An adaptive *hp*-refinement strategy with computable guaranteed error reduction factors

14th U.S. National Congress on Computational Mechanics

Patrik DANIEL, Alexandre ERN, Iain SMEARS, Martin VOHRALÍK

Inria Paris & ENPC, France

Montréal, Canada, July 19, 2017

European Research Council

Outline

Motivation

Setting

Reduction factors

hp-strategy

Conclusion

P. Daniel, A. Ern, I. Smears, M. Vohralík

Motivation

References

D. BRAESS, J. SCHÖBERL

Equilibrated residual error estimator for edge elements, Math. Comp. (2008)

W. DÖRFLER

A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal.,(1996)

C. CANUTO, R. H. NOCHETTO, R. STEVENSON, AND M. VERANI

Convergence and optimality of hp-AFEM, Numer. Math. (2016).

J. M. CASCÓN AND R. H. NOCHETTO

Quasioptimal cardinality of AFEM driven by nonresidual estimators, IMA J. Numer. Anal., (2012)

A. ERN AND M. VOHRALÍK

Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal.(2015).

General adaptive loop

$$\fbox{SOLVE} \rightarrow \fbox{ESTIMATE} \rightarrow \fbox{MARK} \rightarrow \fbox{REFINE}$$

Outline

Motivation

Setting

Reduction factors

hp-strategy

Conclusion

P. Daniel, A. Ern, I. Smears, M. Vohralík

SOLVE

Laplace model problem

For $f \in L^2(\Omega)$, find $u \in H^1_0(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

Discretization

• $\{\mathcal{T}_{\ell}\}_{\ell \geq 0}$ a sequence of nested matching simplicial meshes

• Each element $K \in \mathcal{T}_{\ell}$ is assigned with a polynomial degree via vector $\mathbf{p}_{\ell} := \{p_K \ge 1, K \in \mathcal{T}_{\ell}\}, \mathbb{P}_{p_K}(K) \text{ s.t. } \mathbf{p}_{\ell+1} \ge \mathbf{p}_{\ell}$

SOLVE

Laplace model problem

For $f \in L^2(\Omega)$, find $u \in H^1_0(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

Discretization

- $\{\mathcal{T}_{\ell}\}_{\ell \geq 0}$ a sequence of nested matching simplicial meshes
- Each element $K \in \mathcal{T}_{\ell}$ is assigned with a polynomial degree via vector $\mathbf{p}_{\ell} := \{p_K \ge 1, K \in \mathcal{T}_{\ell}\}, \mathbb{P}_{p_K}(K) \text{ s.t. } \mathbf{p}_{\ell+1} \ge \mathbf{p}_{\ell}$

Laplace model problem – FEM Define the test space $V_{\ell} := \mathbb{P}_{\mathbf{p}_{\ell}}(\mathcal{T}_{\ell}) \cap H_0^1(\Omega)$. Find $u_{\ell} \in V_{\ell}$ s.t. $(\nabla u_{\ell}, \nabla v_{\ell}) = (f, v_{\ell}) \quad \forall v_{\ell} \in V_{\ell}$

Due to the nestedness of the spaces $V_{\ell} \subset V_{\ell+1}, \ell \geq 0$:

Galerkin orthogonality

$$\|\nabla(u - u_{\ell+1})\|^2 = \|\nabla(u - u_{\ell})\|^2 - \|\nabla(u_{\ell+1} - u_{\ell})\|^2$$

Laplace model problem – FEM Define the test space $V_{\ell} := \mathbb{P}_{\mathbf{p}_{\ell}}(\mathcal{T}_{\ell}) \cap H_0^1(\Omega)$. Find $u_{\ell} \in V_{\ell}$ s.t. $(\nabla u_{\ell}, \nabla v_{\ell}) = (f, v_{\ell}) \quad \forall v_{\ell} \in V_{\ell}$

Due to the nestedness of the spaces $V_{\ell} \subset V_{\ell+1}, \ell \geq 0$:

Galerkin orthogonality

$$\|\nabla(u - u_{\ell+1})\|^2 = \|\nabla(u - u_{\ell})\|^2 - \|\nabla(u_{\ell+1} - u_{\ell})\|^2$$

A posteriori error **ESTIMATE**

Guaranteed upper bound on the energy error $\|\nabla (u - u_\ell)\|$

• for each $\ell \geq 0$ and for each patch $\mathcal{T}_{\mathbf{a}}, \mathbf{a} \in \mathcal{T}_{\ell}$, select

 $p_{\mathbf{a}} := \max_{K \in \mathcal{T}_{\mathbf{a}}} p_K$

Equilibrated flux reconstruction $\sigma_{\ell} := \sum_{\mathbf{a} \in \mathcal{V}_{\ell}} \sigma_{\ell}^{\mathbf{a}} \in \mathbf{H}(\operatorname{div}, \Omega)$

For each vertex $\mathbf{a} \in \mathcal{V}_\ell,$ we solve a small minimization problem

$$\boldsymbol{\sigma}^{\mathbf{a}}_{\ell} := \arg\min_{\mathbf{v}_{\ell} \in \mathbf{V}^{\mathbf{a}}_{\ell}, \, \nabla \cdot \mathbf{v}_{\ell} = \Pi_{Q^{\mathbf{a}}_{\ell}}(f\psi_{\mathbf{a}} - \nabla u_{\ell} \cdot \nabla \psi_{\mathbf{a}})} \|\psi_{\mathbf{a}} \nabla u_{\ell} + \mathbf{v}_{\ell}\|_{\omega_{\mathbf{a}}}$$

with properly chosen local *Raviart–Thomas–Nédélec* mixed finite element spaces $\mathbf{V}_{\ell}^{\mathbf{a}} \times Q_{\ell}^{\mathbf{a}}$ of order $p_{\mathbf{a}}$.

A posteriori error **ESTIMATE**

Flux reconstruction: illustration on a single patch $\omega_{\mathbf{a}}, \mathbf{a} \in \mathcal{T}_2$

A posteriori error (ESTIMATE)

Flux reconstruction: illustration on a single patch $\omega_{\mathbf{a}}, \mathbf{a} \in \mathcal{T}_2$

A posteriori error **ESTIMATE**

Guaranteed upper bound on the energy error

$$\nabla(u - u_{\ell}) \| \leq \eta(\mathcal{T}_{\ell}) := \left\{ \sum_{K \in \mathcal{T}_{\ell}} \eta_{K}^{2} \right\}^{\frac{1}{2}}$$
$$\eta_{K} := \|\nabla u_{\ell} + \boldsymbol{\sigma}_{\ell}\|_{K} + \frac{h_{K}}{\pi} \|f - \nabla \cdot \boldsymbol{\sigma}_{\ell}\|_{K}.$$

References:

- D. BRAESS, J. SCHÖBERL, Equilibrated residual error estimator for edge elements, Math. Comp. (2008)
- P. DESTUYNDER, B. MÉTIVET, *Explicit error bounds in a conforming finite element method*, Math. Comp. (1999)
- V. DOLEJŠÍ, A. ERN, AND M. VOHRALÍK, hp-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems, SIAM J. Sci. Comput. (2016)

The goal is to mark a set of elements $\mathcal{M}_\ell \subset \mathcal{T}_\ell$ to be refined

Classical bulk chasing (Dörfler's marking strategy)

For a *fixed* parameter $\theta \in (0, 1]$ choose (the smallest) set of elements \mathcal{M}_{ℓ} s.t.:

 $\eta(\mathcal{M}_{\ell}) \ge \theta \, \eta(\mathcal{T}_{\ell})$

• Notation:
$$\eta(\mathcal{M}_{\ell}) := \left\{ \sum_{K \in \mathcal{M}_{\ell}} \eta_K^2 \right\}^{\frac{1}{2}}$$

Remark: we select the elements patch-wise, hence we define the set of marked vertices *V*_ℓ (•), and ω_ℓ (▲) – the domain of the marked elements *M*_ℓ

Outline

Motivation

Setting

Reduction factors

hp-strategy

Conclusion

P. Daniel, A. Ern, I. Smears, M. Vohralík

Residual liftings I

Assumption: the next-level $\mathcal{T}_{\ell+1}$ and $\mathbf{p}_{\ell+1}$ have been determined

Notation: for each marked vertex $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ (•) and the associated patch $\omega_{\mathbf{a}}$ we define

- the local submesh refinement $\mathcal{T}^{hp}_{\mathbf{a}} = \mathcal{T}_{\ell+1}|_{\omega_{\mathbf{a}}}$
- the local polynomial degrees $\mathbf{p}^{hp}_{\mathbf{a}} = \mathbf{p}_{\ell+1}|_{\mathcal{T}_{\ell+1}}$

Residual liftings II

Residual liftings' local problems ($\ell \ge 0$)

For each marked vertex $\mathbf{a}\in\widetilde{\mathcal{V}}_\ell,$ we define the local patch-based space

$$V_{\mathbf{a}}^{hp} := \mathbb{P}_{\mathbf{p}_{\mathbf{a}}^{hp}}(\mathcal{T}_{\mathbf{a}}^{hp}) \cap H_0^1(\omega_{\mathbf{a}}) .$$

We define the local residual lifting $r_{\mathbf{a}}^{hp}$ as the solution of

$$(\nabla r_{\mathbf{a}}^{hp}, \nabla v_{\mathbf{a}}^{hp})_{\omega_{\mathbf{a}}} = (f, v_{\mathbf{a}}^{hp})_{\omega_{\mathbf{a}}} - (\nabla u_{\ell}, \nabla v_{\mathbf{a}}^{hp})_{\omega_{\mathbf{a}}} \quad \forall v_{\mathbf{a}}^{hp} \in V_{\mathbf{a}}^{hp}.$$

A. ERN AND M. VOHRALÍK

Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM (2015)

I. BABUŠKA AND T. STROUBOULIS

The finite element method and its reliability, The Clarendon Press Oxford University Press (2001)

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\nabla(u_{\ell+1} - u_{\ell}) \| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

Proof:

$$\|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} = \sup_{v_{\ell+1} \in V_{\ell+1}(\omega_{\ell})} \frac{(\nabla(u_{\ell+1} - u_{\ell}), \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}}$$

To finish take $\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{t}}r_{\mathbf{a}}^{hp}
ight)$ as test function $v_{\ell^{2}}$

P. Daniel, A. Ern, I. Smears, M. Vohralík

hp-strategy with guaranteed error reduction factors 11 / 20

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\|\nabla(u_{\ell+1} - u_{\ell})\| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

Proof:

$$\|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} = \sup_{v_{\ell+1} \in V_{\ell+1}(\omega_{\ell})} \frac{(\nabla(u_{\ell+1} - u_{\ell}), \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}}$$

To finish take $\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{t}}r_{\mathbf{a}}^{hp}
ight)$ as test function $v_{\ell^{2}}$

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\|\nabla(u_{\ell+1} - u_{\ell})\| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

$$\|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} = \sup_{v_{\ell+1} \in V_{\ell+1}(\omega_{\ell})} \frac{(\nabla(u_{\ell+1} - u_{\ell}), \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}}$$

To finish take $\left(\sum_{\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)$ as test function $v_{\ell+1}$

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\|\nabla(u_{\ell+1} - u_{\ell})\| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

$$\|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \sup_{v_{\ell+1} \in V_{\ell+1}^{0}(\omega_{\ell})} \frac{(\nabla(u_{\ell+1} - u_{\ell}), \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}}$$

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\|\nabla(u_{\ell+1} - u_{\ell})\| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

$$\|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \geq \sup_{v_{\ell+1} \in V_{\ell+1}^{0}(\omega_{\ell})} \frac{(f, v_{\ell+1})_{\omega_{\ell}} - (\nabla u_{\ell}, \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}}$$
To finish take $\left(\sum_{\mathbf{a} \in \widetilde{V}_{\ell}} r_{\mathbf{a}}^{hp}\right)$ as test function $v_{\ell+1}$

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\|\nabla(u_{\ell+1} - u_{\ell})\| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

$$\begin{aligned} \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} &\geq \sup_{v_{\ell+1} \in V^{0}_{\ell+1}(\omega_{\ell})} \frac{(f, v_{\ell+1})_{\omega_{\ell}} - (\nabla u_{\ell}, \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}} \end{aligned}$$
To finish take $\left(\sum_{\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)$ as test function $v_{\ell+1}$

Error reduction factor $C_{red} \in [0, 1)$

Guaranteed error contraction property

For given:

•
$$\mathcal{T}_{\ell}, \mathcal{T}_{\ell+1}$$
 (s.t. $\mathcal{T}_{\ell} \subset \mathcal{T}_{\ell+1}$)

- the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$
- $u_{\ell} \in \mathcal{V}_{\ell}$ be the FEM solution and $\{\eta_K\}_{K \in \mathcal{T}_{\ell}}$

The new (*unknown*) numerical solution $u_{\ell+1} \in V_{\ell+1}$ satisfies:

$$\|\nabla(u - u_{\ell+1})\| \leq \frac{C_{\text{red}}}{||\nabla(u - u_{\ell})||} \text{ with } \frac{C_{\text{red}}}{||\nabla(u - u_{\ell})||} \leq \frac{\eta_{\mathcal{M}_{\ell}}^2}{\eta^2(\mathcal{M}_{\ell})}$$

Contraction property

$$\|\nabla(u-u_{\ell+1})\| \leq C_{\text{red}} \|\nabla(u-u_{\ell})\| \text{ with } C_{\text{red}} := \sqrt{1-\theta^2 \frac{\eta^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})}}$$

Proof

• Garlerking orthogonality $\|\nabla(u - u_{\ell+1})\|^2 = \|\nabla(u - u_{\ell})\|^2 - \|\nabla(u_{\ell+1} - u_{\ell})\|^2$

⁽²⁾ Employ the discrete lower bound $\underline{\eta}_{\mathcal{M}_{e}}$

- ③ Use the Dörfler marking property $\eta^2(\mathcal{M}_\ell) \geq heta^2 \, \eta^2(\mathcal{T}_\ell)$
- Sector 2 Sector 2
- Factorize & take square root

Contraction property

$$\|\nabla(u-u_{\ell+1})\| \leq C_{\operatorname{red}} \|\nabla(u-u_{\ell})\| \text{ with } C_{\operatorname{red}} := \sqrt{1-\theta^2 \frac{\eta^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})}}$$

Garlerking orthogonality
$$\|\nabla(u - u_{\ell+1})\|^2 = \|\nabla(u - u_{\ell})\|^2 - \underbrace{\|\nabla(u_{\ell+1} - u_{\ell})\|^2}_{\geq \underline{\eta}^2_{\mathcal{M}_{\ell}} = \frac{\underline{\eta}^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})} \eta^2(\mathcal{M}_{\ell})}$$

- 2 Employ the discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$
- ${f 0}\,$ Use the Dörfler marking property $\eta^2({\cal M}_\ell)\geq heta^2\,\eta^2({\cal T}_\ell)$
- ④ Employ the error estimate $\eta^2(\mathcal{T}_\ell) \geq \|
 abla(u-u_\ell)\|^2$
- Factorize & take square root

Contraction property

$$\|\nabla(u-u_{\ell+1})\| \leq C_{\operatorname{red}} \|\nabla(u-u_{\ell})\| \text{ with } C_{\operatorname{red}} := \sqrt{1-\theta^2 \frac{\eta^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})}}$$

Garlerking orthogonality
$$\|\nabla(u - u_{\ell+1})\|^2 = \|\nabla(u - u_{\ell})\|^2 - \underbrace{\|\nabla(u_{\ell+1} - u_{\ell})\|^2}_{\geq \underline{\eta}^2_{\mathcal{M}_{\ell}} = \frac{\underline{\eta}^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})} \eta^2(\mathcal{M}_{\ell})}$$

- 2 Employ the discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$
- ${f 0}\,$ Use the Dörfler marking property $\eta^2({\cal M}_\ell)\geq heta^2\,\eta^2({\cal T}_\ell)$
- ④ Employ the error estimate $\eta^2(\mathcal{T}_\ell) \geq \|
 abla(u-u_\ell)\|^2$
- Factorize & take square root

Contraction property

$$\|\nabla(u-u_{\ell+1})\| \leq C_{\operatorname{red}} \|\nabla(u-u_{\ell})\| \text{ with } C_{\operatorname{red}} := \sqrt{1-\theta^2 \frac{\eta^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})}}$$

$$\begin{aligned} & \textbf{Garlerking orthogonality} \\ & \|\nabla(u-u_{\ell+1})\|^2 = \|\nabla(u-u_{\ell})\|^2 - \underbrace{\|\nabla(u_{\ell+1}-u_{\ell})\|^2}_{\geq \underline{\eta}^2_{\mathcal{M}_{\ell}} = \frac{\underline{\eta}^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})} \eta^2(\mathcal{M}_{\ell})} \end{aligned}$$

- 2 Employ the discrete lower bound $\eta_{\mathcal{M}_{e}}$
- **③** Use the Dörfler marking property $\eta^2(\mathcal{M}_\ell) \ge \theta^2 \eta^2(\mathcal{T}_\ell)$
- Imploy the error estimate $\eta^2(\mathcal{T}_\ell) \geq \|
 abla(u-u_\ell)\|^2$
- Factorize & take square root

Contraction property

$$\|\nabla(u-u_{\ell+1})\| \leq C_{\operatorname{red}} \|\nabla(u-u_{\ell})\| \text{ with } C_{\operatorname{red}} := \sqrt{1-\theta^2 \frac{\eta^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})}}$$

$$\begin{aligned} & \textbf{Garlerking orthogonality} \\ & \|\nabla(u-u_{\ell+1})\|^2 = \|\nabla(u-u_{\ell})\|^2 - \underbrace{\|\nabla(u_{\ell+1}-u_{\ell})\|^2}_{\geq \underline{\eta}^2_{\mathcal{M}_{\ell}} = \frac{\eta^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})} \eta^2(\mathcal{M}_{\ell})} \end{aligned}$$

- 2 Employ the discrete lower bound $\underline{\eta}_{\mathcal{M}_{e}}$
- **③** Use the Dörfler marking property $\eta^2(\mathcal{M}_\ell) \ge \theta^2 \eta^2(\mathcal{T}_\ell)$
- Employ the error estimate $\eta^2(\mathcal{T}_{\ell}) \geq \|\nabla(u u_{\ell})\|^2$
- Factorize & take square root

Contraction property

$$\|\nabla(u-u_{\ell+1})\| \leq C_{\operatorname{red}} \|\nabla(u-u_{\ell})\| \text{ with } C_{\operatorname{red}} := \sqrt{1-\theta^2 \frac{\eta^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})}}$$

$$\begin{aligned} & \textbf{Garlerking orthogonality} \\ & \|\nabla(u-u_{\ell+1})\|^2 = \|\nabla(u-u_{\ell})\|^2 - \underbrace{\|\nabla(u_{\ell+1}-u_{\ell})\|^2}_{\geq \underline{\eta}^2_{\mathcal{M}_{\ell}} = \frac{\underline{\eta}^2_{\mathcal{M}_{\ell}}}{\eta^2(\mathcal{M}_{\ell})} \eta^2(\mathcal{M}_{\ell})} \end{aligned}$$

- 2 Employ the discrete lower bound $\underline{\eta}_{\mathcal{M}_{e}}$
- **③** Use the Dörfler marking property $\eta^2(\mathcal{M}_\ell) \ge \theta^2 \eta^2(\mathcal{T}_\ell)$
- Employ the error estimate $\eta^2(\mathcal{T}_{\ell}) \geq \|\nabla(u u_{\ell})\|^2$
- Factorize & take square root

Numerics: L-shape problem - solution with corner singularity

$$u(r,\varphi) = r^{\frac{2}{3}} \sin\left(\frac{2\varphi}{3}\right)$$

erc

Outline

Motivation

Setting

Reduction factors

hp-strategy

Conclusion

P. Daniel, A. Ern, I. Smears, M. Vohralík

hp-strategy – the 1st attempt

Goal: to determine the next-level mesh $\mathcal{T}_{\ell+1}$ and degrees $\mathbf{p}_{\ell+1}$

• Idea: max $\|\nabla r_{\mathbf{a}}^{\text{rel}}\|_{\omega_{\mathbf{a}}}$ max $\underline{\eta}_{\mathcal{M}_{\ell}}$ min $\|\nabla (u - u_{\ell+1})\|$ • If $\|\nabla r_{\mathbf{a}}^{h}\|_{\omega_{\mathbf{a}}} \ge \|\nabla r_{\mathbf{a}}^{p}\|_{\omega_{\mathbf{a}}}$, then a flagged for *h*-refinement • If $\|\nabla r_{\mathbf{a}}^{h}\|_{\omega_{\mathbf{a}}} < \|\nabla r_{\mathbf{a}}^{p}\|_{\omega_{\mathbf{a}}}$, then a flagged for *p*-refinement

hp-strategy – the 1st attempt

Goal: to determine the next-level mesh $\mathcal{T}_{\ell+1}$ and degrees $\mathbf{p}_{\ell+1}$

• On each marked patch $\omega_{\mathbf{a}}, \mathbf{a} \in \mathcal{V}_{\ell}$ calculate the **2 residual** liftings $r_a^h \in V_a^h$ and $r_a^p \in V_a^p$: $(\nabla r_{\mathbf{a}}^{h}, \nabla v_{\mathbf{a}}^{h})_{\omega_{\mathbf{a}}} = (f, v_{\mathbf{a}}^{h})_{\omega_{\mathbf{a}}} - (\nabla u_{\ell}, \nabla v_{\mathbf{a}}^{h})_{\omega_{\mathbf{a}}} \quad \forall v_{\mathbf{a}}^{h} \in V_{\mathbf{a}}^{h}$ $(\nabla r_{\mathbf{a}}^p, \nabla v_{\mathbf{a}}^p)_{\omega_{\mathbf{a}}} = (f, v_{\mathbf{a}}^p)_{\omega_{\mathbf{a}}} - (\nabla u_{\ell}, \nabla v_{\mathbf{a}}^p)_{\omega_{\mathbf{a}}} \quad \forall v_{\mathbf{a}}^p \in V_{\mathbf{a}}^p$ ล а \mathbf{a} $(\mathcal{T}^{\boldsymbol{h}}_{\mathbf{a}},\mathbf{p}^{\boldsymbol{h}}_{\mathbf{a}})$ $(\mathcal{T}^p_{\mathbf{a}}, \mathbf{p}^p_{\mathbf{a}})$ $(\mathcal{T}_{\mathbf{a}}, \mathbf{p}_{\mathbf{a}})$ • Idea: max $\|\nabla r_{\mathbf{a}}^{\mathsf{ref}}\|_{\omega_{\mathbf{a}}} \rightarrow \max \eta_{\mathcal{M}_{\mathbf{a}}} \rightarrow \min \|\nabla (u - u_{\ell+1})\|$ • If $\|\nabla r_{\mathbf{a}}^{h}\|_{\omega_{\mathbf{a}}} \geq \|\nabla r_{\mathbf{a}}^{p}\|_{\omega_{\mathbf{a}}}$, then a flagged for *h*-refinement • If $\|\nabla r^h_{\mathbf{a}}\|_{\omega_{\mathbf{a}}} < \|\nabla r^p_{\mathbf{a}}\|_{\omega_{\mathbf{a}}}$, then a flagged for *p*-refinement

hp-strategy – the 1st attempt

Goal: to determine the next-level mesh $\mathcal{T}_{\ell+1}$ and degrees $\mathbf{p}_{\ell+1}$

• On each marked patch $\omega_{\mathbf{a}}, \mathbf{a} \in \mathcal{V}_{\ell}$ calculate the **2 residual** liftings $r_a^h \in V_a^h$ and $r_a^p \in V_a^p$: $(\nabla r_{\mathbf{a}}^{h}, \nabla v_{\mathbf{a}}^{h})_{\omega_{\mathbf{a}}} = (f, v_{\mathbf{a}}^{h})_{\omega_{\mathbf{a}}} - (\nabla u_{\ell}, \nabla v_{\mathbf{a}}^{h})_{\omega_{\mathbf{a}}} \quad \forall v_{\mathbf{a}}^{h} \in V_{\mathbf{a}}^{h}$ $(\nabla r_{\mathbf{a}}^p, \nabla v_{\mathbf{a}}^p)_{\omega_{\mathbf{a}}} = (f, v_{\mathbf{a}}^p)_{\omega_{\mathbf{a}}} - (\nabla u_{\ell}, \nabla v_{\mathbf{a}}^p)_{\omega_{\mathbf{a}}} \quad \forall v_{\mathbf{a}}^p \in V_{\mathbf{a}}^p$ а ล ล $(\mathcal{T}^{\boldsymbol{h}}_{\mathbf{a}},\mathbf{p}^{\boldsymbol{h}}_{\mathbf{a}})$ $(\mathcal{T}^p_{\mathbf{a}}, \mathbf{p}^p_{\mathbf{a}})$ $(\mathcal{T}_{\mathbf{a}}, \mathbf{p}_{\mathbf{a}})$ • Idea: max $\|\nabla r_{\mathbf{a}}^{\mathsf{ref}}\|_{\omega_{\mathbf{a}}} \rightarrow \max \eta_{\mathcal{M}_{\mathbf{a}}} \rightarrow \min \|\nabla (u - u_{\ell+1})\|$ • If $\|\nabla r_{\mathbf{a}}^{\mathbf{h}}\|_{\omega_{\mathbf{a}}} \geq \|\nabla r_{\mathbf{a}}^{\mathbf{p}}\|_{\omega_{\mathbf{a}}}$, then a flagged for **h**-refinement • If $\|\nabla r_{\mathbf{a}}^{h}\|_{\omega_{\mathbf{a}}} < \|\nabla r_{\mathbf{a}}^{p}\|_{\omega_{\mathbf{a}}}$, then a flagged for *p*-refinement

hp-strategy – the 1st attempt

The final element-wise decision

- An element K ∈ T_ℓ is *h*-refined if it contains at least one vertex flagged for *h*-refinement
- An element K ∈ T_ℓ is *p*-refined if it contains at least one vertex flagged for *p*-refinement

An element K has (d + 1) vertices – possible hp-refinement

Our choice of refinement methods

- Newest vertex bisection for *h*-refinement method
- Locally adjusted *p*-refinement rules on the patches:

$$\begin{split} \mathbf{p}_{\mathbf{a}}^p &= \{p_K + \bigtriangleup_{\mathbf{a}}(K), K \in \mathcal{T}_{\mathbf{a}}\}, \text{ where} \\ \bigtriangleup_{\mathbf{a}}(K) &= \left\{ \begin{array}{ll} 1 \quad \text{if} \quad p_K = \min_{K' \in \mathcal{T}_{\mathbf{a}}} p_{K'} \\ 0 \quad \text{otherwise.} \end{array} \right. \end{split}$$

→ Avoiding the staggered polynomial degree distribution

P. Daniel, A. Ern, I. Smears, M. Vohralík

hp-strategy – the 1st attempt

The final element-wise decision

- An element K ∈ T_ℓ is *h*-refined if it contains at least one vertex flagged for *h*-refinement
- An element K ∈ T_ℓ is *p*-refined if it contains at least one vertex flagged for *p*-refinement

An element K has (d + 1) vertices – possible hp-refinement

Our choice of refinement methods

- Newest vertex bisection for *h*-refinement method
- Locally adjusted *p*-refinement rules on the patches:

 $\begin{aligned} \mathbf{p}_{\mathbf{a}}^p &= \{p_K + \triangle_{\mathbf{a}}(K), K \in \mathcal{T}_{\mathbf{a}}\}, \text{ where} \\ \triangle_{\mathbf{a}}(K) &= \begin{cases} 1 & \text{if} \quad p_K = \min_{K' \in \mathcal{T}_{\mathbf{a}}} p_{K'} \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$

- → Avoiding the staggered polynomial degree distribution

hp-strategy

Numerics: L-shape problem - solution with corner singularity

$$u(r,\varphi) = r^{\frac{2}{3}} \sin\left(\frac{2\varphi}{3}\right)$$

Videos illustrating the adaptive process

P. Daniel, A. Ern, I. Smears, M. Vohralík

Numerics -hp-strategy

 \bullet The final mesh and the final polynomial degree distribution after 65 iterations of the proposed $hp\mbox{-strategy}$

Numerics -hp-strategy

• The final polynomial degree distribution after 65 iterations of the proposed *hp*-strategy and its detail near the corner (*left*).

Exponential convergence & Assessment of the strategy

W. F. MITCHELL AND M. A. MCCLAIN

A comparison of hp-adaptive strategies for elliptic partial differential equations (2014).

P. Daniel, A. Ern, I. Smears, M. Vohralík

Outline

Motivation

Setting

Reduction factors

hp-strategy

Conclusion

P. Daniel, A. Ern, I. Smears, M. Vohralík

Conclusion

- Cred and $\underline{\eta}_{M_e}$ very close to ideal value of 1
- the first attempt hp-strategy with exponential order of convergence observed

Future work:

- try to exploit the estimates of C_{red} inside the *hp*-strategy
- try to prove the convergence of the *hp*-strategy
- exploiting the multilevel structure in an inexact algebraic solver (multigrid, ...)

Thank you for your attention!

