

Early Application Identification

Laurent Bernaille

Renata Teixeira Kave Salamatian

Université Pierre et Marie Curie - LIP6/CNRS

Which applications run on my network?

- Capacity planning
 - Profiling of network usage
- Security
 - Am I being attacked?
- Institutional policy
 - No illegal music sharing
 - No Skype traffic

Need to detect the application associated with network traffic as fast as possible

- A new classifier
 - Inspects all packets entering and exiting the network
 - Only uses information in the TCP/IP header
 - Identifies the application using the first few application packets in TCP connections

Application identification today

- Port-based identification
 - Use IANA well-known port numbers
 - Often inaccurate
 - Non-standard ports
 - Masquerade traffic
- Content-based identification
 - Inspect packet payload for well-known signatures
 - Very accurate, but...
 - Does not work for encrypted traffic
 - Privacy issues
 - Computationally intensive

Behavior-based application identification

- Newer proposals based on connection-level statistics
 - Mean or variance of packet inter-arrival time
 - Mean or variance of packet size
 - Number of packets in the connection
 - Duration of a connection
- Accuracy: ~90%
- Need to wait for connection to end

Can we apply similar techniques just to the first packets of a connection?

Why: Initial packets contain the application negotiation

7

How to model applications with first packets?

- Model behaviors, instead of applications
 - An application can have multiple modes of operation
 - A behavior is a sequence of the sizes of the first application packets
 - Several applications may share a behavior
- Represent behavior of TCP connections
 - Euclidean space: each dimension is the size of a packet
 - Hidden Markov Model: each state represents a packet
- Find groups of connections that have similar behavior
 - Using well-known clustering algorithms

Training traces

- Requirements
 - Sample connections of all target applications
 - Representative number of samples
 - Equivalent number of samples across applications
- Two methods to obtain sample of connections
 - Extract connections from packet traces
 - Manual generation of traces for each application
- Our training traces
 - 500 connections per application from packet traces
 - NNTP, POP3, SMTP, SSH, HTTPS, POP3S, HTTP, FTP, Edonkey, Kazaa

Representation	Distance	Clustering	Cluster Model	
Euclidean	Fuelideen	K-Means	Center	
	Euclidean	GMM	Gaussian	
НММ	Baulm-Welch	Spectral	HMM	
		Clustering		

Calibration

- Select number of packets and clusters
 - Compute clustering spanning a vast parameter space
 - Number of packets: [1, 10]
 - Number of clusters: [5, 100]
- Metric of clustering quality
 - Normalized Mutual Information (NMI)
 - NMI = 1: ideal clustering

What is the best number of packets?

How do we assign a new connection to a cluster?

- Maximum likelihood
 - Compute probability that connection belongs to each cluster
 - Select cluster with maximum probability
- With threshold
 - Detection of unknown traffic

ĽP

How do we label a connection?

- Dominant
 - Label connection with the most common application
 - Problem
 - A cluster contains 80% HTTP and 20% SMTP
 - SMTP connections are misclassified
 - Approximately, 40% clusters with multiple applications
- Cluster+Port
 - Port numbers are meaningful for standard applications
 - Connections assigned to cluster with port 25 are labeled SMTP

Evaluation: Test traces

- Packet traces with TCP payload
 - TCP payload necessary to establish ground truth
 - Paris 6 and enterprise network
 - 50 000 connections
- Manually-generated
 - Applications not in training set to evaluate the detection of new traffic
 - Bittorent, IMAP, Gnutella, IRC, LDAP, MSN, MySQL
 - Between 100 and 10 000 connections

Evaluation: Assignment accuracy

 $\frac{Conn.\ assigned\ to\ clusters\ containing\ their\ app}{Total\ number\ of\ connections}$

Trace	Accuracy		
P6-1	99.6%		
P6-2	99.6%		
P6-3	99.6%		
Enterprise	99.3%		

Evaluation: Labeling accuracy

 $\frac{Connections\ accurately\ labeled}{Total\ number\ of\ connections}$

Heuristic	Trace	Accuracy
Dominant	P6-1	93.5%
Dominant	Enterprise	95.6%
Cluster+Port	P6-1	98.5%
Cluster+Port	Enterprise	99.1%

What about applications not in the training set?

New applications should be labeled "unknown"

Application	Misclassified	Masquerade	Unknown	
Bittorent	32.9%	0.3%	66.8%	
IMAP	8.6%	57.8%	33.6%	
Gnutella	100%	0%	0%	
IRC	10%	0%	90%	
LDAP	8.8%	0%	91.2%	
MSN	38.5%	0%	61.5%	
MySQL	0%	0%	100%	

- Exploration of design space for early classification
 - · First packet sizes capture application behavior
- New classifier for TCP connections
 - Clustering on size of first four application packets
 - Use of port numbers when relevant
- Ongoing work
 - Refine the detection of unknown traffic
 - Classification of traffic encrypted with SSL
 - Online implementation

More information on our web page

http://rp.lip6.fr/~bernaill/earlyclassif.html

$$MI(X,Y) = \sum_{i,j} p_{i,j} \log(\frac{p_{i,j}}{p_i p_j}) \qquad H(X) = -\sum_i p_i \log(p_i)$$

 $p_{i,j}$: proba that a connection in cluster j belongs to application i p_i : proba of application i p_j : proba of cluster j

MI(X,Y): shared information between X and Y

NMI: normalized with entropy: $NMI(X,Y) = \frac{MI(X,Y)}{\sqrt{H(X)H(Y)}}$

0<NMI<1, NMI=1 <=> one to one mapping between X and Y

Number of clusters

Overall Accuracy

Detection on unknown traffic

		TP	FN	Masq	Unknown	FP
	NNTP	98.90%	0.50%	0.20%	0.40%	0.00%
	POP3	52.30%	0.00%	0.40%	47.30%	0.00%
	SMTP	60.80%	0.30%	0.90%	38.00%	0.00%
	SSH	85.40%	0.00%	4.20%	10.40%	0.00%
	HTTPS	78.40%	0.00%	1.10%	20.50%	0.00%
Known	POP3S	100.00%	0.00%	0.00%	0.00%	0.00%
	HTTP	65.20%	1.00%	0.00%	33.80%	0.00%
	FTP	97.80%	1.00%	0.10%	1.10%	0.60%
	Edonkey	87.50%	0.90%	1.80%	9.80%	0.00%
	Kazaa	45.20%	0.00%	3.20%	51.60%	0.70%
	Overall	67.00%	1.00%	0.20%	31.80%	Х
New {	Bittorrent	Х	32.90%	0.30%	66.80%	Х
	IMAP	Х	8.60%	57.80%	33.60%	Х
	Gnutella	Х	100.00%	0.00%	0.00%	Х
	IRC	Х	10.00%	0.00%	90%	Х
	LDAP	Х	8.80%	0.00%	91.20%	Х
	MSN	Х	38.50%	0.00%	61.50%	Х
	Mysql	Х	0.00%	0.00%	100.00%	Х