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Abstract

The paper presents a result which relates connectedness of the interaction graphs in multi-agent

discrete-time systems with the capability for global convergence to a common equilibrium of the sys-

tem. In particular we extend previously known results by Bertsekas and Tsitsiklis and by Moreau, by

including the possibility of arbitrary bounded time-delays in the communication channels and relaxing

the convexity of the allowed regions for the state transition map of each agent.

Keywords. Multi-agent systems, rendezvous problem, asymptotic stability, discrete-time systems,

time delays, directed graphs.

1 Introduction

Recent years have witnessed a growing interest in the study of the dynamical behaviour of the so called
multi-agent systems. Roughly speaking these can be thought of as complex dynamical systems composed by
a high number of simpler units, the agents. Each of them updates its state according to some rule, whose
Input-Output dynamics are typically much simpler and much better understood, and on the basis of the
available information coming from the other agents. All of them, though not necessarily identical, share in
fact some common feature of interest (say for instance a given output variable) and are coupled together by
communication channels. The focus of the current research is precisely on how the global behaviour of the
system, (for instance questions concerning the global stability or the overall synchronization) is influenced by
the topology of the coupling on one hand (this is an analysis problem in many respects) or the dual question
of how to induce a certain desired property of the ensemble based on some form of local coupling for the
agents. Problems of this nature arise in many different fields such as in the theory of coupled oscillators
[G, MM, JMB, SPL], in neural networks [H], in economics or in the manoeuvring of groups of vehicles
[AOSY, LF, YPP]. For instance in [LMA1, LMA2] the so called rendezvous problem is considered, namely
how to design a local updating rule, based on nearest neighbor interactions, which would ensure convergence
of all of the agents to an unspecified common meeting point. Emergence of a global behaviour is therefore
a consequence of the local updating rule, without the need for a leader nor of centralized directions being
broadcasted.

In problems linked to formation flight or group manoeuvring, agents are usually coupled when located
at small enough distance from one another [AOSY, JLM, YPP, LMA1, LMA2, S, CMB]. In such situations,
the arrangement of the information network depends upon the state configuration of the system, and the
displacements are designed in such a way to constrain the agents already in contact to always stay close
enough in the future. This usually gives rise to symmetric (undirected) communication graphs, monotonically
evolving to complete graph. Hereby we take a slightly different approach and consider the configuration of
the information network as an independent input. We believe that “opening the loop” may lead to fruitful
analysis results, allowing e.g. to relax the distance constraints in the examples of coordinated motion cited
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above. The emphasis is on how the topology of interconnections between agents (possibly time-varying)
affects the convergence of all agents to a common equilibrium. This analysis will be carried out for a class of
discrete-time multi-agent systems in the presence of limited transmission speed of the information between
the agents. In particular, we propose an extension of the contributions by L. Moreau [M1, M2], mainly in
two directions:

• The new setting allows the presence of arbitrary bounded communication delays.

• A central assumption in the results [M1, M2], namely that the future evolution of the studied system
is constrained to occur in the convex hull of the agents states, is removed.

The first aspect comes as a very natural question both from a practical and a theoretical point of view.
Communication delays are in fact ubiquitous in the “real” world and it is well-known their potential desta-
bilizing effect in conjunction with feedback loops, here induced by the graph topology of the communication
channels which need not be of a hierarchical type. It is therefore remarkable to see how, at least in the
specific set-up we are considering, this destabilizing effect does not take place and the same global behaviour
of the multi-agent system in terms of convergence to a common equilibrium follows also in the extended
set-up.

The second extension deals with convexity issues; one of the technical tools used in order to enforce a
common behaviour in systems whose state takes value in Euclidean space, is to have local evolutions point
always inside the convex hull of all variables. This makes life easier in a certain respect, and that is indeed an
assumption quite universally made, but it is unnatural in more general contexts, for instance when oscillators
networks are considered (these are typically modeled as systems evolving on a torus) or systems evolving in
partially obstructed Euclidean spaces (for instance on a plane minus a circle). Relaxing convexity is meant
as a first step in the quest for stability conditions which can work in more general spaces. It provides an
original solution to rendezvous problems for populations of agents evolving in a nonconvex set — a task
untractable within the frameworks previously developed in the literature. Such a situation is presented in
Example 6 below.

The work we present here also extends results on partially asynchronous iterative methods published
by D.P. Bertsekas and J.N. Tsitsiklis [BT, Chapter 7, especially Section 7.3], see also [BHOT]. In their
framework, bounded delays are allowed, whereas some convexity assumption is imposed: the convex hull is
indeed considered componentwise.

To date, we mention the existence of other interesting aspects in the recent research, such as randomly
varying interconnection network [GHM, HM, MM] or quantization of the information [JSZ]: the latter are
beyond the scope of the present paper.

Before going on further, we present the main elements of the construction developed below. The multi-
agent system under study will be described by a time-dependent graph A(t), describing the transfer of
information between the agents at time t, and a set of rules according to which each agent updates its state
at time t + 1. The definition of the latter is done by the introduction of two types of objects, which we
present now (complete definitions are to be found in Section 2 below).

• A set-valued map σ is defined, which associates to any set of present and past states of the agents
a certain compact set in the state space common to all the agents. This may be seen as describing
the way the agents receive and aggregate the informations at hand to construct a set to estimate the
location of the population of agents. In this respect, this may be called a sensing or perception function.
The latter may integrate aspects of the agents functioning, as well as geometric characteristics of the
surrounding world.

• It is then necessary to define the rules according to which the agents update their state, given the
(possibly delayed) information on the position of the other agents they received. For this, each agent k
is attributed a set-valued map ek which, given the communication graph A(t), defines the set of allowed
positions ek(A(t)).
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The main result of the paper may be summarized as follows: if each agent chooses its new position in
the interior of the set he constructed in the sensing phase, then asymptotic convergence towards a common
point occurs, even if each agent has indeed a very poor perception of the global system. Apart from technical
conditions, an appropriate connectedness hypothesis on the information graph is of course central. The hy-
pothesis used here (weak connectivity [M1]) will appear a necessary and sufficient requirement for stability.
All this material is detailed in the core of the paper.

The paper is organized as follows. The new class of multi-agent systems studied here is constructed and
its definition is commented in Section 2, together with examples. Stability is studied afterwards: the main
results are given in Section 3, before the Conclusion Section. To facilitate the reading, some technical proofs
are gathered at the end of the paper, in the Appendix.

Notations As often as possible, we use notations introduced by Moreau [M1, M2]. Following him, we
distinguish between the inclusion, denoted ⊆, and the strict inclusion, denoted ⊂. The topological interior
of a set is denoted int, its affine hull ah and its closure cl.

We study systems with n agents whose position at time t are written as x1(t), . . . , xn(t) in the finite-
dimensional space X . In the setting introduced in Moreau’s contributions, the corresponding overall state
variable is x(t) = (x1(t), . . . , xn(t)) ∈ Xn. Here, we consider systems with delay smaller than a given
integer h > 0. In consequence, the complete state variable of the system is (x1(t), x1(t − 1), . . . , x1(t − h+
1), . . . , xn(t), . . . , xn(t− h+ 1)) ∈ Xhn.

We denote x̃ = (x1, . . . , xhn) an arbitrary element of Xhn and, when considering the dynamical system,
we write x̃k(t) = (xk(t), xk(t− 1), . . . , xk(t− h+ 1)) for all k ∈ N

.
= {1, . . . , n} and x̃(t) = (x̃1(t), . . . , x̃n(t)).

We also use the corresponding decomposition of any element x̃ of Xhn as x̃ = (x̃1, . . . , x̃n) (which amounts to
identifying Xhn to (Xh)n). When needed, any x̃k ∈ Xh is decomposed according to x̃k = (xk,0, . . . , xk,h−1),
in such a way that for the variables of the dynamical systems under study xk,j(t) = xk(t − j), k ∈ N ,
j ∈ H

.
= {0, . . . , h − 1}. Similarly we denote by HN

.
= {1, 2, . . . , hn}. The previous notation is necessary,

in order to be able to distinguish between the delayed and the actual values of the position of the agents.
Coherently with the notations introduced above, we sometimes abbreviate xk,0 and write simply xk.

Last, given any x̃ ∈ Xhn we often need to embed it on 2X , according to the following rule: π(x̃)
.
=

{x1, x2, . . . xnh}. In this way the state of the system is mapped to a finite collection of points in the X space.

Finally, for the comfort of the reader we indicate that the Theorems 1, 2, 3 and 5 in reference [M1] are
numbered respectively 4, 1, 2 and 5 in [M3].

2 A class of multi-agent dynamical systems

This section is devoted to the presentation of the dynamical system under study. We study here a special
class of nonlinear difference inclusions with delay, that we write:

xk(t+ 1) ∈ ek(A(t))(x̃(t)) . (1)

Recall that xk(t) represents the “position” at time t of the agent k. The evolution of the latter depends
upon the complete system state x̃(t) (including delayed components), through the time-varying map ek(A(t)).
For a trajectory of (1), we call decision set of agent k at time t the value taken by ek(A(t))(x̃(t)). The speci-
ficity of the problem lies in these maps: they depend upon the topology of the inter-agent communications,
modeled by the graph A(t).

The modeling of the communication network is presented below in Section 2.1. The construction of the
decision sets inside which, given the communication network, each agent may update the value of its state,
is completed in Section 2.2. Last, we provide some examples in Section 2.3.
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2.1 Inter-agent communications modeling

The first ingredient of the construction is the family of continuous set-valued maps ek(A) : Xhn
⇉ X taking

on compact values, and defined for k ∈ N and any directed graph A. The latter will define, according to the
position of the other agents, in which subset of X agent k is allowed to choose its future state.

Here, we are concerned by information transfer from the past to the present. In other words, we need
to consider graphs in Xhn linking some past and/or present values xk(t − j) of the states of an agent k to
another agent l. Consequently, at each time, the communication graph A is a weighted, directed multigraph
defined on the set N of the nodes, that is a set of ordered couples of nodes (with possible repetitions),
called arcs. To each of these arcs is associated a weight, chosen in H, to be interpreted as the corresponding
information delay1. All the considered graphs will contain all the loops of zero weight, corresponding to the
ability for each agent to use without delay the knowledge on its own state.

Definition 1. An admissible graph is any weighted, directed multigraph defined on N , with weights in H
and containing all the zero-weight loops.

We write i
j
∼A k when an arc of weight j links in the admissible graph A the node i to the node k (with

i, k ∈ N , j ∈ H).

Definition 2. A node k ∈ N is said to be connected to a node l ∈ N if there exists a path from k to l in the
admissible graph A which respects the orientation of the arcs. Given a sequence of admissible graphs A(t),
t ∈ N, a node k ∈ N is said connected to a node l ∈ N on an interval I ⊆ N if k is connected to l for the
graph

⋃

t∈I A(t).
An admissible graph A is called weakly connected [M1] if there is a node k ∈ N connected to all other

nodes l ∈ N . A sequence of admissible graphs A(t), t ∈ N, is called weakly connected across an interval
I ⊆ N if the graph

⋃

t∈I A(t) is weakly connected (that is, if there is a node connected across I to all other
nodes).

Figure 1 provides an example of admissible graph. For the graph represented therein, agents 1 and 2 are
mutually connected and agent 3 is connected to 1 and 2, but neither 1 nor 2 is connected to 3. Notice that
generally speaking there may exist more than one arc between two distinct nodes, and that a node may be
connected to itself (via delayed values).

Definition 3. Consider an admissible graph A and a nonempty subset L ⊆ N . The set Neighbors(L,A)
is the set of those nodes k ∈ N \ L for which there is l ∈ L such that (at least) one arc from k to l exists.
When L is a singleton {l}, the notation Neighbors(l,A) is used instead of Neighbors({l},A).

We impose to the maps ek the following assumption.

Assumption A. For all k ∈ N and all admissible graphs A, the set-valued map ek is continuous and takes
on compact values. Moreover,

• ek(A)(x̃) = {xk} if {xi,j : i
j
∼A k} = {xk};

• ek(A)(x̃) ⊂ ri σ
(

{xk} ∪ {xi,j : i
j
∼A k}

)

otherwise.

The exact meaning and the properties of the set-valued map ri σ are the subject of Section 2.2. However,
we may already make some remarks on the form of the right-hand side of problem (1). Clearly, Assumption
A implies that the evolution of each agent depends only upon the possibly delayed information received

from its neighbors. The case where {xi,j : i
j
∼A k} = {xk} is realized when either the agent k has no

neighbor and the set involved in the formula is empty, or all the (possibly delayed) positions received from
the neighboring agents are also equal to the present position xk of agent k; in this case, no motion is allowed.
We shall see below that in the present framework the use by each agent of the present value of its own
position is mandatory for stability, see counterexample in Example 8.

1Recall that N = {1, . . . , n}, H = {0, . . . , h − 1}, where n is the number of agents and h − 1 the larger transmission delay.
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Figure 1: An example of admissible graph for a system with three agents.

2.2 Construction of the decision sets

The second ingredient necessary for the construction of the dynamical system under study is a set-valued
map σ : 2X ⇉ X , taking on compact values. According to the interpretation presented in Section 1, we
call σ a sensing function. It has a central role in the definition of the dynamics: as said before, it describes
the way the agents aggregate the different informations they have at hand to estimate the location of the
total population. In a complementary way, the functions ek previously introduced define the evolution policy
adopted by each agent. The latter has to be compatible with the results of the sensing function: this is
the meaning of Assumption A. It will be shown afterwards (cf. in particular the proof of Theorem 4) that
t 7→ σ(π(x̃(t))) = σ({x1(t), . . . , x1(t − h+ 1), . . . , xk(t), . . . , xk(t − h + 1)}) plays the supplementary role of
a “set-valued Lyapunov function” for the studied system.

In order to state the properties that σ should fulfil, we have to introduce beforehand some notions. First
of all, define S, a set of subsets of X in which σ will be compelled to take on its values, as:

S
.
= {S ⊂ X : S compact and ∃ϕ : X → X,ϕ bijective, ϕ,ϕ−1 Lipschitz and ϕ(S) convex} . (2)

Important consequences will proceed from the fact that σ takes on values in S, inherited from properties
of S summarized in the following result.

Lemma 1. Let S be defined by (2).

1. for any S ∈ S, the function dS(x0, x1) : S × S → [0,+∞) defined as

dS(x0, x1)
.
= inf

{

length(ψ) : ψ : [0, 1]
Lipschitz
−→ S, ψ(0) = x0, ψ(1) = x1

}

is well-defined and continuous. Define µ : S → R
+ by:

µ(S)
.
= max
x0,x1∈S

dS(x0, x1). (3)

Then, for all S ∈ S,

• µ(S) < +∞.
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• µ(S) = 0 if and only if S is a singleton.

• µ(S) is at least equal to the (euclidian) diameter of S, and equal to this value if S is convex.

• µ is lower semicontinuous in S, but nowhere continuous.

2. for any S ∈ S, let ϕ be as in (2) and

ri(S)
.
= ϕ−1 (ri(ϕ(S))) ,

where ri(ϕ(S)) designates the relative interior of the convex set ϕ(S), i.e. its interior when regarded
as a topological subspace of its affine hull ah ϕ(S). Then, for all S ∈ S,

• ri(S) is independent of the choice of ϕ.

• ri(S) = ∅ if and only if S is a singleton.

• int S ⊆ ri S ⊂ S.

• ri(S) is the relative interior of S if S is convex.

The proof of Lemma 1 is given in Appendix A. Lemma 1 permits to measure the distance between points
of a set S ∈ S “along the arcs”. It permits to define extended notions of diameter, dimension and of relative
interior, which coincide with the usual ones for convex subsets of X . By definition, we call relative boundary
of sets S in S the set

r∂(S)
.
= S \ ri(S) ,

and dimension of S the nonnegative integer2

dimS
.
= dim ah ϕ(S) .

Also, according to the definition of dS in Lemma 1, we define, for any subsets S′, S′′ of a set S in S the
S-distance from S′ to S′′ as:

dS(S′, S′′)
.
= inf

x0∈S′,x1∈S′′

dS(x0, x1) . (4)

Notice that dS({x0}, {x1}) = dS(x0, x1).
We now gather the properties that σ must fulfil, and afterwards comment on their meaning and conse-

quences.

Assumption B. The set-valued map σ : 2X ⇉ X is continuous with respect to the topology induced by
Hausdorff metric and maps the bounded subsets of X to S. Moreover, the following should hold:

1. S ⊆ σ(S) with equality if S is a singleton.

2. σ(S) = σ ◦ σ(S) for all S ∈ 2X.

3. S′ ⊆ S ⇒ σ(S′) ⊆ σ(S) for all S, S′ ∈ 2X .

4. If S is bounded and not a singleton, for all x ∈ S, there exists Σx ⊆ r∂σ(S) such that Σx ∩ S 6= ∅ and
x 6∈ Σx. Moreover, if S′ ⊆ σ(S):

(a) if ri σ(S′) ∩ Σx 6= ∅, then S′ ⊆ Σx (and in particular, x /∈ S′).

(b) if dσ(S)(S
′,Σx) > 0, then µ(σ(S′)) < µ(σ(S)).

5. µ ◦ σ is continuous.

2Recall that ah denotes the affine hull. The dimension of the affine hull of a convex set is uniquely defined [AC].
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Remark that at this point, the problem under study is fully understandable: our goal is to find stability
conditions for systems defined by (1), where the maps ek verify Assumption A for a given map σ fulfilling
Assumption B, and where the meaning of the relative interior ri has been defined previously by Lemma 1.

We shall see further — see Theorem 3 — that Assumptions B.1–B.3 are indeed sufficient to forbid
increase along time of the natural set-valued Lyapunov function of the system t 7→ σ(π(x̃(t))) that we
already mentioned. The additional Assumptions B.4–B.5 induce strict decrease of the set-valued Lyapunov
function — see Theorem 4.

The properties stated in Assumptions B.1 to B.3 are quite natural for a “sensing function”, and require
few comments. However, they are far from fixing univocally the form of σ. As an example, can the form
of the sets σ(S) become more and more “complicated” when S becomes smaller and smaller? Can a set S
exists with void intersection with the boundary of σ(S)? The remaining hypotheses in Assumption B limit
these possibilities, and in particular answer the previous questions.

With the aim of explaining and illustrating further the signification and implications of Assumption B,
we gather in the next proposition various consequences. Comments are in the sequel.

Proposition 1. Assume Assumption B is fulfilled. Let S, S′, S′ ⊆ S, be bounded subsets of X, S not a
singleton, and x ∈ S. The following properties are verified.

1. ri σ(S) 6= ∅ and µ(σ(S)) > 0.

2. card (S ∩ r∂σ(S)) ≥ 2.

3. µ(σ(S′)) ≤ µ(σ(S)).

4. The family of sets Σx fulfilling the properties stated in Assumption B.4 is closed under union.

This allows to univocally define Σx (by maximality): from now on, Σx will denote the uniquely defined
maximal set exhibited in Point 4. We also write Σx|S for Σx (in the situation described in B.4), in order to
stress with respect to which set it is considered.

5. The set Σx verifies Σx = cl Σx \ {x}. In particular, Σx is closed if and only if dσ(S)(x,Σx) > 0.

6. Σx|S = Σx|σ(S).

7. Assume x ∈ S′. Then, Σx|S ∩ σ(S′) ⊆ Σx|S′ .

The proof of Proposition 1 is detailed in Appendix B.
Proposition 1.2 indicates that the sensing process operated by σ is sharp in a certain sense: σ(S) contains

S in such a tight way, that at least two points of S are on the relative boundary r∂σ(S). For convex sets
S, S′ in X , S′ ⊆ S implies µ(S′) ≤ µ(S), but this is not always true for general sets in S. Proposition 1.3
shows however that this order relation is preserved by σ.

Propositions 1.4 allows to consider Σx as a uniquely defined subset of r∂σ(S). Generally speaking, the
form of this set, which defines a critical part of the relative boundary of σ(S) relative to x, looks like an union
of “faces” of r∂σ(S). Although in all the examples developed below in Section 2.3, Σx = r∂σ(S) whenever
x ∈ ri σ(S), it is unknown whether this property is true or not. It is possible to characterize easily Σx in a
particular case, when σ fulfills Assumption B and is such that ri σ(S′) ∩ r∂σ(S) = ∅ for every S′ ⊆ S. In
this case, one verifies easily that

∀x ∈ σ(S),Σx = r∂σ(S) if x ∈ ri σ(S), Σx = r∂σ(S) \ {x} if x ∈ r∂σ(S) . (5)

The proof of this fact is direct and its details are left to the reader (it stems from the fact that Assumption
B.4a is then automatically fulfilled, as ri σ(S′) ∩ Σx 6= ∅ is incompatible with Σx ⊆ r∂σ(S)). This occurs
especially when dimS = dimX (dimS has been defined after Lemma 1) for any bounded S with at least
two elements. As an example, take for σ the convex hull (a paradigm considered in more details in Example
1 below) and the sphere for S.
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An important point is that the set Σx cannot be deduced from the geometry of σ(S) alone. Rather, it
characterizes the way the sets σ(S) vary when S changes. This is the main interest of Example 4 below to
illustrate this point.

Concerning Proposition 1.6, notice that the right-hand side of the identity therein is meaningful: if x ∈ S
and S is not a singleton, then σ(S) shares the same properties, because of Assumption B.1 (S ⊆ σ(S)).
Alternatively, one sees that indeed Σx|S depends only upon σ(S) and x: it may be defined for all x in σ(S),
and not only in S.

Last, Proposition 1.7 says that, if a point x′ is on the critical part of the boundary of σ(S) and is also in
σ(S′) for a given subset S′ of S, then it is still on the (new) critical boundary, a rather natural property. In
particular, Σx|S ∩ S′ ⊆ Σx|S′ . Notice how it is not true in general that r∂σ(S) ∩ σ(S′) ⊆ r∂σ(S′), except
for example when dimS = dimX for every bounded non-singleton subsets S of X . This is shown e.g. by
the following counterexample. In the plane X

.
= R

2, let S be the square with vertices (±2,±2), and S′ be
the segment with extremities (2,±1). Clearly, S′ ⊂ S. Taking for σ the convex hull (see Example 1 below),
one has σ(S) = S, σ(S′) = S′. Thus, r∂σ(S) ∩ σ(S′) = S′, but r∂σ(S′) only contains the two extremities
{(2,±1)} (notice however that, for any x ∈ S′, Σx|S ∩ σ(S′) = ∅, so this set is always included in Σx|S′ , and
this does not contradict Proposition 1.7).

As a last remark on Assumption B notice that Lemma 1 and the continuity assumption on σ imply that
the map µ ◦ σ is already lower semicontinuous on Xhn. Assumption B.5 thus represents a slightly stronger
regularity assumption.

The role of Assumption B is central to deduce the stability results below. It applies to arbitrary (but non
trivial) groups of agents S, which may comprise indifferently true agents or “virtual” agents, viz. informations
relative to the position of a true agent at previous sampling times. More closely, it will imply that, for each
agent x, the agents located on the portion of the boundary of σ(S) denoted Σx, are irreversibly attracted
outside of it when using information received from any agent not in Σx (such as x itself) according to the
rule edicted in Assumption A. This point is sufficiently important to be formalized now, in Proposition 2.
Complementarily, the second part of Assumption B.4 imposes that the irreversible escape from Σx comes
with a strict decrease of the diameter of the set-valued Lyapunov function of the system.

Proposition 2. Assume Assumptions A and B hold. If i
j
∼A(t0) k for i, k ∈ N , j ∈ H, then any trajectory

of (1) fulfills:
∀t ≥ t0 + 1, xk(t) 6∈ Σxi(t0−j)|σ(π(x̃(t0))) .

Proof. If xk(t) = xi(t0 − j), by definition, xk(t) 6∈ Σxi(t0−j). Otherwise, Assumption A implies that

xk(t0 + 1) ∈ ek(A(t0))(x̃(t0)) ⊂ ri σ
(

{xk(t0)} ∪ {xi′,j(t0) : i′
j
∼A(t0) k}

)

.

Now, xi,j(t0) = xi(t0 − j) ∈ {xi′,j(t0) : i′
j
∼A(t0) k}. Fix S = π(x̃(t0)), S

′ = {xk(t0)} ∪ {xi′,j(t0) :

i′
j
∼A(t0) k} and x = xi(t0 − j). As S′ ⊆ σ(S), one may apply Assumption B.4a. Notice that x ∈ S′, so that

S′ 6⊆ Σx. In this situation, Assumption B.4a yields ri σ(S′) ∩ Σx = ∅. In particular, xk(t0 + 1) ∈ ri σ(S′),
so xk(t0 + 1) 6∈ Σxi(t0−j)|σ(π(x̃(t0))). This establishes the desired property for t = t0 + 1.

The argument is similar to prove recursively the property for t > t0 + 1. Assume that xk(t) 6∈

Σxi(t0−j)|σ(π(x̃(t0))). Either xk(t + 1) = xk(t), or xk(t + 1) ∈ ri σ
(

{xk(t)} ∪ {xi′,j(t) : i′
j
∼A(t) k}

)

. In

the latter case, one applies Assumption B.4a with S′ = {xk(t)} ∪ {xi′,j(t) : i′
j
∼A(t) k} and the same S and

x, using the fact that xk(t) ∈ ri σ(S′) \ Σx 6= ∅. In both cases, one gets xk(t+ 1) 6∈ Σx|S .

2.3 Examples

We present here different examples and counter-examples of maps σ fulfilling the properties previously
defined.
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Figure 2: The convex-hull, Moreau’s set-valued Lyapunov function, see Example 1.

Example 1 (convex hull). In Moreau’s work, σ(S) is taken to be the convex hull of S, see Figure 2. One may
check easily that Assumptions B.1 to B.5 are all fulfilled. Here, the sets Σx involved in Assumption B.4 can
be defined as follows:

Σx
.
=

⋃

c∈TCσ(S)(x),|c|=1

x+ max{t : x+ ct ∈ σ(S)}c ,

where TCσ(S)(x) denotes the Bouligand contingent cone to the set σ(S) at x (otherwise called tangent cone,
as σ(S) is convex here; see [AC, pp. 176–177 and 219] for details).

Example 2 (a different convex example). A close, but different, map is employed in [BT]. For a given basis
ej , j = 1, . . . , p of X , take

σ(S)
.
=

[

min
x∈S

eT1 x,max
x∈S

eT1 x

]

× · · · ×

[

min
x∈S

eTp x,max
x∈S

eTp x

]

.

In this example, the convex hull is applied “componentwise”, see Figure 3. Remark that conv(S) ⊆ σ(S) for
this case, but this relation is not mandatory, see Example 6 below.

In the example depicted on Figure 3, one may check that the choice consisting in taking for Σx
.
=

⋃

c∈TCσ(S)(x),|c|=1 x+ max{t : x+ ct ∈ σ(S)}c, fulfills the Assumptions.

Example 3 (other convex examples). One may also define σ(S) as the smallest set containing S and with
boundary parallel to given p+ 1 non-parallel hyperplanes (where X = R

p), see Figure 4. More precisely, let
Σ = conv(S) and e1, . . . , ep+1 be (p+1) vectors in X such that for some positive λ ∈ R

p+1 we have
∑

j λjej =

0. The set σ(S) is a polytope defined as:
{

x ∈ X : eTj x ≤ maxx′∈Σ e
T
j x

′, j = 1, . . . , p+ 1
}

, containing the

points x1, . . . , xhn. Symmetrically we may define σ(S) =
{

x ∈ X : eTj x ≥ minx′∈Σ e
T
j x

′, j = 1, . . . , p+ 1
}

.
Similarly to what occurs in Example 2, one may take for Σx the portion of the boundary obtained by
following the vectors coming out from the tangent cone at x all the way to their extreme intersection point
with the boundary of σ(S), and the Assumptions B.1-B.5 are fulfilled.

Example 4 (a last convex example). A somehow artificial example is now provided, with the aim of illustrating
the non-purely geometric nature of the sets Σx. For S bounded in X

.
= R

2, define σ(S) as the region
containing S and included in the intersection of the two cones {(x, y) ∈ R

2 : −(x−x∗) ≤ |y− y∗| ≤ x−x∗}
and {(x, y) ∈ R

2 : x − x∗∗ ≤ |y − y∗| ≤ −(x − x∗∗)}, where first, x∗ is maximal (and y∗ is then
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x5

x1

σ(x̃)

e1

e2 x3

x2

x4

Figure 3: Illustration of Example 2.

x4

x3

x2

x1

σ(x̃)

Figure 4: Other convex examples of set-valued Lyapunov function, see Example 3.
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x

ΣxΣx

x

S

Figure 5: Demonstration of the non-geometric nature of the sets Σx. The sets Σx corresponding to the maps
σ(S) of Examples 4 (center) and 1 (right) are different, although in both cases the set S (left) has the same
value, equal to σ(S).

univocally deduced from this property) and second, x∗∗ is chosen in such a way that σ(S) is a square. In
this configuration, dimσ(S) = dimX = 2 when card S > 1, so (5) holds. Figure 5 shows a configuration
where, although the two values of σ(S) coincide, the value of Σx|S differs when computed for the present
map σ and for the map in Example 1.

Example 5 (a counterexample). The smallest ball or the smallest hypercube containing S does not fulfil the
requested properties. To see that, consider for instance that the smallest circle containing a triangle never
contains the smallest circle containing the shortest of its edges: this violates the monotonicity assumption
on the map σ prescribed in Assumption B.3.

Example 6 (nonconvex example). For any bijective transformation ϕ : X → X which is Lipschitz together
with its inverse, one may take

σϕ(S)
.
= ϕ−1 (σ(ϕ(S))) ,

where σ fulfils all the Assumptions. In general σϕ(S) 6⊆ conv(S) and is not convex: indeed, this latter
property is not essential. Such an example of nonconvex sets is given in Figure 6, obtained for X = R

2,

x1 =

(

2
0

)

, x2 =

(

1
5

)

, x3 =

(

0
−1

)

, ϕ(x) =

(

cosα‖x‖2 sinα‖x‖2

− sinα‖x‖2 cosα‖x‖2

)

x, α = 0.04, and σ(S) = conv(S).

Notice that, generally speaking, the systems generated along this principle are such that the map ϕ in
(2) is identical for all the sets σ(S). The sets Σx may be obtained as for Example 1, up to transformation
by ϕ.

The present example is useful to treat the case of agents located in spaces which are homeomorphic
to euclidean space. For instance, this permits to model, and solve, the rendezvous problem for agents
constrained within a given domain with complicated uncrossable boundaries, as the “labyrinth” shown in
Fig. 7. Of course, ϕ−1 is the bijection that maps the plane to the white area, and therefore, the shape of
constraints needs to be apriori known for the agents to make suitable decisions. Notice that this model is
topologically very different from the case where obstacles look like “holes” in the space X .

Example 7 (intersection of decision sets). When σ, σ′ fulfil the properties stated above, an interesting issue
is to see whether σ ∩ σ′ does. One verifies easily that Assumptions B.1–B.3 are automatically fulfilled. The
validity of B.4 and B.5 depends upon the configuration of the sets Σx, Σ′

x corresponding to σ and σ′. In
Figure 8 an example is presented where the resulting map fulfills all the properties.

3 Results

Before stating the results of this paper, we recall the notions under discussion below, see [M1, M3]. As in
Moreau’s papers, we call equilibrium point any element of the state space which is the constant value of an
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x3

σϕ(x̃)

x2

x1

Figure 6: An example of map σ giving rise to nonconvex sets, see Example 6. Notice that conv(S) 6⊆ σ(S),
and that µ(σ(S)) is larger than the diameter µ(conv(S)) of conv(S).
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Figure 7: Example of a non-convex state-space homeomorphic to Euclidean space

σ∩(x̃)
x3

x2

x1

Figure 8: Map obtained by intersection of the maps from Figures 3 and 4.
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equilibrium solution.

Definition 4. Let X be a finite-dimensional Euclidean space and consider a continuous set-valued map
e : N ×X ⇉ X taking on closed values, giving rise to the difference inclusion

x(t+ 1) ∈ e(t, x(t)) . (6)

Consider a collection of equilibrium solutions of this equation and denote the corresponding set of equilibrium
points by Φ. By definition, ϕ ∈ Φ if and only if ϕ ∈ e(t, ϕ) for all t ∈ N.

With respect to the considered collection of equilibrium solutions, the dynamical system is called

1. stable if for each ϕ ∈ Φ, for all c2 > 0 and for all t0 ∈ N, there is c1 > 0 such that every solution ζ of
(6) satisfies: if |ζ(t0) − ϕ| < c1 then |ζ(t) − ϕ| < c2 for all t ≥ t0.

2. bounded if for each ϕ ∈ Φ, for all c1 > 0 and for all t0 ∈ N, there is c2 > 0 such that every solution ζ
of (6) satisfies: if |ζ(t0) − ϕ| < c1 then |ζ(t) − ϕ| < c2 for all t ≥ t0.

3. globally attractive if for each ϕ1 ∈ Φ, for all c1, c2 > 0 and for all t0 ∈ N, there is T ≥ 0 such that
every solution ζ of (6) satisfies: if |ζ(t0)−ϕ1| < c1 then there is ϕ2 ∈ Φ such that |ζ(t)−ϕ2| < c2 for
all t ≥ t0 + T .

4. globally asymptotically stable if it is stable, bounded and globally attractive.

If c1 (respectively c2 and T ) may be chosen independently of t0 in Item 1 (respectively Items 2 and 3) then the
dynamical system is called uniformly stable (respectively uniformly bounded and uniformly globally attractive)
with respect to the considered collection of equilibrium solutions.

Notice that the above notions are uniform with respect to all trajectories of (6).
We now state a first result on boundedness and (simple) stability, analogous to [M1, Theorem 2].

Theorem 3. Assume that Assumptions A and B.1–B.3 are fulfilled. Then the discrete-time system (1) is
uniformly globally bounded and uniformly globally stable with respect to the collection of equilibrium solutions
x1(t) ≡ · · · ≡ xn(t) ≡ constant.

Proof. The proof of Theorem 3 is based on the evolution of the following set-valued function Ṽ : Xhn
⇉ X ,

Ṽ (x̃)
.
= σ(π(x̃)) (7)

along the solutions of (1). The fact that t 7→ Ṽ (x̃(t)) is non-increasing is stated in the following result.

Lemma 2. Let x be a solution of equation (1). Then, for all t ∈ N,

Ṽ (x̃(t+ 1)) ⊆ Ṽ (x̃(t)) .

Let us first prove Lemma 2. For any k ∈ N , for any t ∈ N,

xk(t+ 1) ∈ σ
(

{xk(t)} ∪ {xi(t− j) : i
j
∼A(t) k}

)

⊆ Ṽ (x̃(t))

successively by Assumption A and Assumption B.3, and one concludes the demonstration of Lemma 2 by
use of Assumptions B.3 and B.2. The proof of Theorem 3 is then obtained as a direct consequence.

In view of Lemma 2, one may now have a clearer understanding of the fact that the map σ has a
double role: it is necessary to define the flow, but also serves as a set-valued Lyapunov function of the
systems. Indeed, Assumption A states that each agent has to remain in the set Ṽ (x̃(t)), of which it has
only an imperfect knowledge, and does its best to come closer to the other agents it has detected (this is
the meaning of the use of the relative interior). In particular, when no new information is received, the only
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possible choice is to stay at the same place. Notice that Lemma 2 implies, together with Proposition 1.3,
that µ(Ṽ (x̃(t+ 1))) ≤ µ(Ṽ (x̃(t))), but this is not of central use here.

As detailed in Section 2.2, contrary to σ, the map ri σ is not monotone: violation of this rule may
occur when S′ ⊂ S and the σ-hulls σ(S), σ(S′) have different topological dimensions as spheres. Up to this
subtlety, a consequence of Assumption A is that, in general, the larger the quantity of information received
by agent k from its neighborhood, the larger the set of possible updates it may choose (see the monotony
property in Assumption B.3). Although this may sound paradoxical at first glance, this increase of the
decision possibilities is quite natural: it means that supplementary information either leads to make a choice
which was previously possible (it is ignored or makes more valuable the decision), or it is effectively used and
allows to adopt choices which were impossible without this additional information. The “subtlety” comes
from the fact that, when the information available to an agent is poor, some decisions are taken which would
not have been possible with richer data. For example, the possibility of staying in the same place, which
occurs when an agent, say agent 1, is isolated from the other world, disappears when the position of another
agent located elsewhere, agent 2, is received. However, the unique choice σ({x1}) = {x1} is then located “on
the boundary” of the decision set ri σ({x1, x2}), see Proposition 1.2.

The key result of the paper is now stated. It provides a necessary and sufficient stability condition for
system (1), which extends [M1, Theorem 3].

Theorem 4. Assume that Assumptions A and B are fulfilled. Then the discrete-time system (1) is uniformly
globally attractive with respect to the collection of equilibrium solutions x1(t) ≡ · · · ≡ xn(t) ≡ constant if and
only if there exists T ≥ 0 such that for all t0 ∈ N the sequence of communication graphs is weakly connected
across [t0, t0 + T ].

The uniformity which is meant in the statement of Theorems 3 and 4 is with respect to time. One may
check from the proofs that it is also valid with respect to the different trajectories of (1).

Theorem 4 is an analysis result. In a control synthesis perspective, certainly the first step is to construct
a sensing map σ which fulfils Assumption B. This may be one of the two basic choices in Examples 1 and 2,
or a more complicated one (as in Example 6) if necessitated e.g. by the geometry of the environment. Then,
the decision policy ek of each agent should be determined, according to Assumption A. This choice, together
with the characteristics of the sensing function σ, probably influences crucially the convergence rate of the
solutions. We leave this issue for future work.

Proof of Theorem 4. (Only if.) The proof consists in an adaptation of the contraposition argument developed
by Moreau [M1, Proof of Theorem 3]. Assume that for every T ≥ 0 there is t0 ∈ N such that the sequence
of admissible graphs has no node connected to each other across the interval [t0, t0 + T ]. This implies that
for every T ≥ 0 there is t0 ∈ N and nonempty, disjoint subsets L1,L2 ⊂ N such that Neighbors(L1,A(t)) =
Neighbors(L2,A(t)) = ∅ for all t ∈ [t0, t0 + T ]. The proof of this fact consists in checking that the proof of
[M1, Theorem 5] holds also in the case of admissible graph as defined above.

Let y, ȳ ∈ X and consider any solution ζ of (1) departing from initial data defined by:

ζk(t0 − j)











= y ∀(k, j) ∈ L1 ×H,

= ȳ ∀(k, j) ∈ L2 ×H,

∈ σ({y, ȳ}) ∀(k, j) ∈ (N \ (L1 ∪ L2)) ×H .

As in the proof of [M1, Theorem 5], we still have the same relation at time t0+T+1, since Neighbors(L1,A(t)) =
Neighbors(L2,A(t)) = ∅ for all t ∈ [t0, t0+T ]. As the time T may be chosen arbitrarily large, this contradicts
uniform global attractivity of (1) with respect to the equilibrium solutions x1(t) ≡ · · · ≡ xn(t) ≡ constant.

(If.) As in [M1, Theorem 3], the proof is based on a (strict) decrease property of the set-valued function
Ṽ introduced in (7).

Let T ≥ 0 chosen as in the statement of Theorem 4, x an arbitrary solution of (1), and t0 ∈ N for which
the values of xk(t − j), k ∈ N , j ∈ H are not all equal. For all k ∈ N , define the integer-valued function
αk(t), t ≥ t0, by:
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αk(t)
.
= card {j ∈ N : xj(t) ∈ Σxk(t0)} .

where Σx is meant relative to the set S = π(x̃(t0)). In words, this is the number of agents which at time
t ≥ t0 are still belonging to the critical portion of the boundary Σxk(t0). Assume by contradiction that at time
t1 > t0 a new agent xα enters Σxk(t0) which was not there at time t1−1 (xα(t1−1) /∈ Σxk(t0)). Let S′ denote
the set of points in X used by xα at time t1 −1 in order to update its state. Of course, by Assumption A, S′

comprises xα(t1 − 1) itself. Moreover, by monotonicity of the set-valued Lyapunov function Ṽ , S′ ⊂ σ(S).
Now, by the updating rule A, xα(t1) ∈ Σxk(t0) is only possible provided that ri(σ(S′)) ∩ Σxk(t0) 6= ∅, and
therefore, application of Assumption B.4a yields xα(t1 − 1) ∈ S′ ⊂ Σxk(t0), which contradicts what was
previously stated. Hence, we can conclude that agents can only leave Σxk(t0), but never get back in. In
particular then, the functions αk satisfy the inequality:

∀t ∈ [t0,+∞), ∀ k ∈ N , αk(t+ 1) ≤ αk(t)

and

αk(t0) = αk(t1) ⇔ {j ∈ N : xj(t0) ∈ Σxk(t0)} = {j ∈ N : xj(t) ∈ Σxk(t0)} ∀ t ∈ {t0, . . . , t1}. (8)

On the other hand, if t ≥ t0 is such that αk(t) = 0 for a certain k in N , then Assumption B.4b implies that
µ(Ṽ (x̃(t))) < µ(Ṽ (x̃(t0))). An important step consists in showing that:

t > t0 + T ′ ⇒ ∃k ∈ N , αk(t) < αk(t0), T ′ .= h+ T . (9)

There are at most n different sets Σxk(t0) in σ(π(x̃(t0))), and αk(t0) ≤ n − 1. Consequently, the repetition
of the argument used to get implication (9) (if allowed) will yield:

t > t0 + (n− 1)2T ′ ⇒ ∃k ∈ N , αk(t) = 0 .

As a consequence, the estimate:

t > t0 + T ′′ ⇒ µ(Ṽ (x̃(t))) < µ(Ṽ (x̃(t0))), T ′′ .= (n− 1)2T ′ , (10)

will be deduced from Assumption B.4b, because π(x̃(t)) being a finite set of points located in σ(π(x̃(t0))) \
Σxk(t0), is thus at a nonzero distance (more precisely a σ(π(x̃(t0)))-distance, see (4)) from Σxk(t0). In order
to get (10), let us now prove (9).

Assume one has αk(t0 + h + T ) = αk(t0) for all k in N and, by virtue of (8), the set Lk
.
= {j ∈ N :

xj(t) ∈ Σxk(t0)} has not changed for t ∈ {t0, . . . , t0 + h+ T }.
Using the hypothesis in the statement of Theorem 4, there exists an agent, numbered k, connected to

all others across the interval [t0 + h, t0 + h+ T ]. By definition, the set Σxk(t0) does not contain xk(t0), and,
since Lk has not varied in time, then also xk(t) 6∈ Σxk(t0) for t = t0, . . . , t0 +h+T . Moreover, because of the
weak connectivity property of the graph put in the statement, Neighbors(Lk,∪t∈[t0+h,t0+h+T ]A(t)) 6= ∅. Let
i ∈ Lk be such that Neighbors(i,∪t∈[t0+h,t0+h+T ]A(t)) \ Lk 6= ∅, viz. an agent which over the time-interval
[t0 + h, t0 + h + T ] is receiving information from outside Lk. In other words, there exists t1 ∈ [t0, t0 + T ]
such that xi(t1 + 1) ∈ ei(A(t1))(x̃(t1)) and Neighbors(i,A(t1)) \ Lk 6= ∅. Arguing as in Proposition 2, one
deduces that ei(A(t1))(x̃(t1)) ∩ Σxk(t0) = ∅, and thus xi(t+ 1) 6∈ Σxk(t0).

This yields finally: αk(t0 + h+T ) < αk(t0) for the value of k previously exhibited. Inequality (9) is thus
proved. Of course this is true only as long as Σxk(t0) is non-empty to start with.

One verifies easily that the same argument may be used recursively, because the sets Σxk(t0) may be kept
unchanged as long as αk(t) > 0 for all k ∈ N . Thus, (10) is proved.

Considering now x̃(t0) ∈ Xhn as a variable, let

β(x̃(t0))
.
= inf µ

(

Ṽ (ζ(0))
)

− µ
(

Ṽ (ζ(T ′′))
)

,
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Figure 9: Admissible graph representing the information flow for Example 8: even (dots) and odd (dash)
times.

where the infimum is taken over all sequences ζ(1), . . . , ζ(T ′′) in Xhn such that ζ(0) = x̃(t0) and, for all
t = 1, . . . , T ′′, for all k ∈ N ,

ζk,0(t) ∈ ek(A(t0 + t))(ζ(t − 1)) and ζk,j(t) = ζk,j−1(t− 1) for j ∈ H \ {0} .

The meaning of the previous line is precisely that the infimum is computed over all possible trajectories
of the difference inclusion (1). Now, the collection of ζ(t) ∈ Xhn, t = 1, . . . , T ′′ satisfying the previous
condition is nonempty and compact for all initial values x̃(t0) ∈ Xhn. Indeed, by Assumption A, the
set-valued functions ek(A) are continuous and take nonempty, compact values.

The quantity to be minimized is strictly positive when the hn components of ζ(0) are not all equal,
due to the strict decrease property of Ṽ established above and Assumption B.4. Also, the expression to
be minimized is lower semicontinuous with respect to ζ(1), . . . , ζ(T ′′), as Ṽ is continuous (by the continuity
hypothesis contained in Assumption B) and µ is lower semicontinuous (by Lemma 1). Thus, β(x̃(t0)) > 0,
except if all the components of x̃(t0) are all equal. In other words, β is definite positive with respect to
{x̃ ∈ Xhn : x1 = · · · = xhn}.

By Assumption B.5, the map Xhn → R
+, x̃ 7→ µ(Ṽ (x̃)) is continuous. The proof of Theorem 4 is then

achieved as for [M1, Theorem 3], by use of a result on set-valued Lyapunov functions. The latter, Theorem
5, is an extension of [M1, Theorem 1] to differential inclusions, given in Appendix C.

Example 8. The necessity for each agent to take into account the undelayed values of its own position may
be seen by the following counter-example, see Figure 9. Here, n = 3 and h = 2. Let the graphs A(t) be
defined by

2
1
∼A(2t) 1, 1

0
∼A(2t) 2 and 2

1
∼A(2t+1) 3, 3

0
∼A(2t+1) 2 .

In other words, agent 2 sends alternativaly to agent 1 and 3 the value of its position at the previous instant,
and receives in the same time the present position value of the same agent , see Figure 9. Assume the agents
use at time t the value of their position at time t−1 to elaborate the update applied at time t+1. Clearly, for
the corresponding admissible graph sequence, the agent 2 is connected to all other agents across any interval
[t, t + 1]. However, one sees easily that provided that the agents 1 and 3 are located initially at different
positions, the positions of agent 2 at even and odd times tend in general toward two different values. As
indicated by the existence of periodic motions, the strict decrease of the map t 7→ µ(Ṽ (x̃(t))) may fail.

4 Conclusion

We studied in this paper convergence of the global behavior for a large class of discrete-time multi-agent
systems, containing in particular models previously studied by D.P. Bertsekas and J.N. Tsitsiklis [BT] and
by L. Moreau [M1, M2, M3]. The general nonlinear setting introduced permits to model time delays in the
inter-agent communications and also to weaken the assumption usually done that the future evolution occurs
inside some convex hull of present and past states. This latter feature permits e.g. to solve the rendezvous
problem for a population of agents located in a a given domain delimited by some complicated boundary.
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The central result of the paper has characterized global convergence by a connectedness property, much
in the spirit of Moreau’s contributions. Future work will consider quantitative aspects of the convergence,
as well as robustness with respect to uncertainty.

Appendix

A Proof of Lemma 1

1. We first recall that the length of a Lipschitz arc ψ(λ) defined on [0, 1] is equal to

length(ψ)
.
=

∫ 1

0

∥

∥

∥

∥

dψ

dλ

∥

∥

∥

∥

· dλ .

Notice that, by Rademacher’s theorem, ψ Lipschitz implies differentiability almost everywhere, and therefore
the previous integral is well defined. Let x0, x1 ∈ S. Taking ϕ : X → X as in (2), define the map
ψ : [0, 1] → X

ψ(λ)
.
= ϕ−1

(

(1 − λ)ϕ(x0) + λϕ(x1)
)

. (11)

As ϕ(S) is convex, ψ maps [0, 1] in S. Moreover, due to the regularity assumption on ϕ, it is a Lipschitz

arc, and ψ(0) = x0, ψ(1) = x1. Thus the set
{

length(ψ) : ψ : [0, 1]
Lipschitz
−→ S, ψ(0) = x0, ψ(1) = x1

}

is

non-void, and the definition of the map dS(x0, x1) given in the statement is meaningful.
Let us show its continuity with respect to x0, x1 ∈ S. Let (x0, x1) ∈ S × S. Consider a sequence (xε)ε>0

of elements of S tending towards x0. Let ψε|0 be a fixed Lipschitz arc linking xε to x0. For any piecewise
Lipschitz arc ψ0|1 linking x0 to x1, one may construct by concatenation of ψε|0 and ψ0|1 another Lipschitz
arc ψε|1 linking xε to x1. One has

length(ψε|1) = length(ψε|0) + length(ψ0|1) ,

so
dS(xε, x1) ≤ dS(xε, x0) + dS(x0, x1) .

Arguing similarly, one gets that |dS(xε, x1) − dS(x0, x1)| ≤ dS(xε, x0).
On the other hand, one may take ψ as in (11), in such a way that

inf
{

length(ψ) : ψ : [0, 1]
Lipschitz
−→ S, ψ(0) = xε, ψ(1) = x0

}

≤

∥

∥

∥

∥

dψ

dλ

∥

∥

∥

∥

L∞

‖xε − x0‖ ,

which shows the desired continuity property.
Defining µ(S) as in (3), one has µ(S) < +∞, because the image of a compact set by a continuous function

is bounded. Moreover, if µ(S) = 0, then, for any (x0, x1) ∈ S × S, the length defined by the map ψ in (11)
is zero, that is x0 = x1 and S is a singleton. Conversely, if S is a singleton, then µ(S) = 0. Last, for any
Lipschitz arc ψ linking x0 to x1 and defined as in (11),

length(ψ) =

∫ 1

0

∥

∥

∥

∥

dψ

dλ

∥

∥

∥

∥

· dλ ≥

∥

∥

∥

∥

∫ 1

0

dψ

dλ
· dλ

∥

∥

∥

∥

= ‖x0 − x1‖ ,

and this shows that µ(S) is at least equal to the maximal euclidian distance between two points of S, that
is its diameter. The equality when S is convex is straightforward, taking the identity for ϕ in (11).

We now prove the lower semicontinuity of µ. Let S ∈ S, and a sequence of sets Sn ∈ S tending towards
S for the topology induced by Hausdorff distance. Our goal is to prove that:

lim inf
n→+∞

µ(Sn) ≥ µ(S) . (12)
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Obviously, in order to establish inequality (12), it is sufficient to consider only sets Sn such that µ(Sn) is
bounded from above by a given constant, say by twice the value of µ(S). Let ε > 0, and consider two
arbitrary sequences x0

n, x
1
n ∈ Sn and a sequence of Lipschitz arcs ψn linking x0

n to x1
n in Sn and of length at

most equal to dSn
(x0
n, x

1
n) + ε. We thus have:

lim inf
n→+∞

dSn
(x0
n, x

1
n) + ε ≥ lim inf

n→+∞
length(ψn) ≥ lim inf

n→+∞
dSn

(x0
n, x

1
n) . (13)

However, due to the previous remark on the boundedness of the sequence µ(Sn), one may assume without
loss of generality that the arcs ψn are covered with a rate of variation ‖ dψn

dλ
‖L∞ uniformly bounded. Indeed,

if this is not the case, replace ψn by the map ψ̃n defined by

ψ̃n
.
= ψn ◦ θ−1, θ(t)

.
=

∫ t

0

∥

∥

∥

dψn

dλ

∥

∥

∥
· dλ

∫ 1

0

∥

∥

∥

dψn

dλ

∥

∥

∥
· dλ

.

The map ψ̃n has the same image and length as ψn, but the norm of its derivative is equal almost everywhere

on [0, 1] to the constant
∫ 1

0

∥

∥

∥

dψn

dλ

∥

∥

∥
· dλ. In particular,

lim inf
n→+∞

length(ψ̃n) = lim inf
n→+∞

length(ψn) . (14)

The arcs considered at this stage are thus equicontinuous. By compactness, one deduces that there exist
subsequences (denoted similarly x0

n, x
1
n and ψ̃n) such that

x0
n → x0 ∈ S, x1

n → x1 ∈ S, ψ̃n → ψ̃ ∈ Lipschitz([0, 1];S) .

In particular, since by Arzela-Ascoli ψ̃n → ψ̃ uniformly over compact sets, we also have length(ψ̃n) →
length(ψ̃). Thus, since µ(Sn) ≥ dSn

(x0
n, x

1
n), we have:

lim inf
n→+∞

µ(Sn) + ε ≥ lim
n→+∞

dSn
(x0
n, x

1
n) + ε

≥ lim inf
n→+∞

length(ψ̃n) = length(ψ̃)

≥ dS(x0, x1) (15)

By arbitrariety of ε:
lim inf
n→+∞

µ(Sn) ≥ dS(x0, x1).

We finally use arbitrariety of x0,x1 in S (arbitrary converging sequences in Sn yield arbitrary limit points
in S since Sn → S) to conclude lim infn→+∞ µ(Sn) ≥ µ(S). The lower semicontinuity of µ is demonstrated.

Last, to prove that the map µ is nowhere continuous, it suffices to construct, for any S ∈ S, a sequence
of sets Sn ∈ S containing S and contained in a 1

n
-ball around S, and whose diameter exceeds n. The

construction, although cumbersome, does not present difficulty and is left to the reader.

2. To prove that the definition of ri(S) is independent of ϕ, consider two set ri(S), obtained by two
different bi-Lipschitz maps ϕ1, ϕ2 : X → X , such that ϕ1(S) and ϕ2(S) are convex. It is sufficient to show
that f

.
= ϕ2 ◦ (ϕ1)−1, which is bi-Lipschitz and maps the convex set ϕ1(S) into the convex set ϕ2(S), maps

the relative interior one-to-one into the relative interior of the image. Otherwise said, we are led to show
that: if the image of a compact convex set S by a bijective bi-Lipschitz map f : X → X is a convex set,
then the image of the relative interior ri(S) is the relative interior of the image of S.

Let x ∈ ri(S). Consider the restriction of f to the affine hull ah(S) of S. The set ri(S) is convex, thus
there exists a convex neighborhood V ⊂ S of x in ah(S). By continuity of f−1, the image of V through f is
a neighborhood of f(x) in f(ah(S)). By hypothesis, f(S) is convex, thus there exists a convex neighborhood
W ⊂ f(S) of f(x) in ah(f(S)). Now, the intersection f(V ) ∩ W ⊂ f(S) is a neighborhood of f(x) in
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ah(f(S)), so f(x) ∈ ri(f(S)). We thus get ri(S) ⊆ f−1(ri(f(S))), and one shows similarly the converse
inclusion.

Let S ∈ S. If ri(S) = ∅, then ri(ϕ(S)) = ∅ and S is a singleton. Conversely, if S is a singleton, ϕ(S) is
also a singleton and ri(ϕ(S)) = ∅.

It is clear that ri (S) ⊂ S. Also, the fact that int (ϕ(S)) ⊆ ri (ϕ(S)) ⊂ ϕ(S) implies that

int S = int ϕ−1 (ϕ(S)) ⊆ ϕ−1(int (ϕ(S))) (as ϕ−1 is continuous)

⊆ ϕ−1(ri (ϕ(S))) = ri (S) (by definition of ri (S)) .

Last, when S is a convex set, one may take for ϕ in (2) the identity, and this proves that in this case
ri(S) is equal to the relative interior of S.

This ends the proof of Lemma 1.

B Proof of Proposition 1

1. By Assumption B.1 it follows from card S > 1 that card σ(S) > 1. Since σ(S) is not a singleton, it is home-
omorphic to a sphere of non-zero dimension. Hence, ri σ(S) 6= ∅. Moreover, µ(σ(S)) ≥ diam(σ(S)) > 0,
since the euclidean diameter of a set vanishes if and only if the set is a singleton.

2. Let x ∈ S. Since S is not a singleton, by Assumption B.4, there exists Σx ⊂ r∂σ(S) so that Σx ∩ S 6= ∅.
Let y ∈ Σx ∩ S. Since y ∈ S we can apply the same property to y in order to conclude that there exists
Σy ⊂ r∂σ(S) and such that Σy ∩S 6= ∅. Let z ∈ Σy ∩S. Since by assumption y /∈ Σy we have y 6= z. There-
fore y and z both belong to S∩r∂σ(S) and are different from each other. This completes the proof of Point 2.

3. Let S, S′ as in the statement. Due to Assumption B.3, σ(S′) ⊆ σ(S).
On the other hand, the set σ(S′) is in S. In addition it is closed and there exists a map ϕ as in the

definition of S such that ϕ(σ(S′)) is convex (say a sphere). For sufficiently small ε > 0, the set gathering all
the interior points of ϕ(σ(S′)) located at a distance at least equal to ε of its relative boundary is non-void
and convex. It is also compact.

Let S′
ε be the image of this set by ϕ−1. By construction, the set S′

ε is an element of S, and a subset of S′,
and thus of S too. One has: dσ(S)(S

′
ε, r∂σ(S)) > dσ(S)(S

′, r∂σ(S)) ≥ 0. Then, application of Assumption
B.4b with any x in σ(S) yields: µ(σ(S′

ε)) < µ(σ(S)). This implies that lim supε→0+ µ(σ(S′
ε)) ≤ µ(σ(S)).

On the other hand, Assumption B.5 on continuity of the map µ ◦ σ implies that limε→0+ µ(σ(S′
ε)) exists

and is equal to µ(σ(S′)), because, due to Lipschitzness of ϕ−1, S′
ε tends towards S′ for the Hausdorff topol-

ogy. This provides the inequality in Point 3.

4. Let Σi, i ∈ I, be a collection of sets fulfilling Assumption B.4, where I is a possibly infinite index set. Let
us show that the set

Σ
.
=

⋃

i∈I

Σi

fulfills Assumption B.4 too. Indeed, each set Σi is included in r∂σ(S), so the same is true for Σ. Also, each
Σi has a non-void intersection with S, so the same holds for the union, and the point x is located outside of
each Σi, so it is neither an element of Σ.

Now, let S′ ⊆ σ(S) be such that ri σ(S′)∩Σ 6= ∅. There exists at least one index i such that ri σ(S′)∩
Σi 6= ∅. Consequently, S′ ⊆ Σi, and S′ ⊆ Σ.

Last, assume that dσ(S)(S
′,Σ) > 0. ¿From the inclusion Σi ⊆ Σ, one deduces that dσ(S)(S

′,Σi) ≥
dσ(S)(S

′,Σ) for all i ∈ I. Thus, dσ(S)(S
′,Σi) > 0, and we deduce that µ(σ(S′)) < µ(σ(S)). This ends the

proof of Point 4.

5. Let x′ 6= x such that x′ ∈ cl Σx. We shall prove that Σ′ .= Σx∪{x′} fulfills the hypotheses of Assumption
B.4.
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First, it is clear that Σ′ ⊆ r∂σ(S). Also, ∅ 6= Σx ∩ S ⊆ Σ′ ∩ S. Additionally, Σ′ fulfills Assumption
B.4b: let S′ ⊆ σ(S), assume that dσ(S)(S

′,Σ′) > 0. ¿From the inclusion Σx ⊆ Σ′, we have dσ(S)(S
′,Σx) ≥

dσ(S)(S
′,Σ′), and thus dσ(S)(S

′,Σx) > 0, which is sufficient to deduce µ(σ(S′)) < µ(σ(S)).
We now verify that Assumption B.4a holds for Σ′, and that the latter set does not contain x (that is

x′ 6= x). Let S′ ⊆ σ(S) and assume that ri σ(S′) ∩ Σ′ 6= ∅. We intend to show that S′ ⊆ Σ′. Of course,
if ri σ(S′) ∩ Σx 6= ∅, then S′ ⊆ Σx ⊆ Σ′. Assume otherwise that ri σ(S′) ∩ Σx = ∅ and x′ ∈ ri σ(S′).
Consider the bi-Lipschitz map ϕ associated to the set σ(S′) ∈ S (see (2)). The point ϕ(x′) is contained in
the set ϕ(ri σ(S′)) = ri ϕ(σ(S′)), which is open when considered as a topological subspace of the affine
hull ah ϕ(σ(S′)) of ϕ(σ(S′)). This point is also located in the intersection ϕ(cl Σx) ∩ ah ϕ(σ(S′)), which is
a closed set in ah ϕ(σ(S′)), equal to cl ϕ(Σx) ∩ ah ϕ(σ(S′)). Yet, no other point of ϕ(Σx) is located in the
neighborhood of ϕ(x′) (in ah ϕ(σ(S′))), as ri σ(S′) ∩ Σx = ∅. This is impossible. Thus, if x′ ∈ ri σ(S′),
then ri σ(S′) ∩ Σx 6= ∅, and S′ ⊆ Σ′, as announced.

In conclusion, Σ′ = Σx ∪ {x′} fulfills all the hypotheses of Assumption B.4, as claimed in the beginning
of the proof. Due to the maximality of Σx, we deduce Σx = Σ′, and finally Σx = cl Σx \ {x}, as enounced
in the statement of Point 5.

6. It is straightforward to show that Σx|S fulfils Assumption B.4 for σ(S), so that certainly Σx|S ⊆ Σx|σ(S).
To show the reverse inclusion, one must first establish that Σx|σ(S) ∩ S 6= ∅, but that precisely comes

from the fact that Σx|S ⊆ Σx|σ(S) and that, by definition, Σx|S ∩S 6= ∅. The remaining of the proof of Point
6 is evident.

7. We denote for short Σ, resp. Σ′, instead of Σx|S , resp. Σx|S′ . We intend to prove that Σ∗ .
= Σ∩σ(S′) ⊆ Σ′.

The principle of the demonstration consists in establishing that Σ∗∗ .
= Σ∗ ∪ Σ′ is contained in Σ′.

First, remark that x 6∈ Σ∗ = Σ ∩ σ(S′), because x 6∈ Σ.
We now prove that Σ∗ ⊆ r∂σ(S′). If this is not true, then Σ ∩ ri σ(S′) 6= ∅, because σ(S′) is equal to

the union of the two disjoint sets r∂σ(S′) and ri σ(S′). Now, applying Assumption B.4a yields σ(S′) ⊆ Σ.
But x ∈ S′, so we deduce x ∈ Σ, which contradicts Assumption B.4a.

We now show that Σ∗ fulfills the property defined in Assumption B.4a. Let S′′ ⊆ σ(S′) such that
ri σ(S′′) ∩ Σ∗ 6= ∅. Then S′′ ⊆ Σ, because Σ = Σx|S , and S′′ ⊆ σ(S′), thus S′′ ⊆ Σ∗.

One shows, as in the proof of Proposition 1, that Σ∗∗ = Σ∗∪Σ′ fulfills nice properties: first, Σ∗∗ ⊆ r∂σ(S′)
and x 6∈ Σ∗∗, because the same is true for Σ′ and for Σ∗ (see above). Analogously, Σ∗∗ fulfills the property
defined in Assumption B.4a, as both its components Σ∗ and Σ′ do. Let us now show that Σ∗∗ fulfills
Assumption B.4b. Let S′′ ⊆ σ(S′), such that dσ(S′)(S

′′,Σ∗∗) > 0, then dσ(S′)(S
′′,Σ′) ≥ dσ(S′)(S

′′,Σ∗∗) > 0,
and thus µ(σ(S′′)) < µ(σ(S′)), which shows the desired property.

Hence, Σ∗∗ fulfills all the properties of Assumption B.4. Consequently, due to the fact previously estab-
lished that Σ′ is maximal among the sets of this kind, one has Σ∗ ∪Σ′ = Σ∗∗ ⊆ Σ′. This yields Σ∗ ⊆ Σ′ and
ends the demonstration of Point 7, and consequently of Proposition 1.

C Stability based on set-valued Lyapunov functions

The following result is an adaptation of [M1, Theorem 1] to difference inclusions. For sake of completeness,
a proof is provided, intimately linked to the proof of Moreau’s result.

Theorem 5. Let X be a finite-dimensional Euclidean space and consider a continuous set-valued map
e : N × X ⇉ X taking on closed values, giving rise to the difference inclusion (6). Let Ξ be a collection
of equilibrium solutions and denote the corresponding set of equilibrium points by Φ. Consider an upper
semicontinuous [AC, p. 41] set-valued function V : X ⇉ X satisfying

1. x ∈ V (x), ∀x ∈ X ;

2.
⋃

y∈e(t,x)

V (y) ⊆ V (x), ∀t ∈ N, ∀x ∈ X .
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If V (φ) = {φ} for all φ ∈ Φ then the dynamical system is uniformly stable with respect to Φ. If V (x) is
bounded for all x ∈ X then the dynamical system is uniformly bounded with respect to Φ.

Consider in addition a function µ : Image(V ) → R≥0 and a lower semicontinuous function β : X → R≥0

satisfying

3. µ ◦ V : X → R≥0 is bounded uniformly with respect to x in bounded subsets of X ;

4. β is positive definite with respect to Φ that is, β(φ) = 0 for all φ ∈ Φ and β(x) > 0 for all x ∈ X \ Φ;

5. sup
y∈e(t,x)

µ(V (y)) − µ(V (x)) ≤ −β(x), ∀t ∈ N, ∀x ∈ X .

If V (φ) = {φ} for all φ ∈ Φ and V (x) is bounded for all x ∈ X then the dynamical system is uniformly
globally asymptotically stable with respect to Φ.

The results stated above remain true if, for a fixed τ ∈ N, the decrease relations in 2. and 5. occur
between V (yi+1) and V (yi), i = 0, . . . , τ − 1, y0 = x, yτ = y, instead of V (y) and V (x).

Proof. (Uniform stability.) Consider arbitrary ϕ ∈ Φ and c2 > 0. If V (ϕ) = {ϕ} then, by upper semicon-
tinuity of V , there is c1 > 0 such that V (x) ⊂ B(ϕ, c2) for all x ∈ B(ϕ, c1). Consider arbitrary t0 ∈ N and
x0 ∈ B(ϕ, c1) and let ζ denote any solution of inclusion (6) with ζ(t0) = x0. Conditions 1 and 2 of Theorem
5 imply that, for all t ≥ t0,

ζ(t) ∈
⋃

y∈e(t,x0)

V (y) ⊆ V (x0) ⊂ B(ϕ, c2) .

(Uniform boundedness.) Consider arbitrary ϕ ∈ Φ and c1 > 0. If V (x) is bounded for all x ∈ X then, by
upper semicontinuity of V , there is c2 > 0 such that V (x) ⊂ B(ϕ, c2) for all x ∈ B(ϕ, c1). Consider arbitrary
t0 ∈ N and x0 ∈ B(ϕ, c1) and let ζ be any solution of (6) with ζ(t0) = x0. Conditions 1 and 2 of Theorem 5
imply that for all t ≥ t0,

ζ(t) ∈
⋃

y∈e(t,x0)

V (y) ⊆ V (x0) ⊂ B(ϕ, c2) .

(Uniform global asymptotic stability.) It remains only to prove uniform global attractivity with respect
to Ξ.

Consider arbitrary ϕ1 ∈ Φ and c1 > 0. If V (x) is bounded for all x ∈ X then, by upper semicontinuity of
V , there is a compact set K ⊂ X such that V (x) ⊆ K for all x ∈ B(ϕ1, c1). Similarly as above, Conditions
1 and 2 of Theorem 5 imply that every solution of (6) initiated in B(ϕ1, c1) remains in K.

Consider in addition arbitrary c2 > 0. If V (ϕ) = {ϕ} for all ϕ ∈ Φ then, by upper semicontinuity of V ,
there is c3 > 0 such that for all x ∈ B(Φ ∩K, c3) there is ϕ2 ∈ Φ such that V (x) ⊂ B(ϕ2, c2). Similarly as
above, Conditions 1 and 2 of Theorem 5 imply that every solution of (6) entering B(Φ ∩K, c3) remains in
a c2-ball around some equilibrium point ϕ2 ∈ Φ.

It remains to prove the existence of T ≥ 0 such that every solution of (6) starting in B(ϕ1, c1) cannot
remain longer than T subsequent times in K without entering B(Φ ∩K, c3). In agreement with Conditions
3 and 4 of Theorem 5 and the lower semicontinuity of β, we introduce two real numbers:

M
.
= sup
x∈B(ϕ1,c1)

µ(V (x)) <∞ and ∆
.
= min

x∈K\B(Φ,c3)
β(x) > 0 .

Let T ≥ 0 be such that T∆ > M . Consider arbitrary t0 ∈ N and x0 ∈ B(ϕ1, c1) and let ζ denote any
solution of (6) with ζ(t0) = x0. Then Condition 5 of Theorem 5 implies that for some t1 ∈ [t0, t0 + T ],
ζ(t1) ∈ B(Φ ∩K, c3), since otherwise ζ(t) ∈ K \B(Φ, c3) for all t ∈ [t0, t0 + T ] and

µ(V (ζ(t0 + T ))) ≤ µ(V (ζ(t0))) − T min
x∈K\B(Φ,c3)

β(x) ≤M − T∆ < 0 ,

contradicting that µ takes only non-negative values. Putting everything together, we conclude that for some
ϕ2 ∈ Φ and for all t ≥ t0 + T ,

ζ(t) ∈ V (ζ(t)) ⊆ µ(V (ζ(t1)) ⊂ B(ϕ2, c2) .

This achieves the proof of Theorem 5.
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