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Abstract— We study here robust stability of linear systems
with several uncertain incommensurate delays, more precisely
delay-dependent stability. The main result of this paper consists
in establishing that this property is equivalent to the feasibility
of some Linear Matrix Inequality (LMI), a convex optimization
problem.

The method is based on two main ideas:
• use of Padé approximation to transform the system into

some singularly perturbed finite-dimensional system, for
which robust dichotomy has to be checked;

• recursive applications of Generalized Kalman-Yakubovich-
Popov (KYP) lemma to characterize by an LMI the previous
property.

I. INTRODUCTION

The analysis of linear time-delay systems has attracted
much interest, and much work has been done on that subject,
see e.g. [9], [17], [7]. However, surprisingly simple questions
have not been totally solved so far (that is, by methods both
precise and numerically tractable), including ones related to
stability analysis, as testified by the large number of papers
on the subject published monthly in the journals.

Many delay-independent and delay-dependent stability
conditions have been formulated by frequency domain tech-
niques. The latter include polynomial criteria [14], [15],
matrix pencil techniques [4], [16], integral quadratic con-
straints [8], [13] and other, see references in [18]. Analysis
in the time domain uses in general Lyapunov-Krasovskii
functionals or Lyapunov-Razumikhin functions, see [17],
[7]. The latter results are usually expressed as solvability
condition of some LMI problems, a class of convex problems
solvable by efficient numerical methods. To date, a class
of LMIs has been proved to characterize delay-independent
stability [1], [2], based on the search for common Lyapunov-
Krasovskii functional.

To the best of our knowledge, no LMI characterisation
(that is both necessary and sufficient condition) of delay-
dependent stability has been given until now. This issue is
the subject of the present contribution. We treat here the fully
general multi-delay case. The results given here are primar-
ily intended to provide effective method of testing delay-
dependent stability for linear systems with several delays.
They also prepare for future systematic LMI treatment of
more difficult issues, namely performance analysis (synthesis
seems to need much more work). Last, from an abstract
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point of view, they enlarge the domain of application of the
LMIs and show the generality of this class of problems, and
specifically the powerfulness of the Generalized KYP lemma
[11], [12].

The paper is organised as follows. We first put some
notations and technical preliminaries (including adequate
statement of GKYP lemma) in Section II. We then state
and demonstrate in Section III an original, exact, LMI
characterisation of robust stability for singularly perturbed
systems (Theorem 1). This result is then used in Section IV,
together with an idea of Padé’s approximation borrowed from
[18], to obtain a necessary and sufficient condition for delay-
dependent stability (Theorem 4). The latter applies to the
linear systems with several incommensurate delays. Section
V concludes the paper.

II. NOTATIONS AND TECHNICAL
PRELIMINARIES

We gather in this section the notations used throughout
the paper, together with needed technical tools.

A. Matrices and Representation of Matrix-Valued Polynomi-
als

The sets of positive integers, resp. real numbers, resp.
complex numbers, are denoted as usual N, resp. R, resp. C.
Let H n be the set of n×n Hermitian matrices. For square
matrices N, we let He{N} .= N + N∗. Kronecker product is
denoted ⊗, and: M0⊗ = 1, Mp⊗ .= M(p−1)⊗⊗M.

We now fix some definitions, related to the representation
of matrix-valued polynomials. Let us define, for all positive
k ∈ N, the matrices Ĵk, J̌k ∈ Rk×(k+1) by:

Ĵk
.=
(
Ik 0k×1

)
, J̌k

.=
(
0k×1 Ik

)
. (1)

We also define, for all positive integers k, l,

Ĵl,k
.= Ĵl Ĵl+1 . . . Ĵl+k−1 =

(
Il 0l×k

)
, (2a)

J̌l,k
.= J̌l J̌l+1 . . . J̌l+k−1 =

(
0l×k Il

)
. (2b)

By convention, we let Ĵl,0 = J̌l,0
.= Il . With these definitions,

Ĵl,k, J̌l,k ∈ Rl×(l+k). Notice that

Ĵl,k⊗ In = Ĵln,kn, J̌l,k⊗ In = J̌ln,kn .

In particular, Ĵk⊗ In = Ĵk,1⊗ In = Ĵkn,n and J̌k⊗ In = J̌kn,n.
For any positive integer k and any s ∈ C, we define the

vector s[k] ∈ Rk of monomials in s as follows:

s[k] .=


1
s
...

sk−1

 .



The matrices Ĵk, J̌k defined in (1) are such that

s[l] = Ĵl,ks[l+k], sks[l] = J̌l,ks[l+k] .

One shows directly that, for any matrix M ∈Cp×q, for any
u ∈ C,

(u[k]⊗ Ip)M = (Ik⊗M)(u[k]⊗ Iq) . (3)

Last, we have to define maps Φk,n : Rn×kn →Rn×kn such
that, for any M ∈Rn×kn and any h∈R, the following equality
on matrix-valued polynomials holds:

He{M(h[k]⊗ In)} ≡Φk,n(M)(h[k]⊗ In) .

The matrix Φk,n(M) is just obtained from M by block by
block symmetrisation (symmetrisation of the coefficients).
In other words, for any i = 1, . . . ,k, it is given analytically
by:

Φk,n(M)

0(i−1)n×n
In

0(k−i)n×n

 .= He

M

0(i−1)n×n
In

0(k−i)n×n

 . (4)

In particular, Φ1,n(M) = He{M} for M ∈ Rn×n. A useful
identity for the sequel is as follows: for any k, l,n ∈ N, for
any M ∈ Rn×kln, for any h ∈ R,

Φk,n(M(h[l]⊗ Ikn)) = Φkl,n(M)(h[l]⊗ Ikn) . (5)

B. Generalized KYP Lemma and Consequences

We now recall the generalized KYP lemma, as found in
Theorem 2 of [11]. For G∈Cn×m and Π∈H n+m, a function
σ : Cn×m×H n+m →H m is defined by

σ(G,Π) .=
(

G
Im

)∗
Π

(
G
Im

)
. (6)

For given matrices Φ,Ψ ∈H 2, define

Λ
.= { λ ∈ C | σ(λ ,Φ) = 0, σ(λ ,Ψ)≥ 0 }. (7)

We assume ∞∈Λ if Λ is unbounded. Here, σ has to be taken
as in the definition above, with m = n = 1. By an appropriate
choice of Φ and Ψ, the set Λ can be made to represent a
certain curve on the complex plane. Let

Γλ

.=
{ (

Im −λ Im
)

if λ ∈ C,(
0m −Im

)
if λ = ∞.

(8)

Lemma 1 (Generalized KYP): Let matrices Φ,Ψ ∈ H 2,
F ∈C2m×(m+n) and Π∈H m+n be given and define Λ by (7).
Suppose Λ represents curves on the complex plane. Denote
by Nλ the null space of Γλ F where Γλ is defined in (8). The
following statements are equivalent.
(i) N∗

λ
ΠNλ > 0 ∀ λ ∈ Λ.

(ii) There exist P,Q∈H m such that Q > 0 and F∗(Φ⊗P+
Ψ⊗Q)F < Π. �

In the sequel of the present section, we let ρ be a nonzero
real number (with no prescribed sign). The following result
is a polynomial version of the GKYP lemma obtained by
specializing Lemma 1.

Corollary 1 (Polynomial version of GKYP): Let Π ∈
H kn and m .= (k− 1)n. Then, (ρ [k]⊗ In)TΠ(ρ [k]⊗ In) > 0n

for all ρ ∈ R such that ρ(ρ − ρ) ≥ 0 if and only if there
exist P ∈ Cm×m, P+P∗ = 0m, Q ∈H m, Q > 0m, such that(

J̌m,n
Ĵm,n

)T
(

−Q P+ ρ

2 Q
P∗+ ρ

2 Q 0m

)(
J̌m,n
Ĵm,n

)
< Π .

�
Proof: The result follows from Lemma 1 by replacing

λ by ρ , choosing

F .=
(

J̌m,n
Ĵm,n

)
, Φ

.=
(

0 j
− j 0

)
, Ψ

.=

(
−1 ρ

2
ρ

2 0

)
,

and noting that Nρ

.= ρ [k]⊗ In, Γρ FNρ = (J̌m,n−ρ Ĵm,n)Nρ =
0.

We use in the sequel the following variant of Corollary 1.
Corollary 2: Let Π∈Rn×kn. Then, He{Π(ρ [k]⊗ In)}> 0n

for all ρ ∈ R such that ρ(ρ − ρ) ≥ 0 if and only if there
exist M ∈ R(k−1)n×(k−1)n such that the two LMIs (9) (see
next page) are fulfilled. �

Proof: Apply Corollary 1 with Q = M+M∗, P = ρ

2 (M−

M∗), and replacing Π ∈H kn by He
{(

Π

0(k−1)n×kn

)}
.

III. SINGULARLY PERTURBED SYSTEMS

Consider now, for h = (h1, . . . ,hm) ∈ Rm, the singularly
perturbed system

Ehẋ = Ax, x .=


x0
x1
...

xm

 , Eh
.= diag{In0 ;h1In1 ; . . .hmInm} .

(10)
Here, A and Eh are square matrices of size n× n, where
n .= n0 +n1 + · · ·+nm, for nonnegative integers ni. Our goal
in this section is to characterize robust dichotomy of (10),
for any (h1, . . . ,hm) ∈ [0, h̄1]×·· ·× [0, h̄m], where the h̄i are
fixed nonnegative real numbers. Recall that, by definition,
dichotomy is the absence of purely imaginary roots to the
characteristic equation.

A. Lyapunov Dichotomy Condition

The following result converts dichotomy condition for
singularly perturbed system to a Lyapunov inequality, see
also [5], [10].

Lemma 2: Let A,E ∈ Rn×n be given and define r .=
rank(E). Statements (11) and (12) are equivalent.

lim
λ→∞

det(A−λE)/λ
r 6= 0, (11a)

det(A−λE) 6= 0, ∀ λ ∈ jR. (11b)

∃ S ∈ Rn×n, ES = (ES)T, AS +(AS)T > 0. (12)

�
Proof: If r = n, then the result follows from a slight

modification of the standard Lyapunov theory, so consider
the case r < n. Let U,V ∈ Rn×n be nonsingular matrices



Ψ
0,0
k,n(M,Π,ρ) .= He{M}> 0(k−1)n , (9a)

Ψ
1,0
k,n(M,Π,ρ) .= He

{
J̌T
(k−1)n,nM

(
J̌(k−1)n,n−ρ Ĵ(k−1)n,n

)
+
(

Π

0(k−1)n×kn

)}
> 0kn . (9b)

Ψ
0,i
k,n(M,Π, h̄) .= Φki,(k−1)n(M) , (13a)

Ψ
1,i
k,n(M,Π, h̄) .= Φki,kn

(
J̌T
(k−1)n,nM

(
Iki ⊗ (J̌(k−1)n,n− h̄Ĵ(k−1)n,n)

)
+
(

Π

0(k−1)n×ki+1n

))
. (13b)

that transform E into a special diagonal form and let Ai j
be defined accordingly:

UEV =
[

Ir 0
0 0

]
, UAV =

[
A11 A12
A21 A22

]
.

Then, condition (11a) holds if and only if det(A22) 6= 0. To
see this, note that

lim
λ→∞

det(A−λE)
λ r = lim

λ→∞

1
λ r det(UV )

det
[

A11−λ Ir A12
A21 A22

]
which is also equal to

lim
λ→∞

det(A11−λ Ir)
λ r · det(A22−A21(A11−λ Ir)−1A12)

det(UV )
,

that is (−1)r det(A22)/det(UV ). Hence, in the transformed
coordinates, the two statements can be rewritten respectively
as (14) and (15) below:

det(A22) 6= 0, (14a)

det(Ao−λ Ir) 6= 0, ∀ λ ∈ jR, Ao
.= A11−A12A−1

22 A21. (14b)

∃ S11,S21,S22, S11 = ST
11, He

[
A11 A12
A21 A22

][
S11 0
S21 S22

]
> 0.

(15)
Now, suppose (14) holds. Then there exists So ∈ Rr×r

satisfying

So = ST
o, AoSo +SoAT

o +A12AT
12 > 0.

It is straightforward to verify that the choice S11
.= So, S21

.=
−A−1

22 A21So, S22
.=−AT

22 satisfies the condition in (15). Thus
(14) ⇒ (15). To show the converse, suppose (15) holds. First
note that the (2,2) block of the inequality in (15) reads

A22S22 +(A22S22)T > 0,

implying that det(A22) 6= 0. Noting the symmetry of S11, we
see that

He
[

A11−λ Ir A12
A21 A22

][
S11 0
S21 S22

]
> 0, ∀ λ ∈ jR.

This implies

det
[

A11−λ Ir A12
A21 A22

]
6= 0, ∀ λ ∈ jR

which in turn is equivalent to (14b).

B. LMI Condition

For i = 0, . . . ,m, we let the matrices Kk,i ∈Rkmn×(k+1)mn be
defined by (powers of Kronecker products are used below):

Kk,0
.= Ĵ⊗n

k ⊗ In, (16a)

Kk,i
.= Ĵ⊗(n0+···+ni−1)

k ⊗ J̌k⊗ Ĵ⊗(ni+1+···+nm)
k ⊗ In, i > 0 . (16b)

In the previous formulas, the indication of n = n0 + · · ·+nm
is voluntarily omitted, for simplicity. We also let, for any
i = 1, . . . ,m−1 and ε ∈ {0,1}, the functions

Ψ
ε,i
k,n : R(k−1)n×(k−1)kin×Rn×ki+1n×R→R(k+ε−1)n×(k+ε−1)kin

be defined in (13), where the functions Φ have been defined
in (4). Notice that Ψ

ε,i
k,n(M,Π, h̄) is affine in (M,Π), and that

(13) extends the definition of Ψ
ε,0
k,n given in (9).

Theorem 1: For all h ∈ [0, h̄1]× ·· ·× [0, h̄m] system (10)
is dichotomic, that is there exists Sh such that

EhSh = (EhSh)T, He{ASh}> 0n , (17)

if and only if there exist a positive integer k, a matrix
S ∈ Rn×kmn and 2m − 1 matrices indexed by εi ∈ {0,1},
i = 1, . . . ,m−1:

M/0 ∈ R(k−1)n×(k−1)km−1n,

Mε1 ∈ R(k−1)(k+ε1−1)n×(k−1)(k+ε1−1)km−2n, . . . ,

Mεm−1...ε1 ∈ R(k−1)(k+ε1−1)...(k+εm−1−1)n×(k−1)(k+ε1−1)...(k+εm−1−1)n ,

such that, for any r = 1, . . . ,(k +1)m,(
m

∑
i=0

diag{0n0+···+ni−1 ; Ini ;0ni+1+···+nm}SKk,i

) 0(r−1)n×n
In

0((k+1)m−r)n×n


is symmetric in Rq×q (18a)

and, ∀εi ∈ {0,1}, i = 1, . . . ,m,

Πεm...ε1 > 0(k+ε1−1)...(k+εm−1)n , (18b)

where Πεm...ε1 is recursively defined by:

Π /0
.=AS,

Πεi...ε1
.=Ψ

εi,m−i
k,(k+ε1−1)...(k+εi−1−1)n

(
Mεi−1...ε1 ,Πεi−1...ε1 , h̄i

)
,

i = 1, . . . ,m .
(18c)

Moreover,



• if (18) is solvable for an integer k, it is also fulfilled for
any larger integer;

• if (18) is solvable, then (17) is fulfilled for

Sh
.= S(h[k]

m ⊗·· ·⊗h[k]
1 ⊗ In) . (19)

�
For any positive integer k, the system (18) is a system of
linear matrix inequalities in the 2m unknowns. For given k,
system (18) is sufficient for robust stability of system (10).
The precision of each of these tests increases with k, as well
as the complexity of the associated semidefinite program.
Last, the inaccuracy vanishes asymptotically, when k goes to
infinity: this is the “only if” part of the result.

How to choose the integer k is a natural but difficult
question. Indeed, it may be shown that, if the parameter-
dependent LMI (17) is fulfilled, then one may replace the
right-hand side of the inequality therein by a sum of squares
of matrices depending polynomially upon h. It turns out that
the integer k is linked to the degree and number of the terms
of this sum.

Proof of Theorem 1: Define Sh as in (19). Letting for
simplicity n∗i

.= ∑
i−1
i=0 ni, n∗i

.= ∑
m
i=i+1 ni, one may write:

Eh = diag{In∗m ;hmInm ; In∗m}× ·· ·×diag{In∗1 ;h1In1 ; In∗1
} .

Now, for Sh defined by (19), EhSh is equal to

m

∑
i=0

diag{0n∗i ; Ini ;0n∗i
}S(

h[k]
m ⊗·· ·h[k]

i+1⊗hih
[k]
i ⊗h[k]

i−1⊗·· ·⊗h[k]
1 ⊗ In

)
,

or again:(
m

∑
i=0

diag{0n∗i ; Ini ;0n∗i
}SKk,i

)(
h[k+1]

m ⊗·· ·⊗h[k+1]
1 ⊗ In

)
.

It is then clear that (18a) expresses the symmetry of all the
coefficients of EhSh, that is the symmetry of EhSh itself.

We now prove that (18b)-(18c) express the inequality
condition in (17). Writing

Sh = S(h[k]
m ⊗·· ·⊗h[k]

1 ⊗ In) = S(h[k]
m ⊗·· ·⊗h[k]

2 ⊗ Ikn)(h
[k]
1 ⊗ In)

and applying Corollary 2 for any value of (h2, . . . ,hm) yields:
∀h ∈ [0, h̄1]×·· ·× [0, h̄m], He{ASh} > 0n if and only if, for
any (h2, . . . ,hm)∈ [0, h̄2]×·· ·× [0, h̄m], there exist Mh2,...,hm ∈
R(k−1)n×(k−1)n such that, ∀(h2, . . . ,hm)∈ [0, h̄2]×·· ·× [0, h̄m],

Ψ
ε1,0
k,n

(
Mh2,...,hm ,AS(h[k]

m ⊗·· ·⊗h[k]
2 ⊗ Ikn), h̄1

)
> 0(k+ε1−1)n, ε1 ∈ {0,1} .

Now, invoking [3], one may assume without loss of
generality that Mh2,...,hm is polynomial with respect to the
parameters (h2, . . . ,hm) in [0, h̄2]× ·· · × [0, h̄m]. Up to an
increase of k (which amounts to represent polynomials as
degenerate polynomials of higher degree), one may even
assume that the degree of the latter is equal to k. In other

words, there should exist M/0 ∈R(k−1)n×km−1(k−1)n such that,
for any (h2, . . . ,hm) in [0, h̄2]×·· ·× [0, h̄m],

Mh2,...,hm ≡M/0(h
[k]
m ⊗·· ·⊗h[k]

2 ⊗ Ikn) .

Now, one may check easily that the definition (13) of the
functions Ψ is such that, for any M ∈R(k−1)n×(k−1)ki+1n, Π∈
Rn×ki+2n, h̄ ∈ R, the following fundamental identity holds,
whose proof is left to the reader (Hint: use (5) and (3)):

Ψ
ε,i
k,n

(
M(h[k]⊗ I(k−1)kin),Π(h[k]⊗ Iki+1n), h̄

)
= Ψ

ε,i+1
k,n (M,Π, h̄)(h[k]⊗ I(k+ε−1)kin) . (20)

Thus, concentrating on the dependence on h2 uniquely,

Ψ
ε1,0
k,n

(
M/0(h

[k]
m ⊗·· ·⊗h[k]

2 ⊗ Ikn),AS(h[k]
m ⊗·· ·⊗h[k]

2 ⊗ Ikn), h̄1

)
is equal, for any ε1 ∈ {0,1}, to

Ψ
ε1,1
k,n

(
M/0(h

[k]
m ⊗·· ·⊗h[k]

3 ⊗ Ik2n),AS(h[k]
m ⊗·· ·⊗h[k]

3 ⊗ Ik2n), h̄1

)
(h[k]

2 ⊗ I(k+ε1−1)n) .

Eliminating now h2 ∈ [0, h̄2] shows that the inequality part
in (17) is equivalent to the existence of k such that, for any
ε1 ∈ {0,1}, for any (h3, . . . ,hm) ∈ [0, h̄3]×·· ·× [0, h̄m], there
exists Mε1,h3,...,hm such that, for any ε2 ∈ {0,1}, (21) holds
(see next page).

By the argument previously cited, Mε1,h3,...,hm may be in
turn written as a polynomial in (h3, . . . ,hm). Proceeding, one
eliminates the variables hi one by one, to finally end up
with (18b)-(18c). Thus, the existence, for any h ∈ [0, h̄1]×
. . . [0, h̄m], of Sh fulfilling (17) is equivalent to the existence
of a positive integer k such that LMI (18) holds. Incidentally,
notice that the number of the unknowns of type M is indeed
2m−1, being the result of 1+2+ · · ·+2m−1.

The proof of the two remarks at the end of the statement
is straightforward. The solvability of (18) for larger integers
is obtained by directly constructing new solution from the
basic one, corresponding to addition to zero higher degree
terms in the underlying polynomials.

IV. APPLICATION TO TIME-DELAY SYSTEMS
ANALYSIS

A. Problem Formulation

The system studied in the sequel is:

ẋ(t) = A0x(t)+
m

∑
i=1

Aix(t−hi), (22)

for fixed matrices Ai ∈ Rn×n, i = 0, . . . ,m. Notice that more
involved configurations, where multiples or sums of delays
are present, may be treated by the same considerations. We
would like to determine whether the system is stable for all
hi ∈ [0, h̄i], h̄i ≥ 0 fixed. We assume that the system is stable
when h = 0m i.e.:

Assumption 1: The matrix ∑
m
i=0 Ai is Hurwitz. �

The following result, borrowed from [18] reduces the
delay-dependent stability problem to dichotomy.



Ψ
ε2,0
k,(k+ε1−1)n

(
Mε1,h3,...,hm ,Ψε1,1

k,n

(
M/0(h

[k]
m ⊗·· ·⊗h[k]

3 ⊗ Ik2n),AS(h[k]
m ⊗·· ·⊗h[k]

3 ⊗ Ik2n), h̄1

)
, h̄2

)
> I(k+ε1−1)(k+ε2−1)n . (21)

A .=


A0 +∑

m
i=1 Ai(In⊗Dq) A1(In⊗Cq) A2(In⊗Cq) . . . Am(In⊗Cq)
(In⊗Bq) (In⊗Aq) 0 . . . 0
(In⊗Bq) 0 (In⊗Aq) . . . 0

...
...

...
...

(In⊗Bq) 0 0 . . . (In⊗Aq)

 , (23)

A .=



A0 +∑
m
i=1 Ai(In⊗Dq) A1(In⊗Cq) A2(In⊗Cq) . . . Am(In⊗Cq)

1
δq

(In⊗Bq) 1
δq

(In⊗Aq) 0 . . . 0
1
δq

(In⊗Bq) 0 1
δq

(In⊗Aq) . . . 0
...

...
...

...
1
δq

(In⊗Bq) 0 0 . . . 1
δq

(In⊗Aq)

 . (24)

Theorem 2 (see [18, Lemma 2]): Under Assumption 1,
system (22) is asymptotically stable for any (h1, . . . ,hm) ∈
[0, h̄1]×·· ·× [0, h̄m] if and only if ∀ω ∈ R, ∀(h1, . . . ,hm) ∈
[0, h̄1]×·· ·× [0, h̄m],

det

(
jωIn−A0−

m

∑
i=1

Aie− jωhi

)
6= 0 .

�
Under frequency domain form, the system can be written

sx = A0x+
m

∑
i=1

Aiui, ui = e−shix.

B. Padé Approximation of e− jωh

The method displayed in [18] consists in replacing the
delay transfer function e−sh by a parametrized Padé approx-
imation pq(sh) of order q (which can be any nonnegative
integer). The scalar transfer function pq is rational, proper
and stable, and constructed in such a way that, for a certain
δq > 1 and for all real ω and h̄≥ 0,

{ pq( jωh) : 0≤ h≤ h̄ } ⊂ { e− jωh : 0≤ h≤ h̄ }
⊂ { pq( jδqωh) : 0≤ h≤ h̄ } . (25)

Inclusions (25) express that, for any real ω , the arc of the unit
circle defined by { e− jωh : 0≤ h≤ h̄ } is jammed between
an inner and an outer approximation, two other arcs that are
defined by the Padé approximation pq. Note in particular that
pq(0) = 1. The parameter δq in (25) is chosen in such a way
as to be minimal, that is [18]:

δq
.=

1
2π

min{ω > 0 : pq( jω) = 1} . (26)

We now reproduce a result given in [18].
Lemma 3: A possible choice for a stable transfer function

pq fulfilling (25) is

pq(s)
.=

dq(−s)
dq(s)

,

where dq is a polynomial of degree q, given by:

dq(s)
.=

q

∑
j=0

(2q− j)!q!
(2q)! j!(q− j)!

s j .

Moreover, the corresponding sequence (δq)q≥1, defined by
(26), is decreasing and tends towards 1 when q→+∞. �

Using the approximation defined in Lemma 3, the gap
between inner and outer approximations can be made arbi-
trarily small by choosing high enough order q. Numerically,
δ3 ' 1.2329, δ4 ' 1.0315, δ5 ' 1.00363.

We call inner system, resp. outer system, the systems
obtained from (22) by replacing the delays with Padé approx-
imation pq(shi), resp. pq(δqshi). The interest of this specific
choice for approximation lies in the following result.

Theorem 3 ([18, Theorems 1 to 3]): Robust stability of
the outer system implies delay-dependent stability of (22),
which in turn implies robust stability of the inner system.

Moreover, if (h̄1, . . . , h̄m) is maximal in the subset of
R+m for which the outer system is robustly stable on
[0, h̄1]× ·· · × [0, h̄m] (meaning that robust stability fails on
any [0,δ h̄1]×·· ·× [0,δ h̄m], for δ > 1), then system (22) is
not delay-dependently stable on

[0,δqh̄1]×·· ·× [0,δqh̄m] .

�
As an example, for q = 5, the robustness margin associated

to the outer system provides a lower estimate of the delay
margin for the system of interest (22), with a relative error
smaller than 0.4%.

C. Reduction to Singular Perturbation Problem

Let a state space realization of the (scalar) Padé approxi-
mation pq of Lemma 3 be given by the system

hξ̇ = Aqξ +Bqx, u = Cqξ +Dqx ,



where Aq ∈ Rq×q, Bq ∈ Rq×1, Cq ∈ R1×q, Dq ∈ R. Then the
inner, resp. outer, comparison system

sx = A0x+
m

∑
i=1

Aiui, ui = (In⊗ pq(shi))x ,

resp.

sx = A0x+
m

∑
i=1

Aiui, ui = (In⊗ pq(δqshi))x ,

can be realised by (10), where

n0
.= n, ni

.= qn, i = 1, . . . ,m , (27)

and the matrix A ∈ R(mq+1)n×(mq+1)n is given in (23), resp.
(24).

One is now in position to deduce the main result of the
paper.

Theorem 4: Suppose Assumption 1 holds. System (22) is
delay-dependently stable if and only if there exist positive
integers q and k such that LMI (18) is fulfilled, with (27)
and A given by (24). �

Recall that (Aq,Bq,Cq,Dq) is a realisation of the transfer
pq(s) defined in Lemma 3. The family of LMIs constructed
from the statement, which is indexed by the integers q
(corresponding to the degree of Padé approximation) and
k (see the comments after Theorem 1), provides more and
more precise LMI conditions which are sufficient for delay-
dependent stability of (22). They are also asymptotically
necessary, in the sense that they are fulfilled for large enough
q and k when the system is delay-dependently stable. In con-
sequence, Theorem 4 provides a semi-decidable necessary
and sufficient condition for delay-dependent stability.

The choice of q, the degree of Padé approximation, is
not a big deal, as the assorted precision may be estimated
quantitatively by δq (see Section IV-B). In practice, q = 5 is
enough.

V. CONCLUSIONS

A family of more and more precise sufficient conditions
has been proposed in this paper, to check delay-dependent
stability of linear systems with multiple incommensurate de-
lays. It is shown that these conditions are also asymptotically
necessary, meaning that delay-dependent stability implies
their solvability from a certain rank and beyond. Moreover,

they may be checked exactly, being expressed as feasibility
problem for some LMIs.
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