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Backstepping Design for Time-Delay
Nonlinear Systems

Frederic Mazenc, and Pierre-Alexandre Bliman,

Abstract— The backstepping approach is adapted to the prob- stabilizing systems in feedback form with a delay in the input.

lem of globally uniformly asymptotically stabilizing nonlinear  More precisely, we give sufficient conditions ensuring that a
systems in feedback form with a delay arbitrarily large in nonlinear system of the form

the input. The strategy of design relies on the construction of
a Lyapunov-Krasovskii functional. Continuously differentiable i(t) Flz(t) + g(z(t)z(t),

control laws are constructed. { u(t —7) + h(z(t — 1), 2(t — 7)), (6)
pulnnc?v(.ax Terms—Nonlinear, backstepping, delay, control, Lya- with = € R%, » € R, whereu € R is the input and
where 7 is a positive real number is globally uniformly
asymptotically stabilizable by continuously differentiable state

g INTRODUCT_'ON ) feedback. Roughly speaking, these conditions ensure that the
One of the most popular nonlinear techniques of contrglsypsystem withz as virtual input is globally uniformly

design is the backstepping approach. It is presented for Hymptotically stabilizable by a control law with a delay
stance in [2], [15], [3]. The key ideas of the approach are thgq that, for a specific family of control laws, the finite escape
following. If for a system in feedback form, i.e. of the form jme phenomenon does not occur. This work completes the
{ i = f(z)+g(x)z, ) families of _recent papers devoted to the control_ of nonlinear
2 = u+h(z,2), systems with delay. In [9] and [11], the technique of [13]
is adapted to the problem of stabilizing chains of integrators

with = € R, z € R, whereu € R is the input and o hded controls when there is a delay arbitrarily large
f(x),g(x),h(z,z) are continuous functions, there exists @

continuously differentiable functior, (z) such thatz;(0) = 0 in the input. The main result of [9] is extended in [8] to a

. . family of feedforward nonlinear systems. In [10], the problem
and ther-_subsystem of (1) W'.th repl.aced _b)zs(x) IS globally. . of stabilizing an oscillator by bounded feedback when there is
asymptotically stable and if besides is known a positive

. . . 1 adelay in the input is solved. In [12], the interconnection of
definite and radially unbounded functiri(x) of class C nonlinear systems with delay is studied. In [6], the concept of

N-

—
~

=

such that L ;
control Lyapunov function is extended to the case of nonlinear
W(z) = —8—V(x)[f(x) + g(x)z(2)] (2) systems with delay through the Razumikhin theorem. In [14],
_ - o O _ connections between Razumikhin-type theorems and the 1SS
is positive definite, then the system (1) is globally asymptotionlinear small gain theorems are exposed. The present work
cally stabilized by is distinguished from the papers mentioned above because on
u(z,z) = —k(z— z(x)) — hiz, 2) the one hand it is devoted to systems in feedback form and

Oza )% (3)  on the other hand the key tool we use to prove the main
] .+,‘9“’ @Lf(@) + 9(@)2] = 7 (@)g() ~_ result is the Lyapunov-Krasovskii functional (see [7], [4]).
wherek is a posmve_ real number. Moreover, the derivative O;‘Surprisingly enough, this family of Lyapunov functionals has
the Lyapunov function been used so far mainly in the context of the stabilization of
1 9 linear systems through linear control laws, see for instance
Ulz,2) = V(z)+ §[Z — % ()] ) [1], [5]. We show in this work that it can be also fruitfully
along the trajectories of (1) in closed-loop with (3) satisfiesexploited to carry out control designs for nonlinear systems.
. ) The potential advantages of the knowledge of such a functional
Ule,z) = —W(z) = klz — z(2)]". ®) are multiple and appealing. Observe in particular that strict
Many extensions of this basic result have been proved. Th¢apunov functions are known to be very efficient tools for
multiple advantages offered by this approach are well-knowi@bustness analysis, but this issue is beyond the scope of our
Observe in particular that this technique yields a wide famikyork. The stabilizability result we obtain is a global uniform
of globally asymptotically stabilizing control laws, allows to@Symptotic stabilizability result for an arbitrarily large delay.
address robustness issues and to solve adaptive problemsThe expressions of control laws we exhibit depend on the value
The objective of the present work is to show how thef the delay. We want to emphasize that we do not assume

backstepping approach can be adapted to the problemtfiat the systems (6) are locally exponentially stabilizable. The
example we give in Section IV to illustrate our control design
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is adapted to the case of systems with delay in the input. A8. For all function¢ € C'([0,27], R"=), there exists a

illustrating example is presented in Section V. contant K, > 0 such that, for allz € R"= and for all
Definitions and technical preliminaries. t € [0, 27], the inequality
1. We assume throughout the paper that the functions encoun-

X b W (@) + 8L ()9(@) [24(E(1) — 25(2)]

tered are sufficiently smooth. (11)
2. The argument of the functions and of the functionals will be

omitted or simplified whenever no confusion can arise froRPlds. o ) ] )

by simply f(z) or f(t) or f(-) or . stable. Moreover, along the trajectories of (7), the derivative
3. A real-valued functiork(-) is of classK if it is zero at ©Of the functional

zero, strictly increasing and unbounded.

1 t t
4. The following norms will be usedl| - || refers to the U (@) =V(@() + ﬁ/t_QT (/ W(x(l))dl> ds  (12)

Euclidean vector normlj¢||. = teS[l_lI:Q} [|6(t)|| stands for the satisfies, for alt > 27,

norm of a functiong € C([-r, 0], R™). . 1

5. Let r be a positive real number. For a givern> 0, x4(-) U(t) < _§W(x(t))' (13)

denotes the restriction af(-) to the intervalt—r, ¢] translated Proof. Let ¢ € C*([~7,0], R™*) be any initial condition of

to [—r,0], i.e. 2, () = x(t+6), V6e[-r0. the system (7). Lef” € (0, 7] be such that the solution(t)
is defined onf0, T"). Then, for allt € [0,T), the equality

ERV (@) 1 1]

[I. TECHNICAL LEMMAS V() = —W(x(t) (14)

+ 9V (z(t z(t))|2s(p(t)) — zs(x(
This section is devoted to the construction of Lyapunov- o 0z (( )_)g( ( )?[ (e )_) (=(0))]
Krasovskii functionals for two families of systems with delayS Satisfied. From the inequality (11) in H3, we deduce that
These constructions are crucial in establishing the main redfi¢re existsk, > 0 such that, for alk < [0,7)

of the work. V(t) < K [V (z(t) +1]. (15)
It follows that, for allt € [0,T'), the inequality
V(z(t)) < (V(z(0)) + 1)t —1 (16)

A. First technical lemma

The following lemma gives conditions ensuring that the o o )
subsystem of (6) with as virtual input is globally uniformly S satisfied. From this inequality, one can deduce that the

asymptotically stabilizable by a control law(z(t — 7)) and finite escape time phenomenon does not occufton]; the
provides with a Lyapunov-Krasovskii functional. solutions are well-defined dn, 7]. By applying this reasoning
Lemma 2.1:Consider the system repeatedly, one can prove that all the solutions are defined on

any interval[kr, (k + 1)7], wherek is an integer, and thereby
i(t) = f(z(t) + g(z(t))zs(z(t — 7)) (7) on [0, +ool.
. _ Now, let us observe that, for all > 27, the derivative of
wherex € R"=, where f(z), g(x) are continuous functions, the functionalU defined in (12) along the trajectories of (7)
wherez,(z) is a continuously differentiable real-valued funcsatisfies

tion such thatz,(0) = 0 andr is a positive real number. As- . _ ¢
sume that there exist a positive definite and radially unbounded U = V — & < W(x(l))dl)
functionV (z), a positive definite functiohV’ (z) and a positive LW (;)—)27
. : 2
;Z?ilsgg;nbem > 87 such that the following assumptions are _ %(m(t)%[f(:v(t)) + g(a(t))zs (@t — 7))] a7
H1. For allz € R"=, the equality -& ( - W(:p(l))dl) + 2ZW (2(t)).
%(x)[f(x) +g(2)zs(2)] = —W(2) (8) From (8), we deduce that
' U = (=1+2Z)W(x(t))
holds. g §2
H2. For allz € R" and¢ e C'([0,27], R"*), the inequality * B—Z(x(f))g(a:(t))[zs(x(t ~ 7))~ z(a @)
1 1 i < -2 W<x(l))dl>
*ZW(JC) —T(x,) — ol WE@)di<o  (9) - (1 {%TT) W (x(t)) (18)
with 5 ( - W (x(l )dl)
T(z,&) = 9(z)g(x) /2TH(§(Z),§(Z =m)dl, (10 — Fe(a(t)g(x(t) . Az (s), z(s — 7))ds
Hia,b) = %(a)lf(a) + g(a)zs(b)], with

holds. MNah) = @@ + gl ®)]  (19)
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From the inequality? > 87 and (9), we deduce that, for alle Assumption Al is only concerned with thesubsystem of

t > 27, the inequality (13) is satisfied. On the other handf). Assumption H1, which ensures the stabilizability of this
one can check readily that there exist two functipasp, of system withz as virtual input when there is no delay, is not
classK., such that, for all functiony € C'([-27,0], R"=), surprising. In the well-known framework of the backstepping

the functionalU satisfies the inequalities for systems without delay, this assumption, or a similar one,
is imposed. Assumptions H2 and H3 are introduced to ensure
m([[e(O)]]) < U(¢) < p2(llélle)- (20) " the stabilizability of ther-subsystem of (6) with: as virtual

Finally, from the Krasovskii stability theorem (see [4], [7])input by a control law with the delay.
one can deduce that the origin of (7) is globally uniformly The family of control laws (26) and the family of con-

asymptotically stable. trol laws (3) are different, even when = 0. The term
—%—Z(m)g(m) is present in (3) whereas no corresponding term

is in (26). The reason is the following. In absence of delay,

) ] . _ the system (1) in closed-loop with the control law (26) can
The following lemma establishes the asymptotic stability ¢fe jnterpreted as a cascade of two passive systems so that

a family of linear systems with delay through a Lyapunovne classical damping term 2% (x)g(z) can be introduced in

B. Second technical lemma

Krasovskii approach. the control law to turn the passivity into global asymptotic
Lemma 2.2:Consider the system stability. But control designs based on passivity property in
Z(t) = —eZ(t—7) (21) general cannot be used when a delay is present: in order to

overcome the obstacle, the way we have chosen consists in
whereZ € R andT ande are positive real numbers such thaselecting the control law (26) which results into the cascade
e € (0, 5]. The origin of this system is globally uniformly of a globally asymptotically stable system and a globally
asymptotically stable. Moreover, for &> 27, the derivative asymptotically stable system with a coupling term. In order to
of the functional ensure that this coupling term does not destabilize the system,
1 o 3 [t t ) we need to impose Assumption A2.
M(zy) = 52()" +e¢ T/ (/ Z(1) dl) ds  (22) ¢ In the proof of Theorem 3.1, we shall see that, thanks
) ) tiQT. ) 3 to Assumption A2, one can construct a Lyapunov-KrasovsKii
along the trajectories of (21) satisfies, for alb 27, functional for the system (6) in closed-loop with the control
. 1 1 t law (26) by taking advantage of the two functionals provided
M(t) < _ZEZ(t)Q - 5537/t , Z(s)*ds.  (23) py Lemma 2.1 and Lemma 2.2. However, this assumption
Proof. The proof of this lemma is omitted. It is similar to theis not just a convenient tool motivated only by the wish to
one of Lemma 2.1. carry out a Lyapunov construction: It ensures that the finite
escape time phenomenon does not occur. It cannot be removed
without being replaced by another assumption of a similar
tgPe. This fact is enlightened by the system

Ill. M AIN RESULTS

Consider the nonlinear system (6) and introduce a set
assumptions. #(t) = —z(t)+x(t)*z(t),
Assumption Al. A positive definite, radially unbounded and ) = u(t-1),

continuously differentiable functiof¥’(x), a continuous and o .
positive definite functioV(z), a positive real numbef > because on the one hand, it is globally asymptotically sta-

(27)

87, a continuously differentiable function,(z), satisfying bilized by the feedbacki(z,z) = —z — z> when 7 = 0,
z5(0) = 0, such that the system but is not globally uniformly asymptotically stabilizable when
7 > 0 (see Appendix I) and on the other hand, it is of the

i(t) = f(z(t) + g(z(t))zs(z(t — 7)) (24) form (6), satisfies Assumption Al with' (z) = 22, W (z) =

mQ,Zs(x) = 0 but, for any choice of functiond’(x) and
Izs'(x), it does not satisfy Assumption A2.

e We prove in Appendix Il that Assumption A1 may be
replaced by the assumption consisting of H1, H3 and the
slightly more restrictive assumption:

Assumption H2'. For all ¢ € C1([0,27], R"=), the inequality

satisfies the assumptions H1 to H3 of Lemma 2.1 are kno
Assumption A2. Let C be a positive real number. For al
x € R"=, the inequalities

& o)

2

< W), |2

(g < € (@29)

are satisfied. 2r 2r
Theorem 3.1:Assume that the system (6) satisfies the QT/ [H(&(1), 60— 7)) dl < W((l))dl  (28)
assumptions A1 and A2. Then the system (6) is globally T 0
uniformly asymptotically stabilized by the feedback where H(-) is the function defined in (10) and whefkis a
_ . B B positive real number such th& > 87.
o +%gf((2(t))z[}<(3;((tt)) ?2(95(5)()2((?5% ) (26)  Thanks to Assumptions H2' and A2 one understands that,
Oz roughly speaking, a necessary condition for the uniform
wheree is a positive real number such that (0, 5-]. asymptotic stabilizability of the system (6) is thatx) and its
Discussion of Theorem 3.1. first partial derivatives be sufficiently small in norm. In some
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cases, one can take advantage of Assumption H2’' to determivsing the key ideas of the proof of Lemma 2.1, one can deduce
suitable functions(x). that, for allt > 27,

e Theorem 3.1 applies to systems which are not locally 1 v

linearizable. The assumptions of this theorem do not even v = _&V(;&g)&(?)(x(t))g(x(t))z(t)

ensure that thec-subsystem of (6) withz as virtual input z, Py g (34)
is locally exponentially stabilizable. The example we give in X > (z(s))g(x(s))Z(s)ds

Section IV illustrates this remark. t—r 0%

Proof of Theorem 3.1. According to Assumption A2, the inequality

The proof consists in constructing a Lyapunov-Krasovskii U(t) < —lW(z(t)

functional whose derivative along the trajectories the system - . 2

(6) in closed-loop with the control law (26) is smaller than +2 [Z(t)Q +C? (/ Z(s)|ds> ] (39)
a negative definite function. To simplify the construction, we t—7

perform the change of variable is satisfied. From Cauchy-Schwartz inequality, we deduce that

Z(t) = 2(t) = zs(2(t — 7)) (29) Uy < —iWi(x()
K 36
which transforms (6) into +2 {Z(t)2 + 702/ Z(s)zds] . (36)
t—71
() = f(z(t)) On the other hand, Lemma 2.2 applies to thaubsystem of
+ g@®)Z(t) + z5(x(t — 7)), (31) because < (0, .1 ]. Therefore, for allt > 27,
Z(t) = wu(t—r71) (30) ) ) .
+ Y(x(t—7),2(t—27),Z(t - 7)), M(t) < —=eZ(t)? — 7537/ Z(s)?ds.  (37)
Y(a,b,c) = h(a,c+ zs(b)) 4 2 t—or
%= (a)[f(a) + g(a)(c+ 2s(b))]- Combining (36) and (37), one obtains that the derivative of
This system in closed-loop with the control law = u(-) the functional
whereus(+) is the function defined in (26), is Us(2e, Z4) = Ulay) + KM(Zy), (38)
z(t) = f(z()) where K is a positive real number such thak >
. +9(x(t))(Z(t) + 2s(x(t — 7)), (31) max { 12 40, “} satisfies the inequality
Z(t) = —eZ(t—r1). )
: 2
We will take advantage of Lemma 2.1 and Lemma 2.2 to prove Up(t) < _ZW('T(t)) —Z(1)". (39)

that the derivative of the Lyapunov-Krasovskii functional (12},o right-hand side of (39) is smaller than a negative definite
along the trajectories of (31) is smaller than a negative defini&,ction of (z(t), Z(t)).
function of (x(¢), Z(t)). Before this analysis, we prove thatthe finaily. we can easily prove that there exist two functions

finite escape time phenomenon does not occur as follows. ,g) andT; of classK.. such that, for all functior{¢,, ¢) €
The Z-subsystem of (31) is linear: Its solutions are define ([~27,0], R"™ x R), ’

for all ¢ > 0. (ii) From Assumption H3 in Lemma 2.1 and

25(0) = 0, we deduce that there exisi§ > 0 such that, for  71([[(¢2 (0),¢2(0)T[]) < Uf(¢z7$2) . (40)
all T € [0, 7], such that the solution is defined on the interval Up(dz,02) < Ti(ll(dg,92) lle)-
[0,T), the following Therefore, from the Krasovskii stability theorem, one can
Vi) = W(a(t) deduce that the origin of (6) in closed-loop with the feedback
- 26) is globally uniformly asymptotically stable.
gvmt))g( £(1))[2:(0) — 2 (a(®)] (26) 1s globally unfformly asymptotically
T (@(t))g(2(1))Z(t) (32)
< 00 e) + KlViaw) + 1) | V. Examele |
%V V(@ (t))g(=(t)) Z(t) To illustrate Theorem 3.1, we determine a globally uni-
formly asymptotically stabilizing feedback for the two-
holds. From Assumption A2, we deduce that dimensional system
' 1ome i(t) = =x(t)z(t),
V(1) < KolV (1)) + 1) + 5207 (33) { s (a1)

Thanks to this inequality, invoking arguments similar to thosgherer is an arbitrary positive real number, by applying this
used in the proof of Lemma 2.1 to establish that the solutiotiseorem. Observe that the linear approximation at the origin
of (7) are defined for all > 0, one can prove that the solutionsof (41) is not asymptotically stabilizable, which implies that
of the z-subsystem of (31) are defined for ali> 0. It follows the system (41) is not locally exponentially stabilizable by
that the solutions of (31) are defined for ali 0. continuous feedback. It follows that linear techniques cannot

We study now the sign properties of the derivative of thiee of any help for proving the local asymptotic stabilizability
functional U defined in (12) along the trajectories of (31)of this system.
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First, let us check that Assumptions Al and A2 are satis- APPENDIXI
fied by (41) for functionsV(x) and zs;(z) suitably chosen. A DELAY IN THE INPUT MAY CAUSE FINITE ESCAPE TIME

Consider the functions We prove here that the system (27) is not globally stabi-

wx? lizable by a continuous feedbaek (x(t — 7), z(t — 7), z(t —
) (42) 27),z(t — 27)) whent > 0. To prove this result, we proceed

by contradiction. We suppose that, there exist- 0 and a

wheren andw are positive real numbers. The functibhis a continuous feedback, (x(t—7), z(t—7), z(t—27), 2(t—27))

candidate LyapUnOV function: It is a pOSitive deﬁnite, radia”guch that all the solutions of the System (27) in C|osed-|oop
unbounded function of. With the notations of Theorem 3.1,ith this feedback are defined 46, +oco].

V(z) =nln(l +2?), z,(z) =

f(z) =0,9(z) =2 and Let § be a positive real number. Consider as initial condition
v o the functiony = (p.,¢.) € C'([-27,0],R?) such that
, 9 (@)g(z) = 5, - @3) (a(t),0:(1)) = (0,0) for all ¢ < =27, (pu(t), p:(1)) =
Ga(r) = —gisgy , W) = Gk (6,9) for all t € [-Z,0] and ¢, and ¢, are nondecreasing.

_ _ o _ Then, for allt < 37, the solution of thez-subsystem of
Assumption H1 is satisfied for alf > 0,w > 0. Consider (27) satisfies:(t) = u(0,0,0,0). This implies that, for all
now, in the particular case we are interested in, the functionat [ %T},

1 1 [ t) = 14(0,0,0,0)t 4+ z(0) = us(0,0,0,0)t + 5. (51
()= — W) T o [ wiema @a 07000000 =000 6D
0 We deduce that whefiis such that-27|u,(0,0,0,0)| +6 >

. . 3
with = € R, € € C([0,27],R) and whereT'(z,¢) is the 39, the inequality

functional defined in the general case in (10). One can check ) 1 .
readily that it is nonpositive as follows: &(t) 2 —z(t) + 0x(?) (52)
C(2,6) = —g is satisfied for allt € [0, 47]. It follows that X (t) = e'x(t)
451;512) 2 f)? (1)’ satisfies, for all € [0, %TT,
- 1+;2 T l(l4+£(l)2)2 1+5(14)2dl (45) 1 1
—3 gT e X(t) 2 S0 X (1) = S0 X (1), (53)
< To(x, &(1))dl, . . . )
= e fo o, £(0)) By integrating this inequality, we deduce that, for alle
with [0,37],
(CL b) —_ at + 4wa? b? 3
ola, 4117'(12-4a2)2 14+a? (14b2)2 (46) X(t)3 > — jée*“t = 1—5—33*4‘%' (54)
T2 (T2 XoF :

o . When§ > (%)%eﬂ then Ze'™ ¢ O,%r . It follows that
which implies that¢(z,¢) < 0 whenw € (0, Fszf}' Thus,  x(#) is not bounded on the intervab, 27]. Thereforex(t)
in this case, Assumption H2 is satisfied. Next, let us obsengnnot be defined ovep, +oo[. This contradicts the initial
that, for allz € R, £ € C*([0,27], R), the inequality assumption. The finite escape time phenomenon occurs.

oV
~W(z) + 5 (2)g(2)[2s(6(2)) = zs(2)] < dnw  (47) APPENDIXII

. - . . - ASSUMPTIONH?2’
is satisfied. Therefore, Assumption H3 is satisfied with = . o . ,
4nw for all €. Thus, we have have shown that Assumption A1 We show that if a system (6) satisfies Assumptions H1, H2',

is satisfied. Next, let us prove that Assumption A2 is satisfidds @nd A2, then it satisfies Assumption H2 as well. Consider
when 2y < w. One can prove easily that the functional

A% 2 _ 47]29:4 _ QnW <W 48 C(xvf) - _iW((E) .
S —G (x)g(x) [ H(EW), & —7))dl (55)
% (2)g(x)] < % < 2w. (49) 1 2r Oy

0

We conclude that Assumption A2 is satisfied witen< w. It : : . . :
. — - Using the triangular inequality, one can prove that the inequal-
follows from the above analysis that Theorem 3.1 applies It&' g langular inequality prov inequ

the system (41) which implies that the feedback
p 2
((@,6) < —iW()+ 5|55 (2)g(2)|

us(lf) = —¢ (Z(t) + 1?;;;72)2) - (1%;55((:))2)22(15) (50) 27 2
+ H(£(1),§( —7))dl (56)
when w € g()’ El and0 < ¢ < 5 globally uniformly i 27 WD)
asymptotically stabilizes the system (41). Q

0
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holds. From Assumption A2, it follows that

27 2

H(E(1), & —7))dl
T 2T (57)

-5 (€D)dl.

0
Cauchy-Schwartz inequality implies that

((z,8) <

2T

(w6 < 7 / H(EW), €1 — 7)) dl
T or (58)
-5 | W)L

Assumption H2' implies that (z, £) < 0. Therefore Assump-
tion H2 is satisfied.
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