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Abstract

We show in this paper that, under general conditions, any convex programming problem depending
continuously upon scalar parameters, and solvable for any value of the latter in a fixed compact set (resp.
open set), admits a branch of solutions which is polynomial (resp. smooth) with respect to these param-
eters. This result may be useful to generate tractable approximations of uncertain convex programming
problems with vanishing conservativeness.

1 Introduction

In many practical applications of convex optimization, the data of the problem are subject to uncertainties,
measurement errors, modelling approximations. The study of parameter-dependent convex programming
problems leads basically to two types of problems.

The first one consists in finding decision variables fulfilling the convex problem, for all values of the
parameters (in a prescribed set). This is the subject of robust convex programming, see [8] for a recent survey.
It has been established that the robust counterpart of linear programming is equivalent to a standard convex
programming problems, under usual constraints on the perturbations [3, 4, 8]. But in general, this nice
property does not hold any more for quadratic programming and conic quadratic programming problems
[3, 7, 8], and for semidefinite programming problems [3, 8]. Indeed, except for special uncertainty structures,
these robust convex programming problems are NP-hard. In these conditions, efforts have been made to
exhibit tractable approximations of the latter. For quadratic and conic quadratic programming problems
[13, 7, 8] and for semidefinite programming problems [14, 5, 6, 8], such an operation is possible, and in
certain cases, astute computations even permit to estimate (from above) some appropriately defined levels
of conservativeness.

The second sort of problems consists in checking that, for all values of the parameters, there exist
decision variables fulfilling the convex problem under study: the difference with the first class of problems
lies in the order of the quantifiers. The corresponding problems are also NP-hard in general. The optimal
solutions of the considered problem may be seen, generally speaking, as functions of the parameters, with
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an unprescribed regularity. The usual way to obtain relaxation of the latter consists in looking for solutions
with prescribed dependency, for example affine with respect to the parameters. However, the works based
on this approach already published in the literature do not offer, up to our knowledge, the possibility to
decrease, and asymptotically remove, the approximation error.

In an attempt to progress in this direction, we provide here a result on existence of smooth solutions to a
general class of convex programming problems depending upon parameters. The results exposed below show
that, without loss of generality, provided that the convex program is solvable for any value of the parameters,
one may assume that the unknowns (the decision variables) are indefinitely differentiable with respect to the
parameters. In the case of a compact parameter set, this function may even be supposed polynomial. This
leads to consider new unknowns, instead of the original untractable function: the degree and coefficients of
a polynomial solution. Thus, a natural next step to complete this procedure is to consider the theoretically
simpler problem, obtained when assuming polynomial dependence with respect to the parameters, of the
solution of the studied problem. The results stated herein ensure that the conservativeness of this procedure
vanishes when the degree increases.

This idea has been applied successfully to robust semidefinite programming. Based on a result on existence
of polynomial solutions for this type of problems [9], this approach has allowed explicit construction of
a family of standard semidefinite programming problems approximating with increasing, asymptotically
perfect, precision, a given robust semidefinite programming problem [10]. The previous family is indexed by
the degree of the underlying polynomial solution, and the coefficients of the latter may be deduced from the
solution of the corresponding linear matrix inequality. The results given in this note are indeed based on an
extension of the work in [9] to general convex problems.

The reader should be aware that results on existence of smooth solutions for differential matrix inequal-
ities, related in spirit to the present contribution, may be found in [15, 16, 17].

The results are provided in Section 2. The central result presented here, Theorem 1, considers robust
feasibility problem, for parameters lying in a compact set. It is afterwards extended in Theorem 3 to open,
possibly unbounded, parameter sets. An application to estimation of the worst-case optimal value of convex
programming problems depending upon parameters is proposed in Corollary 2.

Last, proofs are given in Section 3.

2 Existence of smooth solutions

In all the paper, C denotes a proper cone in Rn, in other words a closed convex solid and pointed cone. To
C is associated as usual a partial ordering in Rn, denoted ≤C : by definition

∀α, α′ ∈ Rn, α ≤C α′ ⇔ α′ − α ∈ C .

Denoting int C the interior of the set C, we also consider the strict partial ordering associated to C:

∀α, α′ ∈ Rn, α <C α′ ⇔ α′ − α ∈ int C .

Such generalized inequalities satisfy nice properties, among which the following will be especially important
in the sequel:

For any sequence αk ≤C 0n, αk → α∞ ⇒ α∞ ≤C 0n , (1)

and:
For any α <C 0n, there exists ε > 0, ‖α′‖n < ε ⇒ α + α′ <C 0n . (2)

Here and in the sequel, 0n denotes the zero vector in Rn, and ‖ · ‖n any norm in this space.
The first result of the present contribution is the following.

Theorem 1. Let K be a compact set of Rm. Let G : Rp×K → Rn be a continuous function, C-convex with
respect to the first variable, that is:

∀x, x′ ∈ Rp, ∀δ ∈ K, ∀λ ∈ [0, 1], G(λx + (1− λ)x′, δ) ≤C λG(x, δ) + (1− λ)G(x′, δ) . (3)
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Assume that:
∀δ ∈ K, ∃x ∈ Rp, G(x, δ) <C 0n . (4)

Then, there exists a polynomial function x∗ : K → Rp such that

∀δ ∈ K, G(x∗(δ), δ) <C 0n .

For fixed value of the parameter δ, to find x ∈ Rp such that G(x, δ) <C 0n, is a convex programming
problem. Thus, problem (4) is a robust convex program. Theorem 1 states that, under very general assump-
tions, solvability of the latter for any value of the perturbation vector δ in K, is equivalent to existence
of a solution polynomial with respect to the components of δ. Remark in particular that no convexity or
connectedness assumption is made on the compact set K.

The proof, detailed in Section 3.1, is based essentially on the construction of a continuous solution x(δ)
of (4). From this, the density of the set of polynomial mappings in the space of continuous functions is
used to conclude. In consequence, other similar existence results (e.g. of trigonometric polynomial or spline
functions) may be deduced in a straightforward way.

We now apply Theorem 1 to the issue of finding the worst-case optimal value of a convex objective under
generalized inequality constraints.

Corollary 2. Let K be a compact set of Rm. Let G : Rp × K → Rn, g : Rp × K → R be continuous
functions, C-convex with respect to the first variable. Then

sup
δ∈K

inf {g(x, δ) : x ∈ Rp, G(x, δ) <C 0n}

= sup
δ∈K

inf {g(x∗(δ), δ) : x∗ polynomial , ∀δ′ ∈ K, G(x∗(δ′), δ′) <C 0n} .

Proof is provided in Section 3.2.
We next state an extension of Theorem 1, valid on non-compact sets.

Theorem 3. Let Ω be an open subset of Rm. Let G : Rp×Ω → Rn be a continuous function, C-convex with
respect to the first variable. Assume that:

∀δ ∈ Ω, ∃x ∈ Rp, G(x, δ) <C 0n .

Then, there exists a C∞ function x∗ : Ω → Rp such that

∀δ ∈ Ω, G(x∗(δ), δ) <C 0n . (5)

See Section 3.3 for proof of Theorem 3. The counterpart of Corollary 2 is evident and not stated explicitly.

3 Proof of the results

3.1 Proof of Theorem 1

We first show the existence of a certain α ∈ int C such that

∀δ ∈ K, {x ∈ Rp : G(x, δ) ≤C −4α} 6= ∅ . (6)

Otherwise, for any α >C 0, there exists δα ∈ K such that the previous set is empty. In this case, consider
δ0 an accumulation point of the sequence δα, α → 0, and, thanks to (4), there exists x0 ∈ Rp such that
G(x0, δ0) <C 0n. By continuity and (2), there exist points δα, α >C 0n, arbitrarily close from δ0, and
α0 >C 0n such that, say, G(x0, δα) ≤C −4α0. Thus, for such an α with 0 <C α <C α0, we have x0 ∈ {x ∈
Rp : G(x, δα) ≤C −4α0} ⊂ {x ∈ Rp : G(x, δα) ≤C −4α} 6= ∅, so we are led to a contradiction. This
establishes the validity of (6) for a certain positive α ∈ int C.
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Now, for the vector α previously exhibited, define

F : K → 2Rp

, δ 7→ F (δ) = {x ∈ Rp : G(x, δ) ≤C −2α} . (7)

Notice that the set-valued map F maps K into the non-void closed convex subsets of Rp. As a matter of
fact, for any δ ∈ K, if xk → x∞ for a sequence xk ∈ F (δ), then G(xk, δ) → G(x∞, δ) by continuity, and
G(x∞, δ) ≤C −2α, so x∞ ∈ F (δ): the set F (δ) is thus closed. On the other hand, C-convexity property (3)
implies that, for any δ ∈ K, any x, x′ ∈ F (δ) and any λ ∈ [0, 1], G(λx + (1 − λ)x′, δ) ≤C λG(x, δ) + (1 −
λ)G(x′, δ) ≤C −2λα− 2(1− λ)α = −2α, and this establishes the convexity of the set F (δ).

At this point, let us establish that F fulfils the following property of lower semicontinuity, see e.g. [2].

Definition. Let X be a topological space, Y a metric space. A set-valued map F from X to Y is said
lower semicontinuous at x0 ∈ X if for any y0 ∈ F (x0) and any neighborhood N(y0) of y0, there exists a
neighborhood N(x0) of x0 such that

∀x ∈ N(x0), F (x) ∩N(y0) 6= ∅ .

F is said lower semicontinuous if it is lower semicontinuous at every point x0 ∈ X. �

Let δ0 ∈ K, x0 ∈ F (δ0), ε > 0. To prove lower semicontinuity of F at δ0, we exhibit η > 0 such that for
every δ ∈ K with ‖δ − δ0‖m < η, there exists x ∈ F (δ), ‖x− x0‖p < ε.

Indeed, by assumption, there exists xδ0 ∈ Rp such that G(xδ0
, δ0) ≤C −4α. For λ ∈ (0, 1] such that

λ ≤ ε

2‖xδ0 − x0‖p
, (8)

let x
def= (1− λ)x0 + λxδ0

. In particular, this implies ‖x− x0‖p = λ‖xδ0 − x0‖p ≤ ε/2 < ε.
The C-convexity property (3) implies that, for any η > 0 and every δ ∈ K,

G(x, δ) ≤C (1− λ)G(x0, δ) + λG(xδ0
, δ)

= (1− λ)G(x0, δ0) + λG(xδ0
, δ0) + (1− λ)

(
G(x0, δ)−G(x0, δ0)

)
+ λ

(
G(xδ0

, δ)−G(xδ0
, δ0)

)
≤C −2(1− λ)α− 4λα + (1− λ)

(
G(x0, δ)−G(x0, δ0)

)
+ λ

(
G(xδ0

, δ)−G(xδ0
, δ0)

)
.

For λ > 0, one has λα ∈ int C. Thus, by continuity of G, for any ε > 0 and any λ in (0, 1] fulfilling (8),
there exists η > 0 such that

‖δ − δ0‖m < η ⇒ G(x0, δ)−G(x0, δ0) ≤C 2λα, G(xδ0
, δ)−G(xδ0

, δ0) ≤C 2λα .

With this choice for η, one has G(x, δ) ≤C −2(1 + λ)α + 2λα = −2α when ‖δ − δ0‖m < η. Thus x ∈ F (δ),
provided that δ ∈ K and ‖δ − δ0‖m < η. We conclude that F is lower continuous at δ0. This achieves the
proof of the lower semicontinuity of F defined in (7).

We now apply to F Michael’s Selection Theorem [18], see also [2].

Theorem (Michael’s Selection Theorem). Let X be a metric space, Y a Banach space. Let F , a
set-valued map from X into the closed convex subsets of Y , be lower semicontinuous. Then there exists
f : X → Y , a continuous selection from F . �

Recall that a selection from F is any single valued map f such that, for any x ∈ X, f(x) ∈ F (x).
Application of the previous result yields existence of a continuous selection f : K → Rp from F defined in
(7). This function is such that

∀δ ∈ K, G(f(δ), δ) ≤C −2α .

It remains to apply to each of the p components of f the following result, see e.g. [12].
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Theorem (Weierstrass Approximation Theorem). Every continuous real-valued function defined on a
compact subset K of Rm, is the limit of a sequence of polynomials, which converges uniformly in K. �

Thus, the selection f previously exhibited is the uniform limit in K of a sequence of (vector-valued)
polynomials in δ. In particular, there exists a polynomial function x∗ : K → Rp such that

∀δ ∈ K, G(x∗(δ), δ) ≤C −α <C 0n .

This achieves the proof of Theorem 1.

3.2 Proof of Corollary 2

Let γ
def= supδ∈K inf{g(x, δ) : x ∈ Rp, G(x, δ) <C 0n}. Note that γ ≤ +∞. First, one has, for every δ ∈ K:

inf{g(x∗(δ), δ) : x∗ polynomial, ∀δ′ ∈ K, G(x∗(δ′), δ′) <C 0n} ≥ inf{g(x, δ) : x ∈ Rp, G(x, δ) <C 0n}, due
to the inclusion of the first set involved in the second one. Thus,

γ ≤ sup
δ∈K

inf {g(x∗(δ), δ) : x∗ polynomial , ∀δ′ ∈ K, G(x∗(δ′), δ′) <C 0n} .

If γ = +∞, it ends the proof of Corollary 2. Let us assume for the remaining of this proof that γ < +∞.
Note that, by definition, inf{g(x, δ) : x ∈ Rp, G(x, δ) <C 0n} ≤ γ for every δ ∈ K. Thus, for any ε > 0,

for any δ ∈ K, there exists x ∈ Rp such that G(x, δ) <C 0n and g(x, δ) < γ + ε. In other words, for any
ε > 0, the following parameter-dependent LMI is feasible:

∀δ ∈ K,∃x ∈ Rp,

(
g(x, δ)− γ − ε 01×n

0n×1 G(x, δ)

)
<R+×C 0n+1 .

Here, we denote by <R+×C the product order relation, defined on Rn+1 by: (a, α) <R+×C⇔ a < 0 and
α <C 0n. The cone R+ × C is proper in Rn+1, and, by use of Theorem 1, for any ε > 0, there exists a
polynomial map x∗ε : K → Rp such that

∀δ ∈ K, G(x∗ε(δ), δ) <C 0n and g(x∗ε(δ), δ) < γ + ε .

Thus, for any ε > 0, for every δ ∈ K,

inf{g(x∗(δ), δ) : x∗ polynomial, ∀δ′ ∈ K, G(x∗(δ′), δ′) <C 0n} ≤ g(x∗ε(δ), δ) < γ + ε ,

so, for any ε > 0,

sup
δ∈K

inf{g(x∗(δ), δ) : x∗ polynomial, ∀δ′ ∈ K, G(x∗(δ′), δ′) <C 0n} ≤ max
δ∈K

g(x∗ε(δ), δ) < γ + ε .

This results finally in:

sup
δ∈K

inf{g(x∗(δ), δ) : x∗ polynomial, ∀δ′ ∈ K, G(x∗(δ′), δ′) <C 0n} ≤ γ ,

whence the claimed equality. This ends the proof of Corollary 2.

3.3 Proof of Theorem 3

For all δ ∈ Ω, let us denote the open ball centered at δ with radius 1 by B(δ, 1). Let us choose a locally
finite covering B(δi, 1)i∈N of Ω. Due to [11, Th. V.4.4], there exists a partition of unity (Ψi)i∈N subordonate
to this open covering, that is

• For all i ∈ N, Ψi: Rm → [0,+∞) is a smooth (that is C∞) function, with support in B(δi, 1).

5



• For all δ ∈ Ω, the set {i ∈ N : δ ∈ B(δi, 1)} is finite, and
∑

i∈N Ψi(δ) = 1.

For each i ∈ N, consider a polynomial function xi defined on the closure clos(B(δi, 1)) of B(δi, 1) and
taking values in Rp, such that, for all δ ∈ clos(B(δi, 1)) ∩ Ω,

G(xi(δ), δ) < 0n .

Such polynomial function exists, due to Theorem 1 and compactness of clos(B(δi, 1)). Let us now define
the C∞ function x∗ : Ω → Rn by:

x∗(δ) =
∑
i∈N

Ψi(δ)xi(δ) .

One verifies easily that

G(x∗(δ), δ) = G

(∑
i∈N

Ψi(δ)xi(δ), δ

)
≤C
∑
i∈N

Ψi(δ)G(xi(δ), δ) <C 0n ,

due to the C-convexity of G and the fact that
∑

i Ψi ≡ 1. The smooth function x∗ thus fulfills the desired
inequality, and this ends the proof of Theorem 3.
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