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Abstract— The paper presents a result which relates connect-
edness of the interaction graphs in a multi-agent systems with
the capability for global convergence to a common equilibrium
of the system. In particular we extend a previously known result
by Moreau by including the possibility of arbitrary bounded
time-delays in the communication channels and relaxing the
convexity of the allowed regions for the state transition map of
each agent.

I. I NTRODUCTION

Recent years have witnessed a growing interest in the
study of the dynamical behaviour of the so called multi-
agent systems. Roughly speaking these can be thought of
as complex dynamical systems composed by a high number
of simpler units, the agents. Each of them updates its state
according to some rule, whose Input-Output dynamics are
typically much simpler and much better understood, and
on the basis of the available information coming from the
other agents. All of them, though not necessarily identical,
share in fact some common feature of interest (say for
instance a given output variable) and are coupled together by
communication channels. The focus of the current research
is precisely on how the global behaviour of the system,
(for instance questions concerning the global stability orthe
overall synchronization) is influenced by the topology of the
coupling on one hand (this is an analysis problem in many
respects) or the dual question of how to induce a certain
desired property of the ensemble based on some form of local
coupling for the agents. Problems of this nature arise in many
different fields, such as in the theory of coupled oscillators
[7], [13], in neural networks [5], in economics or in the
manouvering of groups of vehicles [8]. For instance in [9]
the so calledrendezvousproblem is considered, namely how
to design a local updating rule, based on nearest neighbor
interactions, which would ensure convergence of all of the
agents to an unspecified common meeting point. Emergence
of a global behaviour is therefore a consequence of the local
updating rule, without the need for a leader nor of centralized
directions being broadcasted.

Despite the common traits, the most powerful results are
obtained when specializing to systems of a given simple
form. Hereby we take a slightly different approach. The
emphasis is on how the topology of interconnections between
agents (possibly time-varying) affects the convergence ofall
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agents to a common equilibrium. This analysis will be carried
out in the presence of limited transmission speed of the
information between the agents. In particular, we propose an
extension of the contributions by Moreau [10], [11], mainly
in two directions:

• The new setting allows the presence of arbitrary
bounded communication delays.

• A central assumption in the results [10], [11], namely
that the future evolution of the studied system is con-
strained to occur in the convex hull of the agents states,
is removed.

The first aspect comes as a very natural question both from
a practical and a theoretical point of view. Communication
delays are in fact ubiquitous in the “real” world and it is well-
known their potential destabilizing effect in conjunctionwith
feedback loops, here induced by the graph topology of the
communication channels which need not be of a hierarchical
type. It is therefore remarkable to see how, at least in the
specific set-up we are considering, this destabilizing effect
does not take place and the same global behaviour of the
multi-agent system in terms of convergence to a common
equilibrium follows also in the extended set-up.

The second extension deals with convexity issues; one
of the technical tools used in order to enforce a common
behaviour in systems whose state takes value in Euclidean
space, is to have local evolutions point always inside the
convex hull of all variables. This makes life easier in a
certain respect but it is an unnatural assumption in more
general contexts, for instance when oscillators networks are
considered (these are typically modeled as systems evolving
on a torus) or systems evolving in partially obstructed
Euclidean spaces (for instance on a plane minus a circle).
Relaxing convexity is meant as a first step in the quest for
stability conditions which can work in more general spaces.

Before going on further, we present the main elements of
this construction, developed below. The multi-agent system
under study will be described by atime-dependent graph
A (t), describing the transfer of information between the
agents at timet, and aset of rulesaccording to which each
agent updates its state at timet + 1. The definition of the
latter is done by the introduction of two types of objects,
which we present now (complete definitions are to be found
in Section II below).

• A set-valued mapσ , is defined, which associates to the
set of present and past states of the agents a compact
set in the state space common to all the agents. This
map will play the central role of aset-valued Lyapunov



function for the system.
• It is then necessary to define the rules according to

which the agents update their state, given the (possibly
delayed) information on the position of the other agents
they received. For this, each agentk is attributed a set-
valued mapek which, given the communication graph
A (t), defines the set of allowed positionsek(A (t)). An
important point here is that, whatever the information
received by each agent, the new positions cannot induce
an increase of the set-valued Lyapunov function along
the trajectories.

The definition of the new class of multi-agent systems
studied here is done and commented in Section II. The
stability is studied and the main results are given in Section
III. Complete demonstration of the results presented in this
note may be found in [1]. Last, it is fair to underline the deep
connections of the present work with the results onpartially
asynchronous iterative methodspresented in [3, Chapter 7].

Notations: As often as possible, we use the notations
introduced by Moreau [10], [11]. Following him, we dis-
tinguish between the inclusion, denoted⊆, and the strict
inclusion, denoted⊂. The topological interior of a set is
denotedint.

We study systems withn agents whose position at time
t are written asx1(t), . . . ,xn(t) in the finite-dimensional
spaceX. In the setting introduced in Moreau’s contribu-
tions, the corresponding overall state variable isx(t) =
(x1(t), . . . ,xn(t)) ∈ Xn. Here, we consider systems with de-
lay smaller than a given integerh > 0. In consequence,
the complete state variable of the system is(x1(t),x1(t −
1), . . . ,x1(t −h+1), . . . ,xn(t), . . . ,xn(t −h+1))∈ Xhn.

We denote ˜x = (x1, . . . ,xhn) an arbitrary element ofXhn

and, when considering the dynamical system, we write
x̃k(t) = (xk(t),xk(t − 1), . . . ,xk(t − h+ 1)) for all k ∈ N

.
=

{1, . . . ,n} and x̃(t) = (x̃1(t), . . . , x̃n(t)). We also use the
corresponding decomposition of any element ˜x of Xhn as
x̃ = (x̃1, . . . , x̃n) (which amounts to identifyXhn to (Xh)n).
When needed, any ˜xk ∈ Xh is decomposed according to
x̃k = (xk,0, . . . ,xk,h−1), in such a way that for the variables
of the dynamical systems under studyxk, j (t) = xk(t − j),
k ∈ N , j ∈ H

.
= {0, . . . ,h− 1}. Similarly we denote by

H N
.
= {1,2, . . . ,hn}. The previous notation is necessary,

in order to distinguish between the delayed and the actual
values of the position of the agents. Coherently with the
notations introduced above, we sometimes abbreviatexk,0
and write simplyxk.

Last, given any ˜x ∈ Xhn we often need to embed it on
2X, according to the following rule:π(x̃)

.
= {x1,x2, . . .xnh}.

In this way the state of the system is mapped to a finite
collection of points in theX space.

II. A CLASS OF MULTI-AGENT DYNAMICAL SYSTEMS

This section is devoted to the presentation of the dynam-
ical system under study. We study here a special class of
nonlinear difference inclusions with delay, that we write:

xk(t +1) ∈ ek(A (t))(x̃(t)) . (1)

Recall thatxk(t) represents the “position” at timet of
the agentk. The evolution of the latter depends upon the
complete system state ˜x(t) (including delayed components),
through the time-varying mapek(A (t)). For a trajectory of
(1), we calldecision set of agent kat timet the value taken
by ek(A (t))(x̃(t)). The specificity of the problem lies in
these maps: they depend upon the topology of the inter-agent
communications, modeled by thegraph A (t).

The modeling of the communication network is presented
below in Section II-A. The construction of the decision sets
inside which, given the communication network, each agent
may update the value of its state, is made in Section II-B.
Last, we provide some examples in Section II-C.

A. Inter-agent communications modeling

The first ingredient of the construction is the family of
continuous set-valued maps ek(A ) : Xhn ⇉ X taking on
compact values, and defined fork ∈ N and any directed
graphA . The latter will define, according to the position of
the other agents, in which subset ofX agentk is allowed to
choose its future state.

Here, we are concerned by information transfer from the
past to the present. In other words, we need to consider
graphs in Xhn linking some past and/or present values
xk(t − j) of the states of an agentk to another agentl .
Consequently, at each time, the communication graphA is
a weighted, directed multigraphdefined on the setN of the
nodes,that is a set of ordered couples of nodes (with possible
repetitions), calledarcs1. To each of these arcs is associated a
weight,chosen inH , to be interpreted as the corresponding
information delay2. All the considered graphs will contain
all the loops of zero weight, corresponding to the ability for
each agent to use without delay the knowledge on its own
state. The graphs fulfilling all these conditions will be called
in the sequeladmissible graphs.

We shall writei
j
∼A k when an arc of weightj links in

A the nodei to the nodek (with i,k∈ N , j ∈H ). A node
k ∈ N is said to beconnectedto a nodel ∈ N if there
exists apath from k to l in the admissible graphA which
respects the orientation of the arcs. Last, given a sequence
of admissible graphsA (t), t ∈ N, a nodek ∈ N is said
connectedto a nodel ∈ N on an interval I⊆ N if k is
connected tol for the graph

⋃

t∈I A (t).
Figure 1 provides an example of admissible graph. For

the graph represented therein, agents 1 and 2 are mutually
connected and agent 3 is connected to 1 and 2, but neither 1
nor 2 is connected to 3. Notice that generally speaking there
may exist more than one arc between two distinct nodes, and
that a node may be connected to itself (via delayed values).

Definition 1: Consider an admissible graphA and a
nonempty subsetL ⊆ N . The set Neighbors(L ,A ) is the
set of those nodesk ∈ N \L for which there isl ∈ L

such that (at least) one arc fromk to l exists. WhenL is a

1For details on the basic graph-theoretic notions needed here, the reader
is referred e.g. to [].

2Recall thatN = {1, . . . ,n}, H = {0, . . . ,h−1}, wheren is the number
of agents andh−1 the larger transmission delay.
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Fig. 1. An example of admissible graph for a system with threeagents.

singleton{l}, the notation Neighbors(l ,A ) is used instead
of Neighbors({l},A ). �

We impose to the mapsek the following assumption.
Assumption A:For all k∈N and all admissible graphA ,

the set-valued mapek is continuous and takes on compact
values. Moreover,

• ek(A )(x̃) = {xk} if {xi, j : i
j
∼A k} = {xk};

• ek(A )(x̃) ⊂ ri σ
(

{xk}∪{xi, j : i
j
∼A k}

)

otherwise.
�

The exact meaning and the properties of the set-valued
map ri σ are the subject of Section II-B. However, we
may already make some remarks on the form of the right-
hand side of the problem. Clearly, Assumption A implies that
the evolution of each agent depends only upon the possibly
delayed information received from its neighbors. The case

where{xi, j : i
j
∼A k} = {xk} is realized when either the

agentk has no neighbor and the set involved in the formula
is empty, or all the (possibly delayed) positions received from
the neighboring agents are also equal to the present position
xk of agentk; in this case, no motion is allowed. We shall
see below that in the present framework the use by each
agent of the present value of its own position is mandatory
for stability, see counterexample in Example 6.

B. Construction of the decision sets

The second ingredient necessary for the construction of
the dynamical system under study is aset-valued mapσ :
2X ⇉ X, taking oncompact values. It has a central role in the
definition of the dynamics, and it will be shown afterwards
(cf. in particular the proof of Theorem 2) that it plays the role
of a “set-valued Lyapunov function” for the studied system.

In order to state the properties thatσ should fulfil, we have
to introduce beforehand some notions. First of all, defineS ,
a set of subsets ofX in which σ will be compelled to take
on its values, as:

S
.
= {S⊂ X : S compact and∃ϕ : X → X,ϕ bijective,

ϕ ,ϕ−1 Lipschitz andϕ(S) convex} . (2)

Important consequences will proceed from the fact thatσ
takes on values inS , inherited from properties summarized
in the following result.

Lemma 1:Let S be defined by (2).

1) for anyS∈S , the functiondS(x0,x1) : S×S→ [0,+∞)
defined as

dS(x
0,x1)

.
= inf

{

length(ψ) : ψ : [0,1]
Lipschitz
−→ S,

ψ(0) = x0,ψ(1) = x1
}

is well-defined and continuous. Defineµ : S → R
+:

µ(S)
.
= max

x0,x1∈S
dS(x

0,x1). (3)

Then, for allS∈ S ,

• µ(S) < +∞.
• µ(S) = 0 if and only if S is a singleton.
• µ(S) is at least equal to the (euclidian) diameter

of S, and equal to this value ifS is convex.
• µ is lower semicontinuous inS, but nowhere

continuous.

2) for anyS∈ S , let ϕ be as in (2) and

ri(S)
.
= ϕ−1 (ri(ϕ(S))) ,

whereri(ϕ(S)) designates the relative interior3 of the
convex setϕ(S). Then, for allS∈ S ,

• ri(S) is independent of the choice ofϕ .
• ri(S) = /0 if and only if S is a singleton.
• int S⊆ ri S⊂ S.
• ri(S) is the relative interior ofS if S is convex.�

Lemma 1 permits to measure the distance between points
of a setS∈S “along the arcs”. It permits to define extended
notions of diameter and of relative interior, which coincide
with the usual ones for convex subsets ofX. By definition,
we call “relative boundary” of setsS in S the following set:

r∂ (S)
.
= S\ri(S) .

Also, according to the definition ofdS in Lemma 1, we
define, for any subsetsS′,S′′ of a setS in S the S-distance
from S′ to S′′ as:

dS(S
′,S′′)

.
= inf

x0∈S′,x1∈S′′
dS(x

0,x1) . (4)

We now gather the properties thatσ must fulfil, and
afterwards comment on their meaning and consequences.

Assumption B:The set-valued mapσ : 2X ⇉ X is con-
tinuous with respect to the topology induced by Hausdorff
metric and maps the bounded subsets ofX to S . Moreover,
the following should hold:

1) S⊆ σ(S) with equality if S is a singleton.
2) σ(S) = σ ◦σ(S) for all S∈ 2X.
3) S′ ⊆ S ⇒ σ(S′) ⊆ σ(S) for all S,S′ ∈ 2X.
4) If S is bounded and not a singleton, for allx∈ S, there

exists Σx ⊆ r∂σ(S) such thatΣx∩S 6= /0 andx 6∈ Σx.
Moreover, if S′ ⊆ σ(S):

a) if ri σ(S′)∩Σx 6= /0, thenS′ ⊆ Σx (and in partic-
ular, x /∈ S′).

b) if dσ(S)(S
′,Σx) > 0, thenµ(σ(S′)) < µ(σ(S)).

3i.e. its interior when regarded as a topological subspace ofits affine hull.



5) µ ◦σ is continuous. �

Remark that at this point, the problem under study is fully
understandable: our goal is to find stability conditions for
systems defined by (1), where the mapsek verify Assumption
A for a given mapσ fulfilling Assumption B, and where
the meaning of the relative interiorri has been defined
previously by Lemma 1.

Important consequences of Assumptions B.1 to B.5 are
now discussed. We shall see further in Theorem 1, that
Assumptions B.1–B.3 are indeed sufficient to forbid increase
along time of the natural set-valued Lyapunov function of
the system. The additional Assumptions B.4–B.5 induce the
strict decrease of the set-valued Lyapunov function (see
Theorem 2) . We provide in the following lemma a direct
consequence of Assumption B.1.

Lemma 2:Assume Assumption B.1 is fulfilled. Then,
for any boundedS⊂ X, card S> 1 ⇒ ri σ(S) 6= /0 and
µ(σ(S)) > 0. �

We now come to the central hypothesis, stated in As-
sumption B.4. This Assumption applies to arbitrary (but non
trivial) groups of agentsS, which may comprise indifferently
true agents or “virtual” agents, viz. informations relative to
the position of a true agent at previous sampling times.
More closely, for each agentx, there exists a portion of
the boundary ofσ(S), denoted byΣx, whose elements are
irreversibly attracted outside of it when using information
received from any agent not inΣx (such asx itself) according
to the rule edicted in Assumption A. The second part of
Assumption B.4 imposes that such an irreversible escape
from Σx comes with astrict decreaseof the diameter of
the set-valued Lyapunov function of the system (forconvex
setsS,S′ ⊆ X, S′ ⊆ S implies µ(S′) ≤ µ(S), but this is not
true for general sets inS defined by (2)).

Generally speaking, the setΣx, defining a critical part of
the relative boundary ofσ(S) relative to x, looks like an
union of “faces” ofr∂σ(x̃) containing an extremity of each
geodesic inσ(S) originating in x and which are maximal
(for the inclusion) among the set of these geodesics. Remark
that setsΣx,Σy associated to different pointsx,y in S may be
equal.

Similarly to what happens within Moreau’s setting, one
has the following result.

Lemma 3:Assume Assumptions B.1-B.4 be fulfilled.
Then, cardS> 1 ⇒ card(S∩r∂σ(S)) > 1. �

Last, notice that Lemma 1 and the continuity assumption
on σ implies that the mapµ ◦ Ṽ is already lower semicon-
tinuous onXhn. Assumption B.5 thus represents a slightly
stronger regularity assumption.

C. Examples

We present here different examples and counter-examples
of mapsσ fulfilling the properties previously defined.

Example 1 (convex hull):In Moreau’s work, σ(S) is
taken to be the convex hull ofS, see Figure 2. One may
check easily that Assumptions B.1 to B.5 are all fulfilled.
Here, the setsΣx involved in Assumption B.4 can be defined

x3

x2

x1

σ(x̃)

Fig. 2. The convex-hull, Moreau’s set-valued Lyapunov function.

x5

x1

σ(x̃)

e1

e2 x3

x2
x4

Fig. 3. Illustration of Example 2.

as follows:

Σx
.
=

⋃

c∈TCσ(S)(x),|c|=1

x+max{t : x+ct ∈ σ(S)}c ,

whereTCσ(S)(x) denotes the Bouligand contingent cone to
the setσ(S) at x (otherwise called tangent cone, asσ(S) is
convex here; see [2, pp. 176–177 and 219] for details).�

Example 2 (a different convex example):For a given ba-
sis ej , j = 1, . . . , p of X, take

σ(S)
.
=

[

min
x∈S

eT
1 x,max

x∈S
eT

1 x

]

×·· ·×

[

min
x∈S

eT
px,max

x∈S
eT

pxi

]

.

In this example, the convex hull is applied “componentwise”,
see Figure 3. Remark that conv(S)⊆ σ(S) for this case, but
this relation is not mandatory, see Example 4 below.

In the example depicted on Figure 3, one may check that
the choice consisting in taking forΣx

.
=

⋃

c∈TCσ(S)(x),|c|=1x+

max{t : x+ct ∈ σ(S)}c, fulfills the Assumptions. �

Example 3 (other convex examples):One may also
define σ(S) as the smaller set containingS and with
boundary parallel to givenp + 1 non-parallel hyperplans
(where X = R

p), see Figure 4. More precisely, let
Σ = conv(S) and e1, . . . ,ep+1 be (p + 1) vectors in
X such that for some positiveλ ∈ R

p+1 we have
∑ j λ jej = 0. The set σ(S) is a polytope defined as:
{

x∈ X : eT
j x≤ maxx′∈Σ eT

j x′, j = 1, . . . , p+1
}

, containing
the points x1, . . . ,xhn. Symmetrically we may define
σ(x) =

{

x∈ X : eT
j x≥ minx′∈Σ eT

j x′, j = 1, . . . , p+1
}

.
Similarly to what occurs in Example 2, one may take for
Σx the portion of the boundary obtained by following the
vectors coming out from the tangent cone atx all the way
to their extreme intersection point with the boundary of
σ(S), and the Assumptions B.1-B.5 are fulfilled. �

Remark that the smallest ball or the smallest hypercube
containingS doesnot fulfil the requested properties. For in-
stance the smallest circle containing a triangle never contains
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Fig. 4. Other convex examples of set-valued Lyapunov function, see
Example 3.
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Fig. 5. An example of mapσ giving rise to nonconvex sets. Notice that
conv(S) 6⊆ σ(S), and thatµ(σ(S)) is larger thanµ(conv(S)), the diameter
of conv(S).

the smallest circle containing the shortest of its edges, which
violates monotonicity of the mapσ .

Example 4 (nonconvex examples):For any bijective
transformationϕ : X → X which is Lipschitz together with
its inverse, one may take

σϕ(S)
.
= ϕ−1 (σ(ϕ(S))) ,

where σ fulfils all the Assumptions. In generalσϕ(S) 6⊆
conv(S) and is not convex: indeed, this latter property is
not essential. Such an example of nonconvex sets is given

in Figure 5, obtained forX = R
2, x1 =

(

2
0

)

, x2 =

(

1
5

)

,

x3 =

(

0
−1

)

, ϕ(x) =

(

cosα‖x‖2 sinα‖x‖2

−sinα‖x‖2 cosα‖x‖2

)

x, α = 0.04,

andσ(S) = conv(S).
Notice that, generally speaking, the systems generated

along this principle are such that the mapϕ in (2) is identical
for all the setsσ(S). The setsΣx may be obtained as for
Example 1, up to transformation byϕ . �

Example 5 (intersection of decision sets):When σ and
σ ′ fulfil the properties stated above, an interesting issue is
to see whetherσ ∩σ ′ do. One sees easily that Assumptions
B.1–B.3 are fulfilled. The validity of B.4 and B.5 depends
upon the configuration of the setsΣx, Σ′

x corresponding to
σ and σ ′. In Figure 6 is presented an example where the

σ∩(x̃)
x3

x2

x1

Fig. 6. Map obtained by intersection of the maps from Figures3 and 4.

resulting map fulfills all the properties. �

III. R ESULTS

Before stating the results of this paper, we recall the no-
tions under discussion below, see [10], [12]. As in Moreau’s
papers, we callequilibrium point any element of the state
space which is the constant value of anequilibrium solution.

Definition 2: Let X be a finite-dimensional Euclidean
space and consider a continuous set-valued mape : N×
X ⇉ X taking on closed values, giving rise to the differ-
ence inclusion

x(t +1) ∈ e(t,x(t)) . (5)

Consider a collection of equilibrium solutions of this equa-
tion and denote the corresponding set of equilibrium points
by Φ: ϕ ∈ Φ if and only if ϕ ∈ e(t,ϕ) for all t ∈ N.

With respect to the considered collection of equilibrium
solutions, the dynamical system is called

1) stableif for eachϕ ∈ Φ, for all c2 > 0 andt0 ∈N, there
is c1 > 0 such that every solutionζ of (5) satisfies: if
|ζ (t0)−ϕ |< c1 then |ζ (t)−ϕ | < c2, t ≥ t0.

2) boundedif for each ϕ ∈ Φ, for all c1 > 0 and t0 ∈
N, there isc2 > 0 such that every solutionζ of (5)
satisfies: if|ζ (t0)−ϕ |< c1 then|ζ (t)−ϕ |< c2, t ≥ t0.

3) globally attractiveif for eachϕ1 ∈ Φ, for all c1,c2 > 0
andt0 ∈N, there isT ≥ 0 such that every solutionζ of
(5) satisfies: if|ζ (t0)−ϕ1| < c1 then there isϕ2 ∈ Φ
such that|ζ (t)−ϕ2| < c2, t ≥ t0 +T.

4) globally asymptotically stableif it is stable, bounded
and globally attractive.

If c1 (respectivelyc2 andT) may be chosen independently of
t0 in Item 1 (respectively Items 2 and 3) then the dynamical
system is called uniformly stable (respectively uniformly
bounded and uniformly globally attractive) with respect to
the considered collection of equilibrium solutions. �

Notice that the above notions are uniform with respect to
all trajectories of (5).

We now state a first result on boundedness and (simple)
stability, analogous to [10, Theorem 2].

Theorem 1:Assume that Assumptions A and B.1–B.3 are
fulfilled. Then the discrete-time system (1) is uniformly glob-
ally bounded and uniformly globally stable with respect to
the collection of equilibrium solutionsx1(t) ≡ ·· · ≡ xn(t) ≡
constant. �



The proof of Theorem 1 [1] is based on the evolution of
the following set-valued functioñV : Xhn ⇉ X,

Ṽ(x̃)
.
= σ(π(x̃)) (6)

along the solutions of (1). The fact thatt 7→ Ṽ(x̃(t)) is non-
increasing is stated in the following result.

Lemma 4:Let x be a solution of equation (1). Then, for
all t ∈ N,

Ṽ (x̃(t +1))⊆ Ṽ (x̃(t)) . �

In view of Lemma 4, one may now have a clearer
understanding of the fact that the mapσ has a double role: it
is necessary to define the flow, but also serves as a set-valued
Lyapunov function of the systems. Indeed, Assumption A
states that each agent has to remain in the setṼ(x̃(t)), of
which it has only an imperfect knowledge, and does its
best to come closer from the other agents it has detected
(this is the meaning of the use of the relative interior). In
particular, when no new information is received, the only
possible choice is to stay at the same place.

As detailed in Section II-B, contrary toσ , the mapri σ
is not monotone: violation of this rule may occur when
S′ ⊂S and theσ -hulls σ(S),σ(S′) have different topological
dimensions as spheres. Up to this subtlety, a consequence of
Assumption A is that, in general,the larger the quantity of
information received by agent k from its neighborhood, the
largest the set of possible updates it may choose(see the
monotony property in Assumption B.3). Although this may
sound paradoxical at first glance, this increase of the decision
possibilities is quite natural: it means that supplementary
information either leads to make a choice which could have
been done otherwise (it is ignored or makes more valuable
the decision) or allows to adopt choices which would not
have been done otherwise. The “subtlety” comes from the
fact that, when the information available to an agent is poor,
some decisions are taken which would not have been possible
with richer data. For example, the possibility of staying in
the same place, which occurs when an agent, say agent 1, is
isolated from the other world, disappears when the position
of another agent located elsewhere, agent 2, is received.
However, the unique choiceσ({x1}) = {x1} is then located
“on the boundary” of the decision setri σ({x1,x2}), see
Lemma 3.

The key result of the paper is now stated. It provides a
necessary and sufficient stability conditionfor system (1),
which extends [10, Theorem 3].

Theorem 2:Assume that Assumptions A and B are ful-
filled. Then the discrete-time system (1) is uniformly globally
attractive with respect to the collection of equilibrium solu-
tionsx1(t)≡ ·· · ≡ xn(t)≡ constantif and only if there exists
T ≥ 0 such that for allt0 ∈ N there is a node connected to
all other nodes across[t0,t0 +T]. �

The argument of the proof of Theorem 2 is based on an
abstract stability result on difference inclusions with delay
— not reproduced here for sake of space, see [1] —, and on
the following estimate [1]: for anyt,t ′ ∈ N,

t ′ > t +(n−1)2(h+T) ⇒ µ(Ṽ(x̃(t ′))) < µ(Ṽ(x̃(t))) .

Agent 1 Agent 2 Agent 3

0

1 1

00

0
0

Fig. 7. Graph representing the information flow for Example 6: even (dots)
and odd (dash) times.

The uniformity which is meant in the statement of Theo-
rems 1 and 2 is with respect totime. One may check from the
proofs in [1] that it is also valid with respect to the different
trajectories of (1).

Theorem 2 states asymptotic stability for any (finite) val-
ues of the delay. Of course, as may be checked elementarily,
the values of the latter has a determining impact on the
convergence speed of the solution. Quantitative analysis of
this issue is scheduled as a next step.

Example 6:The necessity for each agent to use theunde-
layedvalue of its own position may be seen by the following
counter-example, see Figure 7. Here,n= 3 andh= 2. Agent
2 sends alternativaly to agent 1 and 3 the value of its position
at the previous instant, and receives the present value of their
position. Assume the agents use at timet the value of their
position at timet −1 to elaborate the update applied at time
t + 1. Clearly, for the corresponding graph, the agent 2 is
connected to all other agents across any interval[t,t + 1].
However, provided that agents 1 and 3 are initially located
at different points, the positions of agent 2 at even and
odd times tend in general toward two different values. As
indicated by the existence of periodic motion, the strict
decrease of the mapt 7→ µ(Ṽ(x̃(t))) may fail. �
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