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Hysteresis Operators and Tyre Friction Models.
Application to Vehicle Dynamic Simulation

We propose a class of dry friction models for simulation and control of mechanical systems. We apply it to tyre/road
contact modeling and show how to use it for vehicle dynamic simulation and control.

1. Introduction

Dry friction modeling for simulation and control of mechanical systems is the subject of an intense activity in
Control science and Robotics ([2] for a review). Models of the tyre/road contact are useful to simulate vehicle
behavior [10,9,1] or to elaborate e.g. Anti-lock Braking Systems or steering control systems. To make up such
models, we use the mathematical theory of the systems with hysteresis, widely spread in the last decade [12,19 4].
We propose a class of hysteresis operators defined by ODEs [4,5]. We require that 1. They are hysteretic: in the
case of periodic motions, one observes experimentally that the hysteresis cycles, friction vs. relative displacement,
do not depend upon the velocity, but upon the covered distance. This property is especially important to obtain
good models at low velocities. 2. They are dissipative, even though there may exist local maxima of the friction
or lag in the friction/position relation. 3. They lead to well-posed problems when coupled to equations of motions.
This is essential for numerical simulations. 4. They are simple enough to be used in real-time in on-board systems.

2. Classical dry friction models

We consider only systems with single DOF, a generalized displacement u. The simpler model is Coulomb model:

fr pour u >0
F(u) = [—fs, fs] pour u=0 (1)
—fk pour %<0

F(u) may take any value inside [—f;, fs] when @ = 0 to balance the external forces: F'is multivalued. f; (resp. fx)is
the static (resp. kinetic) friction coefficient. For the usual Coulomb model, f; = f. Model (1) has major drawbacks.
It provides very few informations on F'(u) when @ crosses 0: only bounds. When one regulates u, @ oscillates around
0, so the behavior of F(u) around @& = 0 is fundamental. Moreover, (1) leads to consider the equation of motion
as a differential inclusion [8,13], ill-posed when f; > fi (no uniqueness) and requiring regularization in & = 0 to be
solved numerically. The simulated transients will depend upon the choice of the regularization.

A precise analysis of the solid/solid dry friction with stiction [2,7,16] shows an elastic behavior (Dahl effect) after
departure from rest and until distance s, is covered, for which the friction is maximal and equal to f; (Fig. 1).
Beyond, friction decreases until a distance s, is attained, and remains approximately constant and equal to fi: this
is a plastic behavior. This decrease may occur with an increase of the speed |u| (Stribeck effect), leading to stick-slip.

3. Differential models for dry friction

We model the map u — F(u) by the following ODEs describing dissipative hysteresis operators ([4,5] for details):
& =|u|- Az + Bu, F(u)(t) = Cz(t)+ Dsgnu, z(0)=0, € R" (2)

e A 1st order model (n = 1) verifies all the requirements, except the overshoot in the transient. This very simple
model is a regularization of Coulomb model. It is a particularization of Dahl model [7]. e A 2nd order model has
all the properties required above. They are given respectively by

1 L
a=-t =L coyp=o ana a=-1(7 ") B=1( " ) c=(1 1) D=0
€ € € 0 1 e\ —fs
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where f1 > 0, fo > 0 are friction coeflicients, £ > 0 is a distance and n > 0 is adimensionless. Changing the time
variable ¢ into the distance s defined by ds = |i|dt, u (resp. x, F'(u)) becomes ug (resp. zg, Fs(ug)), and (2) is
transformed into a linear differential equation:

d‘JSS dus dus

—=A B——, F = D— =

Is zs + 75 s(ug) = Ces + 75 z(0)=0
Remark that dg_ss = +1 according to the sense of displacement. Coulomb friction corresponds to C' = 0,D # 0.
Our models are linearly filtered versions of Coulomb friction. D = 0 is a regularization of Coulomb model, obtained
when ¢ — 0 [4,5]. In the sequel, we consider only the regularized case D = 0. Using s, we express the work of F'(u)
as an integral in s:

t S(u)(t) us
/0 F(u)(r)-u(r) -dr = /0 Fs(us) - dd—s(s) -ds

To identify parameters f1, f2,2,n, we need precise definitions of physically meaningful values. We fix

F(u)(t
fr 2 ~lim F(u)(t), fs 2 sup F(u)(t) and /{7% 2 sup =+ (u)( )
u>0,ti(2;+w, u(,Dt)zg -u.,tZl()[,J)ﬁ._(é)#O u(t)

The kinetic friction fy is the asymptotical value of F(u) when ¢ > 0 and s, is a “rise distance”, beyond which
|F'(u) — f|/fr is less than 5%. The static friction f, is the maximal value of the friction. It is attained, departing
from & = 0 and z = A7 B, for s = s,. s, is the breakaway distance from rest. The extremal values of the slope of
the hysteresis cycles u vs. F' are also meaningful.

4. Principal properties of the friction models

Theorem 1 (Hysteresis and regularity properties).

F : u v~ F(u) has the hysteresis property: F(uo ¢) = F(u)o ¢ for any increasing diffeomorphism ¢ on RT.
Moreover, F' is locally Lipschitz in the space of absolutely continuous functions.

Theorem 2 (Dissipativity condition and thermomechanical interpretation).

The operator u — F(u) is dissipative if there exists a matriz P such that:
P=pPT>0,-ATP-PA=Q>0,CT =PB

e.g. if e > 0 for Ist order model and if f1 > f2 > 0,6 > 0,0 < n <1 for 2nd order. In this case, the power F'(u)u
may be expressed, using a pseudo-potential of dissipation %(Q:L‘,J:)|u| and a free energy %(P:L’,J:), as:

1 1d
F(u)i = §(Qm, z)|u| + §E(Px, z)
Theorem 3 (Parameters identification).

o The parameters values for 1st and 2nd order models are linked to the measures by

fo=fi=fo, fo=fer2h (%) T (-0

and Se = 16—”77 log % . 8y =3¢

b =2 (2) T A=), = 20—~

fk:f17 5;0:36
kp =0, kf =20

o We may express the parameters as functions of measures. It is clear for 1st order. For 2nd order, define m; = fsf_%

and my = €35</5»_ Suppose fr >0 (natural for a friction force) and s, < +oco. Then

mimsy + 2 mimap + 2 s mimso + 2
pommat2p, o mumapt 2, 5 mume 42
20— 1) 20— 1) 3 mimap + 2

where p is solution of%nijzlnp =(—1)Inmg and p > 1. Such a p ezxists and is unique iff Inmy < %ﬂiz, e.g.

if 3s. < sp. Dissipativity is then guaranteed.
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5. Application to tyre/road contact modeling

All the actions exerted on a vehicle with wheels, except gravity and aerodynamical forces, are due to tyre/road
contact. This contact may be modeled [6] using a sharp physical description of the phenomena involved [17,18,11,10]
or using “black box” models, Pacejka’s being the most well-known [15,3,14]. First kind models lead to discretization of
the contact area, second kind models give empirical formulas linking together macroscopic strains and deformations.
Our models are in between: they aggregate elastic forces and Coulomb friction at each point of the contact area,
and give the macroscopic forces by integral formula along the contact patch.

We consider here only the longitudinal force Fy (z,y, z, are the longitudinal, lateral and vertical (ﬁxed) directions,
¢ and ( are linked to the tyre, cf. Fig. 2, 3). Experlmentally, for a purely longitudinal motion, F} is function of
the verticale force I, and of the slip-ratio S, = (V + pH)/pH where V; is the vehicle longltudmal speed, p the tyre
radius at rest and @ the rotation speed of the rim around axis y. Pacejka’s “Magic Formula” [3] writes here (the
parameters depend upon F):

Fy = Dsin(C arctan(B¢)) where ¢ = (1 — E)Sy + %arctan(BSx) (3)

We now describe our model. We suppose that the contact patch is a rectangle of size £ x w and that the pressure

profile is uniform along ¢ and & P = £z Model (2) furnishes the force applied to a rubber element situated in

wil .
¢ at tlme t. Its sliding velocity is & = Vi + pf and, X(¢,£) denoting the corresponding friction state, we have
X = 8t + p@ . Moreover, we suppose that the rubber elements are at rest when entering the contact patch (by

convention, we ﬁx 0> 0). Finally, F; is given by

0xX X . .
Tt Ge =il AX 4+ B, X(0,6) = X(£,0)=0, Fu(u) /cth w- dé (4)

Experiments lead to take a second order model. For the steady-state deformations considered by Pacejka, (Vw,é
constant), analytical formulas are obtained:

505 1 1 2 0-%) - (1 (1)

which may be compared to (3) (Fig. 4, 5). Braking and traction simulations may be easily performed coupling (4)
with the equations of motion for the vehicle and the tyre

MVy = Fyp+ Fopt, JO=pFyp+ Tong, Ve(0),0(0) given (5)

where F.; represents the non-frictional external forces, F, the friction force, Te,, the engine torque on the wheels.
This permits the simulation of stop and start, which was impossible with (3), due to the singularity at V; = 0. Well-
posedness of the system (4), (5) may be established using the method of characteristics and the regularity properties
of the model. Main advantages on (3) are the physical meaning of the parameters, which permit extrapolation to
non-stationnary case and to the lateral and self-aligning modes.
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Figure 1: Hysteresis cycle with stiction Figure 3: Tyre in the plane z — y
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Figure 2: Tyre in the plane z — z
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Figure 5: Comparison with Pacejka’s model

Figure 4: Adhesion curves (longitudinal behavior)

(longitudinal behavior)



