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Abstract

We present two state variable dry friction mod-
els with some desired properties for control pur-
poses, which permit a unified description of ki-
netic and static friction, Dahl and Stribeck ef-
fects and stick slip. We give basic theoreti-
cal properties, as well as an open-loop identi-
fication procedure, the relation with Coulomb
model, sufficient conditions on PID parameters
for quenching of limit cycles for a one-degree-
of-freedom system. Proofs are sketched in the
Appendix.

1 Introduction - Classical modeling of
dry friction
In a first approach, friction phenomena sub-
divide in viscous and dry friction, including
Coulomb friction, stiction and Dahl effects ...
Classical Coulomb and stiction models are of
the form?

Tk for u>0
Fory =< [=fs, fs] for 4=0 (1)
— & for u <0

where u is the relative speed between two pieces
in contact: Fy,., takes values between —f; and
fs for w = 0 and is equal to the constant value f3
or —f if « > 0 or u < 0 respectively. Model (1)
includes stiction effects for f; > fr and reduces
to pure Coulomb friction for fs = fr. fs is the
static friction value and fi, the kinetic friction
value. Model (1) has some severe drawbacks:

e It provides few informations on the behav-
ior of friction during velocity sign reversals:
only bounds are given. However, when u is
a position error, these reversals occur fre-
quently, and the transient behavior of fric-
tion is fundamental. It leads to limit cy-
cles that restrict the precision |u|. When
fs > fr these limit cycles are of stick-slip
(1] type.

e Moreover, model (1) is multivalued: when
coupled with an equation of motion it yields
to a differential inclusion [16, 3]. Unfor-
tunately, uniqueness does not hold when
fs > fr (see 3.2). Some approximation

1 The friction force is —Fary-

schemes are then necessary to recover a
classical well-posed differential equation.

A precise analysis [1, 11, 18] of the transient
phases shows that dry friction, starting from
rest, exhibits an elastic behavior until a rela-
tive microdisplacement s., where a maximum
value, the static friction value f; is attained.
Beyond this value, the friction decreases until
it approaches fj for displacements greater than
a value s,, which are no more “microdisplace-
ments”. The behavior is then of plastic type
(Coulomb friction behavior). When the veloc-
ity switches, an analogous transient curve begins
from the reached position. This behavior is irre-
versible, and so gives rise to hysteresis cycles; i.e.
cycles with rate independent shapes (see Fig. 1).

fi
fi

Figure 1

2 State space modeling of dry friction:
LST models

Modeling of dry friction in view of control-law
synthesis has been the subject of various recent
contributions (see [1] for a survey and [4, 9, 11,
19]), dedicated e.g. to line of sight stabilization
for pointing devices or path following for robots.
In particular, [10] provides a related analysis.
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2.1 Desired properties of dry friction
models

Friction models must agree with the previous
experimental observations and must be mathe-
matically sound:

1. First, the transient behavior seems to be
independent from the velocity |¢], but de-
pends upon the covered distance [ |u| - dt
(upon the position when sgni remains con-
stant) [18]. This is the rate independence or
hysteresis property.

2. Another noticeable property is that friction
dissipates energy. We hence consider dissi-
pative hysteresis models.

3. Identification of the models must be easy,
when knowing the main experimental re-

sults (fx, fs, Se, Sp)-

4. The friction model, together with the equa-
tion of motion (including control feedback)
must constitute well-posed set of equations.

5. It must agree with (1) when s, — 0

6. The models must also be simple enough in
order to be used in real-time algorithms.

The available friction models, as far as known
by the authors, do not meet all the previous re-
quirements. It is the reason why in [4, 5], new
friction models are proposed. They are refine-
ments of Coulomb model simpler than those ob-
tained in the framework of continuous media me-
chanics [17]. Compared to these ones, they are
“black box” models, fitted for use in real-time,
and directly expressing macroscopic character-
istics, rather than microscopic and distributed.
Their scope is different. Compared to models
commonly used in Control, the main advantages
of the proposed models are the following:

e They are able to represent friction behav-
iors at any speed and in particular at low
speed. In fact, due to the rate independence
property, they are insensitive to time scale.

e They no more involve the multivalued oper-
ator u — sgnu: they are described by ordi-
nary differential equations, no more by dif-
ferential inclusions. They are ready to use
with standard ode solvers.

2.2 The proposed models

They are ordinary differential equations defining
the friction operator w+ F'(u).

e A first order model satisfies all the previous
requirements, with a restriction for tran-
sient phases: it reproduces only the elas-
tic behavior (Dahl effect). It is already a
very simple and reliable regularization of
Coulomb model. Tt is a particular case of
Dahl models [11]:

erx = —|ulz+ fru, z(0)=0
{ Hoy e e =0 @

e The following second order model satisfies
all the enumerated requirements:

h

1
ef;;;:|'u|<_ g ! )l+u "
0 -1

—J2

(3)
where fi; > 0, fo > 0 are forces, 5 > 0 is a dis-
tance and 5 > 0 is dimensionless. Both models
are of the form

i = |u| - Az + Bu, 2(0)=0
{ F(u)(t) = Ca(t) (4)

with
A:—i, B:ﬁ, C=1 for(2)
€5 25 ;
1 1
A—_i(ﬁ 0),B:i< ; )
Ef 0 1 Ef —f2
and C=(1 1) for(3)

Through a change of time-variable ds = |u|dt,
model (4) is related to the Linear “Space Invari-
ant” system:

d;l‘s
{ E:AIs—I—BuS, 1(0)20 (5)
ys = Czs

so we call (4) a LSI friction model. This relation
is made precise in theorem 1 and in 2.4. These
models are state space models; z being the state
variable. First appearance of hysteresis models
described by integro-differential equations seems
to come back to Bouc [8].

In order to identify the parameters in (2) or
(3), we need some precise definitions for the
physically significant values:

e The kinetic friction value is defined as the
asympitotic value of friction when u > 0:

F(u)(t)

A .
fk = lim
4>0, u(t)—+oo,

t—4o0

and s, is the distance above which F(u)(t)
is within 5% of fr2.

e The mechanical system with friction is said
to be at rest when

t=0and z = —-A"'Bo, o==l1

The last condition means that before rest, a
motion with constant direction (sgnu = o)

25p is a rise distance, analogous to the 0-to-95% rise

time.
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and for example a vanishing speed takes
place from ¢t = —oc0, so that friction asymp-
totic values are reached for finite ¢. Taking
o = 1, the static friction fs is the mauxi-
mum value of the friction reached starting
from rest with v > 0:

f, 2

max
>0, >0
z(0)=+A—1B

F(u)(?)

It is reached for the displacement value
s = S, which is the breakaway distance
from rest. It can be shown, that for the
models we consider, it is also the constraint-
free maximum value:

fs = sup F(u)(?)
w, >0
z(0)=0

e The minimal and maximal slopes k; and

kz of the curves u versus F' (hysteresis cy-
cles) are also physically significant, they are
the extremal values of the positive or nega-
tive stiffness of the friction:

A F(u

= sup +—= (

u,t>0, a(t)#0 u(
=(0)=0

ki

bl

10
D)

Remark that the value k corresponds to
Stribeck effect.
2.3 Main results for LSI friction models

Theorem 1 (Well-posedness and hystere-

sis property of F'(u))

(i) For any absolutely continuous input func-
tion u, t.e. u and u locally integrable on

R+, or in short u € WI (0 o0), F(u) is
given by

t t .
t) = / CeA S O gy gy
0
(6)

Denote Fg the input-output operator asso-
ciated to (5):

Fs(us)(s) = /0 s CeAt=) Bug(s')-ds' (7)
and define (X(u), S(u)) as follows:

u)(t) 2 /|u )-dr, S(u) 2 uoS(u)~t (8)

i.e. X(u)(s) = u(t)|su)t)=s- Then the pair
(X(u), S(u)) is characterized by:

u = X(u)o S(u), ‘diiU)

dS(u) _
o 20 S(u)(0) =0

bl

9)

and we have

dy
P =75 (S s o
(it) F : u— F(u) has the following hysteresis
property:
F(uoyp) = F(u)o ¢ for any

increasing diffeomorphism ¢ on R

(11)

(iit) F is a locally Lipschitz operator from the

space VVI (0 o0) into itself.
Theorem 2 (D1$Slpat1v1ty condition)
(i) For any t > 0,

t

/0 Fu)(r)-a(r) -dr =

_ /Os(u)(t) Py <dzd_(5u)) (s)- dEd(SU)(S) ds

(i) If there exists P such that
P=PT>0,-ATP-PA>0,CT = PB (13)

then the operator 4 — F'(u) is dissipative,
t.e. for all positive t

t
2/ F(u) i -dr > z(t)" Px(t) — z(0) Pz(0)
0
(14)
More precisely, (2) is dissipative for every
¢r >0, and (3) is dissipative as soon as

i>f2>0
e >0 and O0< <1

(15)

Theorem 3 (Parameter identification)

(i) The values of the parameters for model (2)
are related to the measurements by:

fr = f1, Sp—36f, k‘;_o k;:Qﬁ

es

(ii) The values of the parameters for model (3)
are related to the measurements by:

fe=hHh—1 .

Js = fu+2f (”%) (=)

5o = T log

€ fz

Sp —3€f ! . (16)
ke =2 (52) ™7 )

kt = 55 (i = nf2) —

(iit) It is convenient for the applications to ez-
press parameters as functions of measure-
ments. This is straightforward for model

(2). For (3), define

fs - fk
Jr

3se/sp

mp = and ms=ce
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4
Let us consider the following equation of motion
for a one-degree-of-freedom mechanical system
with friction and a PID position controller:

We suppose fr > 0 (which is natural for
a friction force) and s, < 4+0o. Then, the
parameters are given by

fi = ke g i+ kpt+ kpu+kr [u=—F(u) 4+ w(t) ae.

5= moshpt2 s (u(0), 4(0)) = (uo, uy) fixed in R?
GO (17) (18)
&= m?lm2+2 w represents all the other external forces.

n= mimap+2
3.1 Well-posedness of Cauchy problem

Theorem 4 Ifw € Lj, (0, oo) the systems (2)-
Inp=(p—1)lnms and p>1 (182)1 and (3)-(18) admit unique solutions u €
mimy W (0,00), continuous wrt the data.

where p is the solution of

mims + 2

This solution exists and is unique if and

only if Inmy < %ﬂi’:z, for example when

3s. < sp. Dissipativity is guaranteed under

3.2 Singular perturbation of LSI models
and sgn regularization

these conditions.

2.4 Comments

Hysteresis property (11) (adapted from [20])

means that curves & F'(u) do not depend
upon the velocity with which they are covered,
as:

H(uop)o(uop) ™ = H(u)ou™"

precisely represents this graph. As an example,

consider #+ sgnu.

S(u) is the curvilinear abscissa of the curve
t — u(t) and s — X(u)(s) the parametrization
of this curve by its curvilinear abscissa.

As S(uop) = S(u)op (S is itself a hysteresis
operator) and X(uop) = X(u), it is natural (and
in fact necessary when H is continuous-function-
valued [5]) to express hysteresis operators as

F(u) = Fs(X(u)) 0 S(u)

Fg being any causal operator with continuous
function values: this is the meaning of (10).

As Fg is linear and stationary, we call these
models Linear Space Invariant (LSI) friction
models, by analogy with LTI models. This prop-
erty allows to use Linear System Theory for
these (nonlinear) operators F'. In particular, the
notions of state, minimal realization, stability,
static gain (~CA™'B = f;), accessible set un-
der bounded input, are useful to prove properties
of the proposed friction models [5].

Due to (9), 42 (u)

contact trajectory, oriented in the sense of mo-
tion: models (2), (3) appear as Linear Space In-
variant (resp. lst- and 2nd-order) filters applied
to Coulomb friction. In this framework, Dahl

models [11] are 1st order nonlinear SI filters.

3 Properties of basic mixed LSI/LTI

models

is the unitary tangent to

Theorem 5 Let w € L?OC(O o0). The solution

of (2)-(18) tends when s, — 0 in W22(0,00)
towards the unique solution of

u+kpu+kpu-+ ks fot u € —frsgni +w a.e.
(u(0),%(0)) = (uo, u1)
(19)

The solution of (3)-(18) admits when s, — 0
cluster point in Wif( o0) verifying

‘ue —frsgny 0+ w ae

(0)) = (uo, us)
(20)

1, sgn,z = sgnz of

U+ kpu+ kpu—+ kg
(u(0),

where we define, for A >
z#£0, sgn, 0 = [=A, +]].

(2) is hence a regularization of Coulomb

model. It gives an alternative to Hille-Yosida
regularization of Coulomb model (1) with f, =
fi (given by F' = fisgnu for & > p and fi, /ptu for
|| < p where p > 0 is the (small) regularization
parameter). This latter cannot be used in con-
trol, as it assignes to friction a viscous transient
behavior, non consistent with experiment.
(20) is the classical way of modeling stiction,
using (1) with f; > fi, but it is ill-posed: as
sgnz C sgn,z (graph inclusion for multivalued
maps), the solution of (19) is also a solution of
(20) and is not the expected one (indeed, a con-
tinuum of solutions exists in general [5]).

The desired coherency requirement between
the classical and the proposed dry friction mod-
els is fulfilled. Furthermore, (3) is more reliable
and expressive than (1): it leads to well-posed
motion equations describing the qualitative be-
havior usually associated with (1).

3.3 Stability criterion for PID position
controller in presence of dry friction

The quenching of autonomous limit-cycles by
adequate tuning of PID parameters is an al-
ready known technique [2, 13], although known
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results seem to apply to the viscous friction case.
We study this problem here, that is to say the
asymptotic behavior of (18) with w constant.
Results on existence of periodic oscillations (i.e.
w periodic) for systems (4)-(18) are under study
[6]. See also [12] for related properties for (19).

We denote Q; (resp. Q) the sets of equilib-
ria for systems (2)-(18) (resp. (3)-(18)): Q; =
{(d,u, fu, Fy) + 4 = u = kr fu+ F; = 0},
i = 1,2, with Fy, Fy given by (2), (3) respec-
tively. Recall that the stability of the linear part
of (18) is equivalent to

k
/Cp>—I,]€D>0,]{7[>0 (21)
kp

Theorem 6 (Sufficient condition for a-
symptotic stability) When (21) holds:
(i) Q1 is globally asymptotically stable.

(ii) Q2 is locally asymptotically stable if

k
kp > k7 + k—’ (22)
D
(iii) Qg is globally asymptotically stable if
kp > ko 4+ GEHEE)
F 4%
+ -
i < /fD\/k’P— kg - (\/k’P — k- e
(23)
or if
Jw n 1 /71 1
max - —=-—=
weR jw(kp—w2)+k1—kpw2 2 ]{7; ]{7;

1/1 1
(=4 = 24
2<k;+k;> (24)

(i) means that pure Dahl friction has no desta-
bilizing effect. (i) is the useful rule for PID
tuning in presence of Stribeck effect. (i) shows
that global stability is probably hard to reach,
due to the high stiffness involved.

Cycles may be observed for example with f; =
1,f2 =09, = 0.01,7 = 0.5, then f; = 0.1,
fs = 0.505, kp = 20.25, k} = 199.75. Fig. 2
(resp. 3) shows the limit cycles obtained with
kr = 3,kp = 2,kp = 2, resp. kp = 10, whose
periods are approximately 7' = 5.9, resp. T =
17.3. Numerically, the cycles seem to disappear
for kp > 12, where the theoretical bounds are
21.75 with (22) and ...9 995 with (23).

3.4 Stability criterion for PD controller
in presence of dry friction

We examine the case kr = 0 corresponding to
the speed control problem. Denoting v the con-

stant target speed and u 2 vt, we have

U+ kpit+ kpii+ F(ii+vt) =0 (25)
where F' is given by (2) or (3). We denote
(resp. Q2) the sets of equilibria for systems (2)-
(25) (resp. (3)-(25)): Q@ = {(u,u,F;) : 4 =

Jkpu = —F; = —frsgnv}, i = 1,2, with Fy, Iy
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given by (2), (3) respectively. The stability of
the linear part of (25) is equivalent to
kp > 0,]{7[) >0 (26)

Theorem 7 (Sufficient condition for a-
symptotic stability) When (26) holds:
(i) Q1 is globally asymptotically stable.

(ii) Q2 is locally asymptotically stable if
kp > kn (27)
(iit) Qg is globally asymptotically stable if

« 0
|'U|>fs/0 ‘(0 1)6Mt<1) -dt  (28)
with M 2 < ek ) or if
(/{7+ —I—k’_)2
1k
or if

max
weR

1 +1<1 1)
kp — w2+ jkpw 2 k; ke
1/1 1
< - 30
T

Again we see that Dahl friction has no desta-
bilizing effect. (28) means that for high enough
speed, no stability problems occur. For low
speed, it is necessary to counteract Stribeck ef-
fect using (27). The price of global stability at
low speed is again, by (29), high stiffness.

4  Conclusion

The simple differential form of the proposed
models permits easy computer simulations and
their underlying linear structure offers possibil-
ities to synthesize on a rigorous basis control
laws to compensate for the friction effects. Here
we have shown how to tune PID controllers.
More sophisticated control laws can also be
studied, see [4] for an application in Robotics.
[7] presents an application to tyre/road contact
modeling.

5 Appendix: Proofs

We omit the proofs of existence/uniqueness and
just sketch those of results of practical interest.

Proof of theorem 2 (13) = (14) is an
application of the Kalman-Yakubovitch-Popov
lemma [14, 21] to the linear operator Fg in the
right-hand side of (12).

1s based on the identities:

fs= / |Ce?*B| - ds

0

Proof of theorem %o

kf:/ +|CAe**B| - ds+ CB
0

In particular, kp < k;

6
Proof of theorem 5 As w € LIZOC(O,oo)7

u is bounded in Wloc (0,00) independently of
sp > 0: there exists a subsequence u’» converg-
ing weakly in VVif(O o0) when s, — 0. The cor-
responding friction states °7, being bounded in

L*°(0, 00), may be supposed to converge weakly
in L? (0,00). It may be deduced [5], using
the stability of matrix A, that the difference of
the power F»(u’r)u’r — fi|ur| tends strongly
to 0 in L? (0,00). On the other hand, as
[|Fo7 (us?)u® P||Loo < fs, it is shown that the clus-
ter point verifies (20) For (2), fs = fi, which

ensures that sgng = S8N 18 maximal mohotone:

convergence follows from uniqueness of solution

for (19) [3].

Proof of theorem 6 We first show that u €
L%(0,00). By derivation of (18), multiplication
by tu + au and integration, we get for any ¢ > 0:

(kp -« ||“||2 + (akp - kr)llUIIz (31)

—}—a/Fu—{—/Fu—{— Mo =0

where C(t) 2 (& + au)? + akr(u + ) +
(kp + akp — o® — £0)42) and ||.||, denotes
L(0,¢)-norm. Using the identity [) Fii =
[y CAX|ali + CB fjui = — [;CcAXEL 4

[CAXIGE + CBY, = §lFalh - 10Afo #lil,
and taking o = kp, we deduce ((kp — kp )kp —
k= Sl < C(0) + 3Pk < C(0) +
Leta2(0)— Lk7a2(t), where kfp 2 sup —CAZ is
finite and C'(0) is positive. For 1st order model,
km = ki = 0, so ||u|]2 is bounded indepen-
dently of t. For 2nd order model, (kp — kr —

o M=

Eoyi2(t) < C(t) + LFa(t) < 0(0) + LFu(0)
_po_kr
if ||u|lee < Qkpz%, so the same result

is true if (22) holds and C(0) +

2%.

LFi(0) <
To prove (23), we remark

+_ -
that the centered nonlinearity F'(u) — %u

. - -

is such that |F'(u) — kF2kFu| < kF;kF |u| a.e.,

we bound afot Fi+ fot Fii in (31) from below
. . b4k ki —k .

by —l|U|| (akpllal|s+ =5 li]]2) + [~ 0]5,

as k > kr, and get a p081tlve quadratlc form
in |u||2, |f||2 iff there exists « s.t. 4(kp —

(kE+k37)? .
a)(alkp — kp) — kr) > ~—£%£—. This leads
0 (23), and again an upper bound on ||@||2. (6)

is obtained from circle criterion [22] applied to
the derived version of (18).

Now it is possible to prove that & € L?(0, o)
too, taking o = f—; in (31).

The use of u as

Proceedings of the 3rd European Control Conference, Roma, Italy, 5-8 Sept. 1995, 3788-3794



a multiplier then shows that ||ul|2 is bounded
too (and hence ||k [u + F||2). These are stan-
dard techniques. We then deduce that %, u and

kr [u+ F tends to 0, as e.g. u? = 2f§uu+
u?(0) < 2[|i|2 - [|i]|2 + @2(0). It may be shown
as well that both F' and [ u admit limits.

Proof of theorem 7 (i), (ii) and the sec-
ond part and third parts of (i) are proved with
the same techniques than for theorem 6. Let us
prove the first part of (iii). As F' < f;, we have
limsup |a| < fs fooo (0 1)eMico 1))
dt. Hypothesis (28) implies that liminf|u| is
bounded from below by a strictly positive num-
ber. Hence F' — frsgnv, because f0+oo |u] =
400, and 4, kpu + F tend to zero.
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