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Abstract— The paper presents a result which relates connect- agents to a common equilibrium. This analysis will be cakrie
edness of the interaction graphs in a multi-agent systems Wi out in the presence of limited transmission speed of the
the capability for global convergence to a common equilibim .t mation between the agents. In particular, we propose a

of the system. In particular we extend a previously known reslt - L .
by Moreau by including the possibility of arbitrary bounded extension of the contributions by Moreau [10], [11], mainly

time-delays in the communication channels and relaxing the N two directions:
convexity of the allowed regions for the state transition ma of « The new setting allows the presence of arbitrary
each agent. b s
ounded communication delays.
« A central assumption in the results [10], [11], namely
that the future evolution of the studied system is con-

Recent years have witnessed a growing interest in the strained to occur in the convex hull of the agents states,
study of the dynamical behaviour of the so called multi- is removed.

agent systems. unghly speaking these can be. thought.ﬁ{e first aspect comes as a very natural question both from
as complex dynamical systems composed by a high number

f simol s th ts. Each of th dates its st practical and a theoretical point of view. Communication
of simpler-units, the agents. ach of them updates 1ts s a&%lays are in fact ubiquitous in the “real” world and it is wel

acc_ordmg to some rule, whose Input-Output dynamics ar&-\own their potential destabilizing effect in conjunctiaith

typically mgch simpler and ”.‘“Ch beFter und_erstood, anfbedback loops, here induced by the graph topology of the
on the basis of the available information coming from .th ommunication channels which need not be of a hierarchical
other agents. All of them, though not necessarily identic Cgpe. It is therefore remarkable to see how, at least in the

I. INTRODUCTION

_shatlre n fa<_:t som::' ctommobr: featgre of mttTr((ejs: (say f pecific set-up we are considering, this destabilizingcgffe
instance a given output variable) and are coupled together oes not take place and the same global behaviour of the

communication channels. The focus of the current researﬁl\hlti-agent system in terms of convergence to a common
is precisely on how the global behaviour of the SySte"Equilibrium follows also in the extended set-up.

(for instance questions concerning the global stabilityher . . L .
T The second extension deals with convexity issues; one
overall synchronization) is influenced by the topology & th . .
of the technical tools used in order to enforce a common

coupling on one hand (this is an analysis problem in MaYe haviour in systems whose state takes value in Euclidean

respects) or the dual question of how to induce a certain . : . .
X space, is to have local evolutions point always inside the
desired property of the ensemble based on some form of loc . . . S
. . o convex hull of all variables. This makes life easier in a
coupling for the agents. Problems of this nature arise inyman

) . . . certain respect but it is an unnatural assumption in more
different fields, such as in the theory of coupled oscillstor | P for i h i P "
[7]. [13], in neural networks [5], in economics or in thegenera contexts, for instance when oscillators networks a

manouvering of groups of vehicles [8]. For instance in [gﬁon&dered (these are typically modeled as systems egplvin

the so calledendezvougroblem is considered, namely how n a ftorus) or systems evolving in partially obstructed
. P! ' YNOWe, tlidean spaces (for instance on a plane minus a circle).
to design a local updating rule, based on nearest ne|ghb[gr

. X . elaxing convexity is meant as a first step in the quest for
interactions, which would ensure convergence of all of the,_, .. o . .
Stability conditions which can work in more general spaces.

agents to an unspecified common meeting point. Emergenc . .
A efore going on further, we present the main elements of
of a global behaviour is therefore a consequence of the Ioc%. : .
. : ._this construction, developed below. The multi-agent syste
updating rule, without the need for a leader nor of centealiz : . .
- ; under study will be described by #me-dependent graph
directions being broadcasted. o . .

) . o/ (t), describing the transfer of information between the
Despite the common traits, the most powerful results are ; . .
obtained when specializing to systems of a given simpl%gents at time, _and aset of rule&accordlng tp .WhICh each

agent updates its state at timhe-1. The definition of the
zatter is done by the introduction of two types of objects,
Which we present now (complete definitions are to be found

in Section Il below).

emphasis is on how the topology of interconnections betwe
agents (possibly time-varying) affects the convergencallof
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functionfor the system. Recall thatx(t) represents the “position” at time of
o It is then necessary to define the rules according tthe agentk. The evolution of the latter depends upon the
which the agents update their state, given the (possibomplete system statét) (including delayed components),
delayed) information on the position of the other agentthrough the time-varying mag(</(t)). For a trajectory of
they received. For this, each agénis attributed a set- (1), we calldecision set of agent &t timet the value taken
valued mapec which, given the communication graph by e(<7(t))(X(t)). The specificity of the problem lies in
4/ (t), defines the set of allowed positiogag.<7(t)). An  these maps: they depend upon the topology of the inter-agent
important point here is that, whatever the informatiocommunications, modeled by thgaph <7 (t).
received by each agent, the new positions cannot induceThe modeling of the communication network is presented
an increase of the set-valued Lyapunov function alongelow in Section II-A. The construction of the decision sets
the trajectories. inside which, given the communication network, each agent
The definition of the new class of multi-agent systemsgnay update the value of its state, is made in Section II-B.
studied here is done and commented in Section Il. Theast, we provide some examples in Section II-C.
stability is studied and the main results are given in Sectio . .
) : A. Inter-agent communications modeling
[ll. Complete demonstration of the results presented ia thi R ) o )
note may be found in [1]. Last, it is fair to underline the deep The first ingredient of the construction is the family of
connections of the present work with the resultspantially ~ continuous set-valued mapg(e/) : X" = X taking on
asynchronous iterative methogsesented in [3, Chapter 7]. compact valugsand defined fork € .4” and any directed
Notations: As often as possible, we use the notationgraph.s7. The latter will define, according to the position of
introduced by Moreau [10], [11]. Following him, we dis- the other agents, in which subsetXfagentk is allowed to

tinguish between the inclusion, denoted and the strict Cchoose its future state. . .
inclusion, denoted=. The topological interior of a set is Here, we are concerned by information transfer from the

denotedint. past to the present. In other words, we need to consider
We study systems with agents whose position at time graphs in X" linking some past and/or present values

t are written asxy(t),...,x,(t) in the finite-dimensional X«(t —j) of the states of an agerk to another agent.

spaceX. In the setting introduced in Moreau’s contribu-Consequently, at each time, the communication grapls

tions, the corresponding overall state variablexig) = aweighted, directed multigraptiefined on the set/” of the

(x1(t),...,%(t)) € X". Here, we consider systems with de-nodesthat is a set of ordered couples of nodes (with possible

lay smaller than a given integdr > 0. In consequence, repetitions), callecrcst. To each of these arcs is associated a

the complete state variable of the system(ig(t),x;(t — Weight,chosen in/Z, to be interpreted as the corresponding

1),....x(t—h+1),... X (t),.... % (t—h+1)) e XM information delay. All the considered graphs will contain
We denotex™= (xi,...,X,n) an arbitrary element oK™  all the loops of zero weight, corresponding to the ability fo

and, when considering the dynamical system, we writéach agent to use without delay the knowledge on its own

Ke(t) = (X (1), Xc(t = 1),...,%(t —h+1)) for all ke .4 = state. The graphs fulfilling all these conditions will belesll

{1,...,n} and X(t) = (%(t),...,%(t)). We also use the in the sequebdmissible graphs

corresponding decomposition of any elemenof X" as We shall writei ~., k when an arc of weighj links in

%= (%,...,%) (which amounts to identifyX"™ to (X™)"). & the node to the nodek (with i,k € .4, j € 7). A node

When needed, any, € X" is decomposed according tok € .4 is said to beconnectedto a nodel € .4 if there

X« = (X%0,---,X%h-1), in such a way that for the variables exists apath from k to | in the admissible graplky which

of the dynamical systems under study;(t) = x(t —j), respects the orientation of the arcs. Last, given a sequence

ket je s ={0,...,h—1}. Similarly we denote by of admissible graphs7(t), t € N, a nodek € .4 is said

A/ ={1,2,....,hn}. The previous notation is necessaryconnectedto a nodel € .4 on an interval IC N if k is

in order to distinguish between the delayed and the actuebnnected td for the graphU., #(t).

values of the position of the agents. Coherently with the Figure 1 provides an example of admissible graph. For

notations introduced above, we sometimes abbrevigte the graph represented therein, agents 1 and 2 are mutually

and write simplyxy. connected and agent 3 is connected to 1 and 2, but neither 1
Last, given anyxe X" we often need to embed it on nor 2 is connected to 3. Notice that generally speaking there

2%, according to the following ruler(X) = {X1,%,...Xn}. may exist more than one arc between two distinct nodes, and

In this way the state of the system is mapped to a finitthat a node may be connected to itself (via delayed values).

collection of points in theX space. Definition 1: Consider an admissible grapk’ and a
nonempty subse?”’ C .4". The set Neighbo(s#, <7) is the
Il. A CLASS OF MULTI-AGENT DYNAMICAL SYSTEMS set of those nodek € 4"\ " for which there isl € .

. oo . such that (at least) one arc frokno | exists. When? is a
This section is devoted to the presentation of the dynam- ( )
ical system under study. We study here a special class Ofiror details on the basic graph-theoretic notions needeel kise reader
nonlinear difference inclusions with delathat we write: is referred e.g. to [].
5 Recall that#” = {1,...,n}, s = {0,...,h— 1}, wheren is the number
X(t+1) € ex (27 (1)) (X(t)) . (1)  of agents and— 1 the larger transmission delay.



1) for anySe.7, the functionds(x°,x) : Sx S— [0, +oo)
defined as

ds(x,x") = inf {1engen(y) : @ :[0,1] =TS

W(O) =, y(1) =x}
is well-defined and continuous. Defipe: . — R*:

u(S) = max ds(x°,xb). ()
X0 xles

Agent 1

Agent 2

Fig. 1. An example of admissible graph for a system with ttagents.

Then, for allSe .7,

singleton{l}, the notation Neighbo(k <7) is used instead « U(S)=0if and only if Sis a singleton.
of Neighbor¢{l}, «7). [ | o U(S) is at least equal to the (euclidian) diameter
We impose to the maps the following assumption. of S, and equal to this value B is convex.
Assumption A:For allk e .4 and all admissible grap, * M is lower semicontinuous irf, but nowhere
the set-valued mapy is continuous and takes on compact continuous.
values. Moreover, 2) for anySe ., let ¢ be as in (2) and
o . Lo .
o &( )X ={x}if {xj i~k ={x} ri(S) = ¢ (ri(¢(9)) .
* 2‘(%)0() cr a9 ({Xk} Ui e k}) otherwise. whereri(¢(S)) designates the relative interfoof the

convex setp(S). Then, for allSe .7,
« ri(9) is independent of the choice df.
. ri(S) =0 if and only if Sis a singleton.
e int SCri SCS

The exact meaning and the properties of the set-valued
map ri o are the subject of Section II-B. However, we
may already make some remarks on the form of the right-
hand side of the problem. Clearly, Assumption A implies that NG S e
the evolution of each agent depends only upon the possibly » ri(S) is the relative interior o5if Sis convex®

delayed information received from its neighbors. The case Lemma 1 p“ermlts o meas:Jre the d_|stance I_Jetween points
] . . . of a setSe .7 “along the arcs”. It permits to define extended
where{xj : i~g k} ={x} is realized when either the

: ; . notions of diameter and of relative interior, which coireid
agentk has no neighbor and the set involved in the formul

. il th bl delaved - edT ith the usual ones for convex subsetsXaf By definition,
IS emp_ty, ora the (possibly delayed) positions receh . we call “relative boundary” of setSin .7 the following set:
the neighboring agents are also equal to the present positio
xx of agentk; in this case, no motion is allowed. We shall rd(S) =S\ri(S) .

see below that in the present framework the use by eaci?s

agent of the present value of its own position is mandato@ 0, according to the d?f'mt'on Od.s n Lemma_ L, we
for stability, see counterexample in Example 6. efine, for any subseS,S’ of a setSin . the S-distance

from S to S’ as:

B. Construction of the decision sets ds(S,S) = inf  ds(,x) . (4)

. . . xVeg xleg!
The second ingredient necessary for the construction of e

the dynamical system under study isset-valued map : We now gather the properties that must fulfil, and
2X = X, taking oncompact valuest has a central role in the afterwards comment on their meaning and consequences.
definition of the dynamics, and it will be shown afterwards Assumption B:The set-valued maw : 2X = X is con-
(cf. in particular the proof of Theorem 2) that it plays théero tinuous with respect to the topology induced by Hausdorff
of a “set-valued Lyapunov function” for the studied systemmetric and maps the bounded subsetXdb .»". Moreover,

In order to state the properties tramshould fulfil, we have the following should hold:
to introduce beforehand some notions. First of all, defifie 1) SC o(9) with equality if Sis a singleton.
a set of subsets of in which o will be compelled to take ~ 2) 0(S) =g oo(S) for all S 2%,

on its values, as: 3) SCS= o(S)Ca(S forall SS e 2%,
4) If Sis bounded and not a singleton, for ake S, there
& ={Sc X : Scompact andi¢ : X — X, ¢ bijective, existsZy C rda(S) such that¥xNS# 0 andx ¢ Z.
6,91 Lipschitz andg(S) convex . (2) Moreover, if S C o(S):
a) if ri 0(S)NZx #0, thenS C 3, (and in partic-
Important consequences will proceed from the fact that ular, x ¢ S).
takes on values i, inherited from properties summarized b) if dg(s)(S,2x) >0, thenu(a(S)) < u(a(9)).

in the following result.
Lemma 1:Let.” be defined by (2). 3j.e. its interior when regarded as a topological subspadts affine hull.



X2

5) poo is continuous. |
Remark that at this point, the problem under study is fully
understandable: our goal is to find stability conditions for
systems defined by (1), where the mapserify Assumption
A for a given mapo fulfilling Assumption B, and where
the meaning of the relative interiari has been defined
previously by Lemma 1.
Important consequences of Assumptions B.1 to B.5 are Fig- 2. The convex-hull, Moreau's set-valued Lyapunov fior
now discussed. We shall see further in Theorem 1, that
Assumptions B.1-B.3 are indeed sufficient to forbid inceeas 2w
along time of the natural set-valued Lyapunov function of
the system. The additional Assumptions B.4-B.5 induce the
strict decrease of the set-valued Lyapunov function (see K 3
&

a(x)

X1

X5

Theorem 2) . We provide in the following lemma a direct
consequence of Assumption B.1.

Lemma 2:Assume Assumption B.1 is fulfilled. Then, “®
for any boundedScC X, cardS> 1= ri o(S) # 0 and Fig. 3. Illustration of Example 2.
H(o(S) > 0. |

We now come to the central hypothesis, stated in As-
sumption B.4. This Assumption applies to arbitrary (but nons follows:
trivial) groups of agents§, which may comprise indifferently
true agents or “virtual” agents, viz. informations relatito 2y = U x+maxt:x+cte o(9}c,
the position of a true agent at previous sampling times. ceT Cy(s)(X),lcl=1
More closely, for each agernt, there exists a portion of
the boundary ofg(S), denoted byzx, whose elements are : X
irreversibly attracted outside of it when using informationtn® Seto(S) atx (otherwise called tangent cone, agS) is
received from any agent not Ky (such as«itself) according convex here; see _[2’ pp. 176-177 and 219] for _detall).
to the rule edicted in Assumption A. The second part of EXa@mple 2 (a different convex exampl&pr a given ba-
Assumption B.4 imposes that such an irreversible escapt € | = 1., p of X, take
from %, comes with astrict decreaseof the diameter of
the set-valued Lyapunov function of the system @onvex  0(S) = [mine{xmaxe{x} X e X {mine;x,maxe;xi} -
. . L XeS XeS XeS XeS
setsS, S C X, S C Simplies u(S) < u(9), but this is not
true for general sets it defined by (2)). In this example, the convex hull is applied “componentwjse”
Generally speaking, the s&, defining a critical part of see Figure 3. Remark that cdi8)y C o(S) for this case, but
the relative boundary otr(S) relative tox, looks like an this relation is not mandatory, see Example 4 below.
union of “faces” ofrdo(X) containing an extremity of each  In the example depicted on Figure 3, one may check that
geodesic ino(S) originating in x and which are maximal the choice consisting in taking fai = UceTcy(g (. Jcl=1 X+
(for the inclusion) among the set of these geodesics. Remarax{t : x+ ct € a(S)}c, fulfills the Assumptions. [ |
that sets,, >, associated to different pointsy in S may be Example 3 (other convex example§ne may also
equal. define g(S) as the smaller set containing and with
Similarly to what happens within Moreau’s setting, oneboundary parallel to giverp+ 1 non-parallel hyperplans
has the following result. (where X = RP), see Figure 4. More precisely, let
Lemma 3:Assume Assumptions B.1-B.4 be fulfilled. > = con\S) and ey,...,ep;1 be (p+ 1) vectors in
Then, cardS> 1 = cardSNnrdo(S)) > 1. B X such that for some positved € RP*1 we have
Last, notice that Lemma 1 and the continuity assumptiopjAj€j = 0. The seto(S) is a polytope defined as:
on o implies that the magu oV is already lower semicon- Lxe X - eJ-Txg ma&/gzeijC i=1,...,p+1}, containing
tinuous onX". Assumption B.5 thus represents a slightlthe points xy,...,%n. Symmetrically we may define
stronger regularity assumption. ox) = Ixex : eijz minx,ezeij/’ i=1...p+1l.

Similarly to what occurs in Example 2, one may take for

>y the portion of the boundary obtained by following the
We present here different examples and counter-examphasctors coming out from the tangent conexadll the way

of mapso fulfilling the properties previously defined. to their extreme intersection point with the boundary of
Example 1 (convex hull)in Moreau’s work, a(S) is d(S), and the Assumptions B.1-B.5 are fulfilled. |

taken to be the convex hull d§, see Figure 2. One may Remark that the smallest ball or the smallest hypercube

check easily that Assumptions B.1 to B.5 are all fulfilledcontainingS doesnot fulfil the requested properties. For in-

Here, the set&y involved in Assumption B.4 can be definedstance the smallest circle containing a triangle neverainsit

where TCy g (x) denotes the Bouligand contingent cone to

C. Examples



Lg%
X2
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x3

Fig. 6. Map obtained by intersection of the maps from Figl8esd 4.
Fig. 4. Other convex examples of set-valued Lyapunov fonctisee

Example 3. ) ) )
resulting map fulfills all the properties. |

% I1l. RESULTS

o Before stating the results of this paper, we recall the no-

tions under discussion below, see [10], [12]. As in Moreau’s

papers, we calequilibrium pointany element of the state

7] space which is the constant value ofeguilibrium solution

| . Definition 2: Let 2~ be a finite-dimensional Euclidean
space and consider a continuous set-valued map N x

Z = Z taking on closed values, giving rise to the differ-

ence inclusion

X(t+1) € et,x(t)) . (5)

Consider a collection of equilibrium solutions of this egqua
tion and denote the corresponding set of equilibrium points
Fig. 5. An example of maw giving rise to nonconvex sets. Notice that DY ®: ¢ € ® if and only if ¢ € e(t,¢) for all t € N.

cony(S) Z 0(S), and thatp(o(9)) is larger thanu(conu(S)), the diameter With respect to the considered collection of equilibrium

of conys). solutions, the dynamical system is called

1) stableif for each¢ € ®, for all c; > 0 andtp € N, there
the smallest circle containing the shortest of its edges;hvh is ¢, > 0 such that every solutiod of (5) satisfies: if
violates monotonicity of the map. |{(to) — @] <c1 then[{(t) — [ <cz, t > to.

Example 4 (nonconvex examplegor any bijective ~ 2) boundedif for each ¢ € ®, for all ¢; >0 andtp €
transformationg : X — X which is Lipschitz together with N, there isc; > 0 such that every solutiog of (5)
its inverse, one may take satisfies: if| {(to) — ¢| < cy then|{(t) — [ <z, t > to.

3) globally attractiveif for each ¢ € @, for all ¢;,¢, >0
a3(S) = (0 (9(9)) , andty € N, there isT > 0 such that every solutiof of

where o fulfils all the Assumptions. In generady(S) € (5) satisfies: if|¢(to) — g1 < &1 then there isp; € ®

. . . . - > .
con(S) and is not convex: indeed, this latter property is such that{(t) ¢2.| <0t _'[_04_-'_I'
. _ 7 .~ 4) globally asymptotically stablé it is stable, bounded
not essential. Such an example of nonconvex sets is given .
1 and globally attractive.

. . . 2
2 g _
in Figure 5, obtained foX = R?, x; = (9 X2=\5)' If ci (respectivelyc, andT) may be chosen independently of

Cosa”tz sina ||| tp in Item 1 (respectively Items 2 and 3) then the dynamical
XB=1_1 90 = (—sina||x|2 cosa|x||2) x, o =0.04, system is called uniformly stable (respectively uniformly
ando(S) = convS). bounded and uniformly globally attractive) with respect to
Notice that, generally speaking, the systems generatéfte considered collection of equilibrium solutions. H
along this principle are such that the mapn (2) is identical Notice that the above notions are uniform with respect to
for all the setsa(S). The setsZx may be obtained as for all trajectories of (5).
Example 1, up to transformation k. | We now state a first result on boundedness and (simple)

Example 5 (intersection of decision set$)hen o and stability, analogous to [10, Theorem 2].
o’ fulfil the properties stated above, an interesting issue is Theorem 1:Assume that Assumptions A and B.1-B.3 are
to see whetheo N o’ do. One sees easily that Assumptiondulfilled. Then the discrete-time system (1) is uniformipig
B.1-B.3 are fulfilled. The validity of B.4 and B.5 dependsally bounded and uniformly globally stable with respect to
upon the configuration of the sek, ), corresponding to the collection of equilibrium solutiong; (t) = --- = x,(t) =
o and ¢’. In Figure 6 is presented an example where theonstant. |



The proof of Theorem 1 [1] is based on the evolution of

2 e ,0;\\\ 0
the following set-valued functio : X"" = X, Loi" o ‘9‘ TN
Agent 1 Agent 2 Agent 3

V(X) = o(n(X)) (6)

~ Fig. 7. Graph re_presenting the information flow for Example\&n (dots)
along the solutions of (1). The fact thiat> V (X(t)) is non- and odd (dash) times.
increasing is stated in the following result.

Lemma 4:Let x be a solution of equation (1). Then, for ) ) o )
allteN, The uniformity which is meant in the statement of Theo-

. . rems 1 and 2 is with respect tone. One may check from the
V(X(t+1)) CV(X(t)) - L proofs in [1] that it is also valid with respect to the diffate
In view of Lemma 4, one may now have a clearetrajectories of (1).
understanding of the fact that the maghas a double role: it Theorem 2 states asymptotic stability for any (finite) val-
is necessary to define the flow, but also serves as a set-valyr® of the delay. Of course, as may be checked elementarily,
Lyapunov function of the systems. Indeed, Assumption Ane values of the latter has a determining impact on the
states that each agent has to remain in theVsét)), of  convergence speed of the solution. Quantitative analyisis o
which it has only an imperfect knowledge, and does itgijs issue is scheduled as a next step.
best to come closer from the other agents it has detectedExample 6: The necessity for each agent to use tinele-
(this is the meaning of the use of the relative interior). Inayedvalue of its own position may be seen by the following
particular, when no new information is received, the onlgounter-example, see Figure 7. Heme; 3 andh = 2. Agent
possible choice is to stay at the same place. 2 sends alternativaly to agent 1 and 3 the value of its positio
As detailed in Section II-B, contrary to, the mapri 0  at the previous instant, and receives the present valueef th
is not monotone: violation of this rule may occur whenposition. Assume the agents use at titrte value of their
S ¢ Sand theo-hulls o(S),0(S) have different topological position at timet — 1 to elaborate the update applied at time
dimensions as spheres. Up to this subtlety, a consequence of1. Clearly, for the corresponding graph, the agent 2 is
Assumption A is that, in generalhe larger the quantity of connected to all other agents across any intefiah- 1].
information received by agent k from its neighborhood, thejowever, provided that agents 1 and 3 are initially located
largest the set of possible updates it may cho(ss® the at different points, the positions of agent 2 at even and

monotony property in Assumption B.3). Although this mayodd times tend in general toward two different values. As
sound paradoxical at first glance, this increase of the wecis indicated by the existence of periodic motion, the strict

possibilities is quite natural: it means that supplementargecrease of the map— p(V(X(t))) may fail. ]
information either leads to make a choice which could have
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