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1. THE PROBLEM

We study the existence of periodic solutions of autonomous linear time-invariant differential systems
with non-ideal relay, namely

% = Ax + BRo s (Cx) (1.1)

where A is a stable n x n matrix, B and CT € R and « < 8 are the thresholds values of relay
nonlinearity R, s (figure 1). The system therefore behaves at each time according to one of the
two modes x = Ax + B, x = Ax — B. The exact definition of the relay operator can be found e.g.
in [6].
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Fig. 1. Relay nonlinearity

We suppose that
~CA'B<a<fB<CA'B (1.2)
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This implies that, before the unique equilibrium x = —A~'B (resp. x = A7!B) of the 1st (resp.
2nd) mode is attained, switching occurs at the crossing of the hyperplane Cx = 8 (resp. Cx = a),
see figure 2. This situation is described for more general cases in [8].
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Fig. 2. Switching hyperplanes in the phase space

For xg € {Cx = a} (resp. xg € {Cx = (}), denote by P,_.3xo (resp. Pg_oXp) the first point
of the trajectory x(t), ¢ > 0, with initial value xq for the state and initial value —1 (resp. +1) for
the relay, which lies on {Cx = 8} (resp. {Cx = a}).

If the map P 2 P, .30 Ps_, has a fixed point, then equation (1.1) has a periodic solution
with two switches. Indeed, the question of existence of periodic solutions for this system reduces
to the search of fixed points for the map P and its iterates.

It is possible to choose a convex compact set K C R” invariant for both equations x = Ax + B
and containing any periodic trajectory (see figure 3). Indeed, one may choose:

—+o00

K2 (xeR' :vMT € B*, Mx < / |Me?*B| - ds} (1.3)
0

The set K, S Kn {Cx = «a} is a convex compact subset of {Cx = a}, invariant for P. If P is
continuous on K, then it has at least one fixed point (Brouwer fixed point theorem).

To find sufficient conditions for continuity for P,_.3 on K, and Pg_., on Kg 2 Kn{Cx =g}
is the main difficulty in this approach. In this goal, the notion of anomalous point is useful:

DEFINITION 1.1 A point xg € {Cx = a} (resp. {Cx = (}) is called an anomalous point if
C(Axo + B) = 0 and CA(Axg + B) > 0 (resp. C(Axp — B) = 0 and CA(Axg — B) < 0). We
denote A, (resp. Ag) the set of anomalous points.

Any point of the switching hyperplanes on which the incoming trajectory is tangent without crossing
it, is an anomalous point (see figure 4). Those points are of interest because they are the points of



discontinuity of P,_3 and Pg_,. Note that if n > 3 and C,CA, CA? are linearly independent (a
natural observability assumption on the realization of the transfer C'(sI — A)~!B), the sets A, and
A contain at least a closed half-hyperplane of codimension n — 2. In particular, if n > 3, operator
P is never continuous on the whole hyperplane {Cx = a}.

Notice that an anomalous point may be a point of continuity of P,_.3 (resp. Ps_.,), unlike the
definition of [8, 9].
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Fig. 3. The invariant set K
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Fig. 4. A trajectory crossing a switching hyperplane in an anomalous point



From the preceding considerations, the following result is easily deduced:

THEOREM 1.0 If Py s Ko NAg =P KgNA, =0, then Po_.5 (resp. Pg_o) is continuous on
K, (resp. Kg), and P is continuous on K,.

Theorem 1.0 applies e.g. if Ko N A, = KgnN Ag =0 (figure 5), but this is a strong hypothesis.

{Cx =a} Cx = 3}

Fig. 5. Condition Ko NA, =KgNAg =10

Up to this point, the construction is not new, see [3, 4, 8, 9].

The papers by Friedman and al. [3] and Gripenberg [4] are concerned with systems whose evolu-
tion is governed by heat equation. Reference [8] by Seidman provides sufficient condition (expressed
in terms of impulse-response of the possibly infinite-dimensional linear system) for existence of pe-
riodic solutions. Paper [5] by Kolesov gives results of the same nature, expressed in terms of the
(rational) transfer function. All these references are concerned with periodic solutions with two
switchings per period, a case in which the value of the period may be computed exactly by Tsypkin
method, see e.g. [2].

But things are not always so simple: Szczechla [9] proved that for any positive integer n, there
exists systems like (1.1) which do not possess periodic solution with less than 2n switchings per
period. To our knowledge, the only method leading to sufficient conditions for existence of solution
with an arbitrary number of switchings, is the one by Macki and al. [7], based on harmonic balance
and topological degree theory.

Remark that Alexeev achieved more than fourty years ago some analogic computations which
show the rich behavior already present in a 2nd-order model with delay [1].

Here, we present two original approaches to obtain continuity of the map P on K, in the case
where K, N A, or KN Ag is non-empty.
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Fig. 7. Hypothesis of Theorem 1.2

THEOREM 1.1 If the backward trajectory departing from any point xo € KgNAg (resp. Ko NA,)
attaines {Cx = a} (resp. {Cx = f}) outside K, (resp. Kp), then Po_sKoNAg =Pg_,KgnN
A, =0 and P is continuous on K,,.



THEOREM 1.2 If the backward trajectory departing from any point xg € KgN Ag (resp. Ko NA,)
crosses {Cx = [} (resp. {Cx = a}) before attaining {Cx = a} (resp. {Cx = B}), then Po_sK,N
Ag=Ps_KgnA, = 0 and P is continuous on K,.

The proof of these results follows directly from Theorem 1.0. The situation described by the
hypotheses is illustrated in figures 6 and 7.

This approach may be generalized. For example, instead of Ps_.o(Kg) N A, = 0, it is sufficient
to assess Pg_o(PaspKa) N Ay = 0, etc ... Also, it may potentially be used for more general
switching systems, that is systems whose evolution (in each given mode) is not described by a
linear ODE.

2. A 3rd ORDER EXAMPLE

We apply the previous ideas to the equation

d
L (%> r=—RapT (2.1)

where the real polynomial L(s) writes:
Lis)=(+N(s+u+iv)(s+u—iv) with A>0,u>0,v>0

This equation can be rewritten in the form (1.1) using the state variable x = (z, 2/, z")” with
the matrices

0 1 0
A= 0 0 1 , B=(0,0,-1)T, ¢ =(1,0,0)
A2 +v?) —(u?+vY) -2 u -\ —2u (2.2)

Remark that CB = CAB = 0, which implies that K, N A, and Kz N Ag are not empty (consider
eg. T = ﬁA*IB and z = CJ%BA*IB). Throughout the paper, we will use the following
notations A ) A )
ko = ————, kg = — —
“ a+)\(u2+v2)’ p b+ A(u? +v?)
A 9, 2 Au—XA A utiv
g = (u— )\ +o , W= , €0 = —
( ) v Vu? + v?

Remark that o = v?(1 + w?). Assumption (1.2) is equivalent to ko, kg > 0.

,0< < m/2

3. PRELIMINARIES

e Denote z(t) the solution of equation L (£)z = 1 such that z(0) = 3, 2/(0) =0, z”(0) =y < 0:
the solution meets the set Ag at time ¢ = 0. One may write:

#(t) = B+ (R + Q1)) (3.1

—u .
ut sin vt

e M —e " cosvt +e”

efut

R(t) a,_ e M(u? 4 v?) 4+ e (=2 4 2)u) cos vt + (A(u? — v?) — A%u) sin vt

v



R'(t) = Au? +v?)Q(t), R(0) = Q(0) = Q'(0) =0, Q"(0) = 0.
Analogously, a solution z(t) of L (%) x = —1 attaining A, at ¢t = 0 with z”(0) = y writes as

#(t) = @+~ (=R{t)ka + Q)y)

e Consider the equation (in the unknown 7)

Q(r/v) =0, thatise”” =cosT+wsinT (3.2)

If w > 0, this equation has a root in 7 = 0 (of 2nd order) and negative roots. We define:

Let 7* < 74 < 0 be the two largest negative roots of (3.2) (3.3)

It is clear from the graph of @ that Q(t) < 0 (resp. >, resp. =) if 7* < vt < 7, (resp.
T < vt < 0, resp. vt = 7%, 74,0). The values of 7* and 7, are functions of w > 0. For w — oo one

has 7* — —27, 7, — —n. Figure 8 shows an example of curves 7*(w) and 7. (w).
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Fig. 8. Functions 7*(w) and 7. (w) for A=0.01, u =04,v =1

e In the statement of the results and in their proof, we will use the following definitions of the

functions 7 and N:
9e(26—m)tan¢
Az (3.4)

(&) = T —rtamne 0<¢é<m)/2



and, denoting pe®” a (u? —uv? —ud — M?) +iv(v2 +u? —2Xu), p>0,0 < < 27 (which implies
p= o +v?):
2 (Y—m)u/v 2\ 2 (¥—2m)u/v
NuwmA 2. & jfo<yp<n, S fr<d <o

- _|_ JRE—,
\/E 1— e—wu/v o \/E 1— e—wu/v (35)

N is continuous (as ¥ = m implies u? + v? = 2\u, so ¢ = \?).

4. RESULTS

THEOREM 4.1 For any choice of the constants o < 3, A >0, £ = tan ;' > 0 such that
(B =)\’ > (3 +n(€)) (4.1)

if u® +v? is sufficiently small, then Theorem 1.1 holds and equation (2.1) has at least one periodic
solution with two switches.

Recall that 7 is defined by formula (3.4).
Theorem 4.1 holds e.g. in cases where “the real root is large, the modulus of the complex roots
is small”.

THEOREM 4.2 For any choice of the positive constants w,v, A\ such that u > A,

o+ AU\ g — p2e2= N o > e AT (2 4 2 Ny (4.2)
2vo
)\(UQ 4 1}2) (Ue—)\n/v 4 \/Ee—un/v)

if kaykg > 0 are sufficiently small, then Theorem 1.2 holds and equation (2.1) has at least one
periodic solution with two switches.

> N(u,v,\) (4.3)

Recall that 7, and 7* (resp. N) are defined by equation (3.3) (resp. (3.5)).

Condition (4.3) is valid for A small enough and (4.2) may be rewritten for w = (v — \) /v ~ u/v
as e 27 — 14 2wr* — (w? 4+ 1)7*2 > 0, where we recall that 7* is a function of w which tends
to —27 in 4o0: for w > 0.271, conditions (4.2) and (4.3) are true for small enough A\ > 0. Hence,
Theorem 4.2 holds e.g. in cases where “the real root is small, the real part of the complex roots is
large, the thresholds are close from the static gains”.

Remark that the “sufficiently small” conditions of these statements may be stated precisely
with the help of the proofs. On the other hand, the impulse-response of the system we consider

1

is ~Q(t), and it is clear that Theorem 4.2 may provide results in cases where it is not ultimately

decreasing, unlike the result for linear systems given in [8, Theorem 3.1].
5. ESTIMATE OF z”
Using realization (2.2) and formula (1.3), we deduce that any periodic solution = of (2.1) verifies:
VicR |2"(8)] < /Ooo|DeASB|-ds,D — (0,0,1)

On the other hand, the decomposition (3.1) of = shows that 1Q(t) = Ce?'(0,0,1)T = CeA'B.
Hence, 1Q"(t) = CA%"B = De*'B,so Vt € R, [2"(t)| < L [7(Q"(t)|-dt = M.
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LEMMA 5.1 M < N(u,v,)\), where N is defined by (3.5).

The proof of this Lemma consists in computing Q", writing

A2 [oo 0 A Yu/v  poo
M < _/ e dt + ﬁ/ e~ sin(y + vt)| dt = = + 2 / e~ /| sin 7| dr
0 0 g P

o ov ov?

and evaluating the former expression on the intervals [k, (k + 1)7].

6. PROOF OF THEOREM 4.1

e Consider z defined in (3.1). For a finite ¢y < 0, its trajectory reaches the plane {Cx = a} in
some point x(¢y). We shall first estimate ¢y, and then show that if the hypotheses of Theorem 4.1
are fulfilled, then x(to) € K, as z”(tyg) > M defined in the previous section.

e For sufficiently small u? 4 v2, we have Q(t) > 0 for t < 0. Since y < 0, the (negative) number
to may be bounded from below by the time at which § + R(t)kg/o reaches {Cx = a}. The value
of kg = W — B is positive for small enough u* + v?, and the inequality 8+ R(t)ks/o < a is
equivalent to

1

A(u? + v?)

As R'=Q and e.g. for u < \/2, Q(t) > e — e™M/2 4 Le=M/2)\t = ¢=A/2(e=M/2 — 1 4 L)t) > 0,
one gets for small enough values of u? + v? an estimate of ¢y independent of u? + v2.

e Now for u? + v? sufficiently small we have, (the sign ~ will denote equality up to terms in
O(Vu2 + v2); uniform estimate of #; is necessary): o ~ A2, Q(to) ~ e 0 — 1 + Mg, R(to)ks ~

242
—3(e7Mo — 1+ Mty — %) Hence, z(tg) = o implies (8 — a)A? = |y|(e™° — 1 4+ Xtg) + 3 (™Mo —
242
14+ Mo — %), and

-MﬂSOMd( —ﬁ)W@HZdﬂ—@

242
222

| | - (ﬁ—a))\Q 1 e Mo —1+)‘t0_T (ﬁ—a))\Q 1
U= M "1 M A e M —1+ Ay e Mo\

For small enough u? + v?, we then have

o (] +3) > (- ¥ (6.1)

On the other hand, |2 (tg)| = |yle™* + } (e~ —1). Inequality (4.1) guarantees that £ = u/v is
bounded from below by a positive number (independent of u?+v?). For u?+v? small, tan ) ~ tan 2¢,
and ¢ ~ 2{+7,as0 < € < 5 and sintp < 0. From Lemma 1, we get M < 24 15(€)+0 (\/u2 + 1]2).

Suppose now that |z”(to)| < M, then e *° (|y| + 1) < 3% + $n(¢). This, together with (6.1),
implies (8 — a)A? < $(3 +n(£)) which contradicts assumption (4.1).

Hence, |z”(t9)] > M and K, N P;Lﬁ(Aa) = (). Proof of KgnN PELQ(AL;) = () is analogous.

7. PROOF OF THEOREM 4.2

To prove Theorem 4.2, we show that, for any x(0) € Ag, to a 7*/v < 0 is such that x(ty) >

and z(t) > « for t € (t,0). Since Q(ty) = 0, then x(tg) = B+ R(to)ks/o. Defining ¥

1

Y
A
%(u — A +1v) with ¢ €]0, 2|, one has sin(vty + ¢) = sin p e~ and, as vt €] — I, 0], cos(vto +



@) = /1 — XM sin? . We deduce cosvty = “=21/g — v2e2(u=Nto 4 %e(“_)‘)to and sinvty =
2w — Ne(t=N _ /g — y2e2(u=Nio]. Finally, we compute R(to) = o + Ae %0/ g — v2e2(u—Nto —

e Mo (u? 4+ 92 — \u), which is non negative due to (4.2).
Now we need to check that ¢ € (¢9,0) implies z(t) > «, i.e.

yQ(t) > (a — B)o —kgR(t), to<t<O0 (7.1)

For tg < t < 7, /v, inequality (7.1) is true for sufficiently small kg > 0, as o < 8 and yQ(t) > 0.
For 7./v < t < 0, function Q(t) is positive and inequality (7.1) is equivalent to y > [(a — f)o —
ksR(t)]/Q(t), that is (y <0, a = ko + 1/A(v? +0?), 8 = —kg — 1/ (u? +v?%))

(B—a)o+kgR(t) 20+ O(ka,kp)
Qt) Alu? +02)Q(t)
Due to (4.3), the last inequality is true for small enough ko, kg > 0, as |y| < M < N(u,v, ), and

|Q(t)| < e™* + e~%\ /o /v. Therefore, operator P, is continuous. Proof of continuity for Pg_.,
is similar.

ly| <
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