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Abstract: In this paper we investigate stability analysis for discrete-time switched
systems. We first consider quadratic Lyapunov functions defined over a nonminimal
state encompassing the past history of the state trajectory over a finite horizon.
This allows us to state necessary and sufficient conditions for testing uniform
exponential stability. Quite remarkably, such conditions can be recast into suitable
Linear Matrix Inequalities (LMIs). Next, we consider more general Lyapunov
functions dependent also on the past of the switch trajectory. We show that, despite
the increased flexibility, this class is no more powerful in capturing stability than
the previous class of quadratic Lyapunov functions. However, the associated LMI-
based tests may be computationally more advantageous than the ones derived in
the quadratic case.
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1. INTRODUCTION

This paper focuses on stability analysis for discrete-
time autonomous switched systems defined as

x(k + 1) = Aδ(k)x(k), δ(k) : N 7→ I. (1)

where I = {1, 2, . . . , s}, is the set of modes,
δ(k) is the switching trajectory and Aσ ∈ R

n×n,
σ ∈ I. In the recent years, switched systems
attracted the interest of the control community
because they provide an effective modeling frame-
work for describing hybrid phenomena arising in
many real-world application fields such as me-
chanics, automotive, switching power converters
(see references in (Liberzon and Morse, 1999)),
and chaos synchronization (Daafouz et al., 2002).
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At a more abstract level, switched systems arise
when considering adaptive control systems based
on a finite family of regulators and control systems
involving the use of multiple models (Narendra
and Xiang, 2000).

Despite the fact that the dynamics of each mode
is linear, the problem of assessing the stability
of a switched system is challenging for two main
reasons. First, the stability/instability of the over-
all system cannot be inferred from the stabil-
ity/instability of each mode (Branicky, 1998). Sec-
ond, the stability problem is either NP-complete
or undecidable (Blondel and Tsitsiklis, 1999).
These results led many researchers to look for suf-
ficient stability conditions based on special choices
of Lyapunov functions that, ultimately, can be
computed by solving suitable LMIs. Among them,



one may cite simultaneous quadratic Lyapunov
functions (Liberzon and Morse, 1999) and the
more general class of switch-dependent quadratic
Lyapunov functions (Daafouz et al., 2002)

Vδ(k, x) = xT Pδ(k)x, Pσ > 0, σ ∈ I (2)

The corresponding sufficient criterion reads as

∀σ ∈ I, ∃Pσ = PT
σ > 0, such that

AT
δ(k)Pδ(k+1)Aδ(k) < Pδ(k) ,

(3)

for any possible pair (δ(k), δ(k + 1)) chosen along
all the possible trajectories. These conditions en-
sure asymptotic stability of system (1), but are,
generally speaking, far from being necessary.

Independently, a new method for studying stabil-
ity of delay systems has been given in (Bliman,
2002a). It is based on the idea of considering
quadratic Lyapunov functions defined on the non-
minimal state

x[p](k)
def
=











x(k)
x(k − 1)

...
x(k − p + 1)











(4)

where p ∈ N is the number of the past time
instants considered (in (Bliman, 2002a), k is a
continuous-time variable, and the delay unit is
supposed equal to one). In (Bliman, 2002a) it is
shown that some stability and performance prop-
erties can be characterized by the existence of
quadratic Lyapunov functions, provided that a p

large enough is considered. Indeed, as p increases,
more and more precise sufficient conditions are
obtained, which asymptotically become necessary.
From the computational point of view, these con-
ditions can be recast into suitable LMIs. We also
point out that the same technique can be adapted
for studying stability of systems with scalar pa-
rameters (Bliman, 2002b).

In the present paper, we show that the idea of
using Lyapunov functions defined over a nonmin-
imal state can be fruitfully exploited for testing
stability of switched systems. In particular, in
Section 2, we prove that a necessary and sufficient
condition for uniform exponential stability is that
there exists a finite p and a quadratic Lyapunov
function V(x[p]) decreasing along the nonminimal
state trajectories. We also provide an equivalent
condition that amounts to an LMI feasibility prob-
lem. In terms of computational complexity, the
necessity of the criterion implies that the problem
of checking uniform exponential stability is semi-
decidable. This means, roughly speaking, that if
the property holds, then it can be proved in a
finite computational time.

We generalize the previous approach in Section 3,
where uniform exponential stability is character-
ized in terms of quadratic Lyapunov functions

dependent on the history of the p past switches.
From the theoretical side, we show that, de-
spite the increased generality, these new Lya-
punov functions are not more expressive than the
quadratic ones, i.e. they capture, at most, the UE
stability of the system. However, the associated
stability test (that generalize the criterion (3))
can be recast into LMIs that are likely to capture
stability for smaller values of the parameter p.
This point is illustrated in Section 4 through a
simple example.

2. SIMULTANEOUS LYAPUNOV
FUNCTIONS

As in Liberzon et al. (Liberzon and Morse, 1999),
we investigate the stability of (1) for certain
classes of switching sequences, more formally, the
stability of the switched difference inclusion

x(k + 1) ∈{Aδ(k)x(k),

δ(k) ∈ S(k, δ(k − 1)) ⊂ I}
(5)

where the map S : N × I 7→ 2I describes
constraints on the switching trajectories. Note
that the switching evolution is independent of the
state x of the system. Nevertheless, many different
switching rules can be modeled through a proper
choice of the constraints.

The case of a single switching trajectory amounts
to considering functions S fulfilling

card [S(k, δ(k − 1))] = 1

where card[A] is the cardinality of the set A.
Possible uncertainty in the switch is taken into
account if card [S(k, δ(k − 1))] > 1 and the maxi-
mal uncertainty coincides with S(k, δ(k−1)) ≡ I.
The modes that can be active at time k > 0 belong
to the reach set, R(k) =

⋃

δ(k−1)∈I
S(k, δ(k − 1)).

In order to guarantee that the evolution of (5) is
not blocked at any time instant, we assume that
the sets S(0) = R(0) 6= ∅ are given and that the
following rule is satisfied recursively, for k > 0

S(k, δ(k − 1)) = ∅ ⇔ δ(k − 1) 6∈ R(k − 1) .

For any time k > p − 1, the vector ξ[p](k) =
(

ξ1 . . . ξp

)T
is called a switch register of length p

if ξi ∈ S(k−i+1, δ(k−i)) and δ(k−i) ∈ R(k−i),
for any i = 1, . . . , p. Note that the elements of
ξ[p](k) are ordered from the current switch to the
previos ones. Moreover, we shall use the sets

Ξ[p](k, σ)
def
=

{

ξ[p](k) : δ(k − p + 1) = σ
}

,

Ξ[p](k)
def
=

⋃

σ∈I

Ξ[p](k, σ) ,

Ξ[p] def
=

∞
⋂

k′=p−1

∞
⋃

k=k′

Ξ[p](k) .



Note that Ξ[p] collects all possible switch vectors
in the asymptotic regime and its cardinality is at
most sp. Moreover, since the number of modes is
finite, this means that there exists a time instant
k∗ such that Ξ[p] =

⋃∞

k′=k Ξ[p](k′) for any k ≥ k∗.

We introduce now the notion of stability we con-
sider.

Definition 1. System (1) is Uniformly Exponen-
tially (UE) stable if:

∃c > 0, α ∈ [0, 1), ∀k, k′ ∈ N, k ≤ k′,

∀x(k) ∈ R
n, ‖x(k′)‖ ≤ cαk′

−k‖x(k)‖ .

�

Note that, in Definition 1, the convergence is
uniform both in time and in space. We are now in
a position to state the main result of the Section.

Theorem 2. The four following properties are
equivalent.

(i) System (1) is UE stable.

(ii) There exist p ∈ N and a quadratic function V

defined on R
n such that, along the trajectories of

system (5), it holds

∀k ∈ N, x(k) 6= 0 ⇒ V (x(k)) > 0 and

V (x(k + p)) < V (x(k)) .

(ii’) There exist p ∈ N and a symmetric positive
definite matrix P ∈ R

n×n such that, ∀ξ ∈ Ξ[p], it
holds

AT
ξp

AT
ξp−1

. . . AT
ξ1

PAξ1
. . . Aξp−1

Aξp
< P (6)

(iii) There exist p ∈ N and a quadratic function
V defined on R

pn such that, along the trajectories
of system (5), it holds

∀k ≥ p − 1, x[p](k) 6= 0 ⇒ V(x[p](k)) > 0

and V(x[p](k + 1)) < V(x[p](k))
(7)

where x[p](k) is defined as in (4). �

Proof. The proof consists in the steps summarized
by the following graph:

(i) ⇒ (ii) ⇒ (iii) ⇒ (i)
m

(ii’)

• (i) ⇒ (ii). Suppose (i) holds with the constants
c, α defined as in Definition 1, and let p be such
that cαp < 1. Then, taking V (x) = xT x, one has:
V (x(k + p)) < V (x(k)), for any k ≥ p.

• (ii) ⇒ (iii). When (ii) holds, define, for the same
p and any x[p] ∈ R

pn, the functional V(x[p]) by

V(x[p])
def
= V (x1) + · · · + V (xp) ,

where the vectors xi ∈ R
n, i = 1, . . . , [p], are de-

fined by the decomposition x[p] = (xT
1 , . . . , xT

p )T .

Then, along the trajectories of (1), V(x[p](k+1))−
V(x[p](k)) = V (x(k + p)) − V (x(k)) < 0.

• (iii) ⇒ (i). Due to the finite number of modes,
there exists α ∈ (0, 1) such that (7) remains
true with V replaced by αV in the right-hand
side of the inequality. Then, there exists c >

0 such that ∀k, k′ ∈ N, k′ > k, we have
V(x[p](k′)) < cαk′

−kV(x[p](k)). Since there exist
L, l > 0 such that l‖x[p]‖2 ≤ V(x[p]) ≤ L‖x[p]‖2,
then ‖x[p](k′)‖2 < (l)−1cLαk′

−k‖x[p](k)‖2.

Let η = maxσ∈I σmax(Aσ) where σmax(A) is the
maximum singular value of the matrix A. Then,
∀k, k′ ∈ N, k′ > k ≥ p − 1, we have

‖x(k′ − p + 1)‖2 ≤ ‖x[p](k′)‖2

≤
L

l
c2αk′

−k‖x[p](k)‖2

≤
L

l
c2

p−1
∑

j=0

ηjαk′
−k‖x(k − p + 1)‖2 .

(8)

By using the time-indices k̃ = k − p + 1 and k̃′ =
k′ − p + 1 the inequalities (8) give, ∀k̃′ > k̃ ≥ 0,

‖x(k̃′)‖2 ≤ c̃αk̃′
−k̃‖x(k̃)‖2 . (9)

where c̃ = L
l
c2

∑p−1
j=0 ηj . Then, it follows that x(k)

tends UE towards the origin.

• The equivalence (ii) ⇔ (ii’) is straightforward.

�

Theorem 2 deserves some remarks. First, note
that the values of p in (ii), (ii’) and (iii) may
be different. More precisely, a careful examination
of the proof reveals that p(ii) = p(ii’) ≥ p(iii).
Second, only condition (iii) involves a Lyapunov
function in the strict sense, because the quadratic
function in (ii) decreases only with a delay of p

time units. On the other hand, only (ii’) offers
computational facilities since it defines the family
of LMI-based tests (parametrized in p), whose
success guarantees UE stability. Note also that
the specific structure of the constraints S(k, σ)
influences the test since it contributes in defining
the set Ξ[p].

From the theoretical side, Theorem 2 means that
switched systems that are asymptotically stable
but that do not possess a quadratic Lyapunov
function (in the sense of (ii)) are somehow “patho-
logical”: the convergence either is not uniform in
time or in space, or is not exponential. In other
words, the class of Lyapunov functions used is
universal (Blanchini and Miani, 1999) for the UE
stability of system (5).

A computational drawback of condition (ii’),
is that the number of LMIs involved scales as
card(Ξ[p]) and it may become prohibitive for large



values of p. In the next section we provide a UE
stability test that, by exploiting a larger number
of unknowns, is expected to capture UE stability
for a smaller p.

3. SWITCH-DEPENDENT QUADRATIC
LYAPUNOV FUNCTIONS

In this Section we consider Lyapunov functions
dependent on the past p switches that provide
a generalization of (2). Since this class of Lya-
punov functions encompasses the quadratic ones
considered in Section 2, one may guess that it
can be used in order to characterize a notion of
stability more general than UE stability. However,
Theorem 4 shows that this conjecture is false.

Definition 3. Consider two switch registers ξ, ξ+ ∈
Ξ[p]. We say that ξ+ is consecutive to ξ if ∃k ∈ N,
such that [ξ+ ξ] ∈ Ξ[2p](k). �

Note that only switch register that are consecutive
in the asymptotic regime are considered (see the
definition of Ξ[p]).

Theorem 4. The four following properties are
equivalent.

(i) System (1) is UE stable.

(ii) There exist p ∈ N and a switch-dependent
quadratic function Vp defined on Ξ[p] × R

n such
that, along the trajectories of system (5), it holds

∀k ∈ N, x(k) 6= 0 ⇒ Vp(ξ
[p](k), x(k)) > 0

and Vp(ξ
[p](k + p), x(k + p)) < Vp(ξ

[p](k), x(k)) .

(ii’) There exist p ∈ N and symmetric positive
definite matrices Pξ, ξ ∈ Ξ[p], such that, for all
ξ+ ∈ Ξ[p] consecutive to ξ, it holds

AT

ξ
+
p

AT

ξ
+

p−1

. . . AT

ξ
+

1

Pξ+Aξ
+

1

. . . Aξ
+

p−1

Aξ
+
p

< Pξ

(10)

(iii)) There exist p ∈ N and a switch-dependent
quadratic function Vp defined on Ξ[p] × R

pn such
that, along the trajectories of system (5), it holds

∀k ≥ p − 1, x[p](k) 6= 0

⇒ Vp(ξ
[p](k), x[p](k)) > 0 and

Vp(ξ
[p](k + 1), x[p](k + 1))

< Vp(ξ
[p](k), x[p](k))

(11)

�

Proof. The structure of the proof is the following

(i) ⇒ (ii) in Theorem 2 ⇒ (ii) ⇒ (iii) ⇒ (i)
m

(ii’)

1 2

23

Fig. 1. Automaton generating the admissible switching

trajectories for the example in Section 4

The implication “(i) ⇒ (ii) in Theorem 2” has
already been proved. The step “(ii) in Theorem 2
⇒ (ii)”, and the equivalence between (ii) and (ii’)
are straightforward.

• (ii) ⇒ (iii). For the same value of p, let

Vp(ξ
[p](k), x[p](k))

def
=

Vp(ξ
[p](k), x1) + · · · + Vp(ξ

[p](k − p + 1), xp)

where we put x[p] = (xT
1 , . . . , xT

p )T . Then, along

the trajectories of (1), we have Vp(k + 1, x[p](k +
1))−Vp(k, x[p](k)) = Vp(k, x(k))−Vp(k−p, x(k−
p)) < 0.

• (iii) ⇒ (i). This step is conducted in a way
similar to the corresponding step in the proof of
Theorem 2.

�

As for Theorem 2, in Theorem 4, the values of p

in (ii), (ii’) and (iii) may be different and it holds
p(ii) = p(ii’) ≥ p(iii). From the computational
point of view, condition (ii’) can be translated
into card(Ξ[2p]) LMIs in card(Ξ[p]) unknowns,
instead of card(Ξ[p]) LMIs in one unknown, as
required by condition (ii’) in Theorem 2.

4. EXAMPLE

In order to highlight the advantages of the LMI
test (10) with respect to (6), we consider scalar
system (1) with s = 3, A1 = 1

10 , A2 = 3 and
A3 = 1

2 . The admissible switching trajectory are
generated by the automaton in Figure 1. Note that
the switch sequences (2, 3, 2, 3) and (3, 2, 3, 2) are
not allowed. Moreover, the dynamics of mode 2 is
unstable and A2A3 > 1 whereas A2A3A2A1 < 1.
On the basis of the previous observations it is easy
to realize that |x(k + 4)| ≤ 9

20 |x(k)| so motivating
the fact that the system is UE stable.

Let p = 2. From Figure 1, one obtains Ξ[2] =
{(2, 1), (3, 2), (1, 2), (2, 3)} (note that in a switch
register ξ[2](k) = (ξ1, ξ2) the most recent switch is
represented by ξ1).

Consider test (6) that amounts to find a scalar
P > 0 satisfying



9

100
P < P (for ξ = (2, 1) and ξ = (1, 2))

9

4
P < P (for ξ = (3, 2) and ξ = (2, 3)) (12)

It is apparent that the inequality (12) is unfeasi-
ble, so showing that the test fails in checking UE
stability for p = 2.

Consider now test (10). Always from Figure 1, the
pairs (ξ+, ξ) of consecutive switch registers are

((2, 3), (2, 1)) , ((2, 1), (2, 1)) ,

((1, 2), (3, 2)) , ((1, 2), (1, 2)) ,

((3, 2), (1, 2)) , ((2, 1), (2, 3)) .

(13)

The LMI test (10) amounts to find positive scalars
P(2,1), P(1,2), P(3,2), P(2,3) satisfying

9

4
Pξ+ < Pξ for (ξ+, ξ) ∈ W1, (14)

9

100
Pξ+ < Pξ for (ξ+, ξ) ∈ W2 (15)

where

W1 = {((2, 3), (2, 1)) , ((3, 2), (1, 2))}

W2 = {((2, 1), (2, 1)) , ((1, 2), (3, 2)) ,

((1, 2), (1, 2)) , ((2, 1), (2, 3))}

By direct calculation, one finds that the inequal-
ities (14), can be verified by any choice of the
unknowns fulfilling

9

100
<

P(2,3)

P(2,1)
<

4

9
,

9

100
<

P(3,2)

P(1,2)
<

4

9
, (16)

so proving that test (10) is successful in checking
UE stability with p = 2.

5. CONCLUSION

In this paper, the issue of stability analysis for
discrete-time switched systems has been investi-
gated. The main result consists in showing that
uniform exponential stability may be character-
ized by the existence of some quadratic Lyapunov
functions, constructed on a sufficiently large num-
ber of past states. This property may be expressed
as a feasibility problem for some Linear Matrix
Inequalities. An example of stability analysis for
a simple system is provided. The synthesis of
stabilizing control law is naturally the next step
to explore.

ACKNOWLEDGMENTS

We thank J. Theys and V. Blondel for their useful
comments about the manuscript.

REFERENCES

Blanchini, F. and S. Miani (1999). A new class
of universal Lyapunov functions for the con-
trol of uncertain linear systems. IEEE Trans.
Autom. Control 44(3), 641–647.

Bliman, P.-A. (2002a). Lyapunov equation for the
stability of linear delay systems of retarded
and neutral type. IEEE Trans. Autom. Con-
trol 47(2), 327–335.

Bliman, P.-A. (2002b). Nonconservative LMI ap-
proach to robust stability for systems with
uncertain scalar parameters. Proc. of 41th
IEEE CDC.

Blondel,
V.D. and J.N. Tsitsiklis (1999). Complexity
of stability and controllability of elementary
hybrid systems. Automatica 35, 479–489.

Branicky, M. S. (1998). Multiple Lyapunov func-
tions and other analysis tools for switched
and hybrid systems. IEEE Trans. Autom.
Control 43(4), 475–482.

Daafouz, J., G. Millerioux and C. Iung (2002).
About poly-quadratic stability and switched
systems. Proc. 15th IFAC world congress.

Liberzon, D. and A.S. Morse (1999). Basic prob-
lems in stability and design of switched sys-
tems. IEEE Control Systems 19, 59–70.

Narendra, K.S. and C. Xiang (2000). Adaptive
control of discrete-time systems using mul-
tiple models. IEEE Trans. Autom. Control
45(9), 1669–1686.


