1}(a, c) \ge \delta_{\min}(S_1^{-1})$
- $\blacktriangleright \ \delta(\mathbf{F}) \geq \delta_{\mathbf{F}}(\mathbf{0} \parallel \mathbf{a}, \mathbf{b} \parallel \mathbf{c}) \geq \delta(\mathbf{S}_3) \times \delta_{\min}(\mathbf{S}_1^{-1})$

Introduction Lightweight Crypto. State of the Art New Results 0000000000 0000 0000 0000

New ResultsLightweight ConstructionConclusion000000000000000

Sketch of Proof

Application to n = 4: Properties of 4-bit Functions

Properties of 4-bit S-Boxes

- Full classification of 4-bit permutations
 - ► 302 affine equivalence classes

[De Cannière; Leander & Poschmann '07]

- Full classification of 4-bit APN functions
 - ► 2 extended affine equivalence classes [Brinkmann & Leander '08]
- There are 4-bit APN functions
 - $\delta(S_i) = 2, \ \delta_{\min}(S_i) = 2$
- There are no 4-bit APN permutations
 - If S_i is a permutation, $\delta(S_i) \ge 4$, $\delta_{\min}(S_i) \ge 2$

Refined bounds for n = 4 (MISTY and Feistel)

- If S_i are all non-bijective, then $\delta(F) \geq 32$
- If S_i bijective, $\delta(F) \geq \delta_{\min}(S_i) \times \delta(S_i) \geq 8$

Sébastien Duval

Lightweight Construction of S-Boxes

MISTY: Necessary Conditions for $\delta = 8$, $\mathcal{L} = 64$

Necessary Conditions for $\delta(\mathbf{F}) = 8$

- S₁ permutation with $\delta(S_1) = 4$
- \triangleright S₂, S₃ APN

Proof.

- ► Suppose $\delta(S_3) \ge 4$
 - $\delta(S_3) \ge 4$, therefore there exist c_1 , b_1 with $\delta_{S_3}(c_1 \rightarrow b_1) \ge 4$
 - ▶ There are two pairs (x, $x \oplus c_1$), (y, $y \oplus c_1$) in $D_{S_3}(c_1 \to b_1)$
 - ▶ With $c_2 = x \oplus y$, $b_2 = S_3(x) \oplus S_3(y)$, there are two pairs (x, y), $(x \oplus c_1, y \oplus c_1)$ with $D_{S_3}(c_2 \to b_2)$
 - Similarly, there are two pairs (x, $y \oplus c_1$), $(x \oplus c_1, y)$ with $D_{S_3}(c_1 \oplus c_2 \rightarrow b_1 \oplus b_2)$
 - At least 3 lines c_i with S_3 with a value ≥ 4

MISTY: Necessary Conditions for $\delta = 8$, $\mathcal{L} = 64$

Necessary Conditions for $\delta(\mathbf{F}) = 8$

- S_1 permutation with $\delta(S_1) = 4$
- \triangleright S₂, S₃ APN

Proof.

- Suppose $\delta(S_3) \ge 4$
 - At least 3 lines c_i with S_3 with a value ≥ 4
 - $\bullet \ \delta_{\mathrm{F}}(0||a \to b||c) = \delta_{\mathrm{S}_{1}}(a \to c) \times \delta_{\mathrm{S}_{3}}(c \to b \oplus c)$
 - To get $c \leftarrow c_i$, we also need: c_i column of differences of S_1 with value = 4
 - ▶ If such a c_i does not exist $\Rightarrow L = \{c_1, c_2, c_3 = c_1 \oplus c_2\} \subseteq C$, C = columns of S₁ without value = 4
 - ► C for the representatives of affine equivalence classes does not contain any subset stable under XOR

Introduction Lightweight Crypto. State of the Art $_{\rm OOOOOOOOOO}$ $_{\rm OOO}$

New Results Lightweight Construction

• F permutation: $\delta(F) \ge 16$,

reached bound

Constructing Strong 8-bit S-Boxes with Feistel and MISTY

FeistelMISTY> $\delta(F) \ge 8$, reached bound> $\delta(F) \ge 8$, reached bound> S_1, S_3 must be APN,
 S_2 a permutation with
 $\delta(S_2) = 4$ > $\delta(F) \ge 8$, reached bound> $\mathcal{L}(F) \ge 48$ > $\mathcal{L}(F) \ge 64$ if $\delta(F) < 32$ > $\mathcal{L}(F) \ge 64$ if $\delta(F) < 32$ > $\mathcal{L}(F) \ge 48$

Getting the Components

- ▶ From these results, Feistel is more adapted
- ▶ We need S_1 , S_3 APN, S_2 permutation with $\delta(S_2) = 4$
 - ► Can we choose S_i with low implementation cost?
- Exhaustive search over small implementations until good properties are reached (Üllrich & al. 2011)
 - ▶ Search sequences of instructions for a bit-sliced implementation
 - ▶ We use equivalence classes to cut branches
 - ▶ Minimise the number of non-linear operations

Exhaustive Search Results

Permutation with $\delta = 4$

► Easy search

Reuse results from Üllrich & al.

- ▶ 9 instructions
 - ▶ 4 non-linear
 - ▶ 4 XOR
 - 1 copy

• 4 non-linear gates is optimal

APN Function

- ► Costly search
 - No filtering permutations
 - ▶ 6k core-hours
 - 10 instructions
 - But 6 non-linear
- ▶ 11 instructions
 - ▶ 4 non-linear
 - ▶ 5 XOR
 - ► 2 copies
- 4 non-linear gates is optimal

Concrete Example

Permutation with $\delta = 4$ (S₂)

APN Function (S_1, S_3)

A Feistel network using these functions is an 8-bit permutation with $\delta = 8$ and $\mathcal{L} = 64$.

Sébastien Duval

Lightweight Construction of S-Boxes

Results: Better than Before

		Impl	em.	Pı	Properties		
S-Box	Construction	\land , \lor	\oplus	\mathcal{L}	δ	Cost	
AES	Inversion	32	83	32	4	1	
Whirlpool	Lai-Massey	36	58	56	8	1.35	
CRYPTON	3-r. Feistel	49	12	64	8	1.83	
Robin	3-r. Feistel	12	24	64	16	0.56	
Fantomas	3-r. MISTY $(3/5 \text{ bits})$	11	25	64	16	0.51	
LS (unnamed)	Whirlpool-like	16	41	64	10	0.64	
New	3-r. Feistel	12	26	64	8	0.45	

Conclusion

- 1 Bounds on the security of Feistel and MISTY networks with fixed key
- 2 Applied to 8-bit S-Boxes
 - Necessary conditions
 - Detailed bounds for permutations
 - ▶ Feistel is better for invertible 8-bit S-Boxes
- 3 Concrete construction of strong light S-Boxes
 - ▶ 8-bit S-Box from 3-round Feistel
 - Better than previously used S-Boxes

Questions ?