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Abstract

We provide here an extension of Popov criterion, permitting to check exponential stability with prescribed decay rate (otherwise
called α-stability) of nonlinear delay systems with sector-bounded nonlinearities. As for the celebrated result, the main
hypothesis is expressed under a frequency form. For the delay-free case, the latter is equivalent to a linear matrix inequality,
whose solution may be found by widespread algorithms.
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1 Introduction

Asymptotic stability of the controlled systems is usually
not sufficient, one also requires a minimal prescribed
decay rate. Results in this direction have been proposed
for linear delay systems, see [4,11,15] and the references
therein. Also, a result has been obtained for nonlinear
delay systems [14]. In the present paper, we provide such
a result for nonlinear finite-dimensional or delay systems
with sector restricted nonlinearities.

We consider more precisely multivariable nonlinear con-
trol systems given by one of the following differential and
functional differential equations:

{

ẋ = Ax+Bu, x(0) = φ ∈ R
n ,

u = −ψ(y), y = Cx ,
(1a)

{

ẋ =
∑L

l=0 Alx(t− hl) +Bu, x|[−h,0] = φ ∈ C([−h, 0]) ,

u = −ψ(y), y =
∑L

l=0 Clx(t− hl) ,

(1b)

where n, p, L ∈ N, x ∈ R
n, y ∈ R

p, A,Al ∈ R
n×n, B ∈

R
n×p, C,Cl ∈ R

p×n, 0 ≤ h0 < · · · < hL, h
def
= max{hl}.

One denotes by H the matrix transfer function corre-
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sponding to the system under study, namely:

H(s) = C(sI −A)−1B , (2a)

H(s) =

(

L
∑

l=0

Cle
−hls

)(

sI −

L
∑

l=0

Ale
−hls

)−1

B .

(2b)

Let the nonlinearity ψ : R
+ × R

p → R
p be time-

independent, decentralized [8] (∀i ∈ {1, . . . , p}, ψi(y) =
ψi(yi)), and fulfill the following sector condition:

∀y ∈ R
p, ψ(y)T (ψ(y) −Ky) ≤ 0 , (3)

for a certain diagonal matrix K ≥ 0 (the inequality is
hence also valid componentwise). By analogy with the
concepts of absolute and ofα-stability [11,14], we define :

Definition 1 Let α be a nonnegative scalar. System (1a)
(resp. (1b)) is called absolutely stable with decay rate
α (or absolutely α-stable) if, for any global solution x,

lim
t→+∞

eαtx(t)

‖φ‖
= 0 ,

where the convergence is uniform wrt the initial condi-
tion φ 6= 0 and to the nonlinearity ψ fulfilling (3). Here,
‖.‖ denotes the euclidian norm in R

n (resp. the uniform
convergence norm in C([−h, 0]; Rn)).



R
def
= R(P, η) =

(

ATP + PA+ 2αP + 2αCTK|η|+KC −PB + CTK +ATCTKη

−BTP +KC + ηKCA −2I − ηKCB −BTCTKη

)

. (4)

In the present note, some simple absolute α-stability
criteria are proposed. The presentation is unified for
both finite-dimensional and delay systems, of type (1a)
and (1b) respectively. Our main contribution is the fol-
lowing. • A criterion for finite-dimensional systems (1a)
is provided (Theorem 2). It is expressed equivalently as
a Linear Matrix Inequality (LMI), a standard class of
problems for which sound numerical methods have been
developed [5], or under frequency domain form. • The
previous frequency domain form of the criterion is shown
to be valid for delay systems (1b) too (Theorem 5). The
results generalize Popov criterion, which is found when
taking α = 0. Notice that one may easily adapt the re-
sults proposed herein to absolute α-stability for systems
with time-varying nonlinearities, or to local stability re-
sults, see [3]. More generally, the results stated here could
be applied to more general systems (e.g. systems with
distributed delays, integral systems), as it is indeed the
case for Popov criterion, see [7, §4.6.] and [6].

The case of finite-dimensional systems is treated in Sec-
tion 2. The frequency domain criterion for delay systems
stability is stated in Section 3. Section 4 is a conclusion.
The issues of existence and uniqueness of the solutions
are not considered, as they have been extensively stud-
ied. In all the sequel, it is assumed that there exist global
solutions of (1a) (resp. (1b)), that is, by definition: for
all φ ∈ R

n (resp. for all φ ∈ C([−h, 0]; Rn)), there ex-
ists a continuous function x defined on [0,+∞) (resp. on
[−h,+∞)), absolutely continuous (AC) on [0,+∞), such
that x(0) = φ (resp. x|[−h,0] = φ) and (1a) (resp. (1b))
is fulfilled almost everywhere on [0,+∞).

Notations The abbreviation SPR is used for “strictly
positive real”. For z ∈ R , one denotes by sgnz the sign of

z (sgn0 = 1 or −1 indifferently), and |z|+
def
= sup{z, 0},

|z|−
def
= sup{−z, 0}. By convention, one extends the

action of any map acting on scalar or scalar-valued
functions to an operator acting on matrices or matrix-
valued functions, obtained by componentwise applica-
tion. As an example, for any diagonal matrix η, |η|± =
sup{±η, 0} = diag{sup{±ηi, 0}} = diag{|ηi|±}.

2 Finite-dimensional systems

Theorem 2 Assume that

(H) The nonlinearity ψ is measurable, decentralized and

there exists a diagonal matrix K
def
= diag{Ki} ≥ 0

such that (3) holds.

Let α ≥ 0, and η be a diagonal matrix in R
p×p. The

following properties are equivalent, and imply absolute
α-stability of system (1a).

• There exists a symmetric definite positive matrix P ∈
R

n×n such thatR(P, η) defined in (4) is definite negative.

• The roots of det(sI − A) have real part smaller than
−α, and for H defined in (2a), the transfer

I + (I + η(s− α)I))KH(s− α)

− αHH(s− α)K|η|+KH(s− α) is SPR . (5)

Theorem 2 extends, for finite-dimensional systems, the
usual form of the Popov criterion, obtained for α = 0.
The result of α-stability obtained for null Popov slope η
constitutes an extension of the circle criterion, and may
be found in [10]. Given the sign of the components of
the diagonal matrix η, (4) is a linear matrix inequality
in the two unknowns P , η.

Proof of Theorem 2 The following lemma plays cen-
tral role in the demonstration of Theorems 2 and 5.

Lemma 3 Let i ∈ {1, . . . , p}, Yi : [0,+∞) → R be dif-
ferentiable a.e. Then, for almost any T ≥ 0,

d

dT

[

e2αT

∫ e−αT Yi(T )

0

ψi(z) dz

]

≤ αKiY
2
i (T )+eαT (Ẏi(T )−αYi(T ))ψi(e

−αTYi(T )) .

Proof The left-hand side being equal to 2αe2αT

∫ e−αT Yi(T )

0 ψi(z) dz+e
αT (Ẏi(T )−αYi(T ))ψi(e

−αTYi(T )),
bound the integral term, using the fact that ∀z ∈ R,
∫ z

0
ψi(z

′) dz′ ≤ 1
2Kiz

2, due to sector condition. 2

• Assume first that η ≥ 0. With the change of variables

X (t)
def
= eαtx(t),Y(t)

def
= eαty(t),ϕ(t,Y)

def
= eαtψ(e−αtY),

(1a) is changed into the nonautonomous system

Ẋ = (αI +A)X (t) −Bϕ(t,Y(t)), Y = CX . (6)

From Hypothesis (H), one deduces that

∀Y ∈ R
p, ∀t ≥ 0, ϕ(t,Y)T (ϕ(t,Y) −KY) ≤ 0 . (7)
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Absoluteα-stability of (1a) is equivalent to : lim
t→+∞

X (t) =

0, uniformly wrt φ in any compact and to ϕ verifying (7).

Fora the (positive definite) function V (t,X )
def
= X TPX+

2e2αt
∑p

i=1 ηiKi

∫ e−αt(CX )i

0
ψi(z) dz, V̇

def
= d

dt
[V (t,X (t))]

is less than

(

X (t)

ϕ(t,Y(t))

)T

R

(

X (t)

ϕ(t,Y(t))

)

a.e. on

(0,+∞) along the trajectories of (6), for R defined
by (4). To get this, use (H) and Lemma 3, and add
the nonnegative term 2ϕ(t,Y(t))T (KY(t) − ϕ(t,Y(t))).
Now, for any (t,X ) ∈ R

+ × R
n, X TPX ≤ V (t,X ) ≤

X T (P + CTKηKC)X . Thus, ∃ε > 0, indepen-

dent from φ, ψ, such that V̇ + εV ≤ 0 a.e. on
(0,+∞). The regularity hypothesis on x implies that
t 7→ V (t,X (t)) too is AC, as ∀i ∈ {1, . . . , p}, ∀z1, z2 ∈ R,
∣

∣

∫ z1

0 ψi(z) dz −
∫ z2

0 ψi(z) dz
∣

∣ ≤ Ki max{|z1|, |z2|} |z1 −

z2|. Thus V (t,X (t)) eεt − V (0,X (0)) =
∫ t

0 (V̇ +
εV ) eετ dτ ≤ 0, and, whenever LMI (4) is feasible and
η ≥ 0, then system (6) is globally exponentially stable
with the prescribed uniform convergence property.

Last, check that

(

−((s− α)I −A)−1B

I

)H

R

(

−((s− α)I −A)−1B

I

)

is equal to −[I+(I+ η(s−α)I))KH(s−α)−αHH(s−
α)KηKH(s− α)] − [I + (I + η(s− α)I))KH(s− α) −
αHH(s − α)KηKH(s − α)]H + (s + s̄)BT ((s − α)I −
A)−HP ((s−α)I−A)−1B. Based on this identity, equiv-
alence between feasibility of (4) and condition (5) is
proved, by use of Kalman-Yakubovich-Popov lemma.
This achieves the proof of Theorem 2 in the case η ≥ 0.

• To remove the constraints on the sign of η [1], consider

instead of ψ(y) the inputs ψ̂(y)
def
= sgnηψ(y) + 1

2 (I −
sgnη)Ky, and apply the previous result to the trans-
formed system [13]. Direct calculation shows that this
amounts to consider the system obtained when replac-

ing A (resp. B, resp. η) by Â
def
= A−B I−sgnη

2 KC (resp.

B̂
def
= Bsgnη, resp. η̂

def
= |η| ≥ 0). To verify this [2,3],

check that Ax − Bψ(y) = Âx − B̂ψ̂(y) for y = Cx,

and that ψ(y)T (ψ(y) − Ky) = ψ̂(y)T (ψ̂(y) − Ky), so

ψ̂ fulfills same sector condition than ψ. Denote Ĥ(s) =

C(sI − Â)B̂ the transfer obtained when replacing ψ by

ψ̂. We prove that (5) is equivalent to: I + (I + η̂(s −

α)I))KĤ(s− α) − αĤH(s− α)Kη̂KĤ(s− α) is SPR.

Lemma 4 Let us denote Î
def
= sgn η, Ĵ

def
= (I − Î)/2.

Then, Ĥ(s) = (I + H(s)ĴK)−1H(s)Î = H(s)(I +

ĴKH(s))−1Î.

Proof the new input ψ̂ being defined as in the proof of
Theorem 2, one has: y = −Hψ = −H(Ĵψ+(I− Ĵ)ψ) =

−H(Ĵ(Ky − ϕ) + (I − Ĵ)ψ) = −H(ĴKy − Ĵ ψ̂ + (I −

Ĵ)ψ̂) = −H(Îψ̂ + ĴKy), and finally: (I + HĴK)y =

−HÎψ̂, which gives the 1st equality. Deduction of the
2nd equality is straightforward. 2

Applying Lemma 4 and using the identities Ĵ2 = Ĵ =
−ÎĴ = −Ĵ Î, 2Ĵ + Î = Î2 = Ip, η̂Î = η, (Ĵ Î + I)η̂ =

|η|+, one gets 2I + (I + η̂(s− α))KĤ(s− α) + ĤH(s−

α)K(I + η̂(s̄ − α)) − 2αĤH(s − α)Kη̂KĤ(s − α) =

Î(I+HH(s−α)KĴ)−1Ĝ(s)(I+ĴKH(s−α))−1Î, where

Ĝ(s) = 2(I +HH(s− α)KĴ)(I + ĴKH(s− α)) + (I +

HH(s − α)KĴ)Î(I + η̂(s − α))KH(s − α) + HH(s −

α)K(I + η̂(s̄ − α))Î(I + ĴKH(s − α)) − 2αHH(s −

α)Kη̂H(s−α) = 2I+ [2Ĵ + Î + η̂Î(s−α)]KH(s−α)+

HH(s−α)K[2Ĵ+Î+η̂Î(s̄−α)]−HH(s−α)K[2Ĵ2+2Ĵ Î−

2α(Ĵ Î + I)η̂+ Ĵ Î(s+ s̄)η̂]KH(s−α) = 2I + (I + η(s−
α))KH(s−α)+HH(s−α)K(I+η(s̄−α))−2αHH(s−

α)K|η|+KH(s−α)−(s+ s̄)HH(s−α)KĴÎη̂KH(s−α).
Putting Re s = 0, the last term vanishes, so G is SPR if
and only if Ĝ is SPR. This achieves the proof of Theo-
rem 2 for general systems. 2

3 Delay systems

We hereafter show that the frequency domain form of
Theorem 2 is true for delay systems too.

Theorem 5 Assume that Hypothesis (H) holds. Let
α ≥ 0, and suppose that the roots of det(sI − A −
∑L

l=0 Ale
−hls) have real part smaller than −α, and that

there exists a diagonal matrix η such that (5) holds,
for H defined in (2b). Then, the delay system (1b) is
absolutely α-stable.

Again, for α = 0, Theorem 5 reduces to the frequency
domain form of the Popov criterion [12,9].

Proof of Theorem 5 The proof of Theorem 5
is inspired from [12,9,7], with adequate improve-
ments. Suppose η ≥ 0, the other cases are treated
as in 2nd part of proof of Theorem 2, by consider-

ing Ĥ(s)
def
= (

∑L

l=0 Cle
−hls)(sI −

∑L

l=0 Âle
−hls)−1B̂,

Âl
def
= Al −B I−sgnη

2 KCl.

DefineX ,Y, ϕ as in proof of Theorem 2, and φα
def
= eαtφ.

One deduces from (1b) that Ẋ = αX+
∑L

l=0 e
αhlAlX (t−

hl) − Bϕ(t,Y), Y =
∑L

l=0 e
αhlClX (t − hl), X|[−h,0] =

φα. For T ≥ 0, fix ϕT (t) = ϕ(t,Y(t)) if 0 ≤ t ≤ T ,
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= 0 if −h ≤ t < 0 or t > T ; ẊT = αXT +
∑L

l=0 e
αhlAlXT (t − hl) − BϕT , XT |[−h,0] = 0; and

YT =
∑L

l=0 e
αhlClXT (t − hl). Then, Ẋ − ẊT =

α(X − XT ) +
∑L

l=0 e
αhlAl(X (t − hl) − XT (t − hl)) for

t ∈ [0, T ], (X − XT )|[−h,0] = φα. From the hypothesis
on the location of the roots of the characteristic poly-
nomial, ∃c1, λ > 0, independent of φα and T , such that

∀t ∈ [−h, T ], ‖X (t) −XT (t)‖ ≤ c1e
−λt‖φα‖C([−h,0]), (8a)

∀t ≥ T, ‖XT (t)‖ ≤ c1e
−λ(t−T )‖XT (T + ·)‖C([−h,0]), (8b)

∀t ∈ [0, T ], ‖Y(t)‖ ≤ c1e
−λt‖φα‖C([−h,0]) + ‖YT (t)‖. (8c)

Formula (8c) is deduced from the preceding, by writing

Y(t) =
∑L

l=0 e
αhlCl(X (t− hl) −XT (t− hl)) + YT (t).

Obviously,
∫ T

0 [KiYi(t) − ϕi(t,Yi(t))]ϕi(t,Yi(t)) dt +

e2αT ηiKi

∫ e−αT Yi(T )

0
ψi(z) dz ≥ 0, for any T ≥

0, any i ∈ {1, . . . , p}. As the solution is AC by
assumption, one may integrate the inequality in
Lemma 3. Using (8) and the fact that α, η ≥ 0,

yields, by summation on i:
∫ +∞

0
(ϕT

T (t)(KYT (t) −

ϕT (t)) + ϕT
T (t)ηKẎT (t) + αYT

T (t)KηKYT (t)) dt ≥

−c2‖φα‖C([−h,0])

(

‖φα‖C([−h,0]) + supt∈[0,T ] ‖YT (t)‖
)

.

The constant c2 ≥ 0 is independent of φα and T , and
the terms with ϕT (t) in the previous integral vanish on

[T,+∞). This implies YT , ẎT ∈ L2(0,+∞), due to the
fact that H(s− α) is strictly proper.

By assumption, ∃ε > 0 such that (1 − ε)I + (I + η(s −
α)I))KH(s−α)−αHH (s−α)KηKH(s−α) is still SPR.
Thus, performing Fourier transform and using the iden-
tity ỸT (ω) = −H(jω − α)ϕ̃T (ω) linking Fourier trans-
forms, yields: ∃ε > 0, independent from φ, ψ, such that

c2‖φα‖C([−h,0])

(

‖φα‖C([−h,0]) + supt∈[0,T ] ‖YT (t)‖
)

≥

ε
∫ +∞

0 ‖ϕT (t)‖2 dt ≥ ε
‖H(s−α)‖2

∞

∫ +∞

0 ‖YT (t)‖2 dt.

As H(s − α) is strictly proper, one gets similarly
∫ T

0 ‖ẎT (t)‖2 dt ≤ c3‖φα‖C([−h,0])(‖φα‖C([−h,0]) +
supt∈[0,T ] ‖YT (t)‖). One infers that, ∀t ∈ [0, T ]:

‖YT (t)‖2 = ‖YT (0)‖2 + 2
∫ t

0 YT (τ)T ẎT (τ) dτ ≤

2‖H(s − α)‖∞
√

c2c3/ε ‖φα‖C([−h,0])(‖φα‖C([−h,0]) +
supt∈[0,T ] ‖YT (t)‖), using Cauchy-Schwarz inequality

and YT (0) = 0. Solving the polynomial inequality then
leads to supt∈[0,T ] ‖YT (t)‖ ≤ c4‖φα‖C([−h,0]), for a cer-
tain constant c4 > 0. This in turn implies that, ∀T ≥ 0,
∫ +∞

0
‖YT (t)‖2 dt,

∫ +∞

0
‖Y(t)‖2 dt,

∫ T

0
‖ϕ(t,Y(t))‖2 dt

≤ c5‖φα‖
2
C([−h,0]). In the previous estimates, c5 is inde-

pendent of T . Thus, X , Ẋ ∈ L2(0,+∞), and X (t) → 0
when t → +∞. Moreover, the uniformity of the esti-
mates implies that the convergence is uniform wrt φ in
any bounded set and to ϕ verifying (7). This ends the

proof of Theorem 5. 2

4 Conclusion

In this note, some extensions of Popov criterion for
finite-dimensional systems or delay systems with sector-
bounded nonlinearities are given, permitting to inte-
grate constraint on the decay rate of the solutions.
For finite-dimensional systems, the assumptions are ex-
pressed in terms of solvability of a certain linear matrix
inequality (obtained by use of Lyapunov method), or
equivalently under a frequency domain condition. This
previous form is also shown to be valid for delay systems.

References

[1] M.A. Aizerman, F.R. Gantmacher, Absolute stability of

regulator systems, Holden-Day Inc., 1964

[2] P.-A. Bliman, Extension of Popov criterion to time-varying
nonlinearities: LMI, frequential and graphical conditions,
Stability and stabilization of nonlinear systems, D. Aeyels,
F. Lamnabhi-Lagarrigue, A. van der Schaft (Eds.), Lecture
notes in control and information sciences 246, Springer-
Verlag, Berlin Heidelberg, 1999, 95–114

[3] P.-A. Bliman, Extension of Popov absolute stability criterion
to nonautonomous systems with delays, International

Journal of Control 73 no 15, 1349–1361 (2000)

[4] H. Bourlès, α-stability and robustness of large-scale
interconnected systems, Int. J. Contr. 36, 2221-2232, 1987

[5] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear

matrix inequalities in system and control theory, SIAM
Studies in Applied Mathematics vol. 15, 1994

[6] C. Corduneanu, Absolute stability of some integro-differential
systems. Ordinary differential equations (Proc. Conf., Math.
Res. Center, Naval Res. Lab., Washington, D.C., 1971),
Academic Press, New York, 55-70, 1972.

[7] A. Halanay, Differential equations: stability, oscillations,

time lags, Academic Press, New York-London, 1966

[8] H.K. Khalil, Nonlinear systems, Macmillan Publishing
Company, 1992

[9] X.-J. Li, On the absolute stability of systems with time lags,
Chinese Math. 4, 609-626, 1963

[10] B.N. Naumov, Y.Z. Tsypkin, A frequency criterion for
absolute process stability in nonlinear automatic control
systems, Avtomatika i Telemekhanika 25 no 6, 852–867, 1964

[11] S.-I. Niculescu, H∞ memoryless control with an α-stability
constraint for time-delay systems : an LMI approach, IEEE

trans. Automat. Contr. 43 no 5, 739-743, 1998

[12] V.M. Popov, A. Halanay, On the stability of nonlinear
automatic control systems with lagging argument, Automat.

Remote Control 23, 783-786, 1962

[13] Z.V. Rekasius, J.E. Gibson, Stability analysis of nonlinear
control systems by the second method of Lyapunov, IRE

Trans. Automatic Control AC-7, no 1, 3-15, 1962

[14] Y.-J. Sun, J.-G. Hsieh, On α-stability criteria of nonlinear
systems with multiple time delays, J. Franklin Inst. 335B

no 4, 695-705, 1998

[15] R.-J. Wang, W.-J. Wang, α-stability analysis of perturbed
systems with multiple noncommensurate time delays, IEEE

Trans. Circ. Syst. - I 43 no 4, 349-352, 1996

4


