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Backstepping Design for Time-Delay
Nonlinear Systems

Fréd́eric Mazenc, and Pierre-Alexandre Bliman,

Abstract— The backstepping approach is adapted to the prob-
lem of globally uniformly asymptotically stabilizing nonlinear
systems in feedback form with a delay arbitrarily large in
the input. The strategy of design relies on the construction of
a Lyapunov-Krasovskii functional. Continuously differentiable
control laws are constructed.

Index Terms— Nonlinear, backstepping, delay, control, Lya-
punov.

I. I NTRODUCTION

One of the most popular nonlinear techniques of control
design is the backstepping approach. It is presented for in-
stance in [2], [15], [3]. The key ideas of the approach are the
following. If for a system in feedback form, i.e. of the form{

ẋ = f(x) + g(x)z,
ż = u + h(x, z), (1)

with x ∈ Rnx , z ∈ R, where u ∈ R is the input and
f(x), g(x), h(x, z) are continuous functions, there exists a
continuously differentiable functionzs(x) such thatzs(0) = 0
and thex-subsystem of (1) withz replaced byzs(x) is globally
asymptotically stable and if besides is known a positive
definite and radially unbounded functionV (x) of classC1

such that

W (x) := −∂V

∂x
(x)[f(x) + g(x)zs(x)] (2)

is positive definite, then the system (1) is globally asymptoti-
cally stabilized by

u(x, z) = −k(z − zs(x))− h(x, z)
+∂zs

∂x (x)[f(x) + g(x)z]− ∂V
∂x (x)g(x)

(3)

wherek is a positive real number. Moreover, the derivative of
the Lyapunov function

U(x, z) = V (x) +
1
2
[z − zs(x)]2 (4)

along the trajectories of (1) in closed-loop with (3) satisfies

U̇(x, z) = −W (x)− k[z − zs(x)]2. (5)

Many extensions of this basic result have been proved. The
multiple advantages offered by this approach are well-known.
Observe in particular that this technique yields a wide family
of globally asymptotically stabilizing control laws, allows to
address robustness issues and to solve adaptive problems.

The objective of the present work is to show how the
backstepping approach can be adapted to the problem of

F. Mazenc is with the Projet MERE INRIA-INRA, LASB, INRA 2, pl.
Viala, 34060 Montpellier, France (email: Frederic.Mazenc@ensam.inra.fr).

P-A. Bliman is with the Projet SOSSOII, INRIA-Rocquencourt, BP 105,
78153 Le Chesnay cedex, France (email: pierre-alexandre.bliman@inria.fr).

stabilizing systems in feedback form with a delay in the input.
More precisely, we give sufficient conditions ensuring that a
nonlinear system of the form{

ẋ(t) = f(x(t)) + g(x(t))z(t),
ż(t) = u(t− τ) + h(x(t− τ), z(t− τ)), (6)

with x ∈ Rnx , z ∈ R, where u ∈ R is the input and
where τ is a positive real number is globally uniformly
asymptotically stabilizable by continuously differentiable state
feedback. Roughly speaking, these conditions ensure that the
x-subsystem withz as virtual input is globally uniformly
asymptotically stabilizable by a control law with a delayτ
and that, for a specific family of control laws, the finite escape
time phenomenon does not occur. This work completes the
families of recent papers devoted to the control of nonlinear
systems with delay. In [9] and [11], the technique of [13]
is adapted to the problem of stabilizing chains of integrators
with bounded controls when there is a delay arbitrarily large
in the input. The main result of [9] is extended in [8] to a
family of feedforward nonlinear systems. In [10], the problem
of stabilizing an oscillator by bounded feedback when there is
a delay in the input is solved. In [12], the interconnection of
nonlinear systems with delay is studied. In [6], the concept of
control Lyapunov function is extended to the case of nonlinear
systems with delay through the Razumikhin theorem. In [14],
connections between Razumikhin-type theorems and the ISS
nonlinear small gain theorems are exposed. The present work
is distinguished from the papers mentioned above because on
the one hand it is devoted to systems in feedback form and
on the other hand the key tool we use to prove the main
result is the Lyapunov-Krasovskii functional (see [7], [4]).
Surprisingly enough, this family of Lyapunov functionals has
been used so far mainly in the context of the stabilization of
linear systems through linear control laws, see for instance
[1], [5]. We show in this work that it can be also fruitfully
exploited to carry out control designs for nonlinear systems.
The potential advantages of the knowledge of such a functional
are multiple and appealing. Observe in particular that strict
Lyapunov functions are known to be very efficient tools for
robustness analysis, but this issue is beyond the scope of our
work. The stabilizability result we obtain is a global uniform
asymptotic stabilizability result for an arbitrarily large delay.
The expressions of control laws we exhibit depend on the value
of the delay. We want to emphasize that we do not assume
that the systems (6) are locally exponentially stabilizable. The
example we give in Section IV to illustrate our control design
shows that indeed this assumption is not needed.
Organization of the work.Two technical lemmas are stated and
proved in Section II. In Section III the backstepping approach
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is adapted to the case of systems with delay in the input. An
illustrating example is presented in Section IV.
Definitions and technical preliminaries.
1. We assume throughout the paper that the functions encoun-
tered are sufficiently smooth.
2. The argument of the functions and of the functionals will be
omitted or simplified whenever no confusion can arise from
the context. For example, one may denote a functionf(x(t))
by simply f(x) or f(t) or f(·) or f .
3. A real-valued functionk(·) is of classK∞ if it is zero at
zero, strictly increasing and unbounded.
4. The following norms will be used:|| · || refers to the
Euclidean vector norm;||φ||c = sup

t∈[−r,0]

||φ(t)|| stands for the

norm of a functionφ ∈ C1([−r, 0], Rm).
5. Let r be a positive real number. For a givent ≥ 0, xt(·)
denotes the restriction ofx(·) to the interval[t−r, t] translated
to [−r, 0], i.e. xt(θ) = x(t + θ), ∀ θ ∈ [−r, 0].

II. T ECHNICAL LEMMAS

This section is devoted to the construction of Lyapunov-
Krasovskii functionals for two families of systems with delay.
These constructions are crucial in establishing the main result
of the work.

A. First technical lemma

The following lemma gives conditions ensuring that thex-
subsystem of (6) withz as virtual input is globally uniformly
asymptotically stabilizable by a control lawzs(x(t− τ)) and
provides with a Lyapunov-Krasovskii functional.

Lemma 2.1:Consider the system

ẋ(t) = f(x(t)) + g(x(t))zs(x(t− τ)) (7)

wherex ∈ Rnx , wheref(x), g(x) are continuous functions,
wherezs(x) is a continuously differentiable real-valued func-
tion such thatzs(0) = 0 andτ is a positive real number. As-
sume that there exist a positive definite and radially unbounded
functionV (x), a positive definite functionW (x) and a positive
real numberΩ ≥ 8τ such that the following assumptions are
satisfied
H1. For all x ∈ Rnx , the equality

∂V

∂x
(x)[f(x) + g(x)zs(x)] = −W (x) (8)

holds.
H2. For allx ∈ Rnx andξ ∈ C1([0, 2τ ], Rnx), the inequality

−1
4
W (x)− T (x, ξ)− 1

Ω

∫ 2τ

0

W (ξ(l))dl ≤ 0 (9)

with

T (x, ξ) = ∂V
∂x (x)g(x)

∫ 2τ

τ

H(ξ(l), ξ(l − τ))dl,

H(a, b) = ∂zs

∂x (a)[f(a) + g(a)zs(b)],
(10)

holds.

H3. For all function ξ ∈ C1([0, 2τ ], Rnx), there exists a
contant Kξ ≥ 0 such that, for allx ∈ Rnx and for all
t ∈ [0, 2τ ], the inequality

− 1
2W (x) + ∂V

∂x (x)g(x)[zs(ξ(t))− zs(x)]
≤ Kξ[V (x) + 1]

(11)

holds.
Then the origin of (7) is globally uniformly asymptotically

stable. Moreover, along the trajectories of (7), the derivative
of the functional

U(xt) = V (x(t)) +
1
Ω

∫ t

t−2τ

(∫ t

s

W (x(l))dl

)
ds (12)

satisfies, for allt ≥ 2τ ,

U̇(t) ≤ −1
2
W (x(t)). (13)

Proof. Let ϕ ∈ C1([−τ, 0], Rnx) be any initial condition of
the system (7). LetT ∈ (0, τ ] be such that the solutionx(t)
is defined on[0, T ). Then, for allt ∈ [0, T ), the equality

V̇ (t) = −W (x(t))
+∂V

∂x (x(t))g(x(t))[zs(ϕ(t))− zs(x(t))]
(14)

is satisfied. From the inequality (11) in H3, we deduce that
there existsKϕ > 0 such that, for allt ∈ [0, T )

V̇ (t) ≤ Kϕ[V (x(t)) + 1]. (15)

It follows that, for all t ∈ [0, T ), the inequality

V (x(t)) ≤ (V (x(0)) + 1)eKϕt − 1 (16)

is satisfied. From this inequality, one can deduce that the
finite escape time phenomenon does not occur on[0, τ ]; the
solutions are well-defined on[0, τ ]. By applying this reasoning
repeatedly, one can prove that all the solutions are defined on
any interval[kτ, (k + 1)τ ], wherek is an integer, and thereby
on [0,+∞[.

Now, let us observe that, for allt ≥ 2τ , the derivative of
the functionalU defined in (12) along the trajectories of (7)
satisfies

U̇ = V̇ − 1
Ω

(∫ t

t−2τ

W (x(l))dl

)
+ 2τ

Ω W (x(t))
= ∂V

∂x (x(t))[f(x(t)) + g(x(t))zs(x(t− τ))]

− 1
Ω

(∫ t

t−2τ

W (x(l))dl

)
+ 2τ

Ω W (x(t)).

(17)

From (8), we deduce that

U̇ =
(
−1 + 2τ

Ω

)
W (x(t))

+ ∂V
∂x (x(t))g(x(t))[zs(x(t− τ))− zs(x(t))]

− 1
Ω

(∫ t

t−2τ

W (x(l))dl

)
=

(
−1 + 2τ

Ω

)
W (x(t))

− 1
Ω

(∫ t

t−2τ

W (x(l))dl

)
− ∂V

∂x (x(t))g(x(t))
∫ t

t−τ

λ(x(s), x(s− τ))ds

(18)

with
λ(a, b) =

∂zs

∂x
(a)[f(a) + g(a)zs(b)] (19)
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From the inequalityΩ ≥ 8τ and (9), we deduce that, for all
t ≥ 2τ , the inequality (13) is satisfied. On the other hand,
one can check readily that there exist two functionsµ1, µ2 of
classK∞ such that, for all functionφ ∈ C1([−2τ, 0], Rnx),
the functionalU satisfies the inequalities

µ1(||φ(0)||) ≤ U(φ) ≤ µ2(||φ||c). (20)

Finally, from the Krasovskii stability theorem (see [4], [7]),
one can deduce that the origin of (7) is globally uniformly
asymptotically stable.

B. Second technical lemma

The following lemma establishes the asymptotic stability of
a family of linear systems with delay through a Lyapunov-
Krasovskii approach.

Lemma 2.2:Consider the system

Ż(t) = −εZ(t− τ) (21)

whereZ ∈ R andτ andε are positive real numbers such that
ε ∈

(
0, 1

2τ

]
. The origin of this system is globally uniformly

asymptotically stable. Moreover, for allt ≥ 2τ , the derivative
of the functional

M(Zt) =
1
2
Z(t)2 + ε3τ

∫ t

t−2τ

(∫ t

s

Z(l)2dl

)
ds (22)

along the trajectories of (21) satisfies, for allt ≥ 2τ ,

Ṁ(t) ≤ −1
4
εZ(t)2 − 1

2
ε3τ

∫ t

t−2τ

Z(s)2ds. (23)

Proof. The proof of this lemma is omitted. It is similar to the
one of Lemma 2.1.

III. M AIN RESULTS

Consider the nonlinear system (6) and introduce a set of
assumptions.
Assumption A1. A positive definite, radially unbounded and
continuously differentiable functionV (x), a continuous and
positive definite functionW (x), a positive real numberΩ ≥
8τ , a continuously differentiable functionzs(x), satisfying
zs(0) = 0, such that the system

ẋ(t) = f(x(t)) + g(x(t))zs(x(t− τ)) (24)

satisfies the assumptions H1 to H3 of Lemma 2.1 are known.
Assumption A2. Let C be a positive real number. For all
x ∈ Rnx , the inequalities∣∣∣∣∂V

∂x
(x)g(x)

∣∣∣∣2 ≤ W (x) ,

∣∣∣∣∂zs

∂x
(x)g(x)

∣∣∣∣ ≤ C (25)

are satisfied.
Theorem 3.1:Assume that the system (6) satisfies the

assumptions A1 and A2. Then the system (6) is globally
uniformly asymptotically stabilized by the feedback

us(t) = −ε(z(t)− zs(x(t− τ)))− h(x(t), z(t))
+∂zs

∂x (x(t))[f(x(t)) + g(x(t))z(t)]
(26)

whereε is a positive real number such thatε ∈
(
0, 1

2τ

]
.

Discussion of Theorem 3.1.

• Assumption A1 is only concerned with thex-subsystem of
(6). Assumption H1, which ensures the stabilizability of this
system withz as virtual input when there is no delay, is not
surprising. In the well-known framework of the backstepping
for systems without delay, this assumption, or a similar one,
is imposed. Assumptions H2 and H3 are introduced to ensure
the stabilizability of thex-subsystem of (6) withz as virtual
input by a control law with the delayτ .
• The family of control laws (26) and the family of con-
trol laws (3) are different, even whenτ = 0. The term
−∂V

∂x (x)g(x) is present in (3) whereas no corresponding term
is in (26). The reason is the following. In absence of delay,
the system (1) in closed-loop with the control law (26) can
be interpreted as a cascade of two passive systems so that
the classical damping term−∂V

∂x (x)g(x) can be introduced in
the control law to turn the passivity into global asymptotic
stability. But control designs based on passivity property in
general cannot be used when a delay is present: in order to
overcome the obstacle, the way we have chosen consists in
selecting the control law (26) which results into the cascade
of a globally asymptotically stable system and a globally
asymptotically stable system with a coupling term. In order to
ensure that this coupling term does not destabilize the system,
we need to impose Assumption A2.
• In the proof of Theorem 3.1, we shall see that, thanks
to Assumption A2, one can construct a Lyapunov-Krasovskii
functional for the system (6) in closed-loop with the control
law (26) by taking advantage of the two functionals provided
by Lemma 2.1 and Lemma 2.2. However, this assumption
is not just a convenient tool motivated only by the wish to
carry out a Lyapunov construction: It ensures that the finite
escape time phenomenon does not occur. It cannot be removed
without being replaced by another assumption of a similar
type. This fact is enlightened by the system{

ẋ(t) = −x(t) + x(t)4z(t),
ż(t) = u(t− τ), (27)

because on the one hand, it is globally asymptotically sta-
bilized by the feedbacku(x, z) = −z − x5 when τ = 0,
but is not globally uniformly asymptotically stabilizable when
τ > 0 (see Appendix I) and on the other hand, it is of the
form (6), satisfies Assumption A1 withV (x) = x2,W (x) =
2x2, zs(x) = 0 but, for any choice of functionsV (x) and
zs(x), it does not satisfy Assumption A2.
• We prove in Appendix II that Assumption A1 may be
replaced by the assumption consisting of H1, H3 and the
slightly more restrictive assumption:
Assumption H2’. For all ξ ∈ C1([0, 2τ ], Rnx), the inequality

Ωτ

∫ 2τ

τ

|H(ξ(l), ξ(l − τ))|2 dl ≤
∫ 2τ

0

W (ξ(l))dl (28)

whereH(·) is the function defined in (10) and whereΩ is a
positive real number such thatΩ ≥ 8τ .

Thanks to Assumptions H2’ and A2 one understands that,
roughly speaking, a necessary condition for the uniform
asymptotic stabilizability of the system (6) is thatzs(x) and its
first partial derivatives be sufficiently small in norm. In some
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cases, one can take advantage of Assumption H2’ to determine
suitable functionszs(x).
• Theorem 3.1 applies to systems which are not locally
linearizable. The assumptions of this theorem do not even
ensure that thex-subsystem of (6) withz as virtual input
is locally exponentially stabilizable. The example we give in
Section IV illustrates this remark.
Proof of Theorem 3.1.
The proof consists in constructing a Lyapunov-Krasovskii
functional whose derivative along the trajectories the system
(6) in closed-loop with the control law (26) is smaller than
a negative definite function. To simplify the construction, we
perform the change of variable

Z(t) = z(t)− zs(x(t− τ)) (29)

which transforms (6) into

ẋ(t) = f(x(t))
+ g(x(t))(Z(t) + zs(x(t− τ))),

Ż(t) = u(t− τ)
+ Υ(x(t− τ), x(t− 2τ), Z(t− τ)),

Υ(a, b, c) = h(a, c + zs(b))
− ∂zs

∂x (a)[f(a) + g(a)(c + zs(b))].

(30)

This system in closed-loop with the control lawu = us(·)
whereus(·) is the function defined in (26), is

ẋ(t) = f(x(t))
+g(x(t))(Z(t) + zs(x(t− τ))),

Ż(t) = −εZ(t− τ).
(31)

We will take advantage of Lemma 2.1 and Lemma 2.2 to prove
that the derivative of the Lyapunov-Krasovskii functional (12)
along the trajectories of (31) is smaller than a negative definite
function of(x(t), Z(t)). Before this analysis, we prove that the
finite escape time phenomenon does not occur as follows. (i)
The Z-subsystem of (31) is linear: Its solutions are defined
for all t ≥ 0. (ii) From Assumption H3 in Lemma 2.1 and
zs(0) = 0, we deduce that there existsK0 > 0 such that, for
all T ∈ [0, τ ], such that the solution is defined on the interval
[0, T ), the following

V̇ (t) = −W (x(t))
+∂V

∂x (x(t))g(x(t))[zs(0)− zs(x(t))]
+∂V

∂x (x(t))g(x(t))Z(t)
≤ − 1

2W (x(t)) + K0[V (x(t)) + 1]
+∂V

∂x (x(t))g(x(t))Z(t)

(32)

holds. From Assumption A2, we deduce that

V̇ (t) ≤ K0[V (x(t)) + 1] +
1
2
Z(t)2. (33)

Thanks to this inequality, invoking arguments similar to those
used in the proof of Lemma 2.1 to establish that the solutions
of (7) are defined for allt ≥ 0, one can prove that the solutions
of thex-subsystem of (31) are defined for allt ≥ 0. It follows
that the solutions of (31) are defined for allt ≥ 0.

We study now the sign properties of the derivative of the
functional U defined in (12) along the trajectories of (31).

Using the key ideas of the proof of Lemma 2.1, one can deduce
that, for all t ≥ 2τ ,

U̇(t) ≤ − 1
2W (x(t)) + ∂V

∂x (x(t))g(x(t))Z(t)
−∂V

∂x (x(t))g(x(t))

×
∫ t

t−τ

∂zs

∂x
(x(s))g(x(s))Z(s)ds.

(34)

According to Assumption A2, the inequality

U̇(t) ≤ − 1
4W (x(t))

+2

[
Z(t)2 + C2

(∫ t

t−τ

|Z(s)|ds

)2
]

(35)

is satisfied. From Cauchy-Schwartz inequality, we deduce that

U̇(t) ≤ − 1
4W (x(t))

+2
[
Z(t)2 + τC2

∫ t

t−τ

Z(s)2ds

]
.

(36)

On the other hand, Lemma 2.2 applies to theZ-subsystem of
(31) becauseε ∈

(
0, 1

2τ

]
. Therefore, for allt ≥ 2τ ,

Ṁ(t) ≤ −1
4
εZ(t)2 − 1

2
ε3τ

∫ t

t−2τ

Z(s)2ds. (37)

Combining (36) and (37), one obtains that the derivative of
the functional

Uf (xt, Zt) = U(xt) + KM(Zt), (38)

where K is a positive real number such thatK ≥
max

{
12
ε , 4C2+1

ε3τ

}
, satisfies the inequality

U̇f (t) ≤ −1
4
W (x(t))− Z(t)2. (39)

The right-hand side of (39) is smaller than a negative definite
function of (x(t), Z(t)).

Finally, we can easily prove that there exist two functions
γ1 andΓ1 of classK∞ such that, for all function(φx, φZ) ∈
C1([−2τ, 0], Rnx ×R),

γ1(||(φ>x (0), φZ(0))>||) ≤ Uf (φx, φZ)
Uf (φx, φZ) ≤ Γ1(||(φ>x , φZ)>||c).

(40)

Therefore, from the Krasovskii stability theorem, one can
deduce that the origin of (6) in closed-loop with the feedback
(26) is globally uniformly asymptotically stable.

IV. EXAMPLE

To illustrate Theorem 3.1, we determine a globally uni-
formly asymptotically stabilizing feedback for the two-
dimensional system{

ẋ(t) = x(t)z(t),
ż(t) = u(t− τ), (41)

whereτ is an arbitrary positive real number, by applying this
theorem. Observe that the linear approximation at the origin
of (41) is not asymptotically stabilizable, which implies that
the system (41) is not locally exponentially stabilizable by
continuous feedback. It follows that linear techniques cannot
be of any help for proving the local asymptotic stabilizability
of this system.
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First, let us check that Assumptions A1 and A2 are satis-
fied by (41) for functionsV (x) and zs(x) suitably chosen.
Consider the functions

V (x) = η ln(1 + x2) , zs(x) = − ωx2

1 + x2
(42)

whereη andω are positive real numbers. The functionV is a
candidate Lyapunov function: It is a positive definite, radially
unbounded function ofx. With the notations of Theorem 3.1,
f(x) = 0, g(x) = x and

∂V
∂x (x)g(x) = 2ηx2

1+x2 ,
∂zs

∂x (x) = − 2ωx
(1+x2)2 , W (x) = 2ηωx4

(1+x2)2 .
(43)

Assumption H1 is satisfied for allη > 0, ω > 0. Consider
now, in the particular case we are interested in, the functional

ζ(x, ξ) = −1
4
W (x)− T (x, ξ)− 1

Ω

∫ 2τ

0

W (ξ(l))dl (44)

with x ∈ R, ξ ∈ C1([0, 2τ ], R) and whereT (x, ξ) is the
functional defined in the general case in (10). One can check
readily that it is nonpositive as follows:

ζ(x, ξ) = − ηωx4

2(1+x2)2

− 4ηω2x2

1+x2

∫ 2τ

τ
ξ(l)2

(1+ξ(l)2)2
ξ(l−τ)2

1+ξ(l−τ)2 dl

− 1
2

∫ 2τ

0
ηωξ(l)4

(1+ξ(l)2)2 dl

≤ ηω
∫ 2τ

0
%(x, ξ(l))dl,

(45)

with
%(a, b) = − a4

4τ(1+a2)2 + 4ωa2

1+a2
b2

(1+b2)2

− 1
2

b4

(1+b2)2

(46)

which implies thatζ(x, ξ) ≤ 0 when ω ∈
(
0, 1√

32τ

]
. Thus,

in this case, Assumption H2 is satisfied. Next, let us observe
that, for allx ∈ R, ξ ∈ C1([0, 2τ ], R), the inequality

−W (x) +
∂V

∂x
(x)g(x)[zs(ξ(t))− zs(x)] ≤ 4ηω (47)

is satisfied. Therefore, Assumption H3 is satisfied withKξ =
4ηω for all ξ. Thus, we have have shown that Assumption A1
is satisfied. Next, let us prove that Assumption A2 is satisfies,
when2η ≤ ω. One can prove easily that∣∣∂V

∂x (x)g(x)
∣∣2 = 4η2x4

(1+x2)2 = 2η
ω W (x) ≤ W (x) (48)

∣∣∂zs

∂x (x)g(x)
∣∣ ≤ 2ωx2

(1+x2)2 ≤ 2ω. (49)

We conclude that Assumption A2 is satisfied when2η ≤ ω. It
follows from the above analysis that Theorem 3.1 applies to
the system (41) which implies that the feedback

us(t) = −ε
(
z(t) + ωx(t−τ)2

1+x(t−τ)2

)
− 2εx(t)2

(1+x(t)2)2 z(t) (50)

when ω ∈
(
0, 1√

32τ

]
and 0 < ε ≤ 1

2τ globally uniformly
asymptotically stabilizes the system (41).

APPENDIX I
A DELAY IN THE INPUT MAY CAUSE FINITE ESCAPE TIME

We prove here that the system (27) is not globally stabi-
lizable by a continuous feedbackus(x(t− τ), z(t− τ), x(t−
2τ), z(t− 2τ)) whenτ > 0. To prove this result, we proceed
by contradiction. We suppose that, there existτ > 0 and a
continuous feedbackus(x(t−τ), z(t−τ), x(t−2τ), z(t−2τ))
such that all the solutions of the system (27) in closed-loop
with this feedback are defined on[0,+∞[.

Let δ be a positive real number. Consider as initial condition
the function ϕ = (ϕx, ϕz) ∈ C1([−2τ, 0], R2) such that
(ϕx(t), ϕz(t)) = (0, 0) for all t ≤ − 2τ

3 , (ϕx(t), ϕz(t)) =
(δ, δ) for all t ∈ [− τ

3 , 0] and ϕx and ϕz are nondecreasing.
Then, for all t ≤ 4

3τ , the solution of thez-subsystem of
(27) satisfiesż(t) = us(0, 0, 0, 0). This implies that, for all
t ∈

[
0, 4

3τ
]
,

z(t) = us(0, 0, 0, 0)t + z(0) = us(0, 0, 0, 0)t + δ. (51)

We deduce that whenδ is such that− 4
3τ |us(0, 0, 0, 0)|+ δ ≥

1
2δ, the inequality

ẋ(t) ≥ −x(t) +
1
2
δx(t)4 (52)

is satisfied for allt ∈
[
0, 4

3τ
]
. It follows that X(t) = etx(t)

satisfies, for allt ∈
[
0, 4

3τ
]
,

Ẋ(t) ≥ 1
2
δe−3tX(t)4 ≥ 1

2
δe−4τX(t)4. (53)

By integrating this inequality, we deduce that, for allt ∈[
0, 4

3τ
]
,

X(t)3 ≥ 1
1

X(0)3
− δ

2 e−4τ t
= δ3

1− δ4
2 e−4τ t

. (54)

When δ ≥
(

3
2τ

) 1
4 eτ , then 2

δ4 e4τ ∈
[
0, 4

3τ
]
. It follows that

X(t) is not bounded on the interval
[
0, 4

3τ
]
. Thereforex(t)

cannot be defined over[0,+∞[. This contradicts the initial
assumption. The finite escape time phenomenon occurs.

APPENDIX II
ASSUMPTIONH2’

We show that if a system (6) satisfies Assumptions H1, H2’,
H3 and A2, then it satisfies Assumption H2 as well. Consider
the functional

ζ(x, ξ) = − 1
4W (x)

−∂V
∂x (x)g(x)

∫ 2τ

τ

H(ξ(l), ξ(l − τ))dl

− 1
Ω

∫ 2τ

0

W (ξ(l))dl.

(55)

Using the triangular inequality, one can prove that the inequal-
ity

ζ(x, ξ) ≤ −1
4W (x) + 1

4

∣∣∂V
∂x (x)g(x)

∣∣2
+

∣∣∣∣∫ 2τ

τ

H(ξ(l), ξ(l − τ))dl

∣∣∣∣2
− 1

Ω

∫ 2τ

0

W (ξ(l))dl

(56)
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holds. From Assumption A2, it follows that

ζ(x, ξ) ≤
∣∣∣∣∫ 2τ

τ

H(ξ(l), ξ(l − τ))dl

∣∣∣∣2
− 1

Ω

∫ 2τ

0

W (ξ(l))dl.

(57)

Cauchy-Schwartz inequality implies that

ζ(x, ξ) ≤ τ

∫ 2τ

τ

|H(ξ(l), ξ(l − τ))|2 dl

− 1
Ω

∫ 2τ

0

W (ξ(l))dl.

(58)

Assumption H2’ implies thatζ(x, ξ) ≤ 0. Therefore Assump-
tion H2 is satisfied.
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