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Abstract— We study in this paper the static state-feedback
stabilization of linear finite dimensional systems depending
polynomially upon a finite set of real, bounded, parameters.
These parameters are a priori unknown, but available in real-
time for control.

We state two main results. First, we show that stabiliz-
ability of the class of systems obtained for frozen values
of the parameters, may be expressed equivalently by some
LMI conditions, linked to certain class of parameter-dependent
Lyapunov functions. Second, we show that existence of such a
Lyapunov function for the LPV systems subject to bounded
rate of variation of the parameters with respect to time,
may be in the same manner expressed equivalently by some
LMI conditions. In both cases, the method provides explicitly
parameter-dependent stabilizing gain.

I. INTRODUCTION

Linear parameter-varying (LPV) systems have recently
received much attention, in connection with the gain-
scheduling control design methodologies, see [5], [7] for
recent surveys and bibliography on the subject. LPV sys-
tems are linear systems that depend upon time-varying real
parameters. The latter are not known in advance, but may
be used in real-time for control purposes. However, they are
usually constrained to lie inside a known bounded set.

The issue of checking the stabilizability and determining
a parameter-dependent stabilizing gain for every frozen ad-
missible value of the parameters, is already a difficult task.
As an example, a coarse application of the Lyapunov-based
synthesis techniques available for linear systems is impossi-
ble, as it leads to solve an infinite number of linear matrix
inequalities (LMIs). At this point, two types of methods are
usually used (see the recent works [8], [6] on LPV systems):
either the controller gain is first computed for a bunch of
parameter values, and then interpolated between the nodes of
this grid (but the stability, and possibly performance, results
are not guaranteed between the nodes); or the solution of the
parameter-dependent LMIs involved is sought for with pre-
specified dependence with respect to the parameters, usually
constant or affine (at the cost of adding conservatism). Of
course, the stabilization issue is still more complicated when
the parameters are time-varying.

In this paper, we show that, in principle, the previous task
may be realized without conservatism, to provide guaranteed
stability results. More precisely, we state two main results,
Theorems 1 and 2, whose contribution may be summarized
as follows.

1. The stabilization of all the systems obtained forconstant

valuesof the parameters in the admissible hypercube is
equivalent to the existence for the closed-loop system of
a quadratic Lyapunov functionpolynomialwith respect
to the parameters. For fixed value of the degree, the
coefficients of this polynomial are solutions of a LMI.

2. The existence of a similar quadratic Lyapunov function
(depending in the same way upon the parameters) for
the corresponding LPV system withrestricted rate of
variation of the parameters, is also equivalent, for fixed
degree, to the solvability of a LMI.

3. In both cases, a parameter-dependent stabilizing gain is
deduced from the solution of the LMIs.

The originality of the results presented here lies in the
nonconservative nature of the LMI conditions proposed.
They constitute a systematization of the approaches based
on parameter-dependent Lyapunov functions. Further work
should consider dynamic controller synthesis and performace
verification.

Effective use of the results given here is subordinate
to powerful LMI solvers. A general idea for reducing the
computation complexity consists in performing first a sub-
division of the admissible parameter set in subdomains and
applying the results presented below on these smaller regions.
The present paper provides a stage towards such an hybrid
control, which in principle could lead to sensible diminution
of the (off-line) computational burden, but whose study is
out of our scope here.

The paper is organized as follows. The problem is pre-
sented in Section II. Notations are provided in Section III.
The result on systems with frozen parameters (Theorem 1) is
stated in Section IV. The results on systems with parameters
with bounded derivative (Theorem 2) is stated in Section
V. Elements of proof are displayed in Section VI. Some
technical results related to the computations involved are
gathered in Appendix.

II. PROBLEM STATEMENT

We consider here the issue of state-feedback stabilization
for the class of linear systems

ẋ = A(σ(t))x+B(σ(t))u . (1)

In (1), the matrixA ∈ R
n×n, B ∈ R

n×p are supposed
polynomial of partial degree (at most)k with respect to

the components of the vectorσ
def= (σ1, . . . , σm) of m real

parameters.



We are interested in the design of stabilizing static state-
feedback for (1), under the assumption that∀t ≥ 0, σ(t) ∈
[−1; +1]m. In the special case where the components of
σ are constant (̇σ ≡ 0), this is equivalent to find, for any
σ ∈ [−1; +1]m, a gainK(σ) such thatA(σ) + B(σ)K(σ)
is Hurwitz. This leads to study the following property.

Property I.There exist mappingsP : [−1; +1]m → Sn,
N : [−1; +1]m → R

p×n such that,∀σ ∈ [−1; +1]m, P (σ) >
0n, A(σ)P (σ)+P (σ)A(σ)T+B(σ)N(σ)+N(σ)TB(σ)T <
0n.

In this formula,Sn represents the set of symmetric matri-
ces of sizen×n. Property I isequivalentto the stabilizability
of (1) for every admissible choice of the parameters.

As is well-known, the previous condition, guaranteeing
stability for the frozen parameter systems, is not enough to
guarantee stability of the systems with time-varying param-
eters. An attempt to extend the previous ideas to stabiliza-
tion of LPV systems with parameters having variation rate
constrained by|σ̇i| ≤ ρ̄i a.e., i = 1, . . . ,m, leads to the
following interesting issue.

Property II. There exist mappingsP : [−1; +1]m → Sn,
N : [−1; +1]m → R

p×n, P differentiable, such that,∀σ ∈
[−1; +1]m, ∀ρi ∈ [−ρ̄i; ρ̄i], P (σ) > 0n, A(σ)P (σ) +
P (σ)A(σ)T+B(σ)N(σ)+N(σ)TB(σ)T−

∑m
i=1 ρi

∂P (σ)
∂σi

<
0n.

Property II is equivalentto the existence of a quadratic
Lyapunov function depending upon the present values of
the parameters. This property is thus a priori stronger than
the stability of the systems (1) attached to every admissible
trajectories of the parameters.

III. NOTATIONS AND PRELIMINARIES

• The matricesIn, 0n, 0n×p are then×n identity matrix
and then×n andn×p zero matrices respectively. The sym-
bol ⊗ denotes Kronecker product, the power of Kronecker
product being used with the natural meaning:M0⊗ = 1,

Mp⊗ def= M (p−1)⊗ ⊗M . Key properties are:(A ⊗ B)T =
AT ⊗ BT , (A ⊗ B)(C ⊗ D) = (AC ⊗ BD) for matrices
of compatible size. The conjugate and transconjugate ofM ,
are denotedMT andMH . The unit circle inC is denoted
as the boundary∂D, and the set of positive integersN. Also,
the set of symmetric real (resp. hermitian complex) matrices
of sizen× n is denotedSn (resp.Hn).

Last, we introduce some spaces of matrix-valued polyno-
mials.Rn×n[σ] (resp.Sn[σ]) will denote the set of polyno-
mials in the variableσ ∈ Rm, with coefficients inRn×n

(resp. Sn). We shall also consider in the sequel the set,
denotedRn×n[z, z̄], of polynomials inz and z̄, z ∈ C, with
coefficients inRn×n. The setsSn[z, z̄], Hn[z, z̄] are defined
similarly.
• We now introduce specific notations. For anyl ∈ N, for

any v ∈ C, let

v[l] def=


1
v
...

vl−1

 . (2)

This notation permits to manipulate polynomials. Notice in
particular that, for a free variablez ∈ Cm, the vector(z[l]

m ⊗
· · · ⊗ z[l]

1 ) contains exactly thelm monomials inz1, . . . , zm
of degree at mostl − 1 in each variable.

Using this notation, any elementM(z) in Rp×n[z, z̄] may
be represented as

M(z) = (z[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ Ip)HMl(z[l]

m ⊗ · · · ⊗ z
[l]
1 ⊗ In) .

(3)

In this formula, the integerl ∈ N and the matrixMl ∈
R
lmp×lmn are unique, provided thatl is minimal. Indepen-

dently of minimality, the matrixMl is called thecoefficient
matrix of this representation ofM(z), l − 1 its degree.

In the sequel, we shall use the following change of
variables (j2 = −1):

ϕ : [−1; +1]m → (∂D)m, σ 7→ z = ϕ(σ)

wherezi
def= σi + j

√
1− σ2

i , i = 1, . . . ,m .
(4)

Basically (see the developments below), this will permit to
use Kalman-Yakubovich-Popov lemma, “replacing” the free
variableszi by matrix multipliers in the parameter-dependent
LMIs appearing in Properties I and II. In particular, forz in
the range ofϕ, ϕ−1(z) = z+z̄

2 . When z = (z1, . . . , zm)
covers(∂D)m, z+z̄2 varies in the whole set[−1; +1]m.

Generally speaking, forM defined as in (3) and the change
of variable ϕ as in (4),M(ϕ(σ)) is a polynomial inσi,√

1− σ2
i , i = 1, . . . ,m. Among these polynomials, some

will be of particular interest, those leading to polynomials
in the σi only. It may checked easily that these are the
polynomials whose coefficients inzji z̄

j′

i and in zj
′

i z̄
j
i are

equal, for anyi = 1, . . . ,m: indeed, up to factorization
by powers of |zi|2 (which is equal to 1 on∂D), those
polynomials are functions ofzi+z̄i = 2σi only. This property
corresponds to matricesMl ∈ Rl

mp×lmn in (3) having a
particularmirror block structure, those pertaining to the set

R
p×n,lm
M

def= {Ml ∈ Rl
mp×lmn : ∀i1, . . . , im, i′1, . . . , i′m ∈

{0, . . . , l−1}, (eim⊗· · ·⊗ei1⊗Ip)TMl(ei′m⊗· · ·⊗ei′1⊗In) =
(ei′m⊗· · ·⊗ei′1⊗Ip)

TMl(eim⊗· · ·⊗ei1⊗In)}, where we put

eTi
def=

(
01×i 1 01×(l−i−1)

)
. The definition ofRp×n,l

m

M

is such thatMl ∈ Rp×n,l
m

M iff for M(z) defined by (3),
M(ϕ(σ)) is polynomial in σ ∈ [−1; +1]m. The subset
of those mapsM(z) of Rp×n[z, z̄] such thatM(ϕ(σ)) is
polynomial in σ ∈ [−1; +1]m, will be denotedRp×nM [z, z̄].

Also, we defineSnM [z, z̄] def= R
n×n
M [z, z̄] ∩ Sn[z, z̄].



Let us point out to the reader, that some technical results
linked to the matrix transformations induced by operations
on polynomials, are gathered in Appendix.
• We finally define some matrices. Forl, l′ ∈ N, let

Ĵl′,l, J̌l′,l ∈ Rl×(l+l′) be defined by

Ĵl′,l
def=

(
Il 0l×l′

)
, J̌l′,l

def=
(
0l×l′ Il

)
. (5)

A key property of these matrices is that,∀v ∈ C, for v[l]

defined previously,

v[l] = Ĵl′,lv
[l+l′], vl

′
v[l] = J̌l′,lv

[l+l′] . (6)

Last, defineLl ∈ Rl×l by:

Ll
def=


0 . . . 0 0
1 0

2
. ..

...
l − 1 0

 . (7)

IV. CONSTANT PARAMETERS

In the case where the parametersσ are constant, it turns
out that Property I is fulfilledif and only if it is fulfilled for
certain P (σ), N(σ) depending polynomially uponσ. This
naturally introduces as new variables the degreel− 1 of the
polynomials, and the coefficient matrices ofP andN . It turns
out moreover, that, for givenl, the coefficients may be found
out by solving an LMI. This permits to find in an explicit
way stabilizing controllers, as functions of the parameterσ.

Theorem 1. The following areequivalent.
(i) Property I is fulfilled.

(ii) There exists(P (σ), N(σ)) ∈ Sn[σ]×Rp×n[σ] fulfilling
Property I.

(iii) There exist an integerl ∈ N and 2(m + 1) matrices
Pl ∈ Sl

mn ∩ Rn×n,l
m

M , Nl ∈ R
p×n,lm
M and QPl,i ∈

S(l−1)m−i+1li−1n, QRl,i ∈ S(k+l−1)m−i+1(k+l)i−1n, i =
1, . . . ,m, such that the system(8) of 2 LMIs is fulfilled,
whereRk+l = Rk+l(Pl, Nl) ∈ S(k+l)mn is the coef-
ficient matrix ofR(z) defined in(9), corresponding to
P (z), N(z) with coefficient matricesPl, Nl.

Moreover,

• given a solution of LMI (8), for P (z), N(z) hav-
ing coefficient matricesPl, Nl, P (ϕ(σ)), N(ϕ(σ)) fulfil

Property I, andK(σ) def= N(ϕ(σ))P (ϕ(σ))−1 is a sta-
bilizing gain, rational inσ;

• if LMI (8) is solvable for the valuel of the index, then
it is also solvable for any larger value.

The matricesĴ , J̌ have been defined in (5). Details for a
systematic computation of the matrixRk+l and of the gain
K(σ) may be found in Appendix.

Theorem 1 offers a family of less and less conservative
relaxations of Property I (in whichQPl,i, Q

R
l,i play the role

of Lagrange multipliers). Asymptotically, the conservatism

vanishes, as solvability of (8) for certainl is necessary to
have Property I.

Incidentally, stabilizability of a pair(A,B) is equivalent
[4, §7.2.1] to the existence of a definite positive matrixP
such thatAP+PAT < BBT . This corresponds to the choice
N = − 1

2B
T in the LMI: AP + PAT +BN +NTBT < 0.

Similarly, it may be checked that, replacing in (9) the matrix
N(z) by − 1

2B
T ( z+z̄2 ), provides a simpler stabilizability

criterion.
Another particular case isB(σ) = 0, which provides a

robust stabilitycriterion, see also [2], [1].

V. TIME-VARYING PARAMETERS WITH
BOUNDED DERIVATIVE

Contrary to the constant parameter case, when Property
II is fulfilled, there is probably no necessity for existence
of a parameter-dependent Lyapunov function of the kind
exhibited in Theorem 1. But it is worth noting that, for given
degree, the existence of such a Lyapunov function may be
expressed without loss of generality as a LMI problem, in a
way similar to what was done for Property I in Theorem 1.
Analogously, stabilizing controllers are then found explicitly
as functions ofσ(t).

Theorem 2. The following areequivalent.

(i) There exists(P (σ), N(σ)) ∈ Sn[σ]×Rp×n[σ] fulfilling
Property II .

(ii) There exist an integerl ∈ N and (2m + m + 2)
matricesPl ∈ Sl

mn∩Rn×n,l
m

M , Nl ∈ Rp×n,l
m

M andQPl,i
∈ S(l−1)m−i+1li−1n, QR,ηl,i ∈ S(k+l−1)m−i+1(k+l)i−1n,
i = 1, . . . ,m, such that the system(10) of the(2m + 1)
LMIs obtained for allη in {−1, 1}m is fulfilled, where
Rk+l = Rk+l(Pl, Nl) has the same meaning than in
Theorem1 andP̂k+l,i ∈ S(k+l)mn is a coefficient matrix
of the mapz 7→ ∂P (ϕ(σ))

∂σi
|σ= z+z̄

2
.

Moreover,

• given a solution of LMI (10), for P (z), N(z) hav-
ing coefficient matricesPl, Nl, P (ϕ(σ)), N(ϕ(σ)) fulfil
Property II , and, for any absolutely continuousσ such
that σ(t) ∈ [−1; +1]m, σ̇(t) ∈

∏m
i=1[−ρ̄i; +ρ̄i] almost

everywhere,K(σ(t)) def= N(ϕ(σ(t)))P (ϕ(σ(t)))−1 is a
stabilizing gain, rational inσ(t);

• if LMI (10) is solvable for the valuel of the index, then
it is also solvable for any larger value.

See Appendix for details on the computation of the terms
P̂k+l,i.

VI. ELEMENTS OF DEMONSTRATION

A. Sketch of proof of Theorem1

1. The equivalence between (i) and (ii), i.e. the fact that
P , N in Property I may be supposed polynomial without
loss of generality, is consequence of a result on existence of



Pl +
m∑
i=1

(
Ĵ

(m−i+1)⊗
1,l−1 ⊗ Ili−1n

)T
QPl,i

(
Ĵ

(m−i+1)⊗
1,l−1 ⊗ Ili−1n

)
−

m∑
i=1

(
Ĵ

(m−i)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ili−1n

)T
QPl,i

(
Ĵ

(m−i)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ili−1n

)
> 0lmn , (8a)

Rk+l +
m∑
i=1

(
Ĵ

(m−i+1)⊗
1,k+l−1 ⊗ I(k+l)i−1n

)T
QRl,i

(
Ĵ

(m−i+1)⊗
1,k+l−1 ⊗ I(k+l)i−1n

)
−

m∑
i=1

(
Ĵ

(m−i)⊗
1,k+l−1 ⊗ J̌1,k+l−1 ⊗ I(k+l)i−1n

)T
QRl,i

(
Ĵ

(m−i)⊗
1,k+l−1 ⊗ J̌1,k+l−1 ⊗ I(k+l)i−1n

)
< 0(k+l)mn , (8b)

R(z) def= A(
z + z̄

2
)P (z) + P (z)A(

z + z̄

2
)T +B(

z + z̄

2
)N(z) +N(z)TB(

z + z̄

2
)T < 0n , (9)

Pl +
m∑
i=1

(
Ĵ

(m−i+1)⊗
1,l−1 ⊗ Ili−1n

)T
QPl,i

(
Ĵ

(m−i+1)⊗
1,l−1 ⊗ Ili−1n

)
−

m∑
i=1

(
Ĵ

(m−i)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ili−1n

)T
QPl,i

(
Ĵ

(m−i)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ili−1n

)
> 0lmn, (10a)

Rk+l +
m∑
i=1

ηiρ̄iP̂k+l,i +
m∑
i=1

(
Ĵ

(m−i+1)⊗
1,k+l−1 ⊗ I(k+l)i−1n

)T
QR,ηl,i

(
Ĵ

(m−i+1)⊗
1,k+l−1 ⊗ I(k+l)i−1n

)
−

m∑
i=1

(
Ĵ

(m−i)⊗
1,k+l−1 ⊗ J̌1,k+l−1 ⊗ I(k+l)i−1n

)T
QR,ηl,i

(
Ĵ

(m−i)⊗
1,k+l−1 ⊗ J̌1,k+l−1 ⊗ I(k+l)i−1n

)
< 0(k+l)mn , (10b)

polynomial solutions for LMIs depending continuously upon
parameters lying in a compact set [3].
2. Take now (ii) as departure: there exists(P,N) ∈
SnM [z, z̄]×Rp×nM [z, z̄], with coefficient matricesPl ∈ Sl

mn∩
R
n×n,lm
M , Nl ∈ Rp×n,l

m

M , such that,∀z ∈ (∂D)m, (z[l]
m ⊗

· · ·⊗ z[l]
1 ⊗ In)HPl(z

[l]
m ⊗ · · ·⊗ z[l]

1 ⊗ In) < 0n and(z[k+l]
m ⊗

· · · ⊗ z[k+l]
1 ⊗ In)HRk+l(z

[k+l]
m ⊗ · · · ⊗ z[k+l]

1 ⊗ In) < 0n,
for Rk+l(Pl, Nl) defined as in the statement. The proof
includes joint reduction of these two inequalities to the
inequalities in (8). For simplicity, we expose this procedure
for one inequality only, say the first one. Fori = 0, . . . ,m,
denote (Pi) the property:∃l ∈ N,∃QPl,1 ∈ H(l−1)mn, . . . ,

∃QPl,i ∈ H(l−1)m−i+1li−1n, ∀(zi+1, . . . , zm) ∈ (∂D)m−i such
that (11) holds. Property (P0) is the part of (ii) devoted toP ,
whereas (Pm) is just (8a). We indicate in the remaining, how
to establish that (Pi) ⇔ (Pi+1) for any i = 0, . . . ,m− 1.

Remark that (z[l]
m ⊗ · · · ⊗ z

[l]
i+1 ⊗ Ilin) =

(z[l]
m ⊗ · · · ⊗ z[l]

i+2 ⊗ Ili+1n)(z[l]
i+1 ⊗ Ilin) and(z[l]

i+1 ⊗ Ilin) =(
Ilin

zi+1

(
I(l−1)lin − zi+1(Fl−1 ⊗ Ilin)

)−1 (fl−1 ⊗ Ilin)

)
,

with Fl
def=

(
01×(l−1) 0
Il−1 0(l−1)×1

)
, fl

def=
(

1
0(l−1)×1

)
.

Applying discrete-time Kalman-Yakubovich-
Popov lemma yields equivalence of (Pi) with:
∃l ∈ N,∃QPl,1 ∈ H(l−1)mn, . . . , ∃QPl,i ∈ H(l−1)m−i+1li−1n,
∀(zi+2, . . . , zm) ∈ (∂D)m−i−1, ∃Q̃Pl,i+1(zi+2, . . . , zm) ∈
H(l−1)lin such that (12) holds.
3. Using again the result in [3],̃QPl,i+1(zi+2, . . . , zm), solu-
tion of a LMI with parameter in(∂D)m−i−1, may be chosen
polynomial in its variables and their conjugates. Letl̃− 2 be
its degree. If̃l ≤ l, then one writesQ̃Pl,i+1(zi+2, . . . , zm) =
(z[l−1]
m ⊗· · ·⊗z[l−1]

i+2 ⊗I(l−1)lin)HQPl,i+1(z[l−1]
m ⊗· · ·⊗z[l−1]

i+2 ⊗
I(l−1)lin), for a coefficient matrixQPl,i+1 ∈ H(l−1)m−ilin. If
l̃ > l, it may be shown that, up to an increase ofl, the degree
may be supposed the same, so same formula holds.

At this point, (Pi) has been proved equivalent to:∃l ∈
N,∃QPl,1 ∈ H(l−1)mn, . . . , ∃QPl,i+1 ∈ H(l−1)m−ilin, such
that,∀(zi+2, . . . , zm) ∈ (∂D)m−i−1, (13) holds.
4. Some matrix intervertions in the last two terms of (13)
finally yields equivalence between (Pi) and (Pi+1).
5. The same argument is applied to (8b), with some detail
variations. Application to (8a) and (8b) has to be done
together, because of the coupling termPl. Due to the fact that
solvability of (8a), resp. (8b), implies solvability for every



0lin <
(
z[l]
m ⊗ · · · ⊗ z

[l]
i+1 ⊗ Ilin

)H Pl +
i∑

j=1

(
Ĵ

(m−j+1)⊗
1,l−1 ⊗ Ilj−1n

)T
QPl,j

(
Ĵ

(m−j+1)⊗
1,l−1 ⊗ Ilj−1n

)

−
i∑

j=1

(
Ĵ

(m−j)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ilj−1n

)T
QPl,j

(
Ĵ

(m−j)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ilj−1n

)(z[l]
m ⊗ · · · ⊗ z

[l]
i+1 ⊗ Ilin

)
.

(11)

0li+1n <
(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)H Pl +
i∑

j=1

(
Ĵ

(m−j+1)⊗
1,l−1 ⊗ Ilj−1n

)T
QPl,j

(
Ĵ

(m−j+1)⊗
1,l−1 ⊗ Ilj−1n

)

−
i∑

j=1

(
Ĵ

(m−j)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ilj−1n

)T
QPl,j

(
Ĵ

(m−j)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ilj−1n

)(z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)
+
(
Ĵ1,l−1 ⊗ Ilin

)T
Q̃Pl,i+1

(
Ĵ1,l−1 ⊗ Ilin

)
−
(
J̌1,l−1 ⊗ Ilin

)T
Q̃Pl,i+1

(
J̌1,l−1 ⊗ Ilin

)
.

(12)

0li+1n <
(
z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)H Pl +
i∑

j=1

(
Ĵ

(m−j+1)⊗
1,l−1 ⊗ Ilj−1n

)T
QPl,j

(
Ĵ

(m−j+1)⊗
1,l−1 ⊗ Ilj−1n

)

−
i∑

j=1

(
Ĵ

(m−j)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ilj−1n

)T
QPl,j

(
Ĵ

(m−j)⊗
1,l−1 ⊗ J̌1,l−1 ⊗ Ilj−1n

)(z[l]
m ⊗ · · · ⊗ z

[l]
i+2 ⊗ Ili+1n

)
+
(
Ĵ1,l−1 ⊗ Ilin

)T (
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

)H
QPl,i+1

(
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

)(
Ĵ1,l−1 ⊗ Ilin

)
−
(
J̌1,l−1 ⊗ Ilin

)T (
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

)H
QPl,i+1

(
z[l−1]
m ⊗ · · · ⊗ z[l−1]

i+2 ⊗ I(l−1)lin

) (
J̌1,l−1 ⊗ Ilin

)
.

(13)

larger value of the index, taking a value of the index for
which both are solvable yields equivalence of (ii) and (iii).
6. A simple way to show thatK(σ) is a stabilizing feedback,
is to right- and left-multiply (8a) (resp. (8b)) by(z[l]

m ⊗
· · · ⊗ z[l]

1 ⊗ In) (resp.(z[k+l]
m ⊗ · · · ⊗ z[k+l]

1 ⊗ In)) and its
transconjugate, and use (6). . .

Last, the assertion that solvability of (8) for indexl implies
the same property for every larger index, is proved using the
same techniques than the one evoked (but not displayed) in
point 3., to increase the size of the solution. . .

B. Sketch of proof of Theorem2

The demonstration is copied from the demonstration of the
previous Theorem. Due to the affine dependence upon theρi
in Property II, it is enough to consider only the extremal
values±ρ̄i. It is hence required that:∃l ∈ N, ∃Pl ∈ Sl

mn,
∃Nl ∈ Rp×n,l

m

M , ∀η ∈ {−1, 1}m, ∀z ∈ (∂D)m, (z[l]
m ⊗ · · · ⊗

z
[l]
1 ⊗ In)HPl(z

[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In) < 0n and (z[k+l]

m ⊗
· · ·⊗z[k+l]

1 ⊗In)H
(
Rk+l +

∑m
i=1 ηiρ̄iP̂k+l,i

)
(z[k+l]
m ⊗· · ·⊗

z
[k+l]
1 ⊗ In) < 0n.
The argument then essentially follows the proof of Theo-

rem 1. One has to check carefully that the process of increase
of the degree (point3. in Section VI-A) still works.
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VIII. APPENDIX ON POLYNOMIAL MATRICES

We give here details on the computations necessary for
systematic use of Theorems 1 and 2. It is explained in
Sections VIII-A, VIII-B how to computeRk+l(Pl, Nl), that
is how to determine the coefficient matrices of the terms in
(9). Then in Section VIII-C are provided formulas for explicit
computation ofK(σ) as a function ofσ, that is ofP (ϕ(σ))
and N(ϕ(σ)) for P (z), N(z) defined by their coefficient
matrix Pl, Nl. Last, the computation of the term̂Pk+l,i in
(10) is explained in Section VIII-D.

We first extend (5).̇For l, l′ ∈ N, l ≤ l′, α = 0, 1, . . . , l′,
defineJα,l,l′ ∈ Rl×(l+l′) by:

Jα,l,l′
def=

(
0l×α Il 0l×(l′−α)

)
.

Then Ĵl′,l = J0,l,l′ , J̌l′,l = Jl′,l,l′ , andvαv[l] = Jα,l,l′v
[l+l′].

A. Representation of polynomial matrices

A natural representation for a matrix-valued polynomial
M : Rm → R

p×n (such asA(σ) andB(σ)) is

M(σ) = Ml(σ[l]
m ⊗ · · · ⊗ σ

[l]
1 ⊗ In) , (14)

for a certain matrixMl ∈ R
p×lmn. The effect of the change

of variable (4) is then summarized by Lemma 1.

Lemma 1. Let Ml ∈ R
lmp×lmn, then

Ml

((
zm+z̄m

2

)[l] ⊗ · · · ⊗ ( z1+z̄1
2

)[l] ⊗ In) = (z[l]
m ⊗

· · · ⊗ z
[l]
1 ⊗ Ip)HM̃l(z

[l]
m ⊗ · · · ⊗ z

[l]
1 ⊗ In), where

the matrix M̃l ∈ R
p×n,lm is given by the formula

M̃l
def=

∑
0≤αi≤l−1(Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗

Ip)TMl(Kl,αm ⊗ · · · ⊗ Kl,α1 ⊗ In), in which the matrices
Kl,α ∈ Rl×l are defined by:(Kl,α)i,i−α = 2−i+1Cαi−1, with

Cαi
def= i!

α!(i−α)! if i ≥ α ≥ 0, Cαi = 0 otherwise.

Proof: Kl,α defined in the statement is such

that ∀v ∈ C,
(
v+v̄

2

)[l] =
∑l−1
α=0 v̄

αKl,αv
[l].

Thus, Ml

((
zm+z̄m

2

)[l] ⊗ · · · ⊗ ( z1+z̄1
2

)[l] ⊗ In) =∑
0≤αi≤l−1 z̄

α1
1 . . . z̄αmm Ml(Kl,αm⊗· · ·⊗Kl,α1)(z[l]

m⊗· · ·⊗
z

[l]
1 ⊗ In). The conclusion then follows from the fact that
∀v ∈ C, vα = vαv[1] = Jα,1,l−1v

[l].

B. Products of polynomial matrices

Lemma 2 is useful to express the coefficient matrixRk+l,
appearing in (8) or (10), ofR(z) defined in (9) for given
P (z), N(z) with coefficient matricesPl, Nl.

Lemma 2. Let l, l′ ∈ N, andM(z),M ′(z) with coefficient
matricesMl ∈ Rl

mp×lmn, M ′l′ ∈ Rl
′mn×l′mq. Then,M ′′(z)

has coefficient matrixM ′′l′′ , where l′′ = l + l′ − 1 and

M ′′l′′
def=

∑
0≤αi≤l−1,0≤α′

i
≤l′−1

1≤i≤m
(Jα′m,l,l′−1⊗· · ·⊗Jα′1,l,l′−1⊗

Ip)TMl(Jαm,1,l−1⊗· · ·⊗Jα1,1,l−1⊗In)T (Jα′m,1,l′−1⊗· · ·⊗
Jα′1,1,l′−1 ⊗ In)M ′l′(Jαm,l′,l−1 ⊗ · · · ⊗ Jα1,l′,l−1 ⊗ Iq).

Proof: One has:∀v ∈ C, v[l] =
∑l−1
α=0 v

αJTα,1,l−1,
v[l]v[l′]H =

∑
0≤α≤l−1,
0≤α′≤l′−1

vαv̄α
′
JTα,1,l−1Jα′,1,l′−1, and the

proof is achieved by using the fact thatvαv[l′] =
Jα,l′,l−1v

[l+l′−1].

C. Formulas attached to inversion of the mapϕ

Lemma 3. Let N(z) ∈ R
p×n
M [z, z̄] with coefficient

matrix Nl ∈ R
p×n,lm
M . Then, N(ϕ(σ)) =∑

0≤αi,α′i≤l−1
i=1,...,m

pα1−α′1(σ1) . . . pαm−α′m(σm)(Jα′m,1,l−1 ⊗

· · · ⊗ Jα′1,1,l−1 ⊗ Ip)Nl(Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ In)T ,
where by definition, the polynomialspα are such that, for
any φ ∈ R, cos(αφ) = pα(cosφ).

The coefficients of the pα are easily found.
Forming the matrices Tl,|α| ∈ R

1×l such that
∀α ∈ {−(l − 1), . . . , 0, . . . , l − 1}, ∀φ ∈ R,
cos(αφ) = Tl,|α|(cosφ)[l], the formula in Lemma 3 writes:
N(ϕ(σ)) =

∑
0≤αi,α′i≤l−1
i=1,...,m

(Jα′m,1,l−1 ⊗ · · · ⊗ Jα′1,1,l−1 ⊗

Ip)Nl(JTαm,1,l−1Tl,|αm−α′m| ⊗ · · · ⊗ JTα1,1,l−1Tl,|α1−α′1| ⊗
In)T , which is of the form (14).

Proof: We have: N(z) =∑
0≤αi,α′i≤l−1
i=1,...,m

zα1
1 z̄

α′1
1 . . . zαmm z̄

α′m
m (Jα′m,1,l−1 ⊗ · · · ⊗

Jα′1,1,l−1 ⊗ Ip)Nl(Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ In)T .
Taking into account the fact that|zi| = 1, i = 1, . . . ,m
and thatNl ∈ Rp×n,l

m

, the previous expression is equal
to

∑
0≤αi,α′i≤l−1,α1=α′1

i=1,...,m

zα2
2 z̄

α′2
2 . . . zαmm z̄

α′m
m (Jα′m,1,l−1 ⊗

· · · ⊗ Jα′1,1,l−1 ⊗ Ip)Nl(Jαm,1,l−1 ⊗ · · · ⊗
Jα1,1,l−1 ⊗ In)T +

∑
0≤αi,α′i≤l−1

α1<α
′
1, i=1,...,m

(zα
′
1−α1

1 +

z̄
α′1−α1
1 )zα2

2 z̄
α′2
2 . . . zαmm z̄

α′m
m (Jα′m,1,l−1 ⊗ · · · ⊗ Jα′1,1,l−1 ⊗

Ip)Nl(Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ In)T . Introducing the
functionspi as defined in the statement, this is also equal to∑

0≤αi,α′i≤l−1
i=1,...,m

pα1−α′1(σ1)zα2
2 z̄

α′2
2 . . . zαmm z̄

α′m
m (Jα′m,1,l−1 ⊗

· · · ⊗ Jα′1,1,l−1 ⊗ Ip)Nl(Jαm,1,l−1 ⊗ · · · ⊗ Jα1,1,l−1 ⊗ In)T ,
becauseσ1 = Re z1. The result follows by induction.

D. Differentiation of polynomial matrices

Lemma 4 is required to express the coefficient matrix of
the terms∂P (σ)

∂σi
in Property II.

Lemma 4. Let M(σ) def= Ml(σ
[l]
m ⊗ · · · ⊗ σ[l]

1 ⊗ In). Then,
for any nonnegative integerk, ∂M(σ)

∂σi
= M̂k+l,i(σ

[k+l]
m ⊗

· · · ⊗ σ[k+l]
1 ⊗ In), with M̂k+l,i

def= Ml(Ĵ
(m−i)⊗
k,l ⊗ LlĴk,l ⊗

Ĵ
(i−1)⊗
k,l ⊗ In).

Proof: Indeed,∂M(σ)
∂σi

= Ml(σ
[l]
m ⊗· · ·⊗ ∂σ

[l]
i

∂σi
⊗σ[l]

i−1⊗
· · · ⊗ σ[l]

1 ⊗ In) = Ml(I
(m−i)⊗
l ⊗ Ll ⊗ I(i−1)⊗

l ⊗ In)(σ[l]
m ⊗

· · · ⊗ σ[l]
1 ⊗ In) = M̂k+l,i(σ

[k+l]
m ⊗ · · · ⊗ σ[k+l]

1 ⊗ In).


