
ML pattern-matching, recursion, and rewriting:
from FoCaLiZe to Dedukti

Raphaël Cauderlier1 and Catherine Dubois2

1 Inria - Saclay and Cnam - Cedric
2 ENSIIE - Samovar

Abstract. The programming environment FoCaLiZe allows the user to
specify, implement, and prove programs. It produces as output OCaml
executable programs along with proof hints that help the first-order the-
orem prover Zenon to find proofs. In the actual version, those proofs
found by Zenon are verified by Coq. In this paper we propose to extend
the FoCaLiZe compiler by a backend to the Dedukti language – a proof
checker for Deduction modulo – in order to benefit from Zenon Modulo,
an extension of Zenon for Deduction modulo. It produces proof terms for
Dedukti. By doing so, FoCaLiZe can benefit from a technique for find-
ing and verifying proofs more quickly and also for finding more concise
proofs. The paper focusses mainly on the process that overcomes the lack
of local pattern-matching and recursive definitions in Dedukti.

1 Introduction

FoCaLiZe [20] is an environment for certified programming. It allows the user
to specify, implement, and prove. For implementation, FoCaLiZe provides an
ML like functional language. FoCaLiZe proofs are delegated to the first-order
theorem prover Zenon [4] which takes Coq problems as input and outputs proofs
in Coq format for independent checking. Zenon has recently been improved to
handle Deduction modulo [11], an efficient proof-search technique [6]. However,
the Deduction modulo version of Zenon, Zenon Modulo, outputs proofs for the
Dedukti proof checker [22] instead of Coq [8].

In order to benefit from the advantages of Deduction modulo in FoCaLiZe,
we extend the FoCaLiZe compiler by a backend to Dedukti called Focalide3 (see
Figure 1). This work is also a first step in the direction of interoperability between
FoCaLiZe and other proof languages for which translation tools to Dedukti exist
such as the proof assistants of the HOL family [2].

This new compilation backend to Dedukti is based on the existing backend
to Coq. While the compilation of types and logical formulae is a straightforward
adaptation, the translation of FoCaLiZe terms to Dedukti is not trivial because
Dedukti lacks two mechanisms found in functional languages and in Coq: local
pattern-matching and recursive definitions.

3 This work is available at http://deducteam.gforge.inria.fr/focalide

lexing parsing typing OO Focalide

Coq output

OCaml output

FoCaLiZe compiler

Compiler first passes
Zenon

Zenon Modulo

Coq

Dedukti

OCaml

Fig. 1. FoCaLiZe Compilation Scheme

In the following, Section 2 contains a short presentation of Dedukti, Zenon
Modulo, and FoCaLiZe. Then Section 3 presents the main features of the com-
pilation to Dedukti. Section 4 focuses on compilation of pattern-matching and
Section 5 on the compilation of recursive functions. In Section 6, the backend
to Dedukti is evaluated on benchmarks. Section 7 discusses related work and
Section 8 concludes the paper by pointing some future work.

2 Presentation of the tools

2.1 Dedukti

Dedukti [22] is a type checker for the λΠ-calculus modulo, an extension of
a pure dependent type system, the λΠ-calculus, with rewriting. Through the
Curry-Howard correspondence, Dedukti can be used as a proof-checker for a
wide variety of logics [9, 2, 1]. It is commonly used to check proofs coming from
Deduction modulo provers Iprover Modulo [5] and Zenon Modulo [8].

As a simple example, Figure 2 presents a possible definition of integers in
Dedukti.

nat : Type.

O : nat.

S : nat -> nat.

int : Type

def make : nat -> nat -> int.

[m,n] make (S m) (S n) --> make m n.

Fig. 2. Definition of integers in Dedukti

A Dedukti file consists of an interleaving of declarations (such as O : nat)
and rewrite rules (such as [m,n] make (S m) (S n) --> make m n.).

In Figure 2, the type int is defined from the type nat of Peano natural
numbers. An integer is built from two natural numbers by taking their difference.
The rewrite rule make (S m) (S n) --> make m n is used to normalize any

closed term of type int to one of the following forms: make 0 0, make (S m) 0,
or make 0 (S n).

Declarations and rewrite rules are type checked modulo the previously defined
rewrite rules. This mechanism can be used to perform proof by reflection, an
example is given by the theorem two plus two is four of Figure 3.

def plus : nat -> nat -> nat.

[n] plus O n --> n

[n] plus n O --> n

[m,n] plus (S m) n --> S (plus m n)

[m,n] plus m (S n) --> S (plus m n).

equal : nat -> nat -> Type.

refl : n : nat -> equal n n.

def two_plus_two_is_four :

equal (plus (S (S O)) (S (S O))) (S (S (S (S O)))).

[] two_plus_two_is_four --> refl (S (S (S (S O)))).

Fig. 3. A proof by reflection of 2 + 2 = 4 in Dedukti

For correctness, Dedukti requires this rewrite system to be confluent; more-
over, Dedukti does not guarantee to terminate when the rewrite system is not
terminating.

2.2 Zenon Modulo

Zenon [4] is a first-order theorem prover based on the tableaux method. It is able
to produce proof terms which can be checked independently by the Coq proof
assistant.

Zenon Modulo [10] is an extension of Zenon for Deduction modulo, an exten-
sion of Predicate Logic distinguishing computation from reasoning. Computation
is defined by a rewrite system such as the symmetric definition of addition given
in Figure 3, it is part of the theory. Reasoning is defined by a usual deduction
system for Predicate Logic (Sequent Calculus in the case of Zenon Modulo) for
which syntactic comparison is replaced by the congruence induced by the rewrite
system. Computation steps are left implicit in the resulting proof which has to
be checked in Dedukti.

Zenon (resp. Zenon Modulo) accepts input problems in Coq (resp. Dedukti)
format so that it can be seen as a term synthesizer: its input is a typing context
and a type to inhabit, its output is an inhabitant of this type. This is the mode
of operation used when interacting with FoCaLiZe because it limits ambiguities
and changes in naming schemes induced by translation tools between languages.

2.3 FoCaLiZe and its compilation process

This subsection presents briefly FoCaLiZe and its compilation process (for details
please see [20] and FoCaLiZe reference manual). We address more precisely the
focalizec compiler which produces OCaml and Coq code.

The FoCaLiZe (http://focalize.inria.fr) environment provides a set of
tools to formally specify and implement functions and logical statements together
with their proofs. The FoCaLiZe language has an object oriented flavor allowing
(multiple) inheritance, late binding and redefinition. These characteristics are
very helpful to reuse specifications, implementations and proofs.

A FoCaLiZe specification can be seen as a set of algebraic properties de-
scribing relations between input and output of the functions implemented in a
FoCaLiZe program. For implementing, FoCaLiZe offers a pure functional pro-
gramming language close to ML, featuring a polymorphic type system, recursive
functions, data types and pattern-matching. Proofs are written in a declarative
style and can be considered as a bunch of hints that the automatic prover Zenon
uses to produce proofs that can be verified by Coq for more confidence [4].

Program units in FoCaLiZe define types together with functions and prop-
erties applying to them. At the beginning of a development, types are usually
abstract, they are precised later in the development. More precisely a unit may
specify a function or a property or implement them by respectively providing a
definition or a proof. A defined function must match its signature and similarly
a proof should prove its statement. Statements belong to first-order typed logic.

A FoCaLiZe source program is analyzed and translated into OCaml sources
for execution and Coq sources for certification. The compilation process between
both target languages is shared as much as possible. The architecture of the
FoCaLiZe compiler is shown in Figure 1. The FoCaLiZe compiler integrates a
type checker in order to early detect type errors and emit comprehensive error
messages. Inheritance and late binding are resolved at compile-time (OO on
Figure 1), relying on a dependency calculus described in [20]. To deal with late
binding, code generation relies on λ-lifting. The process for compiling proofs
towards Coq is achieved in 2 steps: a first one compiles the statement with holes
instead of the proof script. The goal together with the context is also transmitted
to Zenon. Then when the proof has been found, the hole is filled with the proof
output by Zenon.

3 From FoCaLiZe to Focalide

As said previously, Focalide is adapted from the Coq backend. In particular
it benefits from the early compilation steps. In this section, we describe the
input language we have to consider and the main principles of the translation to
Dedukti.

3.1 Input language

Focalide input language is simpler than FoCaLiZe, in particular because the
initial compilation steps get rid of object oriented features (see Figure 1). So

for generating code to Dedukti, we can consider that a program is a list of
type definitions, well-typed function definitions and proved theorems. Figure 4
describes the syntax of the language taken as input by Focalide. A type definition
defines a type à la ML, in particular it can be the definition of an algebraic
datatype in which value constructors are listed together with their type. In
these definitions, c denotes a constant, C a value constructor (from an algebraic
datatype), ident a possibly qualified name, x a variable. When applied, a function
must receive all its parameters. So partial application must be named. FoCaLiZe
supports the usual patterns found in functional languages such as OCaml or
Haskell: a pattern can either be a variable, a wildcard, a literal constant of some
built-in-type (such as a literal integer or a literal character), a named pattern,
or a constructor applied to as many sub-patterns than the constructor arity.
Moreover, patterns have to be linear. An atomic formula is a boolean expression,
that is the reason why the logical expressions grammar embed expressions.

Pre-defined types: i ::= unit bool int string

Types: τ ::= α i a(τ1, . . . , τk) τ → τ

Type definitions: type a (α1, . . . , αk) =
| C1(τ1,1, . . . , τ1,k1) | . . . | Cn(τn,1, . . . , τn,kn)

Constants: c ::= () true false number literal string literal

Expressions: e ::= c ident let [rec] x := e in e λ(x1, . . . , xn). e
e(e1, . . . , en) C(e1, . . . , en) if e then e else e e = e
match e with | p⇒ e . . . | p⇒ e

Patterns: p ::= x c p as x C(p, . . . , p)

Logical formulas: ϕ ::= e ¬ϕ ϕ ∧ ϕ ϕ ∨ ϕ ϕ⇒ ϕ ∀x : τ.ϕ ∃x : τ.ϕ

Fig. 4. Focalide input syntax

3.2 Translation

Basic types such as int are mapped to their counterpart in the target proof
checker. However there is no standard library in Dedukti, so we defined the
Dedukti counterpart for the different FoCaLiZe basic types. It means defining the
type and its basic operations together with the proofs of some basic properties.

The compilation of types is straightforward. It is also quite immediate for
most of the expressions, except for pattern-matching expressions and recursive
functions because Dedukti, contrary to Coq, lacks these two mechanisms. Thus
we have to use other Dedukti constructions to embed their semantics. The com-
pilation of pattern-matching expressions and recursive functions is detailed in
next sections. Other constructs of the language such as abstractions and appli-
cations are directly mapped to the same construct in Dedukti.

The statement of a theorem is compiled in the input format required by
Zenon Modulo, which is here Dedukti itself [8].

4 Compilation of pattern-matching

Pattern-matching is a useful feature in FoCaLiZe which is also present in De-
dukti. However pattern-matching in Dedukti is only available at toplevel (rewrite
rules cannot be introduced locally) and both semantics are different. FoCaLiZe
semantics of pattern-matching is the one of functional languages: only values are
matched and the first branch that applies is used. In Dedukti however, reduc-
tion can be triggered on open terms and the order in which the rules are applied
should not matter since the rewrite system is supposed to be confluent.

To solve these issues, we define new symbols called destructors, using toplevel
rewrite rules and apply them locally.

4.1 Semantics of pattern-matching in FoCaLiZe

The semantics of pattern-matching in FoCaLiZe is not surprising: to evaluate
the expression match a with | p1 ⇒ e1 . . . | pn ⇒ en, the matched expression
a is first reduced to a value v and then the expression reduces to ei where i is
the smallest index such that v matches pi. Formally, it can be defined by the
reduction rules of Figure 5.

– match awith | p1 ⇒ e1 . . . | pn ⇒ en ; match bwith | p1 ⇒ e1 . . . | pn ⇒ en
when a; b

– match v with ∅ ; ERROR
– match v with | p1 ⇒ e1 . . . | pn ⇒ en ; match v with | p2 ⇒ e2 . . . | pn ⇒ en

when p1 and v are not unifiable
– match v with | p1 ⇒ e1 . . . | pn ⇒ en ; σ(e1) where σ = mgu(v, p1) is the

most general unifier of v and p1.

Fig. 5. Call-by-value operational semantics of pattern-matching in FoCaLiZe

We denote by ≡ the congruence generated by ; and we say that two expres-
sions a and b are semantically equivalent when a ≡ b.

4.2 Translating pattern-matching to destructors

If C is a constructor of arity n for some datatype, the destructor associated with
C is the expression λa, b, c.match awith | C(x1, . . . , xn)⇒ b x1 . . . xn | ⇒ c.
We say that a pattern-matching has the shape of a destructor if it is a fully
applied destructor.

In this subsection, we show how to translate FoCaLiZe expressions to its
fragment where each pattern-matching has the shape of a destructor. This shape
is easy to translate to Dedukti because we only need to define the destructor
associated with each constructor.

The transformation to this fragment is done in two steps: we first serialize
pattern-matching so that each pattern-matching has exactly two branches and
the second pattern is a wildcard, and we then flatten patterns so that the only
remaining patterns are constructors applied to variables.

S(x) := x
S(f(a1, . . . , an)) := f(S(a1), . . . ,S(an))
. . .
S(match a with | p1 ⇒ e1 . . . | pn ⇒ en) := let x := a in

match x with
| p1 ⇒ S(e1)
| ⇒ match x with

| p2 ⇒ S(e2)
| ⇒ . . .match x with

| pn ⇒ S(en)
| ⇒ ERROR where x is a fresh variable

Fig. 6. Definition of the function S for serialization of pattern-matching

Serialization of pattern-matching The serialization is the program transfor-
mation process by which pattern-matching with an arbitrary number of branches
n becomes a sequence of pattern-matching with only two branches (and all sec-
ond patterns are wildcards). Moreover, in order to avoid useless duplication of
the matched term, we further restrict the allowed pattern-matchings to the case
where the matched term is a variable. We define this program transformation
formally by a function S which is defined in Figure 6.

This transformation is linear and preserves semantics.

Flattening of pattern-matching Now that pattern-matching has been seri-
alized, we still need to compile pattern nesting; it means we want to restrict the
shape of patterns to just constructors applied to variables. We introduce another
program transformation F defined in Figure 7.

To prove the termination of F , we define the notion of first-pattern size
for an expression e as follows: if e is a pattern-matching then its first-pattern
size is the size of its first pattern, and it is 0 otherwise. The lexical ordering
e1 ≤ e2 ⇔ (size1stpat(e1), size(e1)) ≤lex (size1stpat(e2), size(e2)) is well-founded and
strictly decreasing at each recursive call of F so F terminates.

Flattening F preserves the semantics of pattern-matching:

Theorem 1. For any expression e and any substitution θ from variables to val-
ues, the expressions θ(F(e)) and θ(e) are semantically equivalent.

F(x) := x
F(f(a1, . . . , an)) := f(F(a1), . . . ,F(an))
. . .
F(match x with | y ⇒ e | ⇒ d) := let y := x in F(e)
F(match x with | ⇒ e | ⇒ d) := F(e)
F(match x with | c⇒ e | ⇒ d) := if x = c then F(e) else F(d)
F(match x with | p as y ⇒ e | ⇒ d) :=

F(match x with | p⇒ let y := x in e | ⇒ d)
F(match x with | C(p1, p2, . . . , pn) ⇒ e | ⇒ d) :=

let f() := F(d) in
match x with
| C(x1, . . . , xn) ⇒

F(match x1 with
| p1 ⇒ F(match x2 with

| p2 ⇒ . . .F(match xn with
| pn ⇒ F(e)
| ⇒ f()) . . .

| ⇒ f())
| ⇒ f())

| ⇒ f()
where the variables xi and the function symbol f are fresh

Fig. 7. Definition of the function F for flattening of pattern-matching

Proof (sketch). The proof is done by induction on the structure of the function
F . The only non-trivial case is the case of nested patterns for which we have
to distinguish cases: θ(x) is either a C(v1, . . . , vn) or not, in the former case it
unifies or not with C(p1, . . . , pn). Pattern linearity is used to compute the unifier:
mgu(C(v1, . . . , vn), C(p1, . . . , pn)) = mgu(v1, p1) ◦ . . . ◦mgu(vn, pn).

All these results are very generic in the sense that we did not use any specific
features of FoCaLiZe or Dedukti but only defined a linear program transforma-
tion procedure which simplifies ML pattern-matchings.

4.3 Destructors in Dedukti

Destructors are easy to write in Dedukti but a fully formal presentation of
the implementation would be unnecessarily obscure. We will only consider the
simple case of Peano natural numbers which can be written in FoCaLiZe as
type nat = | O | S(nat). Two destructors are introduced, Destr O and Destr S.
Destr O R a b c represents the ML term match a with | 0 ⇒ b| ⇒ c and
Destr S R a b c represent the ML term match a with | S(n)⇒ b(n)| ⇒ c.
Each destructor is defined by two rewrite rules, following the definition given
in 4.2.

The produced Dedukti code for nat is:

nat : Type.

O : nat.

S : nat -> nat.

def Destr_O : R : Type -> nat -> R -> R -> R.

[R,b,c] Destr_O R O b c --> b

[R,n,b,c] Destr_O R (S n) b c --> c.

def Destr_S : R : Type -> nat -> (nat -> R) -> R -> R.

[R,b,c] Destr_S R O b c --> c

[R,n,b,c] Destr_S R (S n) b c --> b n.

5 Compilation of recursive functions

Recursion is a powerful but subtle feature in FoCaLiZe. When certifying re-
cursive functions, we reach the limits of Zenon and Zenon Modulo because the
rewrite rules corresponding to recursive definitions have to be used with parsi-
mony otherwise Zenon Modulo could diverge.

In FoCaLiZe backend to Coq, termination of recursive functions is achieved
thanks to the high-level Function mechanism [12]. This mechanism is not avail-
able in Dedukti and it does not allow proof by reflection as it disables reduction
of recursive functions.

Contrary to Coq, Dedukti does not require recursive functions to be proved
terminating a priori but we can use functions whose termination is hard to prove
(such as Goodstein sequence, whose termination is not provable in first-order
arithmetic) or still unknown (such as the hailstone sequence whose termination
is the Collatz conjecture).

As we did in a previous translation of a programming language in Dedukti [7],
we express the semantics of FoCaLiZe by a non-terminating Dedukti signature.

5.1 Examples

As a starter, we will consider a few examples of idiomatic FoCaLiZe recursive
functions in order to illustrate several possible styles allowed by FoCaLiZe. We
want to treat these different styles uniformly. Furthermore, this set of examples
highlight some important features that our translation of recursive functions will
have to implement.

Factorial For better efficiency of the generated OCaml code, FoCaLiZe provides
the type int for integers and not the type of natural numbers which would have
a better inductive structure.

For this reason, when defining recursive functions on numbers in FoCaL-
iZe, we have to take care of negative values. Below, in the case of the factorial
function, we choose to map any negative integer to the value 1.

let rec fact (n) = if n < 2 then 1 else n * fact (n - 1)

This example shows that it is not reasonable to limit recursion in FoCaLiZe
to the case of recursive calls on syntactical subterms (such as the Fixpoint

construct of Coq). Moreover, this illustrates a case where we can not inspect
the type definition of the decreasing argument of the recursive function since
the definition of the type int is not visible to Focalide (it is defined directly in
Dedukti using the definition of Figure 2).

Equality of lists Our second example is about structural induction on the
datatype of (polymorphic) lists. In a style typical of functional languages, we
can define equality for lists by pattern-matching as in Figure 8.

type list (’a) = | Nil | Cons (’a, list (’a));;

let rec equal (l1 , l2) =

match l1 with

| Nil -> (match l2 with

| Nil -> true

| Cons (_, _) -> false)

| Cons (h1 , t1) -> (match l2 with

| Nil -> false

| Cons (h2 , t2) -> (h1 = h2) && equal (t1 , t2));;

Fig. 8. Constructor-based equality of lists

In FoCaLiZe however, object-oriented mechanisms also invite us to a more
abstract and axiomatic view of lists which we illustrate in Figure 9.

Like in the case of the factorial function, the recursive calls are not done on
subterms but on results of other functions (tail here). The main advantage of
this version is that we do not commit to a fixed representation of lists; there
can be several implementations of lists sharing the same definition of equality.
However, this comes at a price: it is not possible to prove the termination of
equal without further assumptions because we can not prove that the tail of a
list is strictly smaller than the list itself.

5.2 Very naive translation

For the rest of this section, we consider a function f of type A → B defined in
FoCaLiZe by the recursive equation

let rec f (x) = g(f(h(x)), x)

In Dedukti, reduction under λ-abstraction is allowed so defining f by the
rewrite rule4

4 x : A => t is Dedukti syntax for the abstraction λx : A.t

species List (A is Setoid) =

inherit Setoid;

signature nil : Self;

signature cons : A -> Self -> Self;

signature is_nil : Self -> bool;

signature head : Self -> A;

signature tail : Self -> Self;

property surjective_pairing : all l : Self ,

~ (is_nil(l)) <-> l = (cons(head(l), tail(l)));

property head_proj : all a : A, all l : Self ,

head (cons (a, l)) = a;

property tail_proj : all a : A, all l : Self ,

tail (cons (a, l)) = l;

property is_nil_nil : is_nil(nil);

let rec equal (l1 , l2) = (is_nil (l1) && is_nil (l2)) ||

(~~ is_nil(l1) && ~~ is_nil(l2) &&

A!equal(head(l1), head(l2)) && equal(tail(l1), tail(l2)));

end;;

Fig. 9. Projection-based equality of lists

[] f --> x : A => g (f (h x)) x.

leads to a diverging rewrite system and no proof of statement involving f can be
checked in finite time. Hence we cannot define f by rewriting f itself; we need to
allow reduction of f only when applied to arguments. However, the rewrite rule

[x] f x --> g (f (h x)) x.

is not better because f (h x) is an instance of the pattern f x.

5.3 Call-by-value application combinator

What makes recursive definitions (sometimes) terminate in FoCaLiZe is the use
of the call-by-value semantics. The idea is that we have to reduce any argument
of f to a value before unfolding the recursive definition.

A solution is to define a combinator CBV of type A : Type -> B : Type ->

(A -> B) -> A -> B which acts as application on values but does not reduce on
most non-values. Its definition is extended when new datatypes are introduced.

Here is the definition of CBV when A is the type int:

[m,n,B,f] CBV int B f (make m n) --> f (make m n).

For algebraic datatypes, CBV can be defined by giving a rewrite rule for each
constructor. Here is the definition for the algebraic type nat:

[B,f] CBV nat B f O --> f O.

[B,f,n] CBV nat B f (S n) --> f (S n).

Thanks to this combinator, we can translate the definition of f by the fol-
lowing scheme:

[x] f x --> g (CBV A B f (h x)) x.

This rewrite system does not trivially diverge as before because the term f

in the right-hand side is unapplied so it does not match the pattern f x.
We get the following reduction behaviour: f alone does not reduce, f v (where

v is a value) is fully reduced, and f x (where x is a variable or a non-value term)
is unfolded once.

We do not need to insert a CBV combinator at each application node in the
translation (which would be linear but very verbose so it would impact Zenon
Modulo and Dedukti) but only at recursive calls, this can be done globally by
defining the fixpoint combinator Fix of type A : Type -> B : Type -> ((A

-> B) -> (A -> B)) -> A -> B defined by the following rewrite rule:

[A, B, F, x] Fix A B F x --> CBV A B (F (Fix A B F)) x.

The local recursive definition let rec f x := t in u (where f has type A→ B)
is translated by u′{f\Fix A′ B′ (f=>x=> t′)} where u′, A′, B′, and t′ are the
respective translations of u, A, B, and t.

Theorem 2 (Semantics preservation). For any well-typed FoCaLiZe term
t, if t evaluates to v with respect to FoCaLiZe semantics, then its translation to
Dedukti normalizes to the translation of v.

Proof (sketch). By induction on the evaluation on the FoCaLiZe side, reduction
of pattern-matching relies on Theorem 1, other cases are trivial.

5.4 Efficiency and limitations

The size of the code produced by Focalide is linear wrt. the input, the operational
semantics of FoCaLiZe is preserved and each reduction step in the input language
corresponds to a bounded number of rewriting steps in Dedukti, so the execution
time for the translated program is only increased by a linear factor.

Our treatment of recursive definitions generalizes directly to mutual recursion
but we have not implemented this generalization.

Moreover, the understanding of datatypes by Zenon Modulo is still incom-
plete; it is able to perform computation using the rewrite rules defining destruc-
tors but it is not yet able to reason about datatypes by induction or even case
distinction; nor is it able to prove injectivity and distinctness of constructors.
These properties still need to be proved directly in Dedukti until Focalide is able
to automatically generate them from the datatype definition.

5.5 Termination

The rewrite system defining Fix is not terminating and this is intended since
we want to be able to reason modulo evaluation of any program, including non-
terminating ones.

Moreover, the CBV combinator is only an approximation of the call-by-value
strategy which is intentionally incomplete for efficiency reasons. In the patho-
logical case where the function h reduces to a term starting with a constructor,
the rewrite rule

[x] f x --> g (CBV A B f (h x)) x.

is still diverging, even if the original code was terminating with respect to the
call-by-value semantics.

6 Experimental results

We have evaluated Focalide by running it on different available FoCaLiZe de-
velopments. When proofs required features which are not yet implemented in
Focalide, we commented the problematic lines and ran both backends on the
same input files; the coverage column of Figure 10 indicates the percentage of
remaining lines.

FoCaLiZe ships with three libraries: the standard library (stdlib) which de-
fines a hierarchy of species for setoids, cartesian products, disjoint unions, or-
derings and lattices, the external library (extlib) which defines mathematical
structures (algebraic structures and polynomials) and the user contributions
(contribs) which are a set of concrete applications. Unfortunately, none of these
library uses pattern-matching and recursion extensively so the fact that Focalide
gives comparable or better results than the old backend is reassuring but does
not tell much about the validity of our approach.

The other developments are more interesting in this respect; they consist of
a test suite for termination proofs of recursive functions (term-proof), a peda-
gogical example of FoCaLiZe features with several examples of functions defined
by pattern-matching (ejcp) and a specification of Java-like iterators together
with an implementation of iterators by lists using both recursion and pattern-
matching (iterators).

The results5, shown in Figure 10 and Figure 11, show that on FoCaLiZe
problems the user gets a good speed-up by using Zenon Modulo and Dedukti
instead of Zenon and Coq. Proof-checking is way faster because Dedukti is a
mere type-checker which features almost no inference whereas FoCaLiZe asks
Coq to infer type arguments of polymorphic functions; this also explain why
generated Dedukti files are bigger than the corresponding Coq files. Moreover,
each time Coq checks a file coming from FoCaLiZe, it has to load a significant
part of its standard library which often takes the majority of the checking time
(about a second per file). In the end, finding a proof and checking it is usually
faster when using Focalide.

Library FoCaLiZe Coverage Coq Dedukti

stdlib 163335 99.42% 1314934 4814011
extlib 158697 100% 162499 283939
contribs 126803 99.54% 966197 2557024
term-proof 24958 99.62% 227136 247559
ejcp 13979 95.16% 28095 239881
iterators 80312 88.33% 414282 972051

Fig. 10. Size (in bytes) comparison of Focalide with the old backend on available
FoCaLiZe developments

Library Zenon ZMod Coq Dedukti Zenon + Coq ZMod + Dedukti

stdlib 11.73 32.87 17.41 1.46 29.14 34.33
extlib 9.48 26.50 19.45 1.64 28.93 28.14
contribs 5.38 9.96 26.92 1.17 32.30 11.13
term-proof 1.10 0.55 24.54 0.02 25.64 0.57
ejcp 0.44 0.86 11.13 0.06 11.57 0.92
iterators 2.58 3.85 6.59 0.27 9.17 4.12

Fig. 11. Time (in seconds) comparison of Focalide with the old backend on available
FoCaLiZe developments

These files have been developed prior to Focalide so they do not yet benefit
from Deduction modulo as much as they could. The Coq backend going through
Zenon is not very efficient on proofs requiring computation because all reduction
steps are registered as proof steps in Zenon leading to huge proofs which take a
lot of time for Zenon to find and for Coq to check. For example, if we define a
polymorphic datatype type wrap (’a) = | Wrap (’a), we can define the iso-
morphism f : ’a -> wrap(’a) by let f (x) = Wrap(x) and its inverse g :

wrap(’a) -> ’a by let g(y) = match y with | Wrap (x) -> x. The time
taken for our tools to deal with the proof of (g ◦ f)n(x) = x for n from 10 to 19
is given in Figure 12; as we can see, the Coq backend becomes quickly unusable
whereas Deduction modulo is so fast that it is even hard to measure it.

7 Related work

The closest related work is a translation from Coq to Dedukti and compilation
techniques from ML to enriched λ-calculi.

– In the context of Coqine, a translator of a fragment of Coq kernel to Dedukti,
Assaf [1] has proposed several techniques to compile recursive functions and
pattern-matching in Dedukti. Pattern-matching is limited in Coq kernel to
flat patterns so it is possible to define a single match symbol for each in-
ductive type, which simplifies greatly the compilation of pattern-matching
to Dedukti and avoids the use of dynamic error handling.

5 The files can be obtained from http://deducteam.inria.fr/focalide

Value of n Zenon Coq Zenon Modulo Dedukti

10 31.48 4.63 0.04 0.00
11 63.05 11.04 0.04 0.00
12 99.55 7.55 0.05 0.00
13 197.80 10.97 0.04 0.00
14 348.87 1020.67 0.04 0.00
15 492.72 1087.13 0.04 0.00
16 724.46 > 2h 0.04 0.00
17 1111.10 1433.76 0.04 0.00
18 1589.10 > 2h 0.07 0.00
19 2310.48 > 2h 0.04 0.00

Fig. 12. Time comparison (in seconds) for computation-based proofs

However, it does not seem possible to define a single fix symbol without
breaking strong normalization of the rewrite system so, as in our work, each
fixpoint has to be named and recursive unfolding has to be limited to ex-
pressions starting with a constructor. Assaf distinguishes two ways to achieve
this; we can either wrap each constructor as proposed in [3] or use a com-
binator similar to CBV (called a filter function in [1]). Because of dependent
typing, function arguments have to be duplicated when using the latter so-
lution so it is unclear which solution (wrapping constructors or duplicating
arguments) is the best in the context of Coqine. In our case, the input type
system does not feature dependent types so this duplication of argument is
unnecessary.

The main difference between our encoding of recursion and the one imple-
mented in Coqine is that we define the CBV operator by ad-hoc polymorphism
whereas Coqine filter functions are unrelated to each other. Thanks to ad-
hoc polymorphism, we can deal with recursion on abstract types such as the
example of Figure 9.

– The semantics of functional languages often rely on λ-calculus. Pattern-
matching is a common feature in these languages so proving the correctness
of a compiler for a functional language usually requires to define a translation
function from pattern-matching to λ-calculus. This has been achieved by en-
riching the λ-calculus with simple forms of pattern-matching. These enriched
λ-calculi are then used as intermediate compilation languages between the
rich functional language and the low-level λ-calculus.

• In [21], Peyton-Jones and Wadler extend the λ-calculus with an ab-
straction over pattern and internalize the list of patterns using a [] op-
erator. Matching failure is represented by the constant FAIL which is
left-neutral for | and non-exhaustiveness is represented by the constant
ERROR. We avoid the introduction of constants FAIL and [] for track-
ing matching failure and so we avoid the appearance of some alien terms
such as FAIL+2. In our work, failure is replaced by the default behaviour
of destructors. However, we still rely on a dynamic error mechanism to

test exhaustiveness of pattern coverage whereas this property can be
checked statically and even reduced to type-checking [16].

• In [17], Oostrom, Klop, and Vrijer generalize the enriched λ-calculus
of Peyton-Jones and Wadler; they define another extension of the λ-
calculus, the λ-calculus with patterns, generalizing the shape of λ-terms
allowed to build abstractions from variables to terms verifying the Rigid
Pattern Condition. However, they restrict their attention to uniform pat-
terns, in the sense that the order of the branches of pattern-matching
should not matter, which we find too restrictive in the context of the
compilation of functional languages in general and FoCaLiZe in partic-
ular.

• More recently, Kahl introduced [15] the Pattern-Matching Calculus, fo-
cusing on the notion of matchings (patterns, possibly fed with argu-
ments) constituting a grammatical class distinct from terms. Like Peyton-
Jones and Wadler, [] and FAIL are part of the calculus but matching
success is easier to detect and alien terms are harder to produce.

Following [21], we could add optimization steps to replace destructors by
eliminators (called case-expressions in [21]) which are considered more effi-
cient and would limit the use of dynamic errors, in particular in the common
case where, like in our first example of equality over lists, the only pattern-
matchings used in the source file are eliminators. However, we believe that
keeping destructors is the best choice when the last pattern of the matching
is a variable or a wildcard, in which case we do not emit any ERROR.
In our context, the efficiency of the produced Dedukti code is not funda-
mental because definitions using pattern-matching in FoCaLiZe are usually
simple. The main reasons for this is that complex pattern-matchings are hard
to specify and that Zenon support for pattern-matching is limited. Hence we
avoid complex compilation techniques such as decision trees [19]. By do-
ing so, we obtain a light translation, close to the compilation to Coq and
predictable by the programmer.

A lot of work has also been done to compile programs (especially functional
recursive definitions [14, 13, 18]) to rewrite systems. The focus has often been on
termination preserving translations to prove termination of recursive functions
using termination checkers for term rewrite systems. However, these translations
do not try to preserve the semantics of the programs so they can hardly be
adapted for handling translations of correctness proofs.

8 Conclusion

We have extended the compiler of FoCaLiZe to a new output language: Dedukti.
Contrary to previously existing FoCaLiZe outputs OCaml and Coq, Dedukti is
not a functional programming language but an extension of a dependently-typed
λ-calculus with rewriting so pattern-matching and recursion are not trivial to
compile to Dedukti.

However, we have shown that ML pattern-matching can easily and efficiently
be translated to Dedukti using destructors. We plan to further optimize the
compilation of pattern-matching, in particular to limit the use of dynamic error
handling. For recursion, however, efficiency comes at a cost in term of normal-
ization because we can not fully enforce the use of the call-by-value strategy
without loosing linearity. Instead of trying to fix our encoding we would like to
delegate termination checking to external tools; this is a

Our approach is general enough to be adapted to other functional languages
because FoCaLiZe language for implementing functions is an ML language with-
out specific features. FoCaLiZe originality comes from its object-oriented mech-
anisms which are invisible to Focalide because they are statically resolved in
an earlier compilation step. Moreover, it can also easily be adapted to other
rewriting formalisms, especially untyped and polymorphic rewrite engines be-
cause features specific to Dedukti (such as higher-order rewriting or dependent
typing) are not used.

We have tested Focalide on existing FoCaLiZe libraries and have found it a
decent alternative to the Coq backend whose adoption can enhance the usability
of FoCaLiZe to a new class of proofs based on computation.

Focalide can also be a bridge of interoperability with other proof systems,
Dedukti is used as the target language of a large variety of systems in the hope
of exchanging proofs; we want to experiment the import and export of proofs
between logical systems by using FoCaLiZe and Focalide as an interoperability
platform.

References

1. Ali Assaf. A Framework for Defining Computational Higher-Order Logics. PhD
thesis, École Polytechnique, 2015.

2. Ali Assaf and Guillaume Burel. Translating HOL to Dedukti. In Cezary Kaliszyk
and Andrei Paskevich, editors, Proceedings Fourth Workshop on Proof eXchange
for Theorem Proving, volume 186 of EPTCS, pages 74–88, Berlin, Germany, August
2015.

3. Mathieu Boespflug and Guillaume Burel. CoqInE : Translating the calculus of
inductive constructions into the λΠ-calculus modulo. In Proceedings of the Second
International Workshop on Proof Exchange for Theorem Proving, 2012.

4. Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An Extensible
Automated Theorem Prover Producing Checkable Proofs. In Logic for Program-
ming, Artificial Intelligence, and Reasoning, 14th International Conference, LPAR
2007, volume 4790 of LNCS/LNAI, pages 151–165. Springer, 2007.

5. Guillaume Burel. A Shallow Embedding of Resolution and Superposition Proofs
into the λΠ-Calculus Modulo. In Jasmin Christian Blanchette and Josef Urban,
editors, PxTP 2013. 3rd International Workshop on Proof Exchange for Theorem
Proving, volume 14 of EasyChair Proceedings in Computing, pages 43–57, Lake
Placid, USA, June 2013.

6. Guillaume Bury, David Delahaye, Damien Doligez, Pierre Halmagrand, and Olivier
Hermant. Automated Deduction in the B Set Theory using Typed Proof Search
and Deduction Modulo. In LPAR 20 : 20th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Suva, Fiji, November 2015.

7. Raphaël Cauderlier and Catherine Dubois. Objects and subtyping in the λΠ-
calculus modulo. In Post-proceedings of the 20th International Conference on Types
for Proofs and Programs (TYPES 2014), Leibniz International Proceedings in In-
formatics (LIPIcs), Paris, 2014. Schloss Dagstuhl.

8. Raphaël Cauderlier and Pierre Halmagrand. Checking Zenon Modulo Proofs in
Dedukti. In Cezary Kaliszyk and Andrei Paskevich, editors, Proceedings 4th Work-
shop on Proof eXchange for Theorem Proving, volume 186 of EPTCS, pages 57–73,
Berlin, Germany, August 2015.

9. Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-
pi-calculus modulo. In S. Ronchi Della Rocca, editor, Typed Lambda Calculi and
Applications, pages 102–117. Springer-Verlag, 2007.

10. David Delahaye, Damien Doligez, Frédéric Gilbert, Pierre Halmagrand, and Olivier
Hermant. Zenon Modulo: When Achilles Outruns the Tortoise using Deduction
Modulo. In LPAR, volume 8312 of LNCS/ARCoSS, pages 274–290. Springer, dec
2013.

11. Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem Proving Modulo.
Journal of Automated Reasoning (JAR), 31, 2003.

12. Catherine Dubois and François Pessaux. Termination Proofs for Recursive Func-
tions in FoCaLiZe. In Trends in Functional Programming 15th International Sym-
posium (TFP 2015), Revised Selected Papers, LNCS, Sophia-Antipolis, France,
June 2015. To appear.

13. Thomas Genet, Barbara Kordy, and Amaury Vansyngel. Vers un outil de
vérification formelle légère pour OCaml. In Frédéric Dadeau and Pascale Le Gall,
editors, AFADL 2015, pages 28–33, Bordeaux, France, May 2015.

14. Jürgen Giesl, Matthias Raffelsieper, Peter Schneider-Kamp, Stephan Swiderski,
and René Thiemann. Automated termination proofs for haskell by term rewriting.
ACM Trans. Program. Lang. Syst., 33(2):7:1–7:39, February 2011.

15. Wolfram Kahl. Basic Pattern Matching Calculi: A Fresh View on Matching Fail-
ure. In Yukiyoshi Kameyama and Peter Stuckey, editors, Functional and Logic
Programming, Proceedings of FLOPS 2004, volume 2998 of LNCS, pages 276–290.
Springer, 2004.

16. Delia Kesner, Laurence Puel, and Val Tannen. A Typed Pattern Calculus. Infor-
mation and Computation, 124(1):32–61, 1996.

17. Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer. Lambda calculus with
patterns. Theoretical Computer Science, 398(1–3):16–31, 2008. Calculi, Types and
Applications: Essays in honour of M. Coppo, M. Dezani-Ciancaglini and S. Ronchi
Della Rocca.

18. Salvador Lucas and Ricardo Peña. Rewriting Techniques for Analysing Termina-
tion and Complexity Bounds of SAFE Programs. In LOPSTR’08, pages 43–57,
Valencia, Spain, July 2008.

19. Luc Maranget. Compiling Pattern Matching to Good Decision Trees. In Workshop
on the Language ML. ACM Press, September 2008.

20. François Pessaux. FoCaLiZe: Inside an F-IDE. In Catherine Dubois, Dimitra
Giannakopoulou, and Dominique Méry, editors, Proceedings 1st Workshop on For-
mal Integrated Development Environment, F-IDE 2014, Grenoble, France, April 6,
2014., volume 149 of EPTCS, pages 64–78, 2014.

21. Simon L. Peyton Jones. The Implementation of Functional Programming Lan-
guages (Prentice-Hall International Series in Computer Science). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1987.

22. Ronan Saillard. Type Checking in the Lambda-Pi-Calculus Modulo: Theory and
Practice. PhD thesis, MINES Paritech, 2015.

