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Abstract
This paper is devoted to the study of robust semidefinite programming. We show that

to the issue of computing the worst-case optimal value of semidefinite programs depending
polynomially upon a finite number of bounded scalar parameters, one may associate a countable
family of standard semidefinite programs, whose optimal values converge monotonically towards
the requested quantity. The results is linked to representation formula and positiveness criterion
for matrix-valued polynomials.
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1 Introduction

Semidefinite programming has become a powerful unifying framework for expressing and solving
many problems, especially in optimization and control theory [12, 5]. This class of convex opti-
mization problems, solved by efficient interior-point methods, has spread widely, see an up-to-date
panorama of the theoretical, applicative and algorithmic aspects in [13]. Among other applications
in control (where semidefinite programs are often referred to as linear matrix inequalities, abbreci-
ated LMIs), stability, stabilizability, detectability, H2 and H∞ performance analysis, and various
related design issues may be stated as LMIs, see e.g. recent progress in [6].

A natural extension was to introduce robust semidefinite programming, adapted to semidefinite
programming problems with data subject to uncertainties [3]. In the context of control [1], this
type of problems appears for example when studying control techniques robust against paramet-
ric uncertainty, or gain-scheduling methods, as these issues amount to check solvability of LMIs
obtained for different values of some parameters.

Robust semidefinite programming is linked to a difficult problem of algebraic geometry, namely
the determination of extrema of multivariate polynomials. Recently, Lasserre [7] and Parrilo [9]
have shown independently that to every problem of the latter type may be associated a sequence
of standard semidefinite programming relaxations, whose optimal values converge monotonically
to the requested worst-case optimal value. Both approaches make large use of techniques and
results of algebraic geometry. Solution of robust definite programming problems with polynomial
dependence of the parameters may be obtained as a by-product of these results, basically adding
the initial decision variables to the set of variables introduced in the relaxed problems.

In the present paper, we present alternative method to solve the robust semidefinite program-
ming method. The result is similar in spirit, as it also provides a sequence of semidefinite relaxations
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of the initial problem, with increasing precision. However, it is directly obtained from the matrix
inequality, without introducing additional variables to obtain scalar inequalities. Moreover, the
proof is obtained by a completely different approach, based essentially on Kalman-Yakubovich-
Popov lemma. together with a result on existence of polynomial solutions to parameter-dependent
SDP problems taken from [4].

The paper is orgamized as follows. In §2 are introduced useful notations. Positiveness of matrix-
valued matrices is then studied in §3, where the key result is stated and proved (Theorem 2). It is
shown in §4 how this result is linked to representation result for polynomial matrices (Theorem 5),
in the same way than the results by Lasserre and Parrilo are linked to representation of polynomials
by sums of squares. Last, Theorem 2 is applied to the issue of robust semidefinite programming in
§5 (Corollaries 6 and 7).

2 Notations

The matrices In, 0n, 0n×p are the n×n identity matrix and the n×n and n×p zero matrices respec-
tively. The symbol ⊗ denotes Kronecker product, the power of Kronecker product being used with

the natural meaning: Mp⊗ def= M (p−1)⊗⊗M . A key property is that (A⊗B)(C⊗D) = (AC⊗BD)
for matrices of compatible size. The conjugate and transconjugate of M , are denoted MT and MH .
The unit circle in C is denoted as the boundary ∂D of the unit disk, and the set of positive integers
N. Last, the set of symmetric real (resp. hermitian complex) matrices of size n× n is denoted Sn
(resp. Hn).

We now introduce more specific notations. For any l ∈ N, for any v ∈ C, let

v[l] def=


1
v
...

vl−1

 . (1)

This notation will permit manipulation of polynomials. Notice in particular that, for a free variable
z ∈ Cm, the vector (z[l]

m ⊗ · · · ⊗ z[l]
1 ) contains exactly the lm monomials in z1, . . . , zm of degree at

most l − 1 in each variable.
Last, for any l ∈ N, let

Ĵl
def= (Il 0l×1), J̌l

def= (0l×1 Il) . (2)

The previous matrices are fixed elements of Rl×(l+1).

3 Positiveness of matrix-valued polynomials

Our first result, the key result of the paper, studies the following problem: for given map G(δ)
taking on values in Sn, and polynomial in the components of a vector δ ∈ Rm, check whether:

∀δ ∈ [−1; +1]m, G(δ) > 0 . (3)

The polynomial G will be represented as follows. Let us achieve the change of variables

δ =
z + z̄

2
. (4a)
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When z covers (∂D)m, then δ varies in the whole set [−1; +1]m. Without loss of generality, one
may write

G(δ) = G(
z + z̄

2
) = (z[k]

m ⊗ · · · ⊗ z
[k]
1 ⊗ In)HGk(z[k]

m ⊗ · · · ⊗ z
[k]
1 ⊗ In) , (4b)

where k − 1 is the maximum of the degrees of G in the variables δ1, . . . , δm separately, and where
Gk is a fixed matrix in Skmn, called the coefficient matrix of G. The expression of Gk in (4) may
be deduced easily from the similar expansion of G(δ) in powers of δ, see the Appendix, where the
adequate techniques are developed.

By (4), the initial problem has thus been transformed, without loss of generality, into checking
whether

∀z ∈ (∂D)m, (z[k]
m ⊗ · · · ⊗ z

[k]
1 ⊗ In)HGk(z[k]

m ⊗ · · · ⊗ z
[k]
1 ⊗ In) > 0 , (5)

for a fixed coefficient matrix Gk ∈ Sk
mn.

For l > k, define the coefficient matrices Gl ∈ S l
mn by the following recursion formula:

Gl+1
def=

1
2m

∑
Jα∈{Ĵl,J̌l},
α=1,...,m

(Jm ⊗ · · · ⊗ J1 ⊗ In)TGl(Jm ⊗ · · · ⊗ J1 ⊗ In) . (6)

Recall that Ĵl, J̌l are defined in (2). Before going on further, we clarify in the next result the link
existing between the matrix-valued polynomials (z[l]

m⊗· · ·⊗z[l]
1 ⊗In)HGl(z

[l]
m⊗· · ·⊗z[l]

1 ⊗In) obtained
for different values of l ≥ k.

Lemma 1. For all l ≥ k, for all z ∈ Cm,

(z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)HGl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In) =

m∏
i=1

(
1 + |zi|2

2

)l−k
G(
z + z̄

2
) . (7)

In particular, for all l ≥ k, for all z ∈ (∂D)m,

(z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)HGl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In) = G(

z + z̄

2
) . �

Proof. Due to (6) and the basic properties:

∀v ∈ C,∀l ∈ N, v[l] = Ĵlv
[l+1], vv[l] = J̌lv

[l+1] , (8)

one has, for any l ≥ k,

(z[l+1]
m ⊗ · · · ⊗ z[l+1]

1 ⊗ In)HGl+1(z[l+1]
m ⊗ · · · ⊗ z[l+1]

1 ⊗ In)

=
1

2m
∑

Jα∈{Ĵl,J̌l},
α=1,...,m

(Jmz[l+1]
m ⊗ · · · ⊗ J1z

[l+1]
1 ⊗ In)HGl(Jmz[l+1]

m ⊗ · · · ⊗ J1z
[l+1]
1 ⊗ In)

=
1

2m
∑

jα∈{0,1},
α=1,...,m

|zm|2j1 . . . |z1|2jm(z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)HGl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In)

=
1

2m
(1 + |zm|2) . . . (1 + |z1|2)(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In)HGl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In)

The claimed property (7) is then obtained inductively, and the second formula in Lemma 1 is
deduced immediatly.
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We are now ready to state the key result of the paper.

Theorem 2. Let G a polynomial mapping: Rm → Sn of degree at most k − 1 in each variable.
Define its coefficient matrices Gl, l ≥ k, by the transformation (4) and the recursion (6). Then,
the following assertions are equivalent.

(i) Matrix G(δ) is positive definite for any δ ∈ [−1; +1]m.

(ii) There exist l ∈ N, l ≥ k, and m matrices Ql,i ∈ S(l−1)m−i+1li−1n, i = 1 . . .m, fulfilling the
semidefinite program:

Gl +
m∑
i=1

(
Ĵ

(m−i+1)⊗
l−1 ⊗ Ili−1n

)T
Ql,i

(
Ĵ

(m−i+1)⊗
l−1 ⊗ Ili−1n

)
−

m∑
i=1

(
Ĵ

(m−i)⊗
l−1 ⊗ J̌l−1 ⊗ Ili−1n

)T
Ql,i

(
Ĵ

(m−i)⊗
l−1 ⊗ J̌l−1 ⊗ Ili−1n

)
> 0lmn .

(9)

Moreover, if LMI (9) is solvable for the index l, then it is also solvable for any larger index. �

Theorem 2 provides a family of standard LMIs, indexed by the positive integer l, whose solv-
ability is sufficient to deduce (i). These conditions are more and more precise when l increases. A
capital property is that they are “asymptotically necessary”, as property (i) implies solvability of
the LMIs for large enough values of l.

The LMIs above constitute a family of convex relaxations, computationally tractable, of the
initial problem, which is nonconvex.

A central technique in Theorem 2 consists in achieving the change of variables (4), in order to
take as a departure the auxiliary problem (5), expressed with variables lying on the unit circle.
In consequence, Theorem 2, as well as other results in the present paper, may be extended along
the same principles, in order to check positiveness of polynomial matrices on sets different from
a product of intervals or unit circles, but which, up to polynomial change of variables, may be
parametrized by a finite number of independent variables lying on complex unit disks. To date,
it is possible to consider sets such as the boundary of an ellipse, the boundary of a hypersphere
(using generalized spherical coordinates), or even spheres or hyperspheres themselves (introducing
a new complex variable lying on the disk to parametrize the radius). This artifice permits some
extensions of Theorem 2, without however attaining the powerfulness of the results by Lasserre and
Parillo.

Proof of Theorem 2. The converse implication (ii) ⇒ (i) is the easy part of the proof. Indeed,
right-multiplying and left-multiplying both sides of inequality (9) by (z[l]

m ⊗ · · · ⊗ z[l]
1 ⊗ In) and its

transconjugate yields, after repeated use of formulas (8),

0n < (z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)HGl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In)

+
m∑
i=1

(1−|zi|2)(z[l−1]
m ⊗· · ·⊗z[l−1]

i ⊗z[l]
i−1⊗· · ·⊗z

[l]
1 ⊗In)HQl,i(z[l−1]

m ⊗· · ·⊗z[l−1]
i ⊗z[l]

i−1⊗· · ·⊗z
[l]
1 ⊗In) .

This sense of the claimed equivalence is then deduced by letting |zi| = 1, i = 1, . . . ,m, and using
Lemma 1.
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The principle of the proof of the implication (i) ⇒ (ii) consists in “removing” one-by-one the m
free variables zi in (i), and “replacing” them by the matrix variable Ql,i in (ii). The intermediate
stage, where the first i free variables z1, . . . , zi have been removed and the corresponding i matrices
Ql,1, . . . , Ql,i have been introduced, is called property (Pi). The proof is organized in four steps
that we now present.

1. The property (Pi) is first defined, and it is shown that (i) and (ii) are just (P0) and (Pm)
respectively.

2. Departing from property (Pi), Kalman-Yakubovich-Popov lemma is applied. It results in
the suppression of the free-variable zi+1 and the introduction of a new matrix.

3. It is shown – using basically Theorem 4 below, a result on existence of polynomial solutions
for parameter-dependent LMIs established in [4] – that the previous matrix, which depends upon
the remaining free-variables zi+2, . . . , zm, may be supposed polynomial with respect to the latter
and their conjugates. Therefore, it may be represented by its coefficient matrix. This new constant
matrix, denoted Ql,i+1, is precisely the (i+ 1)-th matrix variable in the LMI (9).

4. Some matrix manipulations permit finally to establish that (Pi) is equivalent to (Pi+1). At
this point, an induction demonstrates that (P0) and (Pm) are equivalent. This ends the proof of
the equivalence between (i) and (ii). The fact that solvability of (9) for l implies the same for
larger value, is obtained as a by-product of 3., see Remark 1 below.

• 1. For i ∈ {0, . . . , . . . ,m}, define the property (Pi) as follows: ∃l ∈ N, l ≥ k,∃Ql,1 ∈ H(l−1)mn,
. . . , ∃Ql,i ∈ H(l−1)m−i+1li−1n, ∀(zi+1, . . . , zm) ∈ (∂D)m−i,

(
z[l]
m ⊗ · · · ⊗ z

[l]
i+1 ⊗ Ilin

)H Gl +
i∑

j=1

(
Ĵ

(m−j+1)⊗
l−1 ⊗ Ilj−1n

)T
Ql,j

(
Ĵ

(m−j+1)⊗
l−1 ⊗ Ilj−1n

)

−
i∑

j=1

(
Ĵ

(m−j)⊗
l−1 ⊗ J̌l−1 ⊗ Ilj−1n

)T
Ql,j

(
Ĵ

(m−j)⊗
l−1 ⊗ J̌l−1 ⊗ Ilj−1n

)(z[l]
m ⊗ · · · ⊗ z

[l]
i+1 ⊗ Ilin

)
> 0lin .

Property (P0) writes

∃l ∈ N, l ≥ k,∀z ∈ (∂D)m, (z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)HGl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In) > 0n .

and it is thus clear, in view of Lemma 1, that (P0) is equivalent to (5), and to the initial problem
(i).

On the other hand, (Pm) is just the LMI (9) in the statement of Theorem 2, except that the
matrices Ql,i are not restricted to be real, but are allowed to be complex. In the former case,
the matrices Gl being real themselves, one may indeed assume without loss of generality, that the
Ql,i are real symmetric: otherwise, one may consider their real part . . . In brief, (Pm) is hence
equivalent to solvability of (9).

At this point, it thus remains, in order to achieve the proof of (i) ⇒ (ii), to demonstrate the
equivalence between (P0) and (Pm). In the sequel, we shall establish that (Pi) ⇔ (Pi+1) for any
i = 0, . . . ,m, this leads by induction to the desired equivalence.
• 2. Now, (

z[l]
m ⊗ · · · ⊗ z

[l]
i+1 ⊗ Ilin

)
=
(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)
(z[l]
i+1 ⊗ Ilin) ,
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and

(z[l]
i+1 ⊗ Ilin) =

(
Ilin

zi+1(z[l−1]
i+1 ⊗ Ilin)

)
=

(
Ilin

zi+1

(
I(l−1)lin − zi+1(Fl−1 ⊗ Ilin)

)−1 (fl−1 ⊗ Ilin)

)
,

where the matrices Fl ∈ Rl×l, fl ∈ Rl×1 are defined by

Fl
def=

(
01×(l−1) 0
Il−1 0(l−1)×1

)
, fl

def=
(

1
0(l−1)×1

)
.

Indeed, to establish the previous identity, it suffices to verify that(
I(l−1)lin − zi+1(Fl−1 ⊗ Ilin)

)
(z[l−1]
i+1 ⊗ Ilin) = (fl−1 ⊗ Ilin) ,

which is straightforward, as (Il−1 − vFl−1)v[l−1] = fl−1, for any complex number v.
At this point, recall the discrete-time version of Kalman-Yakubovich-Popov lemma. This fun-

damental result, initially due to Yakubovich [14] for the continuous-time case, has been adapted to
discrete time by Szegö and Kalman [11]. We use the statement as expressed e.g. in [10]. A proof
of the result in the complex case (and for the continuous-time case) may be found in [8, Theorem
1.11.1 and Remark 1.11.1].

Lemma 3. Let F ∈ Cp×p, f ∈ Cp×q,M = MH ∈ C(q+p)×(q+p). If det(Ip − zF ) 6= 0 for any
z ∈ ∂D, then the following are equivalent.

(i) For any z ∈ ∂D,

0p <
(

Ip
z(Ip − zF )−1f

)H
M

(
Ip

z(Ip − zF )−1f

)
.

(ii) There exists Q ∈ Hp such that

0p+q <
(
f F

)H
Q
(
f F

)
−
(
0p×q Ip

)H
Q
(
0p×q Ip

)
+M . �

Putting p = (l − 1)lin, q = lin, F = Fl−1 ⊗ Ilin, f = fl−1 ⊗ Ilin in the previous statement, we
recognize: (

f F
)

= Ĵl−1 ⊗ Ilin,
(
0p×q Ip

)
= J̌l−1 ⊗ Ilin ,

and this yields equivalence of (Pi) with: ∃l ∈ N, l ≥ k,∃Ql,1 ∈ H(l−1)mn, . . . , ∃Ql,i ∈ H(l−1)m−i+1li−1n,
∀(zi+2, . . . , zm) ∈ (∂D)m−i−1, ∃Q̃l,i+1(zi+2, . . . , zm) ∈ H(l−1)lin,

(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)H Gl +
i∑

j=1

(
Ĵ

(m−j+1)⊗
l−1 ⊗ Ilj−1n

)T
Ql,j

(
Ĵ

(m−j+1)⊗
l−1 ⊗ Ilj−1n

)

−
i∑

j=1

(
Ĵ

(m−j)⊗
l−1 ⊗ J̌l−1 ⊗ Ilj−1n

)T
Ql,j

(
Ĵ

(m−j)⊗
l−1 ⊗ J̌l−1 ⊗ Ilj−1n

)(z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)
+
(
Ĵl−1 ⊗ Ilin

)T
Q̃l,i+1

(
Ĵl−1 ⊗ Ilin

)
−
(
J̌l−1 ⊗ Ilin

)T
Q̃l,i+1

(
J̌l−1 ⊗ Ilin

)
> 0li+1n . (10)

• 3. The next step consists in assigning polynomial form to Q̃l,i+1. This is done with the help of
the following general result, borrowed from [4].
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Theorem 4. Suppose G0, G1, . . . , Gp are continuous mappings defined in a compact subset K of
R
m, and taking values in Sn. If, for any δ ∈ K, there exists a solution x(δ) ∈ Rp to the parameter-

dependent LMI

∃x ∈ Rp, G(x, δ) def= G0(δ) + x1G1(δ) + · · ·+ xpGp(δ) > 0 , (11)

then there exists a polynomial function x∗ : K → R
p, such that, for any δ ∈ K, G(x∗(δ), δ) > 0.

�

Notice that any LMI depending upon a finite number of scalar parameters may be put under
the form (11).

By use of the previous result, Q̃l,i+1(zi+2, . . . , zm), being solution of a LMI with parameter in
the compact set (∂D)m−i−1, may be chosen polynomial in its variables and their conjugates. Let
l̃ − 2 be its degree. If l̃ ≤ l, then one may write

Q̃l,i+1(zi+2, . . . , zm) =
(
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

)H
Ql,i+1

(
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

)
,

(12)

for a certain coefficient matrix Ql,i+1 ∈ H(l−1)m−ilin.
Otherwise, we show now that, up to an increase of l, the degree may be supposed the same, so

the previous formula still holds. For this, let us form, for j = 1, . . . , i, the matrices

Ql+1,j
def=

1
2m

∑
Jα∈{Ĵl,J̌l}, α=1,...,j−1

Jα∈{Ĵl−1,J̌l−1}, α=j,...,m

(Jm ⊗ · · · ⊗ J1 ⊗ In)TQl,j(Jm ⊗ · · · ⊗ J1 ⊗ In) ,

and

Q̃l+1,i+1
def=

1
2i+1

∑
Jα∈{Ĵl,J̌l}, α=1,...,i

Ji+1∈{Ĵl−1,J̌l−1}

(Ji+1 ⊗ · · · ⊗ J1 ⊗ In)T Q̃l,i+1(Ji+1 ⊗ · · · ⊗ J1 ⊗ In) . (13)

By construction, the matrix Q̃l+1,i+1 has the same degree l̃ − 2 in zi+2, . . . , zm, z̄i+2, . . . , z̄m than
Q̃l,i+1. Denoting for short Rl the left-hand side of (10) and Rl+1 the analogue expression, obtained
with the definitions of Ql+1,j , j = 1, . . . , i and Q̃l+1,i+1 given above, and with the definition of Gl+1

given in (6), we will now show that

Rl+1 =
1

2i+1

∑
Jα∈{Ĵl,J̌l}, α=1,...,i+1

(Ji+1 ⊗ · · · ⊗ J1 ⊗ In)TRl(Ji+1 ⊗ · · · ⊗ J1 ⊗ In) . (14)

First, taking into account the fact that

∀l ∈ N, J̌lĴl+1 = ĴlJ̌l+1, ĴlIl+1 = IlĴl, J̌lIl+1 = IlJ̌l , (15)

one gets, for Ql+1,j defined previously:

(Ĵ (m−j+1)⊗
l ⊗ I(l+1)j−1n)TQl+1,j(Ĵ

(m−j+1)⊗
l ⊗ I(l+1)j−1n)

=
1

2m
∑

Jα∈{Ĵl,J̌l}, α=1,...,j−1

Jα∈{Ĵl−1,J̌l−1}, α=j,...,m

(.)T (.)TQl,j(Jm ⊗ · · · ⊗ J1 ⊗ In)(Ĵ (m−j+1)⊗
l ⊗ I(l+1)j−1n)

=
1

2m
∑

Jα∈{Ĵl,J̌l}, α=1,...,m

(.)T
[
(.)TQl,j(Ĵ

(m−j+1)⊗
l−1 ⊗ Ilj−1n)

]
(Jm ⊗ · · · ⊗ J1 ⊗ In) . (16)
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Here and in the sequel, the dots in the formulas stand for terms ensuring the symmetry of the
expressions, and which are not repeated for sake of space. The same argument applied to the terms
(Ĵ (m−j)⊗
l−1 ⊗ J̌l−1 ⊗ Ilj−1n)TQl,j(Ĵ

(m−j)⊗
l−1 ⊗ J̌l−1 ⊗ Ilj−1n) in (10), shows that formally, both may be

treated as the term in Gl (as formula (16) is formally identical to the relation (6) linking Gl and
Gl+1).

We may now consider all together the terms under brackets in (10), writing for simplicity only
the term in Gl. Arguing as in 1., one shows based on formulas (6) and (8), that for any z ∈ (∂D)m,(
z[l+1]
m ⊗ · · · ⊗ z[l+1]

i+2 ⊗ Ili+1n

)H
Gl+1

(
z[l+1]
m ⊗ · · · ⊗ z[l+1]

i+2 ⊗ Ili+1n

)
=

1
2m

∑
Jα∈{Ĵl,J̌l},
α=1,...,m

(
.
)H

(.)TGl(Jm ⊗ · · · ⊗ J1 ⊗ In)
(
z[l+1]
m ⊗ · · · ⊗ z[l+1]

i+2 ⊗ Ili+1n

)

=
1

2m
∑

Jα∈{Ĵl,J̌l}, α=1,...,i+1

jα∈{0,1}, α=i+2,...,m

|zm|2jm . . . |zi+2|2ji+2

(
.
)H

Gl

(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ji+1 ⊗ · · · ⊗ J1 ⊗ In

)

=
1

2i+1

∑
Jα∈{Ĵl,J̌l}, α=1,...,i+1

(
.
)H

Gl

(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ji+1 ⊗ . . . J1 ⊗ In

)
=

1
2i+1

∑
Jα∈{Ĵl,J̌l}, α=1,...,i+1

(.)T
(
.
)H

Gl

(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)
(Ji+1 ⊗ · · · ⊗ J1 ⊗ In)

In order to establish (14), it now remains to consider the last two terms of (10), involving Q̃l,i+1.
Using (15) yields(

Ĵl ⊗ I(l+1)in

)T
Q̃l+1,i+1

(
Ĵl ⊗ I(l+1)in

)
=

1
2i+1

∑
Jα∈{Ĵl,J̌l}, α=1,...,i

Ji+1∈{Ĵl−1,J̌l−1}

(
.
)T (.)T Q̃l,i+1(Ji+1 ⊗ · · · ⊗ J1 ⊗ In)

(
Ĵl ⊗ I(l+1)in

)

=
1

2i+1

∑
Jα∈{Ĵl,J̌l}, α=1,...,i+1

(.)T
(
.
)T
Q̃l,i+1

(
Ĵl−1 ⊗ Ilin

)
(Ji+1 ⊗ · · · ⊗ J1 ⊗ In) ,

and a corresponding identity holds for (J̌l ⊗ I(l+1)in)T Q̃l+1,i+1(J̌l ⊗ I(l+1)in).
Finally, putting together the previous technical developments establishes identity (14). From

this identity, one deduces that Rl+1 > 0 whenever Rl > 0: a new solution of (10) may thus be
constructed, with l replaced by l+1, and for which Q̃l+1,i+1 has clearly the same degree l̃−2 in the
variables zi+2, . . . , zm and their conjugates than Q̃l,i+1 (see formula (13)). Hence, one concludes
that, up to an increase of l, there is no loss of generality in assuming that l = l̃ in the decomposition
(12) of Q̃l,i+1.

Remark 1. Applying the previous argument to (Pm) proves that solvability of (9) implies the same
property for the larger values of the index.

To summarize, it has been established until now that (Pi) is equivalent to: ∃l ∈ N, l ≥ k,∃Ql,1 ∈
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H(l−1)mn, . . . ,∃Ql,i+1 ∈ H(l−1)m−ilin, ∀(zi+2, . . . , zm) ∈ (∂D)m−i−1,

0li+1n <
(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)H Gl +
i∑

j=1

(
Ĵ

(m−j+1)⊗
l−1 ⊗ Ilj−1n

)T
Ql,j

(
Ĵ

(m−j+1)⊗
l−1 ⊗ Ilj−1n

)

−
i∑

j=1

(
Ĵ

(m−j)⊗
l−1 ⊗ J̌l−1 ⊗ Ilj−1n

)T
Ql,j

(
Ĵ

(m−j)⊗
l−1 ⊗ J̌l−1 ⊗ Ilj−1n

)(z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)
+
(
Ĵl−1 ⊗ Ilin

)T (
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

)H
Ql,i+1

(
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

)(
Ĵl−1 ⊗ Ilin

)
−
(
J̌l−1 ⊗ Ilin

)T (
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

)H
Ql,i+1

(
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

) (
J̌l−1 ⊗ Ilin

)
.

• 4. It remains now to achieve some matrix intervertions in the last two terms of the previous
inequality. Using the following formula (obtained with the help of (8)):(

z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

)(
Ĵl−1 ⊗ Ilin

)
=

(
I(l−1)m−i−1 ⊗ Ĵl−1 ⊗ Ilin

)(
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ Ili+1n

)
=

(
Ĵ

(m−i)⊗
l−1 ⊗ Ilin

)(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)
,

and similarly:(
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

) (
J̌l−1 ⊗ Ilin

)
=
(
Ĵ

(m−i−1)⊗
l−1 ⊗ J̌l−1 ⊗ Ilin

)(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)
,

one finally proves that (Pi) is equivalent to: ∃l ∈ N, l ≥ k,∃Ql,1 ∈ H(l−1)mn, . . . , ∃Ql,i+1 ∈
H(l−1)m−ilin, ∀(zi+2, . . . , zm) ∈ (∂D)m−i−1,

(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)H Gl +
i+1∑
j=1

(
Ĵ

(m−j+1)⊗
l−1 ⊗ Ilj−1n

)T
Ql,j

(
Ĵ

(m−j+1)⊗
l−1 ⊗ Ilj−1n

)

−
i+1∑
j=1

(
Ĵ

(m−j)⊗
l−1 ⊗ J̌l−1 ⊗ Ilj−1n

)T
Ql,j

(
Ĵ

(m−j)⊗
l−1 ⊗ J̌l−1 ⊗ Ilj−1n

)(z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)
> 0li+1n .

One recognizes property (Pi+1). In other words, (Pi) ⇔ (Pi+1) for all i = 0, . . . ,m − 1, so (P0)
⇔ (Pm). This achieves the proof of Theorem 2.

4 Representation results for matrix-valued polynomials

In the same fashion that the results by Lasserre and Parrilo are closely related to representation
result for polynomials (as sums of squares), Theorem 4 is sustended by a representation result, for
matrix-valued polynomials of complex variables.
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Theorem 5. Let function G̃(z) : Cm → Hn be polynomial of degree k − 1 in z, z̄, and such that

∀z ∈ (∂D)m, G̃(z) > 0n .

Then, there exist an integer l ≥ k, a positive definite matrix Rl ∈ Hl
mn, and m polynomials

matrices Qi(z, z̄) taking values in Hn, such that ∀z ∈ Cm,

G̃(z) =
m∏
i=1

1
(1 + |zi|2)l−k

[
(z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)HRl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In) +

m∑
i=1

(1− |zi|2)Qi(z, z̄)

]
.

�

Proof. There exist an integer k and G̃k ∈ Hk
mn, such that G̃(z) nay be represented, for any z ∈ Cm,

as (z[k]
m ⊗· · ·⊗z[k]

1 ⊗In)HG̃k(z
[k]
m ⊗· · ·⊗z[k]

1 ⊗In). Arguing as in the proof of Theorem 2 and defining
G̃l ∈ Hl

mn, l ≥ k, as in (6), one shows that ∀z ∈ (∂D)m, G̃(z) > 0n if and only if there exist l ∈ N
and m matrices Ql,i ∈ H(l−1)m−i+1li−1n, i = 1 . . .m, such that

Rl
def= G̃l +

m∑
i=1

(
Ĵ

(m−i+1)⊗
l−1 ⊗ Ili−1n

)T
Ql,i

(
Ĵ

(m−i+1)⊗
l−1 ⊗ Ili−1n

)
−

m∑
i=1

(
Ĵ

(m−i)⊗
l−1 ⊗ J̌l−1 ⊗ Ili−1n

)T
Ql,i

(
Ĵ

(m−i)⊗
l−1 ⊗ J̌l−1 ⊗ Ili−1n

)
> 0lmn

(compare with (9)). Right-multiplying and left-multiplying, as in the beginning of the proof of
Theorem 2, both sides of this inequality by (z[l]

m ⊗ · · · ⊗ z[l]
1 ⊗ In) and its transconjugate yields, for

any z ∈ Cm,

(z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)HRl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In) = (z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In)HG̃l(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In)

+
m∑
i=1

(1−|zi|2)(z[l−1]
m ⊗· · ·⊗z[l−1]

i ⊗z[l]
i−1⊗· · ·⊗z

[l]
1 ⊗In)HQl,i(z[l−1]

m ⊗· · ·⊗z[l−1]
i ⊗z[l]

i−1⊗· · ·⊗z
[l]
1 ⊗In) .

Using formula (7) in Lemma 1 then permits to end the proof of Theorem 5.

5 Robust semidefinite programming

Application of Theorem 2 to robust semidefinite programming problems is direct, due to the fact
that the coefficient matrices defined in (6) are then affine with respect to the decision variables.

The first application concerns robust feasibility.

Corollary 6. Let G0, G1, . . . , Gp be polynomial mappings: Rm → Sn of degree at most k − 1 in
each variable. Define their coefficient matrices G0,l, G1,l, . . . , Gp,l, l ≥ k, by operations similar to
(4) and (6). Then, the following assertions are equivalent.

(i) There exists x ∈ Rp such that

∀δ ∈ [−1; +1]m, G(x, δ) def= G0(δ) + x1G1(δ) + · · ·+ xpGp(δ) > 0n .
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(ii) There exist x ∈ Rp, l ∈ N, l ≥ k, and m matrices Ql,i ∈ S(l−1)m−i+1li−1n, i = 1 . . .m, fulfilling
the LMI:

G0,l + x1G1,l + · · ·+ xpGp,l +
m∑
i=1

(
Ĵ

(m−i+1)⊗
l−1 ⊗ Ili−1n

)T
Ql,i

(
Ĵ

(m−i+1)⊗
l−1 ⊗ Ili−1n

)
−

m∑
i=1

(
Ĵ

(m−i)⊗
l−1 ⊗ J̌l−1 ⊗ Ili−1n

)T
Ql,i

(
Ĵ

(m−i)⊗
l−1 ⊗ J̌l−1 ⊗ Ili−1n

)
> 0lmn . (17)

Moreover, if this LMI is solvable for the index l, then it is also solvable for any larger index. �

The proof of Corollary 6 is immediatly deduced from Theorem 2. The latter result provides a
sequence of (more and more precise) inner approximations of the set {x : ∀δ ∈ [−1; +1]m, G(x, δ) >
0n}.

The next application concerns robust evaluation of the worst-case optimum under LMI con-
straint. For any positive integer l, define 1l ∈ S l

m
by:

1l+1
def=

1
2m

∑
Jα∈{Ĵl,J̌l},
α=1,...,m

(Jm ⊗ · · · ⊗ J1 ⊗ In)T 1l(Jm ⊗ · · · ⊗ J1 ⊗ In), 11
def= 1 .

Corollary 7. Let G0, G1, . . . , Gp : Rm → Sn, resp. g0, . . . , gp : Rm → R, be polynomial mappings
of degree at most k−1 in each variable. Define their coefficient matrices G0,l, G1,l, . . . , Gp,l, resp.

g0,l, g1,l, . . . , gp,l, l ≥ k. Let g(x, δ) def= g0(δ) + x1g1(δ) + · · · + xpgp(δ), and define the, possibly
infinite, constants γ∞ and γl, l ≥ k, by:

γ∞
def= inf{γ ∈ R : ∃x ∈ Rp,∀δ ∈ [−1; +1]m, G(x, δ) > 0n, g(x, δ) < γ} ,

γl
def= inf{γ ∈ R : ∃x ∈ Rp,∃(Ql,i, ql,i) ∈ S(l−1)m−i+1li−1n × S(l−1)m−i+1l(i−1)

, i = 1 . . .m,
such that (17) and (18) hold} ,

where

γ1l − g0,l − x1g1,l − · · · − xpgp,l +
m∑
i=1

(
Ĵ

(m−i+1)⊗
l−1 ⊗ Il(i−1)

)T
ql,i

(
Ĵ

(m−i+1)⊗
l−1 ⊗ Il(i−1)

)
−

m∑
i=1

(
Ĵ

(m−i)⊗
l−1 ⊗ J̌l−1 ⊗ Il(i−1)

)T
ql,i

(
Ĵ

(m−i)⊗
l−1 ⊗ J̌l−1 ⊗ Il(i−1)

)
> 0lm . (18)

Then, the sequence γl, l ≥ k, is nonincreasing and its limit is equal to γ∞. �

Proof. We assume that all the constants γ∞, γl, l ≥ k, are finite, otherwise feasibility does not hold
and Corollary 6 applies.

To show that γl ≥ γ∞, l ≥ k, we use the same techniques than to prove (ii) ⇒ (i) in the
beginning of the proof of Theorem 2: right-multiply and left-multiply inequality (17) (resp. (18))
by (z[l]

m ⊗ · · · ⊗ z[l]
1 ⊗ In) (resp. (z[l]

m ⊗ · · · ⊗ z[l]
1 )) and its transconjugate, to obtain: ∀z ∈ Cm,

0n < (z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)H(G0,l + x1G1,l + · · ·+ xpGp,l)(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In)

+
m∑
i=1

(1−|zi|2)(z[l−1]
m ⊗· · ·⊗z[l−1]

i ⊗z[l]
i−1⊗· · ·⊗z

[l]
1 ⊗In)HQl,i(z[l−1]

m ⊗· · ·⊗z[l−1]
i ⊗z[l]

i−1⊗· · ·⊗z
[l]
1 ⊗In)
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and

0 < (z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In)H(γ1l − g0,l − x1g1,l − · · · − xpgp,l)(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In)

+
m∑
i=1

(1− |zi|2)(z[l−1]
m ⊗ · · · ⊗ z[l−1]

i ⊗ z[l]
i−1 ⊗ · · · ⊗ z

[l]
1 )Hql,i(z[l−1]

m ⊗ · · · ⊗ z[l−1]
i ⊗ z[l]

i−1 ⊗ · · · ⊗ z
[l]
1 ) .

Taking |zi| = 1, i = 1, . . . ,m, and using Lemma 1 gives finally:

∀δ ∈ [−1; +1]m, G0(δ) + x1G1(δ) + · · ·+ xpGp(δ) > 0n, g0(δ) + x1g1(δ) + · · ·+ xpgp(δ) < γ .

Thus, for any real γ, γ ≥ γl implies that γ ≥ γ∞, and this proves that γl ≥ γ∞.
Monotony of the sequence γl, l ≥ k, is obtained by using techniques similar to the point 3. in

the proof of Theorem 2: one shows that, if (γ, x,Ql,i, ql,i) constitute a solution of (17), (18), then
(γ, x,Ql+1,i, ql+1,i) solves the same inequality with index l + 1, where

Ql+1,j
def=

1
2m

∑
Jα∈{Ĵl,J̌l}, α=1,...i−1

Jα∈{Ĵl−1,J̌l−1}, α=i,...m

(Jm ⊗ · · · ⊗ J1 ⊗ In)TQl,j(Jm ⊗ · · · ⊗ J1 ⊗ In),

ql+1,j
def=

1
2m

∑
Jα∈{Ĵl,J̌l}, α=1,...i−1

Jα∈{Ĵl−1,J̌l−1}, α=i,...m

(Jm ⊗ · · · ⊗ J1)T ql,j(Jm ⊗ · · · ⊗ J1) .

To show finally that γl tends towards γ∞, let ε > 0. By the very definition of γ∞, there exists
x ∈ Rp such that

∀δ ∈ [−1; +1]m,
(
G(x, δ) 0n×1

01×n γ∞ + ε− g(x, δ)

)
> 0n+1 .

Corollary 6 then ensures existence of a solution to (17), (18) with γ∞+ ε instead of γ, for a certain
value of l ≥ k. For this value of l and beyond, one has γl ≤ γ∞ + ε, so lim inf γl ≤ γ∞. From the
properties of the sequence γl previously demonstrated, one concludes that limγl = γ∞, and this
ends the proof of Corollary 7.

A Appendix

We indicate here how to obtain decomposition (4). A natural representation for a matrix-valued
polynomial G(δ) : Rm → R

p×n is

G(δ) = Gl(δ[l]
m ⊗ · · · ⊗ δ

[l]
1 ⊗ In) , (19)

for a certain matrix Gl ∈ R
p×lmn. The effect of the change of variable (4) is then summarized by

Lemma 8.

Lemma 8. Let Gl ∈ Rp×l
mn, then

Gl

((
zm + z̄m

2

)[l]

⊗ · · · ⊗
(
z1 + z̄1

2

)[l]

⊗ In

)
= (z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ Ip)

HG̃l(z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In) ,
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where the matrix G̃l ∈ Rl
mp×lmn is given by the formula

G̃l
def=

∑
0≤αi≤l−1

(Ll,αm ⊗ · · · ⊗ Ll,α1 ⊗ Ip)TGl(Kl,αm ⊗ · · · ⊗Kl,α1 ⊗ In) ,

in which

• the matrices Kl,α ∈ Rl×l are defined by: (Kl,α)i,i−α = 2−i+1Cαi−1, with Cαi
def= i!

α!(i−α)! if
i ≥ α ≥ 0, Cαi = 0 otherwise;

• the matrices Ll,α ∈ R1×l are defined by: Ll,α =
(
01×α 1 01×(l−α−1)

)
. �

Proof. One may check that Kl,α defined in the statement is such that ∀v ∈ C,(
v + v̄

2

)[l]

=
l−1∑
α=0

v̄αKl,αv
[l] .

Thus,

Gl

((
zm + z̄m

2

)[l]

⊗ · · · ⊗
(
z1 + z̄1

2

)[l]

⊗ In

)
=

∑
0≤αi≤l−1

z̄α1
1 . . . z̄αmm Gl(Kl,αm ⊗ · · · ⊗Kl,α1)(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In) .

The conclusion then follows from the fact that ∀v ∈ C, vα = vαv[1] = Ll,αv
[l].
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