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Abstract

We provide here an extension of Popov criterion, permitting to check exponential stability with prescribed decay rate (otherwise
called a-stability) of nonlinear delay systems with sector-bounded nonlinearities. As for the celebrated result, the main
hypothesis is expressed under a frequency form. For the delay-free case, the latter is equivalent to a linear matrix inequality,

whose solution may be found by widespread algorithms.
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1 Introduction

Asymptotic stability of the controlled systems is usually
not sufficient, one also requires a minimal prescribed
decay rate. Results in this direction have been proposed
for linear delay systems, see [4,11,15] and the references
therein. Also, a result has been obtained for nonlinear
delay systems [14]. In the present paper, we provide such
aresult for nonlinear finite-dimensional or delay systems
with sector restricted nonlinearities.

We consider more precisely multivariable nonlinear con-
trol systems given by one of the following differential and
functional differential equations:

z(0) = ¢ € R™,

y=Cx,

{x:Aac—i—Bu, (1a)

u = —(y),

{z =Sk At — b))+ Bu,  z|no =o€ C(~h,0]),

u=—9(y), y=S1Cux(t—h),
(1b)

where n,p, L € N, x € R", y € RP, AJA; € R"*" B €

R™P, C,Cy € RPX™, 0 < ho < - < hr, h % max{h}.
One denotes by H the matrix transfer function corre-
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sponding to the system under study, namely:

H(s)=C(sI - A)™'B, (2a)
H(s) = <Z Cle_}”s> (s[ — ZAle_hlS> B.
=0 =0 (Qb)

Let the nonlinearity ¢ : Rt x RP — RP be time-
independent, decentralized [8] (Vi € {1,...,p}, ¥i(y) =
¥;i(yi)), and fulfill the following sector condition:

Yy e R?, ¥(y)" (v(y) — Ky) <0, (3)

for a certain diagonal matrix K > 0 (the inequality is
hence also valid componentwise). By analogy with the
concepts of absolute and of a-stability [11,14], we define :

Definition 1 Let a be a nonnegative scalar. System (1a)
(resp. (1b)) is called absolutely stable with decay rate
a (or absolutely a-stable) if, for any global solution x,

ex(t)

e S Y

where the convergence is uniform wrt the initial condi-
tion ¢ # 0 and to the nonlinearity 1 fulfilling (3). Here,
||| denotes the euclidian norm in R™ (resp. the uniform
convergence norm in C([—h, 0]; R™)).



R = R(P,n) =

def <ATP + PA+2aP +20CTK ||+ KC —PB+CTK + ATCTKn> n

~BTP+ KC +nKCA

—2] —nKCB - BTCTKp

In the present note, some simple absolute a-stability
criteria are proposed. The presentation is unified for
both finite-dimensional and delay systems, of type (1a)
and (1b) respectively. Our main contribution is the fol-
lowing. @ A criterion for finite-dimensional systems (1a)
is provided (Theorem 2). It is expressed equivalently as
a Linear Matrix Inequality (LMI), a standard class of
problems for which sound numerical methods have been
developed [5], or under frequency domain form. e The
previous frequency domain form of the criterion is shown
to be valid for delay systems (1b) too (Theorem 5). The
results generalize Popov criterion, which is found when
taking a = 0. Notice that one may easily adapt the re-
sults proposed herein to absolute a-stability for systems
with time-varying nonlinearities, or to local stability re-
sults, see [3]. More generally, the results stated here could
be applied to more general systems (e.g. systems with
distributed delays, integral systems), as it is indeed the
case for Popov criterion, see [7, §4.6.] and [6].

The case of finite-dimensional systems is treated in Sec-
tion 2. The frequency domain criterion for delay systems
stability is stated in Section 3. Section 4 is a conclusion.
The issues of existence and uniqueness of the solutions
are not considered, as they have been extensively stud-
ied. In all the sequel, it is assumed that there exist global
solutions of (1a) (resp. (1b)), that is, by definition: for
all ¢ € R™ (resp. for all ¢ € C([—h,0];R™)), there ex-
ists a continuous function x defined on [0, +00) (resp. on
[—h, +00)), absolutely continuous (AC) on [0, +00), such
that (0) = ¢ (resp. x|[_p,0) = #) and (1a) (resp. (1b))
is fulfilled almost everywhere on [0, 400).

Notations The abbreviation SPR is used for “strictly
positive real”. For z € R, one denotes by sgnz the sign of

z (sgn0 = 1 or —1 indifferently), and |z|+ def sup{z, 0},

|z|- def sup{—z,0}. By convention, one extends the

action of any map acting on scalar or scalar-valued
functions to an operator acting on matrices or matrix-
valued functions, obtained by componentwise applica-
tion. As an example, for any diagonal matrix n, |n|+ =

sup{£n,0} = diag{sup{£n;,0}} = diag{|n;|+}.

2 Finite-dimensional systems

Theorem 2 Assume that

(H) The nonlinearity 1) is measurable, decentralized and

there exists a diagonal matrix K def diag{K;} >0
such that (3) holds.

Let a > 0, and n be a diagonal matriz in RP*P. The
following properties are equivalent, and imply absolute
a-stability of system (1a).

e There exists a symmetric definite positive matriz P €
R™™ such that R(P, n) defined in (4) is definite negative.

e The roots of det(sI — A) have real part smaller than
—a, and for H defined in (2a), the transfer

I+ +n(s—a)l)KH(s— a)
—aH" (s —a)K|n| KH(s — «) is SPR. (5)

Theorem 2 extends, for finite-dimensional systems, the
usual form of the Popov criterion, obtained for a = 0.
The result of a-stability obtained for null Popov slope
constitutes an extension of the circle criterion, and may
be found in [10]. Given the sign of the components of
the diagonal matrix 7, (4) is a linear matrix inequality
in the two unknowns P, 7.

Proof of Theorem 2 The following lemma plays cen-
tral role in the demonstration of Theorems 2 and 5.

Lemma 3 Leti € {1,...,p}, Vi : [0,400) — R be dif-
ferentiable a.e. Then, for almost anyT > 0,
d

e Ty, (T)
T e2aT/0 ¥i(z) dz

< aK;VHT) +eT(Di(T) — aVi(T))i(e T Vi(T)) -

Proof The left-hand side being equal to 2ae?®T

efaT 2 o . o
S Y i (2) e T (D1 (T)~adi(T)ile =TV (T)),
bound the integral term, using the fact that Vz € R,
foz ¥i(2') dz’' < %Kiz2, due to sector condition. O

e Assume first that n > 0. With the change of variables

20(t) 1 eota(t), (1) W eoty(r), (t, y) & eotyp(emory),

(1a) is changed into the nonautonomous system

X = (al + A)X(t) — Bo(t, Y1), Y=CX . (6)

From Hypothesis (H), one deduces that

VY ERPVE>0, ot V)" (p(t,Y) = KY) <0. (7)



Absolute a-stability of (1a) is equivalent to: , li+m X(t) =

0, uniformly wrt ¢ in any compact and to ¢ verifying (7).

Fora the (positive definite) function V(t X) = def XTPX+
e~ (CX); d f
R o R O LR G AR O))

| ( x(1) ) ( *w )
is less than R
o(t, V() o(t, V(1))

(0, +00) along the trajectories of (6), for R defined
by (4). To get this, use (H) and Lemma 3, and add
the nonnegative term 2¢(t, V()T (KY(t) — o(t, V(t))).
Now, for any (t,X) € RT x R*, XTPX < V(t,X) <
XT(P + CTKnKC)X. Thus, 3¢ > 0, indepen-
dent from ¢,1, such that V +eV < 0 ae on
(0, 4+00). The regularity hypothesis on = implies that

2¢e 2ot

t— V(t,X(t)) toois AC,asVi € {1,...,p},Vz1,20 € R,
Jo" ¥i(2) dz — [§7 ¥i(2) dz| < Kimax{|z], |22]} 21 —
z|. Thus V(t,X(t)) et — V(0,X(0)) MU

eV) €7 dr < 0, and, whenever LMI (4) is feasible and
1 > 0, then system (6) is globally exponentially stable
with the prescribed uniform convergence property.

Last, check that

<—((s — ) - A)—13> " . <—((s — ) - A)—13>
I I

is equal to —[I + (I +n(s—a)I))KH (s —a) —aH" (s —
a)KnKH(s—a)] - I+ +n(s—a)))KH(s —a) —
aH (s —a)KnKH(s — a)|f + (s 4+ 3)BT((s — a)l —
A)"H P((s—a)l — A)~!B. Based on this identity, equiv-
alence between feasibility of (4) and condition (5) is
proved, by use of Kalman-Yakubovich-Popov lemma.
This achieves the proof of Theorem 2 in the case n > 0.

e To remove the constraints on the sign of 7 [1], consider

instead of ¥ (y) the inputs v (y) def sgn(y) + $(1 —
sgnn) Ky, and apply the previous result to the trans-
formed system [13]. Direct calculation shows that this
amounts to consider the system obtained when replac-

ing A (resp. B, resp. n) by A def 4 BFZﬂKC (resp.

pdt Bsgnn, resp. 1 def [n| > 0). To verify this [2,3],
check that Az — By(y) = Az — Bz/;( ) for y = Cu,
and that ¢(y)” (¢(y) — Ky) = ¥(y)" (d(y) — Ky), so
¥ fulfills same sector condition than . Denote H(s) =
C(sI — A)B the transfer obtained when replacing ¥ by
¥. We prove that (5) is equivalent to: I + (I 4 7j(s —
)I)KH(s —a)—aH" (s —a)KiKH(s — a) is SPR.

Lemma 4 Let us denote [ 9 sgn n, J def (I —1)/2.
Then, H(s) = (I + H(s)JK) 'H(s)I = H(s)(I +
JKH(s)) 1.

Proof the new input 7,/; being defined as in the proof of
Theorem 2, one has: y = —H = —H (Jip+ (I — J)p) =
—H(J(Ky —¢)+ [ = J)¢) = —H(JKy — Jy + (I -
J) = —H(Iy + JKy), and finally: (I + HJK)y =
—HI 1/;, which gives the 1st equality. Deduction of the
2nd equality is straightforward. O

Applymg‘ Lemma 4 and using the identities J2 = J
—IJ=—J,2J+1=1= I, nl_n,(JI—i—I)ﬁ
7|+, one gets 21 + (I +7(s — a))KH(s —a)+ H(s—
QK (I +7(5 — ) — 2aH" (s — a) KK H(s — a)
[(I+H"(s—a)KJ)"'G(s)(I+JK H(s—a))~'I, where
G(s) = 2(I+HH(3 —)KJ)I+JKH(s—a)) + (I +
HH(s — a)KJ)I(I + (s —a))KH(s — a) + HHA (s —
)K(I +7(5 —a)I(I + JKH(s — ) — 20HT (s —
Q)KiH (s —a) =21+ 2] + T+ 7l (s — a)]KH(s — ) +
HY(s—) K[2J+1+7] (5—a)] - H (s—a) K[2J2+2J -
20(JI + Nij+ JI(s + 37| KH(s — a) = 21 + (I +1(s —
a))KH(s—a)+H"(s—a)K(I+n(5—a))—2aH" (s
)Kn|y KH(s—a)—(s+35)H" (s—a) KJIGK H(s—a).
Putting Re s = 0, the last term vanishes, so G is SPR if

and only if G is SPR. This achieves the proof of Theo-
rem 2 for general systems. O

3 Delay systems

We hereafter show that the frequency domain form of
Theorem 2 is true for delay systems too.

Theorem 5 Assume that Hypothesis (H) holds. Let
a > 0, and suppose that the roots of det(s] — A —

ZlL:() Aje=M3) have real part smaller than —a, and that
there exists a diagonal matriz n such that (5) holds,
for H defined in (2b). Then, the delay system (1b) is
absolutely a-stable.

Again, for @ = 0, Theorem 5 reduces to the frequency
domain form of the Popov criterion [12,9].

Proof of Theorem 5 The proof of Theorem 5
is inspired from [12,9,7], with adequate improve-
ments. Suppose 1 > 0, the other cases are treated
as in 2nd part of proof of Theorem 2, by consider-

d f - S — S »
ing H(s) = (1, Cre ) (s — Y1 Aie™%)"1B,

A%, - plosn ey,

Define X, ), ¢ as in proof of Theorem 2, and ¢, def e .
One deduces from (1b) that X = aX+ZlL:O e A X (t—
h) = Bo(t, ), ¥ = Yo eMCLX(t — ), X|_po) =
¢ For T > 0, fix or(t) = V() if 0 <t < T,



=0if -h <t <O0ort >T; Xr = aky +
Zl oeahlAzXT(t — hi) — Bor, Xrli—po = 0; and
Vr S OeathlXT(t — hy). Then, X — Xp =
Oz(X — XT) + Zl:O eahlAl( (t - hl) - XT(t — hl)> for

€ 0,7, (X — &7)|[—h,0) = Pa- From the hypothesis
on the location of the roots of the characteristic poly-
nomial, dc1, A > 0, independent of ¢, and T, such that

vt € [<h, T, [ X(t) = Xr(t)l| < cre™ (| alleq—n,op, (8a)
vt > T, [|Xr(t)]| < cre D Xr(T + ) leq-n,op, (8b)
vt € [0,7), YOIl < cre™ éalle—non + IV @)l (8c)

Formula (8¢) is deduced from the preceding, by writing
V() = S M (X (t = ha) = X (t — ) + Vi (D).

Obviously, [o [KiVi(t) — @i(t, Vi()ei(t, Vi(t)) dt +
—aT~).

ezaTﬁz‘KifOe yl(T)w() dz > 0, for any T >

0, any ¢ € {1,...,p}. As the solution is AC by

assumption, one may integrate the inequality in
Lemma 3. Using (8) and the fact that «,n > 0,

yields, by summation on i: OJFOO(gag(t)(KyT(t) —
er(t)) + orOnKYr(t) + aVp () EnKYr(t)) dt >
—calldalle-nop (I6alleq-non +suPreo [Vr ()] )

The constant co > 0 is independent of ¢, and T', and
the terms with o7 (¢) in the previous integral vanish on

[T, 400). This implies Y, Yr € L?(0,400), due to the
fact that H(s — «) is strictly proper.

By assumption, 3¢ > 0 such that (1 — &)l + (I + n(s —
a)))KH(s—a)—aHH (s—a)KnK H(s—a) is still SPR.
Thus, performing Fourier transform and using the iden-
tity YVr(w) = —H (jw — a)@r(w) linking Fourier trans-
forms, yields: 3¢ > 0, independent from ¢, ¥, such that

esllgallenon (1éalleq-nop + Ureion Ivrl) =
Zller®I? dt > gratay o - 1Y@ dt.

As H(s — «) is strictly proper, one gets similarly

Jo 1@ dt < esllgalleq-nonléalleq-noy +
supiepo,r] [Yr(t)|). One infers that, vVt € [0,7]:
V@I = 1Yr©I? + 2 fg V() Vr(r) dr <

2[H(s — a)llcy/c2cs/e [[@alle(—n.op(|dalle—nop +
supyepo 7] 1Y (t)|l), using Cauchy-Schwarz inequality
and Yr(0) = 0. Solving the polynomial inequality then
leads to supcpo 1) |Vr#)|| < calldallc(—n.0)), for a cer-
tain constant ¢4 > 0. This in turn implies that, VT > 0,
o] T

IR de, ;7 1P de, 7 ot YO)? at
< C5||¢a|\c (l-n,0))- In the previous estimates, cs is inde-
pendent of 7. Thus, X, X € L?(0,+0c0), and X(t) — 0
when ¢ — 4o00. Moreover, the uniformity of the esti-
mates implies that the convergence is uniform wrt ¢ in
any bounded set and to ¢ verifying (7). This ends the

proof of Theorem 5. O

4 Conclusion

In this note, some extensions of Popov criterion for
finite-dimensional systems or delay systems with sector-
bounded nonlinearities are given, permitting to inte-
grate constraint on the decay rate of the solutions.
For finite-dimensional systems, the assumptions are ex-
pressed in terms of solvability of a certain linear matrix
inequality (obtained by use of Lyapunov method), or
equivalently under a frequency domain condition. This
previous form is also shown to be valid for delay systems.
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