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Abstract

This paper extends in a simple way the classical absolute stability Popov criterion to multi-
variable systems with delays and with time-varying memoryless nonlinearities subject to sector
conditions. The proposed sufficient conditions are expressed in the frequency domain, a form
well-suited for robustness issues, and lead to simple graphical interpretations for scalar systems.
Apart from the usual conditions, the results assume basically a generalized sector condition on
the derivative of the nonlinearities with respect to time. Results for local and global stability
are given, the latter concerning in particular the linear time-varying ones. For rational transfers,
the frequency conditions are equivalent to some easy-to-check Linear Matrix Inequalities: this
leads to a tractable method of numerical resolution by rational approximation of the transfer.
As an illustration, a numerical example is provided.

1 Introduction

This paper deals with an extension of Popov absolute stability criterion to nonstationary delay
systems. We consider the multivariable control system given in Figure 1, where H is a strictly
proper transfer function matrix of size p× p, p ∈ N \ {0}, and ψ : R

+ ×R
p → R

p a time-dependent
nonlinearity.

Here, the transfer function matrix H is supposed to be represented by the following delay
differential system

ẋ =

L
∑

l=0

Alx(t− hl) +Bu, u = −ψ(t, y), y =

L
∑

l=0

Clx(t− hl), x|[−h,0] = φ , (1)

where

n ∈ N \ {0}, L ∈ N, x ∈ R
n, y ∈ R

p, Al ∈ R
n×n, B ∈ R

n×p, Cl ∈ R
p×n,

0 ≤ hl, h
def
= max{h0, . . . , hL} ,
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Figure 1: The system under study

in such a way that

H(s) = (

L
∑

l=0

Cle
−hls)(sI −

L
∑

l=0

Ale
−hls)−1B .

Assume that ψ is not perfectly known, but rather that it belongs to a certain class of non-
linearities, defined by the following properties: ψ is decentralized [15] (that is: ∀i ∈ {1, . . . p},
ψi(t, y) = ψi(t, yi)) and verifies moreover the following sector condition

∀(t, y) ∈ R
+ × R

p, ψ(t, y)T (ψ(t, y) −Ky) ≤ 0 , (2)

for a certain nonnegative diagonal matrix K. The asymptotic stability of all the systems obtained
by coupling (1) with a nonlinearity fulfilling (2) is called absolute stability of the class of systems (1).

In order for the class of systems (1) to be absolutely stable, asymptotic stability should hold
for all linear time-invariant choice of ψ compatible with (2), that is for the maps:

ψ(t, y) = diag{ki}y, 0 ≤ ki ≤ Ki .

In 1947, Aizerman [1] was the first to formulate (for finite sectors and rational systems) the question
of the sufficiency of this condition. As is well-known, the answer is negative, even if one restricts
oneself to time-invariant nonlinearities, as proved in 1958 by Pliss [24] (see also a counterexample
in [2, p. 86-88]). Popov gave in 1959 an elegant sufficient condition for absolute stability of the class
of systems (1) with time-invariant nonlinearities [25], known as Popov criterion (see e.g. [38, 15, 17]):
absolute stability holds, provided that the poles of H have negative real part and that there exists
a diagonal matrix η such that

I + (I + ηs)KH(s) is strictly positive real (SPR) . (3)

The latter result was initially given for rational systems, and it was extended shortly after by
Popov et al. [26] to delay systems (and seemingly independently by Li [18]). For rational systems,
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the result may be proved using a Lyapunov function with a Lur’e term of the form

V (t, x)
def
= xTPx+ 2

p
∑

i=1

ηiKi

∫ yi

0
ψi(t, z)dz , (4)

and applying Kalman-Yakubovich-Popov Lemma.
Since the late fifties, a lot of contributions have been published, giving generalizations of Popov

criterion to various classes of time-invariant nonlinearities (see [17, 4] for an overview and refer-
ences, [19] for chinese contributions). As an example, the result has been extended by Yakubovich
to some hysteresis nonlinearities [39]. Results have been obtained with stronger conditions on the
nonlinearity, especially incremental sector conditions, see references in [22, 17].

Also, attempts have been made to adapt Popov criterion to time-varying rational systems
(see [20] for a review of the period 1968-1977, surveying an important number of contributions,
especially from Eastern Europe). Recall first that for time-varying nonlinearities fulfilling sector
condition (2), circle criterion provides a sufficient condition of absolute stability, namely that the
poles of H have negative real part, and that

I +KH(s) is SPR . (5)

Also, for such a class of time-varying nonlinearities, Pyatnitskii has shown [27] that absolute sta-
bility is equivalent to the asymptotic stability of all the time-varying linear systems of this class,
that is for the maps

ψ(t, y) = diag{ki(t)}y, 0 ≤ ki(t) ≤ Ki .

This result gives rise to a class of sufficient conditions of absolute stability, see e.g. [21]. See
also [16, 3] for some frequential conditions of absolute stability without restrictions on the rate of
variation of the nonlinearity.

On the other hand, it is possible to obtain conditions of absolute stability for smaller classes
of time-varying nonlinearities, especially by making restrictions on ∂ψ

∂t
. This limitation may be

acceptable e.g. when studying the stability of limit cycles. Narendra et al. devoted Chapter VI
of their monograph [22] to this question. They obtained conditions for global stability involving
two parts: the Popov condition plus a differential (in the case of a so-called separate nonlinearity
ψ(t, y) = k(t)f(y)) or integrodifferential inequality, linking ∂ψ

∂t
and ψ. These conditions may be

not so easy to handle, see examples in [22, Chapter VIII]. In [37], Walker provided conditions for
global stability. The assumptions given therein imply that (3) holds and, e.g. when η ≥ 0,

∀(t, y) ∈ R
+ × R

p, ψ(t, y)T (ψ(t, y) −Ky) ≤ −ηK
d

dt

[
∫ y

0
ψ(t, z) dz

]

,

instead of (2). As the a priori knowledge on the right-hand side does not usually permit to consider
it as nonnegative, this expresses a restriction of the rate of variation of the nonlinearity, but K
does not define anymore the width of the sector, and it is not clear how to check systematically the
conditions, especially for multivariable systems. Rekasius et al. [33], Hul’chuk et al. [14] and Bertoni
et al. [5] published contributions providing frequency criteria for absolute stability of nonstationary
systems. In [33, 14], the authors require for the terms of the form

∫ yi

0
∂ψi

∂t
(t, z) dz appearing in

the derivative of the Lyapunov function (4) to be bounded by a quadratic form in yi and ψi(t, yi).
This condition, see (7) below, may be interpreted as a generalized sector condition; it is fulfilled e.g.
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when a sector condition on ∂ψ
∂t

(t, y) holds. In [5], only this simpler condition is used, and graphical
interpretation is given. See also [11] for related approach.

To the best of our knowledge, very few papers have been published on the topic of absolute
stability of time-varying delay systems. Some non-frequential criteria are cited in [19, Paragraphs
6.1 and 6.5]. A paper by Răsvan [31] provides an extension of Popov criterion to systems with
separate nonlinearities. Achieving an analysis close to the one presented here, it has to assume the
monotonicity (wrt time) of the time varying gains, a quite limiting assumption. Also, Walker [36]
provides results generalizing the approach of [37] to delay systems.

In the present paper, one proposes an extension of Popov criterion to nonautonomous systems
with delays, generalizing the work done in [33, 14, 5]. More precisely, one provides simple conditions
ensuring uniform asymptotic stability of the origin. These conditions are expressed in terms of a
frequency condition in Theorems 1 and 3. The results provide uniform local asymptotic stability,
a generalization of the property of absolute stability with finite domain [15], or global stability.
The latter results may be applied in particular to linear time-varying operators ψ. The proposed
criteria just add some supplementary terms to Popov criterion, depending on ∂ψ

∂t
(t, y) as in [33, 14].

They permit to link circle and Popov criteria: when no variation wrt time of ψ is permitted,
the nonlinearity is time-invariant, and Popov criterion applies; when any variation is permitted,
circle criterion applies. The results herein fulfill the gap: they give sufficient conditions of stability
adapted to the magnitude of ∂ψ

∂t
.

The results, being expressed in the frequency domain, are well fitted to robustness issues, espe-
cially in presence of unstructured perturbations. Some graphical interpretations are provided for
scalar systems, partly as in [5]. Concerning checkability of the conditions, an attractive feature is
the possibility to approximate the transfer function matrix H by rational transfers: classical ap-
plication of Kalman-Yakubovich-Popov (KYP) Lemma shows that for these systems, the proposed
frequency conditions are equivalent to some Linear Matrix Inequalities, a now standard class of
problems for which sound numerical methods have been developed [8].

An example of application of the results given here comes from the control of chaos [10]: in
order to stabilize an unstable periodic orbit of a strange attractor, Pyragas [28, 29] proposed to
use a feedback control law built on the difference between the actual value and the delayed value
of the output, with delay equal to the period of the cycle. The analysis of the corresponding closed
loop system requires stability results for nonstationnary nonlinear delay systems.

Finally, we want to emphasize the fact that the results could be applied to more general systems
(e.g. systems with distributed delays, integral systems), as it is indeed the case for Popov criterion,
see [12, §4.6.] and [9]. Using the same assumptions on the variations of the nonlinearity, some
delay-independent criteria are given in [6, 7].

The paper is organized as follows. The criteria are stated in Section 2. Computation issues
are studied in Section 3. An example is presented in Section 4. Finally, proof of the main result
(Theorem 1) is exposed in Section 5. In all the sequel, we assume that there exist global solutions
of (1), that is, by definition: for all φ ∈ C([−h, 0]; Rn), there exists a continuous function x defined
on [−h,+∞), absolutely continuous [35] on [0,+∞), such that x|[−h,0] = φ and (1) is fulfilled almost
everywhere on [0,+∞). The stability results given below concern the asymptotic behavior of these
global solutions.
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Notations In all the paper, ‖.‖ denotes the euclidian norm or the induced matrix norm, Ir
denotes the r × r identity matrix (simply I when the context is clear), the asterisk ∗ denotes
complex conjugation. For any real diagonal matrix η = diag{ηi}, one denotes

|η|
def
= diag{|ηi|}, sgn η

def
= diag{ sgn ηi} ,

where one may take indifferently sgn 0 = −1 or +1. When η is a function of t ∈ R
+, by definition:

sup
t≥0

η(t)
def
= diag{sup

t≥0
ηi(t)} ,

and similarly for the infimum, the essential supremum, . . . and so on. For z ∈ R , one denotes

|z|+
def
= sup{z, 0} =

|z| + z

2
, |z|−

def
= sup{−z, 0} =

|z| − z

2
.

The same notation is used for diagonal matrices:

|η|± = sup{±η, 0} = diag{sup{±ηi, 0}} = diag{|ηi|±} .

2 Main results

Theorem 1 (A frequency criterion). Assume that there exists a convex open neighborhood O
of 0 in R

p for which the following assumptions hold.

(H0) The function ψ is measurable and, for any y ∈ O, t 7→ ψ(t, y) is locally Lipschitz (and hence
t-a.e. differentiable), with a Lipschitz constant locally integrable wrt y ∈ O.

(H1) The nonlinearity ψ is decentralized and there exists a diagonal matrix K = diag{Ki} ≥ 0
such that,

∀(t, y) ∈ R
+ ×O, ψ(t, y)T (ψ(t, y) −Ky) ≤ 0 . (6)

(H2) The roots of the equation det(sI −
∑L

l=0Ale
−hls) = 0 have negative real part.

Assume that there exist diagonal matrices η = diag{ηi}, Dj = diag{Dj,i}, j ∈ {1, 2, 3}, such
that the following Hypothesis is fulfilled

(H3) There exists γ : R
+ → R with lim

z→0
γ(z) = 0, such that,

for almost any t ∈ R
+ , ∀y ∈ O, ∀i ∈ {1, . . . , p},

ηi

(
∫ yi

0

∂ψi
∂t

(t, z) dz −D1,iy
2
i −D2,iyiψi(t, yi) −D3,iψi(t, yi)

2

)

≤ ‖y‖2 γ(‖y‖) . (7)

If the transfer function matrix

I−ηKD3+(I+η(sI+D2))KH(s)−H∗(s) sup

{

ηD1;
|η| − η

2
K(D2 +KD3)

}

KH(s) is SPR , (8)

then, the origin of system (1) is uniformly locally asymptotically stable.
Moreover, if γ ≡ 0 and O = R

p, then the origin of system (1) is uniformly globally asymptotically
stable.
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A proof of Theorem 1 is presented in Section 5. It essentially follows the approach of [26, 12],
with adequate improvements.

Circle criterion is found as a particular case when ∂ψ
∂t

is unconstrained (in this case, one has to

take η = 0, and (8) reduces to (5)), and Popov criterion when ∂ψ
∂t

= 0 (taking Dj = 0, (8) reduces
to (3)).

Remark that if Hypothesis (H3) holds for a certain η, then it holds (with the same Dj and γ)
for any η′ such that ηη′ > 0: only the sign of the ηi’s intervenes. In practice, one first determinates
the sign of the ηi’s which lead to an estimate like (7). Under these sign constraints on the ηi’s, one
then verifies (8). The matrices Dj , j = 1, 2, 3, may depend upon sgn η.

An important case where Hypothesis (H3) is fulfilled leads to the following result.

Corollary 2. Assume that there exists a convex open neighborhood O of 0 in R
p for which (H0),

(H1), (H2) hold. Assume that there exist diagonal matrices η and ∆ = diag{∆i}, ∆i : R
+ → R,

such that the following Hypothesis is fulfilled

(H3’) There exists γ : R
+ → R with lim

z→0
γ(z) = 0, such that,

for almost any t ∈ R
+, ∀y ∈ O, yTη

(

∂ψ

∂t
(t, y) − ∆(t)y

)

≤ ‖y‖2 γ(‖y‖) . (9)

If the transfer function matrix

I + (I + ηs)KH(s) −
1

2
H∗(s)K

1

2 ess sup
t≥0

{η∆(t)}K
1

2H(s) is SPR , (10)

then, the origin of system (1) is uniformly locally asymptotically stable.
Moreover, if γ ≡ 0 and O = R

p, then the origin of system (1) is uniformly globally asymptotically
stable.

One checks easily that (H3’) implies (H3) with D2 = D3 = 0 and

D1,i =
1

2
ess sup
t≥0

{∆i(t)} if ηi ≥ 0, D1,i =
1

2
ess inf
t≥0

{∆i(t)} if ηi ≤ 0 .

Indeed, when (9) holds,
ess inf
t≥0

∆(t) ≤ 0 ≤ ess sup
t≥0

∆(t) ,

otherwise sector condition (6) would be violated, so

ηD1 = ess sup
t≥0

{η∆(t)} = |η|+ ess sup
t≥0

{∆(t)} + |η|− ess inf
t≥0

{∆(t)} ≥ 0 .

The additional, quadratic, term in (10) is then nonpositive, indicating clearly that the criterion
is more restrictive than Popov conditions (compare with (3)) for the systems with nonautonomous
nonlinearities.
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Condition (7) is a generalization of (9), whose idea is borrowed from [33, 14]. Condition (H3’)
is in general a “local” sector condition. It is fulfilled in two important cases. When γ ≡ 0, (9)
writes:

for almost any t ∈ R
+, ∀y ∈ O, yTη

(

∂ψ

∂t
(t, y) − ∆(t)y

)

≤ 0 ,

that is:

∀i ∈ {1, . . . , p}, for almost any t ∈ R
+, ∀y ∈ O,

{

1
yi

∂ψi

∂t
(t, yi) ≤ ∆i(t) t− a.e. if ηi ≥ 0

1
yi

∂ψi

∂t
(t, yi) ≥ ∆i(t) t− a.e. if ηi ≤ 0

.

This hence defines a sector condition on the map y 7→ ∂ψ
∂t

(t, y).
Also, when the inequality in (9) is replaced by an equality, then,

∀i ∈ {1, . . . , p}, for almost any t ∈ R
+, ∀y ∈ O,

∣

∣

∣

∣

∂ψi
∂t

(t, yi) − ∆i(t)yi

∣

∣

∣

∣

= |yi|γ(|yi|) ,

which means that ∂2ψi

∂yi∂t
(t, 0) exists almost everywhere and is equal to ∆i(t).

Remark that ψ does not have to be continuous wrt y, except in 0, and the same is true for ∂ψ
∂t

.
In the conditions of application of Theorem 1, there exist functions ki(t, yi) such that ψi(t, yi) =
ki(t, yi)yi, i = 1, . . . , p, and it may be fruitful to express the results in terms of the ki. As an
example, (H1) requires that 0 ≤ ki(t, yi) ≤ Ki. Also, (9) expresses that

∀i ∈ {1, . . . , p}, for almost any t ∈ R
+, ∀y ∈ O, ηi

(

∂ki
∂t

(t, yi) − ∆i(t)

)

≤ γ(‖yi‖) ,

and ∂2ψi

∂yi∂t
(t, 0) = ∂ki

∂t
(t, 0) when the 2nd derivative exists.

When the solutions of (1) are continuous wrt the initial conditions, one may consider the es-
sential suprema [35] of η∆(t) on [t0,+∞) for any t0 ≥ 0, instead of [0,+∞). Indeed, due to the
strict inequality involved, one may even use the upper limit [35] of these expressions when t0 → +∞.

For a scalar system, p = 1, and condition (8) is equivalent to

∃η ∈ R , ∀ω ∈ R,
1

K
+ ReH(jω) − η(D3 −D2 ReH(jω) + ω ImH(jω))

− sup

{

ηD1;
|η| − η

2
K(D2 +KD3)

}

|H(jω)|2 ≥ 0 . (11)

This may be interpreted graphically, as in [5]:

If, apart from the regularity, sector and stability conditions (H0), (H1), (H2), (H3),
there exists a line of slope 1/η passing through the point (− 1

K
, 0) and lying to the

left of the locus (ReH(jω),D3 − D2 ReH(jω) + ω ImH(jω) + sgn η · sup{ sgn η ·
D1;

1− sgn η
2 K(D2 + KD3)} |H(jω)|2) without intersecting it, then the uniform local

stability property holds. If γ ≡ 0 and O = R
p, then the uniform global stability property

holds.
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An interesting problem is, given K, to determinate the largest incertitude on ∂ψ
∂t

allowed by The-
orem 1, for example under condition (H3’). In this case, the previous graphical criterion can hardly
be used, as the ordinate changes with the Dj. To overcome this drawback, condition (8) should
rather be seen as a geometrical condition in the 3-dimensional space (ReH(jω), ImH(jω), ω ImH(jω))
obtained as the product of Nyquist and Popov planes, a condition not easy to interpret. We present
in the sequel a weaker but simpler condition, located in the Popov plane.

Denoting the H∞-norm of H by ‖H(s)‖∞
def
= sup{‖H(s)‖ : Re s > 0} (when H is stable and

proper, this is equal to sup{‖H(jω)‖ : ω ∈ R}), one deduces easily the following result.

Theorem 3 (A weaker frequency criterion). Assume that there exists a convex open neigh-
borhood O of 0 in R

p for which Hypotheses (H0), (H1), (H2) hold. Assume that there exist diagonal
matrices η and Dj , j ∈ {1, 2, 3}, such that (H3) is fulfilled. If the transfer function matrix

I − ηKD3 + (I + η(sI +D2))KH(s)−K sup

{

ηD1;
|η| − η

2
K(D2 +KD3); 0

}

‖H(s)‖2
∞ is SPR ,

(12)
then the conclusions of Theorem 1 hold.

As an example let us examine the case of a scalar system fulfilling (H3’), the general case (H3)
is similar. Formula (12) is equivalent to (13a) (resp. (13b)) for η ≥ 0 (resp. η ≤ 0), where

∃η ≥ 0, ∀ω ∈ R,
1

K
+ ReH(jω) − η

(

ω ImH(jω) +
1

2
‖H(s)‖2

∞ ess sup
t≥0

{∆(t)}

)

≥ 0 , (13a)

∃η ≤ 0, ∀ω ∈ R,
1

K
+ ReH(jω) − η

(

ω ImH(jω) +
1

2
‖H(s)‖2

∞ ess inf
t≥0

{∆(t)}

)

≥ 0 , (13b)

and this has a clear interpretation:

If, apart from the regularity, sector and stability conditions (H0), (H1), (H2), (H3’)
with η ≥ 0 (resp. η ≤ 0), a line of slope 1/η passing through the point (− 1

K
, 0) lies above

(resp. below) the Popov locus and may be translated vertically towards the locus by a
distance

1

2
‖H(s)‖2

∞ ess sup
t≥0

{∆(t)} (resp. −
1

2
‖H(s)‖2

∞ ess inf
t≥0

{∆(t)})

without intersecting it, then the uniform local stability property holds. If γ ≡ 0 and
O = R

p, then the uniform global stability property holds.

This is illustrated in Figure 2: in the left (resp. right) Popov diagram, (13a) (resp. (13b)) holds
if

ess sup
t≥0

∆(t) <
2d

‖H(s)‖2
∞

(resp. ess inf
t≥0

∆(t) > −
2d

‖H(s)‖2
∞

) . (14)

As an example, (14) holds if

∀y ∈ O,
1

y

∂ψ

∂t
(t, y) <

2d

‖H(s)‖2
∞

t− a.e. (resp.
1

y

∂ψ

∂t
(t, y) > −

2d

‖H(s)‖2
∞

t− a.e.) ,
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P

−
1

K

−
1

K

ReH(jω)

ω ImH(jω) ω ImH(jω)

ReH(jω)

d

d

P

Figure 2: Graphical stability criterion in the Popov plane

or if
∂2ψ

∂y∂t
(t, 0) <

2d

‖H(s)‖2
∞

t− a.e. (resp.
∂2ψ

∂y∂t
(t, 0) > −

2d

‖H(s)‖2
∞

t− a.e.) .

In the configurations shown in Figure 2, the quantity d involved is indeed the least z > 0 such
that one of the points (−1/K,±z) belongs to the convex hull of the Popov locus P. To show this,
remark that, e.g. for the right diagram,

d = − inf
η∈R

sup
ω∈R

(

η

(

ReH(jω) +
1

K

)

− ω ImH(jω)

)

.

Now, supω∈R η(ReH(jω)+1/K)−ω ImH(jω) may be seen as the value of the support function of
the set P+1/K applied to the vector (η,−1) [34]. One may hence replace the set P by its convex
hull conv P, and then reverse the order of inf and sup. One gets:

d = − sup

{

inf
η∈R

η(z1 + 1/K) − z2 : (z1, z2) ∈ conv P

}

= inf {z2 : (−1/K, z2) ∈ conv P} .

3 Computation issues

It turns out that for rational systems, frequency condition (8) may be checked easily:

Proposition 4 (LMI condition for rational systems). Let H(s) = C(sI−A)−1B be a rational

strictly proper Hurwitz transfer function matrix, let η
def
= diag{ηi} ≥ 0. Condition (8) holds if and

only if the following LMI is feasible:

P > 0, R
def
=

(

ATP + PA+ 2CT η|D1|+KC −PB + CTK +ATCTKη + CTKD2η
−BTP +KC + ηKCA+ ηD2KC −2I − ηKCB −BTCTKη + 2ηD3K

)

< 0 .

(15)

Proposition 4 is a direct consequence of Kalman-Yakubovich-Popov (KYP) Lemma [17, 30].
In order to apply Theorem 1, it then suffices to achieve approximation by rational transfers, see

e.g. [23, 13] for the techniques of approximation. The following result states this properly.
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Proposition 5 (Transfer approximation). Let H,Hm be strictly proper Hurwitz transfer func-
tion matrices. Let η be a diagonal matrix.

Suppose that there exists ε ∈ (0, 1) such that

(1 − ε)I − ηKD3 + (I + η(sI +D2))KHm(s)

−H∗
m(s)K sup

{

ηD1;
|η| − η

2
K(D2 +KD3)

}

Hm(s) is SPR, (16a)

εI +

(

I + η(sI +D2) − 2H∗(s) sup

{

ηD1;
|η| − η

2
K(D2 +KD3)

})

K(H −Hm)(s)

+ (H −Hm)∗(s) sup

{

ηD1;
|η| − η

2
K(D2 +KD3)

}

K(H −Hm)(s) is SPR. (16b)

Then condition (8) holds.
Conversely, suppose that there exists ε > 0 such that

(1 + ε)I − ηKD3 + (I + η(sI +D2))KHm(s)

−H∗
m(s)K sup

{

ηD1;
|η| − η

2
K(D2 +KD3)

}

Hm(s) is not SPR, (17a)

εI −

(

I + η(sI +D2) − 2H∗(s) sup

{

ηD1;
|η| − η

2
K(D2 +KD3)

})

K(H −Hm)(s)

− (H −Hm)∗(s) sup

{

ηD1;
|η| − η

2
K(D2 +KD3)

}

K(H −Hm)(s) is SPR. (17b)

Then condition (8) does not hold.

The proof is left to the reader. Assumption (16a) (resp. assumption (17a)) is slightly stronger
than the assumption needed to apply Theorem 1 to Hm (resp. slightly weaker than the negation of
this assumption). Assumptions (16b) or (17b) are fulfilled e.g. when ‖H −Hm‖∞ is small enough.

4 An example: computation of stability margin for a 4th order

system with delay

One will consider the following system:

16
d4y

dt4
+ 32

d3y

dt3
+ 24

d2y

dt2
+ 8

dy

dt
+ y = −ψ(t, y(t− 1)) , (18)

corresponding to the previously studied framework with the transfer function

H(s) =
e−s

(1 + 2s)4
,

which may easily be realized as in (1).
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One supposes that ψ(t, 0) ≡ 0 and that there exists a constant K such that

y 6= 0 ⇒ 0 ≤
ψ(t, y)

y
≤ K .

One verifies either graphically on Figure 3, or by computations, that asymptotic stability of
system (18) cannot be guaranteed if

K ≥
1

0.3613
≃ 2.768 .

This corresponds to the smallest positive value of K for which the equation 1 + KH(s) = 0 has
some purely imaginary roots.

ω = 0

1.251.000.750.500.250.00−0.25−0.50

ω ImH(jω)

ReH(jω)

0.100

0.025

−0.050

−0.125

−0.200

d

ω = ∞

Figure 3: Popov locus of system (18)

Application of circle criterion provides stability if

K <
1

0.4310
≃ 2.320 .

On the other hand, Popov criterion guarantees stability if ψ(t, y) = ψ(y) and

K < 2.768 .

In the remaining of the section, one studies the stability of (18) for time-varying nonlinearities
fulfilling the sector condition with

K = 1/0.4 = 2.5 ∈ [2.320, 2.768] .

11



More precisely, let us assume that condition (H3’) holds; one is looking for restrictions on ∆(t)
permitting to ensure stability. The results previously exposed permit to compute measures of the
stability robustness wrt time-variations of ψ. In the sequel, we provide lower estimates of the largest
number δ such that system (18) is absolutely stable whenever

ess sup
t≥0

∆(t) ≤ δ .

All computations to be presented have been achieved using the Scilab package LMITOOL1.
Using the ideas of Section 3, one approximates the delay following [23], and considers the

sequence of approximants:

Hm(s) =

(

1 − s
2m

1 + s
2m

)m 1

(1 + 2s)4
.

For each value of m, one computes the largest value of ess sup
t≥0

∆(t) for which the analog of LMI (15)

with the transfer Hm and D1 = 1
2 ess sup

t≥0
{∆(t)}, D2 = D3 = 0 is feasible. This process provides a

lower estimate of δ, denoted δ1. The results are presented in Table 1. The exact value of δ1 (when

Order of approximation Successive estimates of δ1
m = 1 0.3444
m = 2 0.3365
m = 3 0.3350
m = 4 0.3345
m = 5 0.3342

m = +∞ 0.3338

Table 1: Computation of the robustness measure δ1

m→ +∞) may be computed numerically for scalar systems, as (10) is fulfilled for a positive value
of η if and only if

ess sup
t≥0

∆(t) < sup
η>0

inf
ω∈R

2

|H(jω)|2

(

1

η

(

1

K
+ ReH(jω)

)

− ω ImH(jω)

)

.

The optimal value of η is ηopt ≃ 1.473. In conclusion, condition (10) is fulfilled if

ess sup
t≥0

∆(t) ≤ δ1
def
= 0.3338 .

The corresponding graphical interpretation may be read on Figure 4.

One now shows how to compute a bound on δ with the help of Theorem 3. First the quantity
d is evaluated, either graphically on Figure 3, or using a solver of algebraic equations. One gets:

d ≃ 0.03325 .

1Scilab is a free software developed by INRIA, which is distributed with all its source code. For the distribution

and details, see Scilab’s homepage on the web at the address http://www-rocq.inria.fr/scilab/
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slope: 1

ηopt
≃ 0.6789

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.1

0.0

-0.1

-0.2

β = β1 ≃ 0.3338

β = 0.6

β = 0.2

ω ImH(jω) + β
2
|H(jω)|2

ReH(jω)

Figure 4: Graphical interpretation of Theorem 1 for system (18)

One then computes ‖H‖∞. This step may also be achieved by use of rational approximations. One
obtains here:

‖H‖∞ = 1 .

Condition (12) is hence fulfilled if

ess sup
t≥0

∆(t) ≤ δ2
def
=

2d

‖H‖2
∞

≃ 0.06650 .

One verifies that the ordering
δ1 > δ2

is consistent with the increasing conservativeness of the criteria.

Let us give a sample of the results that may be obtained. Let O be a convex open neighborhood
of 0 in R , such that

• There exists L ∈ L1
loc(O) such that, for all t, t′ ∈ R

+, for all y ∈ O, |ψ(t, y) − ψ(t′, y)| ≤
L(y)|t− t′| (condition (H0)).

• For all t ∈ R
+, for all y ∈ O \ {0}, 0 ≤

ψ(t, y)

y
≤ 2.5, and ψ(t, 0) ≡ 0 (condition (H1)).

13



Assume that there exist global solutions to system (18). The origin of system (18) is uniformly
locally stable if

lim sup
y→0

1

y

∂ψ

∂t
(t, y) ≤ δ1 t− a.e. ,

for example if ∂2ψ
∂y∂t

(t, 0) exists t-a.e. and verifies:

∂2ψ

∂y∂t
(t, 0) ≤ δ1 t− a.e.

The origin of system (18) is uniformly globally stable if O = R and

∀y ∈ R \ {0} ,
1

y

∂ψ

∂t
(t, y) ≤ δ1 t− a.e.

5 Proof of Theorem 1

One assumes, without loss of generality, that γ is nonnegative, nondecreasing.
• Let us first suppose that η ≥ 0. The demonstration begins as in [26, 12].

Let T > 0. Define ψT , xT , yT as follows

ψT (t) =

{

ψ(t, y(t)) if 0 ≤ t ≤ T

0 if − h ≤ t < 0 or t > T
, (19)

ẋT =

L
∑

l=0

AlxT (t− hl) −BψT , yT =

L
∑

l=0

ClxT (t− hl), xT |[−h,0] = 0 . (20)

By linearity, we have

ẋ− ẋT =

L
∑

l=0

Al(x(t− hl) − xT (t− hl)) for t ∈ [0, T ], (x− xT )|[−h,0] = φ , (21)

We shall denote in the sequel by cj , j = 1, 2, . . . , various positive constants, independent of φ
and T .

One may deduce from Hypothesis (H2), that there exist c1 > 0, α > 0, independent of φ and
T , such that

∀t ∈ [−h, T ], ‖x(t) − xT (t)‖ ≤ c1e
−αt‖φ‖C([−h,0]) , (22a)

∀t ≥ T, ‖xT (t)‖ ≤ c1e
−α(t−T )‖xT (T + ·)‖C([−h,0]) , (22b)

∀t ∈ [0, T ], ‖y(t)‖ ≤ c1e
−αt‖φ‖C([−h,0]) + ‖yT (t)‖ . (22c)

The last inequality is obtained by use of the triangle inequality.
From (H1) and the fact that η,K ≥ 0, one gets that, if y(t) ∈ O, t ∈ [0, T ], then

∀i ∈ {1, . . . , p},

∫ T

0
(Kiyi(t) − ψi(t, yi(t)))ψi(t, yi(t)) dt+ ηiKi

∫ yi(T )

0
ψi(T, z) dz ≥ 0 . (23)
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Now, the map T 7→
∫ yi(T )
0 ψi(T, z) dz is absolutely continuous, due to (H0) and (H1), and

the assumed absolute continuity of the solution wrt time. Indeed, y(t), y(t′) ∈ O implies that,
∀i ∈ {1, . . . , p},

∣

∣

∣

∣

∣

∫ yi(t)

0
ψi(t, z) dz −

∫ yi(t
′)

0
ψi(t

′, z) dz

∣

∣

∣

∣

∣

≤ |t− t′|

∫ yi(t)

0
λi(z) dz +Kimax{|yi(t)|, |yi(t

′)|} |yi(t) − yi(t
′)| ,

where λi is the Lipschitz constant of ψ, defined by Hypothesis (H1). One may hence write

∫ yi(T )

0
ψi(T, z) dz =

∫ T

0

d

dt

[

∫ yi(t)

0
ψi(t, z) dz

]

dt+

∫ yi(0)

0
ψi(0, z) dz

=

∫ T

0

(

ẏi(t)ψT,i(t) +

∫ yi(t)

0

∂ψi
∂t

(t, z) dz

)

dt +

∫ yi(0)

0
ψi(0, z) dz . (24)

Now, if y(t) ∈ O for any t ∈ [0, T ], one has, using (H3),

ηi

∫ T

0

∫ yi(t)

0

∂ψi
∂t

(t, z) dz dt

≤

∫ T

0

(

ηi

(

D1,iy
2
i (t) +D2,iyi(t)ψT,i(t) +D3,iψT,i(t)

2

)

+ γ(|yi(t)|)y
2
i (t)

)

dt , (25)

because γ is nonnegative and nondecreasing, and O is convex. One hence deduces from (23), (24), (25)

∫ T

0

(

Ki(yi(t) − yT,i(t))ψT,i(t) +Kiγ(|yi(t)|)y
2
i (t)

)

dt+ ηiKi

∫ yi(0)

0
ψi(0, z) dz

≥ −

∫ T

0

((

KiyT,i(t) − ψT,i(t)

)

ψT,i(t)

+ηiKi

(

ẏi(t)ψT,i(t) +D1,iy
2
i (t) +D2,iyi(t)ψT,i(t) +D3,iψT,i(t)

2

))

dt

= −

∫ T

0

((

KiyT,i(t) − ψT,i(t)

)

ψT,i(t)

+ηiKi

(

ẏT,i(t)ψT,i(t) +D1,iy
2
T,i(t) +D2,iyT,i(t)ψT,i(t) +D3,iψT,i(t)

2

))

dt

+ηiKi

∫ T

0

(

(ẏT,i(t) − ẏi(t))ψT,i(t) +D1,i(y
2
T,i(t) − y2

i (t)) +D2,i(yT,i(t) − yi(t))ψT,i(t)

)

dt

≥ −

∫ +∞

0

((

KiyT,i(t) − ψT,i(t)

)

ψT,i(t) + |ηiD1,i|+ Kiy
2
T,i(t)

+ηiKi

(

ẏT,i(t)ψT,i(t) +D2,iyT,i(t)ψT,i(t) +D3,iψT,i(t)
2

))

dt

+ηiKi

∫ T

0

(

(ẏT,i(t) − ẏi(t))ψT,i(t) +D1,i(y
2
T,i(t) − y2

i (t)) +D2,i(yT,i(t) − yi(t))ψT,i(t)

)

dt ,
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as K ≥ 0, ψT (t) = 0 for t ≥ T , and because y2
T,i is summable over R

+, due to (22b). In the previous

integral over R
+, the terms with ψT (t) vanishe on [T,+∞), and one has bounded D1 by |D1|+.

Denoting ỹT , ψ̃T the Fourier transform of yT , ψT , the first integral term of the previous expression
is proved to be equal to

1

2π

∫ +∞

−∞

(

ψ̃∗
T,i(ω)

(

KiỹT,i(ω) − ψ̃T,i(ω) + ηiKi

(

jωỹT,i(ω) +D2,iỹT,i(ω) +D3,iψ̃T,i(ω)

))

+|ηi D1,i|+Ki|ỹT,i(ω))|2
)

dω .

Independently, Hypothesis (H3) implies that there exist positive numbers ε and ρy, both inde-
pendent from T and φ, such that the open ball in R

p with centre 0 and radius ρy is contained in O
and such that, if

∀t ∈ [0, T ], ‖y(t)‖ < ρy , (26)

then the following holds:

1

2π

∫ +∞

−∞

(

ψ̃∗
T (ω)

(

KỹT (ω) − ψ̃T (ω) + ηK

(

jωỹT (ω) +D2ỹT (ω) +D3ψ̃T (ω)

))

+ ỹT (ω)|ηD1|+K ỹT (ω))

)

dω

=
1

2π

∫ +∞

−∞

ψ̃∗
T (ω)

(

− I + ηKD3 − (I + η(jω +D2))KH(jω) +H∗(jω)|ηD1|+KH(jω)

)

ψ̃T (ω) dω ,

(using the identity ỹT (ω) = −H(jω)ψ̃T (ω))

≤ −
ε

2π

∫ +∞

−∞

‖ψ̃T (ω)‖2 dω = −ε

∫ +∞

0
‖ψT (t)‖2 dt .

Putting together the two inequalities yields (via summation over i)

ε

‖H‖2
∞

∫ +∞

0
‖yT (t)‖2 dt ≤ ε

∫ +∞

0
‖ψT (t)‖2 dt

≤

∫ T

0

(

ψ∗
T (t)K(y(t) − yT (t)) + γ(‖y(t)‖) y∗(t)Ky(t)

)

dt +

p
∑

i=0

ηiKi

∫ yi(0)

0
ψi(0, z) dz

−

∫ T

0

(

ψ∗
T (t)ηK(ẏT (t) − ẏ(t)) + (y∗T (t) − y∗(t))ηKD1(yT (t) − y(t)) + ψ∗

T (t)ηKD2(yT (t) − y(t))

)

dt .

Due to (6), (21), (22), one may bound from above the previous expression by

c2

[

‖φ‖C([−h,0])

(

‖φ‖C([−h,0]) + sup
t∈[0,T ]

‖yT (t)‖

)

+ sup
t∈[0,T ]

γ(‖y(t)‖)

∫ T

0
‖yT (t)‖2

]

.

To summarize, as long as (26) holds, then y(t) ∈ O for any t ∈ [0, T ], and

ε

‖H‖2
∞

∫ +∞

0
‖yT (t)‖2 dt

≤ c2

(

‖φ‖C([−h,0])

(

‖φ‖C([−h,0]) + sup
t∈[0,T ]

‖yT (t)‖

)

+ sup
t∈[0,T ]

γ(‖y(t)‖)

∫ T

0
‖yT (t)‖2 dt

)

. (27)
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Suppose additionally that

∀t ∈ [0, T ], c2γ(‖y(t)‖) ≤
ε

2‖H‖2
∞

. (28)

Then

∫ T

0
‖yT (t)‖2 dt,

∫ T

0
‖ẏT (t)‖2 dt ≤ c3‖φ‖C([−h,0])

(

‖φ‖C([−h,0]) + sup
t∈[0,T ]

‖yT (t)‖

)

. (29)

The estimate on yT in (29) is obtained directly from (27), and the estimate on ẏT is then deduced,
with the help of sector estimate (6) and the fact that H is strictly proper, as

∫ T

0
‖ẏT (t)‖2 dt ≤ ‖s(

L
∑

l=0

Cle
−hls)(sI −

L
∑

l=0

Ale
−hls)−1B‖2

∞

∫ T

0
‖ψT (t)‖2 dt

≤ ‖s(
L
∑

l=0

Cle
−hls)(sI −

L
∑

l=0

Ale
−hls)−1B‖2

∞‖K‖2

∫ T

0
‖y(t)‖2 dt .

One infers, using Cauchy-Schwarz inequality and yT (0) = 0, that (26), (28) imply, for any t ∈ [0, T ]:

‖yT (t)‖2 ≤ c3‖φ‖C([−h,0])

(

‖φ‖C([−h,0]) + sup
t∈[0,T ]

‖yT (t)‖

)

.

Solving this polynomial inequality leads to

T fulfills (26), (28) ⇒ sup
t∈[0,T ]

‖yT (t)‖, sup
t∈[0,T ]

‖y(t)‖ ≤ c4‖φ‖C([−h,0]) .

Now, let ρx > 0 be such that (recall that γ(z) → 0 when z → 0)

ρx ≤
ρy
2c4

and ∀z ∈ R
+, z ≤ c4 ρx ⇒ c2γ(z) ≤

ε

4‖H‖2
∞

.

For φ ∈ C([−h, 0]; Rn) with ‖φ‖C([−h,0]) < ρx, the previous computations show that, as long
as (26), (28) are verified, one has

sup
t∈[0,T ]

‖y(t)‖ ≤ c4‖φ‖C([−h,0]) ≤ c4 ρx ,

so
c2 sup

t∈[0,T ]
γ(‖y(t)‖) ≤

ε

4‖H‖2
∞

<
ε

2‖H‖2
∞

,

and
sup
t∈[0,T ]

‖y(t)‖ ≤ c4 ρx ≤
ρy
2
< ρy .

Hence, (26), (28) are verified for any T > 0, so

‖φ‖C([−h,0]) < ρx ⇒ ∀T ≥ 0 , sup
t∈[0,T ]

‖yT (t)‖ ≤ c4ρx .
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This in turn implies by (29), that, for any T > 0,

∫ T

0
‖yT (t)‖2 dt,

∫ T

0
‖ẏT (t)‖2 dt ≤ c5‖φ‖

2
C([−h,0]) .

From (22c), one deduces that similar inequalities hold for y and ẏ. One concludes that y(t) → 0
when t→ +∞, which expresses the uniform local asymptotic stability of the origin.

When γ ≡ 0 and O = R
p, one may take ρy = ρx = +∞.

• We now remove the assumption that η ≥ 0. This part of the proof is similar to the analog
enlargement of Popov criterion to nonpositive slopes η, see [2].

By hypothesis, (8) is fulfilled. Consider [32]

ϕ(t, y)
def
= Ky − ψ(t, y) ,

Let us choose the input ϕi instead of ψi when ηi ≤ 0, and write that (1) is equivalent to

ẋ =

L
∑

l=0

Âlx(t−hl)+B̂u, u = −ψ̂(t, y(t))
def
= −[Ĵϕ(t, y(t))+(I−Ĵ)ψ(t, y(t))], y =

L
∑

l=0

Clx(t−hl) ,

where Î , Ĵ , Âl, 0 ≤ l ≤ L, B̂ are defined by:

Î
def
= sgn η, Ĵ

def
= (I − sgn η)/2, Âl = Al −BĴKCl, B̂ = BÎ .

The following properties will be used repeatedly:

Ĵ2 = Ĵ = −Î Ĵ , 2Ĵ + Î = Î2 = Ip .

If ψ verifies Hypothesis (H1), then the same holds for ψ̂, as

ψ̂(t, y)T (ψ̂(t, y) −Ky) = ψ(t, y)T (ψ(t, y) −Ky) .

Replacing ψ by ϕ, one obtains

ηi

(
∫ yi

0

∂ψi
∂t

(t, z) dz −D1,iy
2
i −D2,iyiψi(t, yi) −D3,iψi(t, yi)

2

)

= −ηi

(
∫ yi

0

∂ϕi
∂t

(t, z) dz + (D1,i +D2,iKi +D3,iK
2
i )y

2
i − (D2,i + 2D3,iKi)yiϕi(t, yi) +D3,iϕi(t, yi)

2

)

,

In other words, a property similar to (H3) is valid for ψ̂, with the values:

η̂
def
= Îη = |η|, D̂1

def
= ÎD1 − ĴK(D2 +KD3), D̂2

def
= D2 + 2ĴKD3, D̂3

def
= ÎD3 . (30)

Now, in order to achieve the proof, it is sufficient to show that if formula (8) holds, then the
modified system verifies an analogous condition with the new value η̂ ≥ 0, that is

I − η̂KD̂3 + (I + η̂(sI + D̂2))KĤ(s) − Ĥ∗(s)|η̂D̂1|+KĤ(s) is SPR , (31)
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where

Ĥ(s)
def
= (

L
∑

l=0

Cle
−hls)(sI −

L
∑

l=0

Âle
−hls)−1B̂ .

Indeed, the first part of the proof may then be applied to the transformed system (as η̂ ≥ 0), and
this concludes the proof of Theorem 1. It hence remains to prove (31). This is done with the help
of the following Lemma.

Lemma 6. The following identity holds:

Ĥ(s) = (I +H(s)ĴK)−1H(s)Î = H(s)(I + ĴKH(s))−1Î .

Proof. Lemma 6 is a consequence of the feedback structure involved when changing the input of
the linear plant. Indeed, the new input ψ̂ being defined as above, one has:

y = −Hψ = −H

(

Ĵψ + (I − Ĵ)ψ

)

= −H

(

Ĵ(Ky − ϕ) + (I − Ĵ)ψ

)

= −H

(

ĴKy − Ĵ ψ̂ + (I − Ĵ)ψ̂

)

= −H

(

Îψ̂ + ĴKy

)

,

and finally:
(I +HĴK)y = −HÎψ̂ ,

which gives the 1st equality. Deduction of the 2nd equality is straightforward. ♠

Applying Lemma 6, one gets

2(I − η̂KD̂3) + (I + η̂(sI + D̂2))KĤ(s) + Ĥ∗(s)K(I + η̂(s∗I + D̂2)) − 2Ĥ∗(s)|η̂D̂1|+KĤ(s)

= Î(I +H∗(s)KĴ)−1G(s)(I + ĴKH(s))−1Î ,

where

G(s) = 2(I +H∗(s)KĴ)(I − η̂KD̂3)(I + ĴKH(s)) + (I +H∗(s)KĴ)Î(I + η̂(sI + D̂2))KH(s)

+H∗(s)K(I + η̂(s∗I + D̂2))Î(I + ĴKH(s)) − 2H∗(s)K|η̂D̂1|+H(s)

= 2(I − η̂KD̂3) +

(

2Ĵ + Î + η̂(−2ĴKD̂3 + Î(sI + D̂2))

)

KH(s)

+H∗(s)K

(

I + η̂(−2ĴKD̂3 + Î(s∗I + D̂2))

)

+H∗(s)

(

2K2Ĵ(Î + Ĵ) + η̂K2Ĵ Î(s+ s∗) + 2K(−|η̂D̂1|+ + η̂KÎĴD̂2 − η̂Ĵ2K2D̂3)

)

H(s) ,

using the fact that the (diagonal) matrices K, η̂, Î , Ĵ , D̂j commute. From (30), one gets

G(s) = 2(I − ηKD3) + (I + η(sI +D2))KH(s) +H∗(s)K(I + η(s∗I +D2))

− 2H∗(s)

(

|η(D1 + ĴK(D2 +KD3))|+ − ηĴK(D2 +KD3)

)

KH(s) ,

which proves that (8) and (31) are equivalent. This achieves the proof of Theorem 1.
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