Early Recognition of Encrypted Applications

Laurent Bernaille

with Renata Teixeira

Laboratoire LIP6 – CNRS Université Pierre et Marie Curie – Paris 6

Can we find the application inside an SSL connection?

Network administrator: profiling, QoS, policies Alice and Bob: privacy issue

Possible identification methods for unencrypted traffic

- Port-based classification
 - Map standard IANA ports to applications (Ex: 443/HTTPS)
 - Unfortunately, this method is inaccurate
- Content-based approaches
 - Search for signatures that identify the application
 - Unfortunately, not possible with encrypted traffic
- Behavior-based methods
 - Model applications with connection statistics
 - Promising for encrypted traffic (not using port or content)

Early Application Identification

 Identify applications using the sizes of the first application packets in a TCP connection

Can this work with encrypted connections?

Can we find the sizes of the first application packets in SSL?

- SSL mechanisms
 - SSL connections begin with a handshake
 - After handshake
 - SSL payload = encrypted application packet
- Challenges for Early Application Identification
 - Can we identify application packets?
 - Can we infer the unencrypted sizes of these packets?

SSLv2 handshake

- SSLv2 negotiation
 - 4 or 6 packets
 - Identification through inspection of SSL headers

CENTRE NATIONAL DE LA RECHERCHE

UNIVERSITE DIERBE & MARIE CURIE

SSLv3 handshake

SSLv3 Negotiation

- Variable number of packets (implementation)
- Identification through inspection of SSL headers

Influence of ciphers on packet size

Applicability of Early Application Identification to SSL traffic

- We can identify the first application packet
 - Trough the analysis of SSL headers
 - Need to start inspection at the third packet
- We can infer unencrypted sizes
- Proposed method
 - 1. Identify SSL using the sizes of first 3 packets
 - 2. For SSL traffic, find the packet with application data
 - 3. Identify the application in SSL using the inferred sizes of the first application packets

Classification mechanism

Detecting SSL connections

Detecting SSL connections: Evaluation methodology

- Data sets: packet traces
 - UMass campus, Paris 6 network
- Ground truth
 - Non-SSL traffic: content-based classification
 - SSL traffic: identification based on analysis of SSL headers
- Parameters for Early Application Identification
 - Using the payload size of the first 3 packets
 - Training set: 5500 connections from 11 applications

Accuracy of SSL detection

Test set

– 50k connections from Paris 6 network

– more than 2000 connections for each application

Results

- SSL traffic: > 85% labeled SSL
- Other applications: accuracy >95%

Identification of encryptedSizes of first 3 packetsApplications

Method to find ground truth for encrypted traffic

- From packet traces collected at Paris 6
 - Filtered traffic to well-known HTTPS and POP3S servers (IP addresses and ports)
- Manual encryption of traffic
 - Replay connections over an SSL tunnel
 - Applications: bittorent, edonkey, FTP

Accuracy of identification of applications in SSL connections

Paris 6 traces

	Accuracy
HTTP	99.9%
POP3	98.5%

Manually Encrypted Traffic

	Accuracy
FTP	92.5%
Bittorent	86.5%
Edonkey	96.5%

Conclusion and Perspectives

- We can identify the application encrypted with SSL
 - Using only the sizes of the first packets
 - With a high accuracy
- Future work: IPsec and SSH
 - Challenge: Finding the start of TCP connections
- Implementation
 - Available at http://rp.lip6.fr/~bernaill/earlyclassif.html

Description of SSL Traffic

Trace	Connections	SSL	SSLv2	SSLv3.0	TLS
P6 2004	500k	4.6%	0.6%	81%	18.4%
P6 2006	1000k	8.6%	0.2%	53.2%	46.6%
UMass	1700k	1.2%	0.0%	48%	52%

Trace	SSL port not SSL	SSL on non-SSL port
P6 2004	1.9%	1.1%
P6 2006	1.1%	4.2%
UMass	5.0%	1.5%

Ciphers

Cipher	Proportion (2004)	Proportion (2006)
RC4_xx_MD5	81.7%	68.1%
AES	6.9%	24.0%
RC4_128_SHA	9.7%	7.0%
Other	<2%	<1%

