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Abstract

In this note, the delay-independent stability of delay systems is studied. It is shown that the strong
delay-independent stability is equivalent to the feasibility of certain linear matrix inequality, that is to
the existence of a quadratic Lyapunov-Krasovskii functional, independent of the (nonnegative) value of
the delay. This constitutes the analogue of some well-known properties of finite-dimensional systems.
This result is then applied to study delay-independent stability of systems with polytopic uncertainties.
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1 Introduction

The stability of linear delay systems of retarded or neutral type is a field of intense research [14, 19]. A
major difficulty lies in the fact that the delays are usually not perfectly known. A way to ensure stability
robustness with respect to this uncertainty, is to employ stability criteria valid for any nonnegative value of
the delays, that is delay-independent results. This assumption that no information on the value of the delay
is known, is often coarse in practice: in general some estimates are available, and it is more appropriate
(and sometimes unavoidable) to consider the stability of the systems obtained for the different values of the
delays in the corresponding product of bounded intervals. However, the design of stability tests adapted
to this task, both numerically tractable and nonconservative, seems to be more complicated1. This is the
reason why the delay-independent results are of interest.

Criteria for delay-independent stability (or for strong delay-independent stability [18], see below), ex-
pressed by conditions on the zeros of a polynomial with two variables in the frequency domain, have been
exhibited for retarded type systems [11, 12, 13], and more recently for neutral type systems [9, 16, 20]. Chen
et al. [7] have shown that checking this property amounts to verify conditions involving structured singular
values with respect to complex uncertainties, formally similar to small gain conditions appearing in robust
stability analysis. This approach, however, does not give rise to easy-to-check conditions.

∗Part of this work was done when the author was on leave from I.N.R.I.A. in National Technical University of Athens,
Greece, with the support of European Commission’s Training and Mobility of Researchers Programme ERB FMRXCT-970137
“Breakthrough in the control of nonlinear systems”. The author is indebted to the network coordinator Françoise Lamnabhi-
Lagarrigue, and the coordinator of the greek team Ioannis Tsinias, for their help and support.

1A recent, promising, attempt, may be found in [26].
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On the other hand, various easy-to-check stability conditions have appeared in the literature, based on
time-domain techniques, see e.g. [10, 22, 21] and the references therein. Approaches by quadratic Lyapunov-
Krasovskii functionals are intensively used, leading in particular to conditions expressed under the form of
linear matrix inequalities (see [8, 24] for retarded type systems, [21] for neutral type), a class of problems for
which widespread powerful numerical algorithms exist. However, these stability criteria are only sufficient.
The analysis by Zhang et al. [25] shows that they are based on conservative estimation of the structured
singular values involved.

In this paper is proposed a LMI condition equivalent to the (strong) delay-independent stability of neutral
or retarded type delay differential systems. More precisely, one displays a family of LMIs of increasing size,
each of them sufficient for delay-independent stability. The key result is that, reciprocally, the strong delay-
independent stability implies that the LMIs are solvable beyond a certain size.

The main idea, based on an improvement of the existing time-domain methods, consists in using, instead
of the usual state variable, say {x(t+τ) : −h ≤ τ ≤ 0}, the augmented, nonminimal, state {x(t+τ) : −kh ≤
τ ≤ 0}, for some positive integer k. A similar idea has been used in [2] and [8, 132–133] to derive sufficient
stability conditions. Of course, when k > 1, not any function in the new state space, even sufficiently
smooth, can be part of a trajectory of the system under study. The supplementary compatibility constraints
are reintroduced when evaluating the derivative of the candidate Lyapunov-Krasovskii functional along the
trajectories of the system, considered now in the augmented state space. It turns out that the LMIs found
by this method constitute necessary and sufficient conditions for strong delay-independent stability for large
enough values of k. Incidentally, this furnishes a method for checking scaled small gain conditions as the
ones depicted by Chen et al. [7], by use of LMIs rather than griding. Work is in progress to apply the same
ideas to related problems, stability of systems with noncommensurate delays, analysis of H∞ performance
and other, see [5].

The background is recalled in Section 2. In Section 3, is provided the main result, characterizing the
strong delay-independent stability of delay differential systems with one delay (Theorem 1). Numerical
examples are presented in Section 4. Application to delay-independent stability of systems with polytopic
uncertainties is provided in Section 5 (Theorem 2). Complete proof of Theorem 1 is given in Section 6.

The notations are standard. In, 0m×n stand respectively for the identity matrix of size n and the null
matrix of size m × n (simply abbreviated 0n when m = n). The Kronecker product is denoted ⊗. The set
of positive integers is denoted N, and the integer part is written int. The set R is defined to be R ∪ {∞}.
By C+ is meant the set of complex numbers with nonnegative real part, and by D the closed unit disk
{z ∈ C : |z| ≤ 1}. The spectral radius and maximal singular value of a matrix M are respectively denoted
ρ(M) and ‖M‖. The spectrum of a square matrix M is written σ(M), and applying the operation Re to

this set, one defines Re σ(M)
def
= {Re s : s ∈ σ(M)}, so Re σ(M) < 0 means that M is Hurwitz. Also, the

conjugate and transconjugate of M , are denoted MT and M∗. Last, for systems with a delay h ≥ 0, xt

designates the function x(t + ·), defined on [−h, 0].

2 Delay-independent stability

We consider the following delay differential system:

ẋ(t) − Eẋ(t − h) = Ax(t) + Bx(t − h) , (1)

A, B, E ∈ Rn×n. This is a delay differential equation of neutral type when E 6= 0, of retarded type when
E = 0. The asymptotic stability of system (1) is equivalent to [8]

ρ(E) < 1 and ∀s ∈ C+, det(s(In − e−shE) − A − e−shB) 6= 0 .

The notion of delay-independent stability has been introduced (see [11, 12, 13] for retarded systems, [9, 16, 20]
for neutral systems): by definition, system (1) is (weakly) delay-independently stable if

ρ(E) < 1 and ∀h ≥ 0, ∀s ∈ C+, det(s(In − e−shE) − A − e−shB) 6= 0 .
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Delay-independent stability may be proved to be equivalent to [9, 20]

ρ(E) < 1 and ∀(s, z) ∈ C+ × D, s 6= 0 or s = 0, z = 1 ⇒ det(s(In − zE) − A − zB) 6= 0 .

A slightly stronger property may be introduced, as in [18] for retarded type systems: system (1) is called
strongly delay-independently stable if

ρ(E) < 1 and ∀(s, z) ∈ C+ × D, det(s(In − zE) − A − zB) 6= 0 . (2)

We may show easily as in [3] for systems of retarded type, that the strong delay-independent stability
is a property robust with respect to perturbations of the matrices A, B, E, whereas the delay-independent
stability is not. Indeed, infinitely close (in the sense of the distance induced by the maximal singular
value on the product space of the triplets (A, B, E)) to any system fulfilling the weak property but not the
strong one, there exist unstable systems. More precisely, the set of the triplets corresponding to strongly
delay-independently stable systems is the interior of the set of the triplets corresponding to (weakly) delay-
independently stable systems.

Generalizations of the Lyapunov method to delay differential equations have been proposed. In particular,
a class of quadratic Lyapunov-Krasovskii functionals [15, 8] has been used early for this purpose, afterwards
generalized to neutral type systems [21] under the form

V (xt) = (x(t) − Ex(t − h))T P (x(t) − Ex(t − h)) +

∫ t

t−h

xT (τ)Qx(τ) dτ , (3)

for positive definite matrices P, Q ∈ R
n×n. Along the trajectories of (1),

d[V (xt)]

dt
=

(

x(t) − Ex(t − h)
x(t − h)

)T ((

AT P + PA P (AE + B)
(AE + B)T P 0n

)

+

(

Q QE

ET Q ET QE − Q

)) (

x(t) − Ex(t − h)
x(t − h)

)

, (4)

and feasibility of the following linear matric inequality

P = PT > 0, Q = QT > 0,

(

AT P + PA P (AE + B)
(AE + B)T P 0n

)

+

(

Q QE

ET Q ET QE − Q

)

< 0 (5)

is indeed sufficient to have asymptotic stability (by use of the results in [8, §12.7]). However, this is not in
general a necessary condition. As a matter of fact, it may be deduced from [1, 25], that solvability of (5) is
equivalent to:

Re σ(A) < 0 and min
M invertible

sup
s∈C+

‖M((sIn − A)−1(sE + B)M−1‖ < 1 ,

whereas (2) is equivalent to

Re σ(A) < 0 and sup
s∈C+

min
M invertible

‖M((sIn − A)−1(sE + B)M−1‖ < 1 .

3 Principle of the method and main result

Our method is based on an improvement of the previous one. Consider, for k ∈ N,

Xk(t)
def
=











x(t)
x(t − h)

...
x(t − (k − 1)h)











. (6)
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The vector Xk(t), element of Rkn, is an augmented state variable, which contains more information than
needed to compute future evolution. From (1) we deduce that

Ẋk(t) − (Ik ⊗ E)Ẋk(t − h) = (Ik ⊗ A)Xk(t) + (Ik ⊗ B)Xk(t − h) . (7)

Take definite positive matrices Pk, Qk ∈ Rkn×kn, and define

Vk(Xk,t)
def
= (Xk(t) − (Ik ⊗ E)Xk(t − h))T Pk(Xk(t) − (Ik ⊗ E)Xk(t − h)) +

∫ t

t−h

Xk(τ)T QkXk(τ) dτ . (8)

Verify that (compare with (4))

d[Vk(Xk,t)]

dt
=

(

Xk(t) − (Ik ⊗ E)Xk(t − h)
Xk(t)

)T [(

(Ik ⊗ A)T Pk + Pk(Ik ⊗ A) Pk(Ik ⊗ (AE + B))
(Ik ⊗ (AE + B))T Pk 0kn

)

+

(

Qk Qk(Ik ⊗ E)
(Ik ⊗ E)T Qk (Ik ⊗ E)T Qk(Ik ⊗ E) − Qk

)] (

Xk(t) − (Ik ⊗ E)Xk(t − h)
Xk(t)

)

.

Now, the key point of the method consists in remarking that the components of Xk(t)− (Ik ⊗E)Xk(t−h)
and Xk(t) are not all independent. More precisely,

Xk(t) = Fk(Xk(t) − (Ik ⊗ E)Xk(t − h)) + fkx(t − kh) ,

where Fk ∈ Rkn×kn, fk ∈ Rkn×n are defined by induction by

f1
def
= In, fk

def
=

(

fk−1E

In

)

, F1
def
= 0n, Fk

def
=

(

Fk−1 fk−1

0n×(k−1)n 0n

)

.

Thus,

f2 =

(

E

In

)

, f3 =





E2

E

In



 , F2 =

(

0n In

0n 0n

)

, F3 =





0n In E

0n 0n In

0n 0n 0n



 . . .

We deduce that, along the trajectories of (1),

d[Vk(Xk,t)]

dt
=

(

Xk(t) − (Ik ⊗ E)Xk(t − h)
x(t − kh)

)T

Rk

(

Xk(t) − (Ik ⊗ E)Xk(t − h)
x(t − kh)

)

, (9)

where

Rk = Rk(Pk, Qk)
def
=

(

Ikn 0kn×n

Fk fk

)T [(

(Ik ⊗ A)T Pk + Pk(Ik ⊗ A) Pk(Ik ⊗ (AE + B))
(Ik ⊗ (AE + B))T Pk 0kn

)

+

(

Qk Qk(Ik ⊗ E)
(Ik ⊗ E)T Qk (Ik ⊗ E)T Qk(Ik ⊗ E) − Qk

)](

Ikn 0kn×n

Fk fk

)

.

We are hence naturally led to study the solvability of the following LMIs, defined for any k ∈ N.

Pk, Qk ∈ R
kn×kn, Pk = PT

k > 0, Qk = QT
k > 0, Rk < 0 .

The case k = 1 reduces to (5).
Our central result tells that the solvability of the previous linear matrix inequality becomes equivalent to

the asymptotic stability of (1) when k goes to infinity.

Theorem 1 (LMI characterization of the strong delay-independent stability). The strong delay-
independent stability of system (1) is equivalent to any of the following properties.
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1. ρ(E) < 1 and ∀(s, z) ∈ C+ × D, det(s(In − zE) − A − zB) 6= 0.

2. There exists k ∈ N such that the following LMI is feasible:

Pk ∈ R
kn×kn, Qk ∈ R

kn×kn, Pk = PT
k > 0, Qk = QT

k > 0, Rk < 0, (10k)

where Rk ∈ R(k+1)n×(k+1)n is defined by

Rk = Rk(Pk, Qk)
def
=

(

Ikn 0kn×n

Fk fk

)T [(

(Ik ⊗ A)T Pk + Pk(Ik ⊗ A) Pk(Ik ⊗ (AE + B))
(Ik ⊗ (AE + B))T Pk 0kn

)

+

(

Qk Qk(Ik ⊗ E)
(Ik ⊗ E)T Qk (Ik ⊗ E)T Qk(Ik ⊗ E) − Qk

)](

Ikn 0kn×n

Fk fk

)

,

f1
def
= In, fk

def
=

(

fk−1E

In

)

∈ R
kn×n,

F1
def
= 0n, Fk

def
=

(

Fk−1 fk−1

0n×(k−1)n 0n

)

∈ R
kn×kn .

3. There exists k∗ ∈ N such that, for any k ≥ k∗, (10k) is feasible.

�

Recalling the analysis given previously, we see that system (1) is strongly delay-independently stable
if and only if it possesses, for a certain k ∈ N, a quadratic Lyapunov-Krasovskii functional, valid for any
nonnegative value of the delay h ≥ 0, of the form (8), where Pk, Qk are positive definite matrices from R

kn×kn

(compare with (3)). The derivative of this functional along the trajectories of (1) is given in (9). Also, if
system (1) is (weakly) delay-independently stable, but does not possess a Lyapunov-Krasovskii functional of
the previous type for a certain k ∈ N, then infinitesimal parametric perturbations make it unstable for some
h ≥ 0.

Theorem 1 gives a formal analogue to the equivalence between spectral characterization of the asymptotic
stability of ẋ = Ax, A ∈ Rn×n:

∀s ∈ C+, det(sIn − A) 6= 0 ,

and solvability of the Lyapunov inequation

∃P ∈ R
n×n, P = PT > 0, AT P + PA < 0 .

Theorem 1 furnishes a family of LMI criteria, of arbitrary precision. Concerning the way the precision
changes with k, the following remark may be made. It may be checked from the proof of Theorem 1, that a
sufficient condition for solvability of (15k) is

Re σ(A) < 0 and sup
s∈C+

‖[C(sIn1
− A)−1B + D]k‖ < 1 ,

whereas stability appears to be equivalent to

Re σ(A) < 0 and lim
k→+∞

sup
s∈C+

‖[C(sIn1
− A)−1B + D]k‖ = 0 .

For systems of retarded type, E = 0, so
(

Fk fk

)

=
(

0kn×n Ikn

)

. The feasibility of (10k) then implies
the feasibility of (16k+1), see [4].
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4 Numerical examples

Let us give two simple numerical examples of utilization of Theorem 1. Consider the matrices

A =













−4 10 5.7 −6.5 −2
−0.2 1.2 1.5 −1.9 −0.6
15 −16 −7 −3.6 −6.4
8.7 5.5 6.1 −5.9 −7.7
7.6 −0.9 1.9 −7.2 −7.5













, B =













9.1 0 4.1 6.9 5.1
−2.6 −1.8 1.6 1.1 2.7
−0.5 −9.9 −0.4 7.5 3.2
−6 3.5 7.8 0.8 6.4
1.1 −12 4.4 −7.5 6













.

We first study the strong delay-independent stability of the following system, of retarded type

ẋ(t) = Ax(t) + αBx(t − h) , (11)

for various values of the real parameter α. We check that Re σ(A) < 0, so system (11) is asymptotically
stable for α = 0. Also, sup{α ∈ R : σ(A + αB)∩C+ = ∅} = 0.1726 : for this value, system (11) is unstable
when h = 0. We wish to estimate the largest α such that (11) is strongly delay-independently stable. This
value, denoted α∞, is computed by frequency sweeping as [7]

α∞ = sup{α ∈ R : sup
s∈C+

ρ(α(sI5 − A)−1B) < 1} =

(

sup
ω∈R

ρ((jωI5 − A)−1B)

)−1

≃ 0.1647 .

Denote by αk the supremum over the set of all α such that: ∃Pk, Qk, Pk = PT
k > 0, Qk = QT

k > 0, Rk < 0,
where

Rk
def
=

(

Ikn 0kn×n

0kn×n Ikn

)T (

(Ik ⊗ A)T Pk + Pk(Ik ⊗ A) + Qk αPk(Ik ⊗ B)
α(Ik ⊗ B)T Pk −Qk

) (

Ikn 0kn×n

0kn×n Ikn

)

.

The previous LMI is just (10k), with E = 0 and B replaced by αB.
The computations are achieved by the Scilab package lmitool2. We find

α1 = 0.1488, α2 = α3 = 0.1647 .

The criterion obtained with k = 2 is hence exact in the present case up to four digits.
Consider now the system of neutral type given by

ẋ(t) − Eẋ(t − h) = Ax(t) + αBx(t − h) , (12)

where A and B are chosen as above, and

E =













0.11 0.32 −0.29 0.12 0.15
−0.38 0.42 −0.33 0.12 0.47

0 0.35 −0.36 0.11 −0.11
0.17 0.43 0.11 0.43 0.15
0.33 0.03 −0.27 0.33 0.18













.

We check that ρ(E) ≃ 0.8407 < 1. The supremum over all α such that (12) is strongly delay-independently
stable is here given by

α∞ = sup{α ∈ R : sup
ω∈R

ρ((jωI5 − A)−1(αB + jωE)) < 1} ≃ 0.1211 .

Denoting as before by αk the supremum over all α such that the LMI (10k) corresponding to the system
under study is feasible (B has to be replaced by αB), gives:

α1 = −∞ = sup ∅, α2 = α3 = 0.1211 .

Remark that, for both examples, α∞ is also the supremum over all α such that system (11), resp. (12),
is weakly delay-independently stable.

2Scilab is a free software, distributed with its source code, see the homepage at http://www-rocq.inria.fr/scilab/
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5 Delay-independent stability of systems with polytopic uncer-

tainties

We consider here, for fixed Al, Bl ∈ Rn×n, l = 1, L, the convex class of non-stationary systems

ẋ(t) − Eẋ(t − h) = A(t)x(t) + B(t)x(t − h) , (13)

with A(t), B(t), E ∈ R
n×n, such that

∀t ≥ 0, (A(t), B(t)) =
L

∑

l=1

λl(t)(Al, Bl) for some functions 0 ≤ λl ≤ 1,

L
∑

l=1

λl = 1 . (14)

Of course, the previous setting may be used to model some nonlinear systems. As for the finite-
dimensional systems, a way to ensure stability is to exhibit a Lyapunov-Krasovskii functional common to
the L stationary systems obtained with λl ≡ 1, l = 1, L. This leads to the following result. Its residual con-
servatism is due only to the method of simultaneous stability itself (as is the case for the finite-dimensional
systems).

Theorem 2. Suppose there exist k ∈ N and positive matrices Pk, Qk ∈ Rkn×kn such that, for all l = 1, L,

Rl,k = Rl,k(Pk, Qk)
def
=

(

Ikn 0kn×n

Fk fk

)T [(

(Ik ⊗ Al)
T Pk + Pk(Ik ⊗ Al) Pk(Ik ⊗ (AlE + Bl))

(Ik ⊗ (AlE + Bl))
T Pk 0kn

)

+

(

Qk Qk(Ik ⊗ E)
(Ik ⊗ E)T Qk (Ik ⊗ E)T Qk(Ik ⊗ E) − Qk

)] (

Ikn 0kn×n

Fk fk

)

< 0 ,

where

f1
def
= In, fk

def
=

(

fk−1E

In

)

∈ R
kn×n,

F1
def
= 0n, Fk

def
=

(

Fk−1 fk−1

0n×(k−1)n 0n

)

∈ R
kn×kn .

Then, the system (13) with constraint (14) is asymptotically stable for any value of h ≥ 0. �

Proof. Suppose (Pk, Qk) is solution of the LMI given in the statement. Consider the corresponding Lyapunov-
Krasovskii functional defined in (8). Proceeding as before to obtain (9), the derivative of Vk along the
trajectories of (13) is proved to be equal to

d[Vk(Xt)]

dt
=











x(t) − Ex(t − h)
...

x(t − (k − 1)h) − Ex(t − kh)
x(t − kh)











T

L
∑

l=1

λl(t)Rl,k











x(t) − Ex(t − h)
...

x(t − (k − 1)h) − Ex(t − kh)
x(t − kh)











,

which, due to (14), is negative except if x(t)−Ex(t−h) = · · · = x(t− (k−1)h)−Ex(t−kh) = x(t−kh) = 0.
Asymptotic stability is then deduced as in [8, §12.7].

6 Proof of Theorem 1

A slightly more general result will be proved. Let n1, n2 ∈ N, and let A ∈ Rn1×n1 , B ∈ Rn1×n2 , C ∈ Rn2×n1 ,
D ∈ Rn2×n2 . The proof of Theorem 1 ensues from the following Lemma, replacing respectively A, B, C, D

by A, AE + B, In, E.
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Lemma 3. The four following properties are equivalent.

1. ρ(D) < 1 and ∀z ∈ D, Re σ(A + zB(In2
− zD)−1C) < 0.

2. Reσ(A) < 0 and sup
s∈C+

ρ(C(sIn1
− A)−1B + D) < 1.

3. There exists k ∈ N such that the LMI (15k) is feasible, where

Pk ∈ R
kn1×kn1 , Qk ∈ R

kn2×kn2 , Pk = PT
k > 0, Qk = QT

k > 0, Rk < 0,

where Rk ∈ R
(kn1+n2)×(kn1+n2)is defined by (16), (17) .

(15k)

f1
def
= In2

, fk
def
=

(

fk−1D

In2

)

∈ R
kn2×n2 , (16a)

F1
def
= 0n2×n1

, Fk
def
=

(

Fk−1 fk−1C

0n2×(k−1)n1
0n2×n1

)

∈ R
kn2×kn1 . (16b)

Rk = Rk(Pk, Qk)
def
=

(

Ikn1
0kn1×n2

Fk fk

)T [(

(Ik ⊗ A)T Pk + Pk(Ik ⊗ A) Pk(Ik ⊗ B)
(Ik ⊗ B)T Pk 0kn2

)

+

(

(Ik ⊗ C)T Qk(Ik ⊗ C) (Ik ⊗ C)T Qk(Ik ⊗ D)
(Ik ⊗ D)T Qk(Ik ⊗ C) (Ik ⊗ D)T Qk(Ik ⊗ D) − Qk

)] (

Ikn1
0kn1×n2

Fk fk

)

. (17)

4. There exists k∗ ∈ N such that, for any k ≥ k∗, (15k) is feasible.

�

The equivalence between 1. and 2. is known [1, 20], and the implication 4. ⇒ 3. is straightforward. We
show that 3. implies 1. (Section 6.1), and then that 2. implies 4. (Section 6.2).

6.1 Proof of the implication 3. ⇒ 1.

Consider first that feasibility of (15k) implies

0 >

(

0kn1×n2

In2

)T

Rk

(

0kn1×n2

In2

)

= fT
k [(Ik ⊗ D)T Qk(Ik ⊗ D) − Qk]fk = DT fT

k QkfkD − fT
k Qkfk .

We deduce that, for any nonzero eigenvector u of D associated to an eigenvalue z, (|z|2 − 1)‖Q
1/2
k fku‖2 < 0,

so ρ(D) < 1. This is the first part of 1.
Define now, for any z ∈ C and for k ∈ N, the matrices v1,k(z) ∈ Rkn1×n1 , v2,k(z) ∈ Rkn2×n2 , wk(z) ∈

R(kn1+n2)×n1 by

v1,k(z)
def
=











In1

zIn1

...
zk−1In1











, v2,k(z)
def
=











In2

zIn2

...
zk−1In2











, wk(z)
def
=

(

v1,k(z)
zk(In2

− zD)−1C

)

.

Then,
(

Ikn1
0kn1×n2

Fk fk

)

wk(z) =

(

v1,k(z)
Fkv1,k(z) + zkfk(In2

− zD)−1C

)

,
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and, using (16),

Fkv1,k(z) + zkfk(In2
− zD)−1C =

(

Fk−1v1,k−1(z) + zk−1fk−1(In2
− zD)−1C

zk(In2
− zD)−1C

)

.

We then prove by induction that

(

Ikn1
0kn1×n2

Fk fk

)

wk(z) =

(

Ikn1

zIk ⊗ (In2
− zD)−1C

)

v1,k(z) .

From the solvability of (15k) we hence deduce that, for any z ∈ C such that In2
− zD is invertible,

0 > wk(z)∗Rkwk(z)

=

[(

Ikn1

zIk ⊗ (In2
− zD)−1C

)

v1,k(z)

]∗ [(

(Ik ⊗ A)T Pk + Pk(Ik ⊗ A) Pk(Ik ⊗ B)
(Ik ⊗ B)T Pk 0kn2

)

+

(

(Ik ⊗ C)T Qk(Ik ⊗ C) (Ik ⊗ C)T Qk(Ik ⊗ D)
(Ik ⊗ D)T Qk(Ik ⊗ C) (Ik ⊗ D)T Qk(Ik ⊗ D) − Qk

)] (

Ikn1

zIk ⊗ (In2
− zD)−1C

)

v1,k(z)

= v1,k(z)∗
[

(Ik ⊗ (A + zB(In2
− zD)−1C))∗Pk + Pk(Ik ⊗ (A + zB(In2

− zD)−1C))
]

v1,k(z)

+ (1 − |z|2)
[

(Ik ⊗ (In2
− zD)−1C)v1,k(z)

]∗
Qk(Ik ⊗ (In2

− zD)−1C)v1,k(z)

= (A + zB(In2
− zD)−1C)∗v1,k(z)∗Pkv1,k(z) + v1,k(z)∗Pkv1,k(z)(A + zB(In2

− zD)−1C)

+ (1 − |z|2)[v2,k(z)(In2
− zD)−1C]∗Qkv2,k(z)(In2

− zD)−1C .

In particular, if z ∈ D (and then In2
− zD invertible, as ρ(D) < 1), this yields

(A + zB(In2
− zD)−1C)∗v1,k(z)∗Pkv1,k(z) + v1,k(z)∗Pkv1,k(z)(A + zB(In2

− zD)−1C) < 0 .

As the matrix v1,k(z)∗Pkv1,k(z) is positive definite, we deduce that for any z ∈ D, the matrix A+zB(In2
−

zD)−1C is solution of a Lyapunov equation, so Reσ(A + zB(In2
− zD)−1C) < 0. This achieves the proof of

the implication 3. ⇒ 1.

6.2 Proof of the implication 2. ⇒ 4.

• We first transform condition 2. It is well-known that, for any square matrix M ,

ρ(M) < 1 ⇔ lim
k→+∞

‖Mk‖ = 0 ⇔ lim sup
k→+∞

‖Mk‖ < 1

(where the second equivalence is obtained using the fact that the matrix norm induced by the euclidian norm
is submultiplicative). We hence deduce that condition 2. is indeed equivalent to

Re σ(A) < 0 and sup
s∈C+

lim sup
k→+∞

‖[C(sIn1
− A)−1B + D]k‖ < 1 ,

or even, using a classical argument of complex analysis [6]: Reσ(A) < 0 and

sup
s∈jR

lim sup
k→+∞

‖[C(sIn1
− A)−1B + D]k‖ < 1 . (18)

• From now on, we assume that condition 2. holds; in particular, Re σ(A) < 0. Let us transform (15k) into
a form comparable with (18), but in which k∗ has to be chosen uniformly wrt z in the unit circle, namely:

lim sup
k→+∞

sup
s∈jR

‖[C(sIn1
− A)−1B + D]k‖ < 1 . (19)
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Developing the first term in Rk given in (17) leads to the identity

(

Ikn1
0kn1×n2

Fk fk

)T (

(Ik ⊗ A)T Pk + (Ik ⊗ A)Pk Pk(Ik ⊗ B)
(Ik ⊗ B)T Pk 0kn2

) (

Ikn1
0kn1×n2

Fk fk

)

=

(

((Ik ⊗ A) + (Ik ⊗ B)Fk)T Pk + Pk((Ik ⊗ A) + (Ik ⊗ B)Fk) Pk(Ik ⊗ B)fk

((Ik ⊗ B)fk)T Pk 0n2

)

.

Written under this form, we apply Kalman-Yakubovich-Popov lemma (reproduced in Appendix) to (15k),
taking into account the fact that σ((Ik ⊗ A) + (Ik ⊗ B)Fk) = σ(A) ⊂ C \ C+, as 2. holds. Denoting

Sk = Sk(s)
def
= (sIkn1

− (Ik ⊗ A) − (Ik ⊗ B)Fk)−1 ,

Kalman-Yakubovich-Popov lemma establishes the equivalence between solvability of (20a) and property
(20b). Here, one has put

Pk ∈ R
kn1×kn1 , Qk ∈ R

kn2×kn2 , Pk = PT
k , Qk = QT

k > 0, Rk < 0,

where Rk ∈ R
(kn1+n2)×(kn1+n2)is defined by (16), (17) .

(20a)

and

∃Qk = QT
k > 0, ∀s ∈ jR,

[

.

]∗ (

(Ik ⊗ C)T Qk(Ik ⊗ C) (Ik ⊗ C)T Qk(Ik ⊗ D)
(Ik ⊗ D)T Qk(Ik ⊗ C) (Ik ⊗ D)T Qk(Ik ⊗ D) − Qk

) (

Ikn1
0kn1×n2

Fk fk

) (

Sk(s)(Ik ⊗ B)fk

In2

)

< 0 ,

(20b)

where the dot in the brackets has to be replaced by the last two matrices. Remark that (20a) is identical to
(15k), except that Pk here has not to be positive.

Developing the expression in (20b) yields:

∃Qk = QT
k > 0, ∀s ∈ jR,

[(Ik ⊗C)Sk(Ik ⊗B)fk +(Ik ⊗D)(FkSk(Ik ⊗B)fk + fk)]
∗Qk[(Ik ⊗C)Sk(Ik ⊗B)fk +(Ik ⊗D)(FkSk(Ik ⊗B)fk + fk)]

< [FkSk(Ik ⊗ B)fk + fk]∗Qk[FkSk(Ik ⊗ B)fk + fk] . (20c)

Let us evaluate these expressions. From (16), we get that

Sk(s) =

(

sI(k−1)n1
− (Ik−1 ⊗ A) − (Ik−1 ⊗ B)Fk−1 −(Ik−1 ⊗ B)fk−1C

0n1×(k−1)n1
sIn1

− A

)−1

=

(

Sk−1 Sk−1(Ik−1 ⊗ B)fk−1C(sIn1
− A)−1

0n1×(k−1)n1
(sIn1

− A)−1

)

,

(Ik ⊗ B)fk =

(

(Ik−1 ⊗ B)fk−1D

B

)

.

This permits to establish that

Sk(Ik ⊗ B)fk =

(

Sk−1(Ik−1 ⊗ B)fk−1(C(sIn1
− A)−1B + D)

(sIn1
− A)−1B

)

,

from which it is deduced that

FkSk(Ik ⊗ B)fk + fk =

(

(Fk−1Sk−1(Ik−1 ⊗ B)fk−1 + fk−1)(C(sIn1
− A)−1B + D)

In2

)
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and

(Ik ⊗ C)Sk(Ik ⊗ B)fk + (Ik ⊗ D)(FkSk(Ik ⊗ B)fk + fk)

=

(

((Ik−1 ⊗ C)Sk−1(Ik−1 ⊗ B)fk−1 + (Ik−1 ⊗ D)(Fk−1Sk−1(Ik−1 ⊗ B)fk−1 + fk−1))(C(sIn1
− A)−1B + D)

C(sIn1
− A)−1B + D

)

.

In the left-hand and right-hand sides of the two previous identities, the same expressions appear with adjacent
indexes. This permits to prove recursively that

FkSk(Ik ⊗ B)fk + fk =







[C(sIn1
− A)−1B + D]k−1

...
In2






,

(Ik ⊗ C)Sk(Ik ⊗ B)fk + (Ik ⊗ D)(FkSk(Ik ⊗ B)fk + fk) =







[C(sIn1
− A)−1B + D]k

...
[C(sIn1

− A)−1B + D]






.

The previous formulas show that, when Qk = Ikn2
, (20c) just writes:

∀s ∈ jR, ‖[C(sIn1
− A)−1B + D]k‖ < 1 . (21)

Condition (21) is hence sufficient for existence of Qk = QT
k > 0 such that (20c), or equivalently (20a), holds

for any s ∈ jR. In this case, (20a) admits a solution (Pk, Qk) such that Qk = Ikn2
.

We now prove that the symmetric matrix Pk previously obtained is indeed definite positive. Considering
the left-upper block in the decomposition of Rk given by (17), one has

0 >((Ik ⊗ A) + (Ik ⊗ B)Fk)T Pk + Pk((Ik ⊗ A) + (Ik ⊗ B)Fk)

+ ((Ik ⊗ C) + (Ik ⊗ D)Fk)T Qk((Ik ⊗ C) + (Ik ⊗ D)Fk) − FT
k QkFk .

When (20a) holds with Qk = Ikn2
, then, for any u1, . . . , uk ∈ R

n1 ,











u1

u2

...
uk











T

[((Ik ⊗ C) + (Ik ⊗ D)Fk)T Qk((Ik ⊗ C) + (Ik ⊗ D)Fk) − FT
k QkFk]











u1

u2

...
uk











= ‖Cu1 + DCu2 + · · · + Dk−1Cuk‖
2 ≥ 0 ,

so
((Ik ⊗ C) + (Ik ⊗ D)Fk)T Qk((Ik ⊗ C) + (Ik ⊗ D)Fk) − FT

k QkFk ≥ 0

and
0 > ((Ik ⊗ A) + (Ik ⊗ B)Fk)T Pk + Pk((Ik ⊗ A) + (Ik ⊗ B)Fk) .

As Reσ((Ik ⊗A) + (Ik ⊗B)Fk) < 0, the previous inequality implies [17, Theorem 5.3.1] that any symmetric
matrix Pk such that (Pk, Ikn2

) solves (20a) is indeed definite positive: this pair also solves (15k). One has
thus deduced that, if (20a) holds with Qk = Ikn2

, then (15k) admits a solution.
Finally, when 2. holds, then Re σ(A) < 0, and (21) is sufficient for solvability of (15k). Consequently,

when 2. holds, (19) is sufficient for realization of 4., as announced.
• In view of (18) and (19), it remains, in order to prove that 2. implies 4., to show that one may choose
in (18) the index k uniformly with respect to s ∈ jR. The final argument, based on compactness, is itself
decomposed into two parts. We show first that, when Re σ(A) < 0, then (18) implies

∃k ∈ N, sup
s∈jR

‖[C(sIn1
− A)−1B + D]k‖ < 1 , (22)
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and then that (22) implies (19).
• For k ∈ N, let

Kk
def
= {s ∈ jR : ‖[C(sIn1

− A)−1B + D]k‖ ≥ 1} .

The matrix A being Hurwitz, sIn1
− A is invertible for s ∈ jR. By continuity, the sets Kk are closed.

Moreover,

s ∈ K2k ⇒ 1 ≤ ‖[C(sIn1
− A)−1B + D]2k‖ ≤ ‖[C(sIn1

− A)−1B + D]k‖2 ⇒ s ∈ Kk .

Hence K2k ⊂ Kk, for any k ∈ N.
Assume now that (22) does not hold. If ρ(D) ≥ 1, then (18) does not hold either, as necessarily one

would have lim supk→+∞ ‖Dk‖ < 1. Suppose now that ρ(D) < 1. Then, for any k ∈ N, the sets Kk are
nonempty and bounded (as ρ(D) < 1). The sequence K2k is thus a nested sequence of nonempty compact
sets. In particular,

∃s0 ∈
⋂

k∈N∪{0}

K2k ,

that is
∃s0 ∈ jR, ∀k ∈ N ∪ {0}, ‖[C(s0In1

− A)−1B + D]2
k

‖ ≥ 1 .

Hence,
∀k∗ ∈ N, sup

k≥k∗
‖[C(s0In1

− A)−1B + D]k‖ ≥ 1 ,

and (18) does not hold either. Hence, we have proved by contradiction that, when Re σ(A) < 0, then (18)
implies (22).
• Let us prove now that, when Re σ(A) < 0, then (22) implies (19). Suppose that (22) holds, and let k∗ ∈ N

and c1 > 0 be such that

sup
s∈jR

‖[C(sIn1
− A)−1B + D]k

∗

‖
def
= c1 < 1 .

Define also

c2
def
= sup

{

sup
s∈jR

‖[C(sIn1
− A)−1B + D]k‖ : k ∈ {0, . . . , k∗ − 1}

}

.

Then c2 is finite.
Now, fix k∗∗ ∈ N such that

k∗∗ >

(

−
log c2

log c1
+ 3

)

k∗ ,

and let s ∈ jR and k ∈ N∪ {0} such that k ≥ k∗∗. Denote q and r the quotient and the rest of the euclidian
division of k by k∗, that is:

q ∈ N ∪ {0}, r ∈ {0, 1, . . . , k∗ − 1}, k = qk∗ + r .

Remark that k ≥ k∗∗ implies

q ≥ −
log c2

log c1
+ 2 > −

log c2

log c1
+ 1 . (23)

Then,

‖[C(sIn1
− A)−1B + D]k‖ ≤ ‖[C(sIn1

− A)−1B + D]k
∗

‖q‖[C(sIn1
− A)−1B + D]r‖ ≤ c

q
1c2 < c1 < 1 ,

due to (23) and the fact that c1 < 1. From (22), we have hence deduced the existence of k∗∗ such that

∀k ∈ N ∪ {0}, k ≥ k∗∗, sup
s∈jR

‖[C(sIn1
− A)−1B + D]k‖ < c1 < 1 ,
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so one gets
Re σ(A) < 0 and lim sup

k→+∞
sup
s∈jR

‖[C(sIn1
− A)−1B + D]k‖ < 1 ,

which is nothing but (19).

To summarize, it has been shown first that: condition 2. ⇔ (18); under the assumption Reσ(A) < 0
(consequence of 2.), it has been successively shown that: (19) ⇒ condition 4., (18) ⇒ (22), (22) ⇒ (19).
This shows finally that condition 2. implies condition 4., and concludes the proof of Lemma 3.
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A Appendix – Kalman-Yakubovich-Popov lemma

We use the statement as given e.g. in [23]. Let A ∈ R
n×n, B ∈ R

n×p, M = MT ∈ R
(n+p)×(n+p).

Lemma 4. If det(sIn − A) 6= 0 for s ∈ jR, then the following two statements are equivalent.

1. For any s ∈ jR,
(

(sIn − A)−1B

Ip

)∗

M

(

(sIn − A)−1B

Ip

)

< 0 .

2. There exists P = PT ∈ Rn×n such that
(

AT P + PA PB

BT P 0p

)

+ M < 0 .

�
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