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Abstract—We study in this paper the static state-feedback
stabilization of linear finite dimensional systems depending
polynomially upon a finite set of real, bounded, parameters.
These parameters are a priori unknown, but available in real-
time for control.

We state two main results. First, we show that stabiliz-
ability of the class of systems obtained for frozen values
of the parameters, may be expressed equivalently by some
LMI conditions, linked to certain class of parameter-dependent
Lyapunov functions. Second, we show that existence of such a
Lyapunov function for the LPV systems subject to bounded
rate of variation of the parameters with respect to time,
may be in the same manner expressed equivalently by some
LMI conditions. In both cases, the method provides explicitly

valuesof the parameters in the admissible hypercube is
equivalent to the existence for the closed-loop system of
a quadratic Lyapunov functiopolynomialwith respect

to the parameters. For fixed value of the degree, the
coefficients of this polynomial are solutions of a LMI.

2. The existence of a similar quadratic Lyapunov function

(depending in the same way upon the parameters) for
the corresponding LPV system witlestricted rate of
variation of the parameters, is also equivalent, for fixed
degree, to the solvability of a LMI.

3. In both cases, a parameter-dependent stabilizing gain is

deduced from the solution of the LMIs.

ter-d dent stabilizi in. . .
parameter-dependent stabflizing gain The originality of the results presented here lies in the

I. INTRODUCTION nonconservative nature of the LMI conditions proposed.
They constitute a systematization of the approaches based

Lmear parameter varying (LPV) sys_tems .have recer?tlgn parameter-dependent Lyapunov functions. Further work
received much attention, in connection with the gain- . . .
. ) : should consider dynamic controller synthesis and performace
scheduling control design methodologies, see [5], [7] fo\r/erification

:z;zn;rseu:i\:\zy:r antebr;]bshct)ﬁ;?%zy gr? dtzeoiutki):ﬁ gtv;_rpl\; S?’S{;“Effective use of the results given here is subordinate
Y P P ying %o powerful LMI solvers. A general idea for reducing the

parameters. The latter are not known in advance, but m%)é . . S . )
mputation complexity consists in performing first a sub-

in real-time for control pur . However, th re. " o . .
be used in real-time for control purposes. However, they adﬁwsmn of the admissible parameter set in subdomains and

usually constrained to lie inside a known bounded set. . :
applying the results presented below on these smaller regions.

The issue of checking the stabilizability and determinin ; :
. . he present paper provides a stage towards such an hybrid
a parameter-dependent stabilizing gain for every frozen ad- T ; Lo
S . - control, which in principle could lead to sensible diminution
missible value of the parameters, is already a difficult task : . .
S of the (off-line) computational burden, but whose study is
As an example, a coarse application of the Lyapunov-based
aut of our scope here.

synthesis techniques available for linear systems is |mposs|-_|_he baper is organized as follows. The problem is pre-

ble, as it leads to solve an infinite number of linear matrix : X . . : :
sented in Section Il. Notations are provided in Section Ill.

inequalities (LMIs). At this point, two types of methods ar . .
usually used (see the recent works [8], [6] on LPV system:-%r:he result on systems with frozen parameters (Theorem 1) is

either the controller gain is first computed for a bunch o tated in Section IV. The results on systems with parameters

parameter values, and then interpolated between the nodei\’\/'rlaqﬁ' bounded derivative (Theorem 2) is stated in Section

this grid (but the stability, and possibly performance, results’ Elt_aments of proof are displayed in S‘?Ct"”? VI. Some
are not guaranteed between the nodes); or the solution of the, hnical _results re!ated to the computations involved are
parameter-dependent LMIs involved is sought for with preg'fjlth(:“rmj in Appendix.
specified dependence with respect to the parameters, usually II. PROBLEM STATEMENT
constant or affine (at the cost of adding conservatism). Of , ) o
course, the stabilization issue is still more complicated whep W& consider here the issue of state-feedback stabilization
the parameters are time-varying. for the class of linear systems

In this paper, we show that, in principle, the previous task (1)
may be realized without conservatism, to provide guaranteed
stability results. More precisely, we state two main resultdn (1), the matrixA € R**" B € R"*P are supposed

Theorems 1 and 2, whose contribution may be summarizgalynomial of partial degree (at most) with respect to

as follows. the components of the vector %' (01,...,0m) of m real
1. The stabilization of all the systems obtaineddonstant parameters.

@ = A(o(t))z + B(o(t)u .



We are interested in the design of stabilizing static statany v € C, let
feedback for (1), under the assumption that> 0, o(t) €
[-1;+1]™. In the special case where the components of 1
o are constantd{ = 0), this is equivalent to find, for any () def

. v = . (2)

o € [-1;+1]™, a gainK (o) such thatA(o) + B(o)K (o) :
is Hurwitz. This leads to study the following property. i1

Property I. There exist mapping® : [-1;+1]™ — S™,
N [=1;+1]™ — RP*" such thatyo € [-1;+1]™, P(s) >  This notation permits to manipulate polynomials. Notice in
0,,, A(0)P(0)+P(c)A(0)T+B(0)N(0)+N(0)TB(c)T <  particular that, for a free variablee C™, the vector(zlfl ®
0.

e ® zﬁ”) contains exactly th&™ monomials inzy, ..., z,

In this formula,S™ represents the set of symmetric matri-Of degree at mos&t_— 1 in each variable..
ces of sizevx n. Property | isequivalentto the stabilizability ~ Using this notation, any element (z) in RP*"[z, z] may
of (1) for every admissible choice of the parameters. be represented as

As is well-known, the previous condition, guaranteeing o [0 " [0 (0
stability for the frozen parameter systems, is not enough 2) = (e ® @21 @ L) Mz, @ @2 ® I")s'
guarantee stability of the systems with time-varying param- )

eters. An attempt to extend the previous ideas to stabilizgy this formula, the integei € N and the matrixM; €
tion of LPV systems with parameters having variation ratg!"rx"» are unique, provided thdtis minimal. Indepen-

constrained bys;| < p; a.e.,i = 1,...,m, leads to the gently of minimality, the matrix\Z; is called thecoefficient
following interesting issue. matrix of this representation af/(z), [ — 1 its degree
Property Il. There exist mapping® : [-1; +1]™ — S™, In the sequel, we shall use the following change of

N : [-1;+1]™ — Rr*", P differentiable, such thatyo €  variables (2 = —1):
(=L +1]™, Vp; € [-pispi], Plo) > 0,, A(o)P(o) + . .
P(0)A(0)T+B(c)N(o)+N (o) ' B(a)T =", p; 2200 < @ [=L+1]™ — (0D)™, 0 z = ¢(0)

i=1F" 9o, def (4)

O wherez; © o i\ /1—02i=1,....m .

Property Il isequivalentto the existence of a quadratic
Lyapunov function depending upon the present values ®asically (see the developments below), this will permit to
the parameters. This property is thus a priori stronger tharse Kalman-Yakubovich-Popov lemma, “replacing” the free
the stability of the systems (1) attached to every admissibi@riablesz; by matrix multipliers in the parameter-dependent
trajectories of the parameters. LMIs appearing in Properties | and Il. In particular, foin
the range ofp, o= 1(2) = 2. Whenz = (z1,...,2m)
covers(9D)™, 4= varies in the whole seft-1; +1]™.

Generally speaking, fak/ defined as in (3) and the change

. . . . of variable ¢ as in (4), M(¢(0)) is a polynomial ing;,
e The matriced,,, 0,, 0,,x, are then x n identity matrix 2 i —1,....,m. Among these polynomials, some

. . 1—o0;
and then x n andn x p zero matrices respectively. The sym-y o of particular interest, those leading to polynomials

2!
b0|d® (:etr;qtes Krogeclﬁr tpr)]roduc:‘[t, ﬂ?e power %f®KE)n1eckelrn the o; only. It may checked easily that these are the
product being used wi e natural meaning.™ = 1, polynomials whose coefficients in/z] and inz] z/ are

def _ .
MT”® ZTM(p D® @ M. Key properties are(A B)T' = equal, for anyi = 1,...,m: indeed, up to factorization
AT @ B, (A® B)(C® D) = (AC ® BD) for matrices by powers of |2 (which is equal to 1 ondD), those
of compatible size. The conjugate and transconjugat®/of polynomials are functions of +z; = 20; only. This property
are denotedWT and MH The unit circle inC is denoted Corresponds to matriceMl c lePlen in (3) having a
as the boundaryD, and the set of positive integel Also,  particularmirror block structure, those pertaining to the set
the set of symmetric real (resp. hermitian complex) matricqﬁpxn rm def I ™ ) . .
. . = {M; € REPXEn U S AN X4
of sizen x n is denotedS™ (resp.H™). M (M, € ity ooy bmy By €
Last, we introduce some spaces of matrix-valued polynC(-e

[1I. NOTATIONS AND PRELIMINARIES

{0,...,1-1}, (e;,, @ - -®e;, @I,) T My(ey, @---®ey ®I,) =

, : i @ ®ey @1,)T M(e;, @ - -®e;, ®1,,)}, where we put
mials. R"*"[5] (resp.S"[0]) will denote the set of polyno- et (@ 1p)" Miles 0 ®1a)} P

mials in the variabler € R™, with coefficients inR"*» € = (O1xi 1 OIX(Z—i—T}I))- The definition of Rf; ™’
(resp. S). We shall also consider in the sequel the seis such thatM; € Ry ™" iff for M(z) defined by (3),
denotedR"*" |z, z], of polynomials inz andz, z € C, with M (¢(0)) is polynomial ino € [-1;+1]™. The subset
coefficients inR™*". The setsS"[z, 2], H"[z, z] are defined Of those mapsM (z) of RP*"[z, 2] such thatM (¢(o)) is
similarly. polynomial ino € [—1;+1]™, will be denotedR%, " [z, z].

¢ We now introduce specific notations. For ang N, for  Also, we defineS}, [z, ] d:ef]R’;f"[z, zZ]|NS"z, z].



Let us point out to the reader, that some technical result&nishes, as solvability of (8) for certainis necessary to
linked to the matrix transformations induced by operationkave Property |I.

on polynomials, are gathered in Appendix.
e We finally define some matrices. Farl’ € N, let
Ju 1, Jyg € R0+ pe defined by

def

Jra = (I Opr), Jz'z = (Ole/ n) . %)

A key property of these matrices is thaty € C, for vl
defined previously,

ol = JAMU[H'ZI], oyl = jp’lv[lﬂl] . (6)
Last, defineL; € R by:
0 0 |0
1 0
LE 2 ™
1—1]o0

IV. CONSTANT PARAMETERS

In the case where the parametersre constant it turns
out that Property | is fulfilledf and only if it is fulfilled for
certain P(0), N(o) depending polynomially upow. This
naturally introduces as new variables the dedred of the
polynomials, and the coefficient matricesifand V. It turns

out moreover, that, for giveh the coefficients may be found
out by solving an LMI. This permits to find in an explicit

way stabilizing controllers, as functions of the parameter

Theorem 1. The following areequivalent

(i) Propertyl is fulfilled.

(i) There exist§P (o), N(0)) € S"[o] x RP*"[o] fulfilling

Property .

There exist an integet € N and 2(m + 1) matrices
poe "Ry, N e R and QF; €

SU=nmTTiT iy QR c Slk+i- 1)’" (k4" n ,i _

1,...,m, such that the syste(B) of 2 LMIs is fulfilled,

whereRkH = R (P, Ny) € SE+0™n is the coef-
ficient matrix of R(z) defined in(9), corresponding to
P(z), N(z) with coefficient matriced’;, V;.

Moreover,

« given a solution of LMI(8), for P(z),N(z) hav-
ing coefficient matrice®;,, N;, P(p(0)), N(¢(o)) fulfil
Propertyl, and K (o )deN(Lp(O'>) P(p(0))~tis a sta-
bilizing gain, rational ingo;

« if LMI (8) is solvable for the valué of the index, then
it is also solvable for any larger value.

(iii)

The matrices/, J have been defined in (5). Details for a

systematic computation of the matriX,; and of the gain
K (o) may be found in Appendix.

Incidentally, stabilizability of a paifA, B) is equivalent
[4, §7.2.1] to the existence of a definite positive matfx
such thatdP+PA™ < BBT. This corresponds to the choice
N = —1BT in the LMI: AP+ PAT + BN + NTBT < 0.
Similarly, it may be checked that, replacing in (9) the matrix
N(z) by —3BT(2£%), provides a simpler stabilizability
criterion.

Another particular case (o) = 0, which provides a
robust stabilitycriterion, see also [2], [1].

V. TIME-VARYING PARAMETERS WITH
BOUNDED DERIVATIVE

Contrary to the constant parameter case, when Property
Il is fulfilled, there is probably no necessity for existence
of a parameter-dependent Lyapunov function of the kind
exhibited in Theorem 1. But it is worth noting that, for given
degree, the existence of such a Lyapunov function may be
expressed without loss of generality as a LMI problem, in a
way similar to what was done for Property | in Theorem 1.
Analogously, stabilizing controllers are then found explicitly
as functions ofr (t).

Theorem 2. The following areequivalent

(i) There exist§P (o), N(0)) € §"[o] x RP*"[o] fulfilling
Property l.

There exist an integel < N and (2™ + m + 2)
matricesP; € S NRY; ™M, Ny e REF™M and QF

c SU-nmTIHIT, QRn c 5(k+1 1)'" ()i tn
i=1,...,m, such that the systefi0) of the (2™ + 1)
LMIs obtamed for allp in {—1,1}™ is fulfilled, where
Ry = RkH(Jfl,Nl) has the same meaning than in

(ii)

Theorenl andeH(i e S+)™n s 3 coefficient matrix
oP
of the mapz — %b:iz
Moreover,

« given a solution of LMI(10), for P(z), N(z) hav-
ing coefficient matrice®;, N;, P(p(0)), N(¢(o)) fulfil
Property I, and, for any absolutely continuous such
that o(t) € [—1;+1)™, &(t) € [11~,[~pi; +p:) almost
everywhere (o(t)) & N (o(o (1)) P(o(o (1)) T is a
stabilizing gain, rational ino(¢);

« if LMI (10)is solvable for the valué of the index, then
it is also solvable for any larger value.

~ See Appendix for details on the computation of the terms
Pt

VI. ELEMENTS OF DEMONSTRATION
A. Sketch of proof of Theoreml

Theorem 1 offers a family of less and less conservative. The equivalence between (i) and (i), i.e. the fact that

relaxations of Property | (in Whilefi,Qﬁ; play the role

P, N in Property | may be supposed polynomial without

of Lagrange multipliers). Asymptotically, the conservatismoss of generality, is consequence of a result on existence of



F(m—1 T F(m—
P+ Z (Jl( e Il'ifln) L ( 1(71 € @ L 1n)

—Z<A1(m ® Jii-1 ® L 1n) Qu( 1. ) ® Ji-1 ® Ii- ln)>01"m7 (8a)

m— 1+1 m—i+1)®
R’”H’Z(JI( k-1 ®I(k+l)i*1n) le( 1 kt1— i ®I(k+l)i*1n)

- Z (Jl( b1 ® ko1 ® Ly ln) QY ( Vet © Jkrir ® Ly ln) < Ok4nymn »  (8D)

A A
2

def , 2+ 2%
2

zZ+z
2

JP(2) + P(ACTE)T + BELDN() + N TBEE)T <0, ©)

PH—Z( Jmm e ®I,i71n)TQ (j{ +e ®1l1-71n)

- ¥ T 7(m—1 ¥
- Z (Jl(T 11) ®J1-1® IlHn) Qi (J1(,zf1)® ®J1-1® Ian) > O0mp, (10a)

i=1

m m T
S m—i+1 m—i+1)®
Ry + Zmpipk+l,z‘ + Z (Jl( k+l+1)® ® I(k+l)i—1n) “,77 (J1( Kl 1) ® I(k+l)t—1n>
i=1 i=1

- Z (Jl(TZ;;)_Q? ® J1kt1-1 ® I(k+z)i—1n)T L (J1(TZ+Z L ® J1 11 @ Iy 1n) < Okg1ymn , (10b)
=1
polynomial solutions for LMIs depending continuously upon Applying discrete-time Kalman-Yakubovich-
parameters lying in a compact set [3]. Popov lemma vyields equivalence of P W|th
2. Take now (i) as departure: there exist® N) e 3l € N,3Q[, € HU=D"r .. 3Q[, € HU-V"™ B
Siylz, 2] x x Rh " [z, 2], with coefficient matriced, € S'" "N V(zit2,...,2m) € (D)™ 7Y, 3QL 11 (zig2, - 2m) €
R"X”l Ny € REX™™ such thatVz € (D)™, (2l @  #U-DV'n such that (12) holds.

]I 'o 1, )HPl(z,[Q ®- ~®z[” ®I,) <0, and (zmH] ® 3. Using again the result in [3]foi+1(zi+2, .+yZm), SOlu-
M@ L) R (R g - @ z[k”] ® I,) < 0,, tion of a LMl with parameter ifdD)™~~!, may be chosen
for RkH(Pl,Nl) deflned as in the statement. The proofpolynomial in its variables and their conjugates Let2 be

includes joint reduction of these two inequalities to thets degree. Iff <1, then one wntte H1(zz+g, ey Zm) =
inequalities in (8). For simplicity, we expose this procedurgz[l Ug.. ®Z1[l+2 ]®I(z—1)zz VA Q! 7,+1(Z7[n Ug...® 1[l+21]®

Lor ortte inecltj]ality onlyi ialtly thIe\I fiﬂrstpone. Fﬁi%; ., m, I(l—l)lin)v for a coefficient matn)Ql,z—i—l c HA-D™ " ln
enote P;) the property:di € Qi €H ' [>1, it may be shown that, up to an increasd ahe degree

Q7 € HU-V™ T Yz 2) € (OD)™ 7 such may be supposed the same, so same formula holds.
that (11) holds. PropertyRy) is the part of (ii) devoted t@, At this point, (Pz) has been proved equivalent t8l ¢
whereas®,,) is just (8a). We indicate in the remammg howN HQP c HI-1" HQ“ € H-D""Tn guch
to establish that?®;) <l:> (Piy1) for anylz =0,. — 1. that, v (zz+2, vzm) € (aD)m i~1, (13) holds,

Remark  that (z)] e ® Zz[J]rl ® Il'n) = 4. Some matnx mtervertlons in the last two terms of (13)
(zm g...® zHQ ®Ip+1n)(zz[ﬂ]rl ® Ii,,) and (ZZUJ]A ®I;;,) = finally yields equivalence betweef®f) and (P;1).

Liiy, 5. The same argument is applied to (8b), with some detalil
(ziﬂ (Ta—1y1in — zig1(Fi—1 ®Ilin))_1 (fi—1 ®Ilin))’ variations. Application to (8a) and (8b) has to be done
with £ def (01 (-1) 0 z def 1 ) togethta_r, because of the coupllttg tgﬁm Due to_the fact that
I Oi-1)x1/’ Ou—1)x1 solvability of (8a), resp. (8b), implies solvability for every



H
On < (ool @nn) [P+ Z (7% @t @f, (7% o 1)
| (11)
1 . T m
(S @ T @ huen) QF (J0% @ Ty @l ] Mool ©h,) .
j=1
H
Opit1y, < <Z7[.Q (ST Zz[{]kQ ® Ili+1n) P+ Z (J(m JHe X Ilj—1n> Qld ( m- j+l)® ® - 1n)
(12)

i ) T o )
S (I 0 G 9 Tu) @ (0% @ hun @ T | (@ @l 0 T,
j=1

N T . A - T ~ .
+ <J1,z—1 & Ilin) Ql];“ <J1,l—1 ® Ilin) — (J1,1_1 & Ilin) inﬂ (J1,1—1 ® Ilin) .

H i T
Opit1p < (Z,[Q K- Zl[l_;']_g & Ili+1n) P+ Z (Jl(T 1J+1)® ® Ilj—ln) Qij (‘]1(77 1]+1)® ® Ilj—ln)

7

- Z ( l(rln 1J)® @ jl,l—l & Iljfln) Qlj ( 1(77 1j)® & j17l_1 (39 Ilj—ln) (ziﬂ R ® Zl[l_,’]_Z ® Ili+1n) (13)

+ (jl’l_l © I”") (Zv[ffl] ® - [l 5 ® I 1yiin ) Qi (Zv[ifl} Q- ® 21[14:21] ® I(lfl)lm) <j1,z—1 © I”")

> T _ _ _ -
- (Jl,lfl & Ilin) («27[711 Ug...® Zz[l_,'_zl] & I(l,l)li ) Ql il ( Hg... 0 Z,L[l_,'_;] (24 I(l,l)lin) (Jl,lfl ® Ilin) .

larger value of the index, taking a value of the index for VIl. REFERENCES
which both are solvable yields equivalence of (ii) and (iii).
6. A simple way to show thak (o) is a stabilizing feedback, [1] P.-A. Bliman (2002). Nonconservative LMI approach to

is to nght- and left-multiply (8a) (resp. (8b)) sz[l] robust stability for systems with uncertain scalar param-
Ao, (resp.:lM e o @ 1,) and its eters,Proc. of 41th IEEE CDCLas Vegas (Nevada)

transconjugate and use (B). [2] P.-A. Bliman (to appear). A convex approach to robust

Last, the assertion that solvability of (8) for indeimplies stability for linear systems with uncertain scalar param-

the same property for every larger index, is proved using the  eters,SIAM J. on Control and Optimization
same techniques than the one evoked (but not displayed) i8] P.-A. Bliman (to appear). An existence result for poly-

point 3., to increase the size of the solution. nomial solutions of parameter-dependent LNBgstems
and Control Letters
B. Sketch of proof of Theoren®2 [4] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan

(1994).Linear matrix inequalities in system and control

The demonstration is copied from the demonstration of the o ; §
theory, SIAM Studies in Applied Mathematics vol. 15

previous Theorem. Due to the affine dependence upop;the : i X
in Property II, it is enough to consider only the extremal [ D-J- Leith, W.E. Leithead (2000). Survey of gain-
valuesipl It is hence required thafil € N le csi"n scheduling analysis and desigimt. J. control 73 no

[I] Y [0 [k+1] . Lim, J.P. How . Analysis ot linear parameter-
®I)Pl(zm®~-~®zl®fn)<0 and( ®

26+ I m ‘ h+1] varying systems using a non-smooth dissipative systems
a0 ®l) (R’““ + it mplp’““’i) (2m @ ® framework, Int. J. Robust Nonlinear Contrdl2, 1067—
ZW] ® I,) < 0,. 1092

The argument then essentially follows the proof of Theo-[7] W.J. Rugh, J.S. Shamma (2000). Research on gain
rem 1. One has to check carefully that the process of increase scheduling Automatica36, 1401-1425
of the degree (poin8. in Section VI-A) still works. [8] F. Wu (2001). A generalized LPV system analysis and



control synthesis frameworknt. J. control 74 no 7, I,)" M;(Ja,, 11-1® - ®Jay 11-101n) " (Jar, 10-1®-+-®

745-759 Jar 101 @ L) M (Jap 041 @ -+ @ oy a1 ® 1),
VIIl. APPENDIX ON POLYNOMIAL MATRICES Proof: One has:Vv € C, vl = Zlilo”anu N
We give here details on the computations necessary fol vl = 3 ocacio1, v20® ngl 1Jor -1, and the

0<a’/ <t/ —1

systematic use of Theorems 1 and 2. It is explained 'BVOOf is achieved by using the fact tharvl'l =
Sections VIII-A, VIII-B how to computeRy.;(P;, N;), that T g ol =1,
is how to determine the coefficient matrices of the terms in”"’ ) _
(9). Then in Section VIII-C are provided formulas for explicitC- Formulas attached to inversion of the map
computation ofK (¢) as a function ob, that is of P(p(0)) Lemma 3. Let N(z) € R’}j”[z z] with coefficient
and N(p(o)) for P(z),N(z) defined by their coefficient matrix N, € R”X"l . Then, N(p(0)) =
matrix P;, N;. Last, the computation of the terd,;; in ZM,I ofsion j— (01) Dam—at, (Om)(Jar, 1021 @
(10) is explained in Section VIi-no. =L

: : / P : ® Jo/ 10-1 QL) NI (Jay 1021 @+ @ Joy1,-1 @ 1) 7T,
demeegrSt exeteﬂgldx ((li)l:;?rbl);.l eN =l a=01...1, where by def|n|t|on the polynomiajs, are such that, for
a,l,l’ -

any ¢ € R, cos(ag) = pa(cos o).

Jall’d— (Oixa I Oix—ay) - The coefficients of the p, are easily found.

7 7 [0 4+1] Forming the matricesT; |, € R>! such that
ThenJy = Jogu, Jvg = Ju g, andvol = Jo oy 6 {—( - 1),...70,...,1 - 1}, V¢ € R,

A. Representation of polynomial matrices cos(ag Tz Jol(cos @), the formula in Lemma 3 writes:
A natural representation for a matrix-valued polynomlaIN(@ - ZO“‘ poisi (Jog 10-1 @ o0 @ Jap 1021 @
M : R™ — RPX" (such aSA(O') andB(o)) is ]p)N( o 11— 1Tl lom—al | @ - & Jal,l,l—llelcnfO/l\ ®
0 ] I,,)T, which is of the form (14)

M(o) = Mi(op, @ - @0y @ 1) , (14) Proof: we have: N(z) =
for a certain matrix\/; € RP*!"" The effect of the change Zo<a7 asi-1 At I (Jag 1 © 0 ©
of variable (4) is then summarized by Lemma 1. Ja,171l L ® I DN (Ja1i1 @ - @ Joy1a1 @ L)T.
Lemma 1. Let M, RI"pXI™n then Taking into account the fact that;| = 1,7 = 1,...,m
M, ((ZerZm)[] e ® (zl+zl)[] @I, _ (Z[z] ® and thatN; € RP*™!" the previous expression is equal

" to agal aq—al 2o za"’...z“’"éam Jor ®
. ® zy] ® L) M(zm Mo ... gz] ® I,), where 20 e (ot 111
the matrix M, ¢ RPX " i glven by the formula "~~~ @ Ja’l -1 ® L)Ni(Jag -1 ® -0 ©
~ o —Qq
M, d:ef Zog(yiq-l(‘]am,l,l—l R - ® Jal,l,l—l ® Jal,l,l—l 2y In) + Z 0<ay,af<i-1 (le +

al<a’1, i=1,...,m

L)' MK, @ ® Ko, ®1,), in which the matrices o/ —q,

. ozz—o‘lz Qm —O‘in Jo R ® J . ®
Ko € R are defined by(K; o)ii—a = 27TLC2 |, with 21 )27 % "'Zm 2" (Jo, 101 o1l
La Y{Kia)ii-a 1 YN (Jay 1021 ® -+ @ Jay10-1 @ I,)T. Introducing the

o def il o

Cf = aiay T2 a >0, Cf =0 otherwise. functionsp; as defmed in the statement, this is also equal to
Proof: K;, defined in the statement is suchZoml al<io1 Pay—a) (01)252 252 .. 200 zom (Ja a1i-1 ®
vt 1 N S P m

that Yo € C, (42 )H = Zl 1o 0Ky !t ‘® Ja’ 11-1 @ Ip)Ni(Ja 101 @+ ® Jay 1021 @ )T,
Thus, M, ((@)[” ® @ (@)H &1 ) — becausefl Re z1. The result follows by induction. m
o<an<ic1 2t Zar Mi(Ka,, ® - @ Ky o, ) (2im Me...o D. Differentiation of polynomial matrices

[l] I,,). The conclusion then follows from the fact that Lemma 4 is required to express the coefficient matrix of
Vv € (C, v = vl = J, 1, 10l m the termsap(?‘) in Property |I.
B. Products of polynomial matrices Lemma 4. Let M (o) dngl(O%] 2ol © 1,). Then,

aM( ) Mk+lz(0'1[n T®
def

[k+l] @ I,), With My, 1; = Ml(J( v ® LiJy) ®
Jlgzl 1)® ®In).

Lemma 2 is useful to express the coefficient maftix,;, for any nonnegative integek,
appearing in (8) or (10), ofR(z) defined in (9) for given
P(z), N(z) with coefficient matricesP;, V;.

Lemma 2. Let[,I’ € N, and M(z), M'(z) with coefficient

. l'mpxlen ’ l/'rnnxl/m,q 7 . a]\/[(o_) [] da_[[ [l]
hm;mgng];i/jéiefn]ﬁmatriﬂ\i’yl;/vielfe " = lJ?’erlj\l/[ aEriZi Prﬁ]Of. ndeed. ... a(m z)®M (0m®( @; av ®Ui_[l}®
def v o @I, = M(I QL &I ®In)(0m

M, = Zogaigz—l‘%a;gw—lu@/ W-1®®@Jor 111 ® ---®a£l]®l) M,H“( [kH]@ ®a[k+l]®ln). [ |
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