An adaptive *hp*-refinement strategy with computable guaranteed error reduction factors

The 15th European Finite Element Fair

Patrik DANIEL, Alexandre ERN, Iain SMEARS, Martin VOHRALÍK

Inria Paris & ENPC, France

Milano, 26-27 May 2017

European Research Council

Outline

Motivation

Setting

Reduction factors

hp-strategy

Conclusion

Motivation

References

D. BRAESS, J. SCHÖBERL

Equilibrated residual error estimator for edge elements, Math. Comp. (2008)

W. DÖRFLER

A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal.,(1996)

C. CANUTO, R. H. NOCHETTO, R. STEVENSON, AND M. VERANI

Convergence and optimality of hp-AFEM, Numer. Math. (2016).

J. M. CASCÓN AND R. H. NOCHETTO

Quasioptimal cardinality of AFEM driven by nonresidual estimators, IMA J. Numer. Anal., (2012)

A. ERN AND M. VOHRALÍK

Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal.(2015).

General adaptive loop

$$\fbox{SOLVE} \rightarrow \fbox{ESTIMATE} \rightarrow \fbox{MARK} \rightarrow \fbox{REFINE}$$

Outline

Motivation

Setting

Reduction factors

hp-strategy

Conclusion

Laplace model problem

For $f \in L^2(\Omega)$, find $u \in H^1_0(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

Let $\{\mathcal{T}_{\ell}\}_{\ell \geq 0}$ be a sequence of matching simplicial meshes

Each element $K \in \mathcal{T}_{\ell}$ is assigned with a polynomial degree via vector $\mathbf{p}_{\ell} := \{p_K \ge 1, K \in \mathcal{T}_{\ell}\}, \mathbb{P}_{p_K}(K)$

P. Daniel, A. Ern, I. Smears, M. Vohralík

hp-strategy with guaranteed error reduction factors 3 / 17

SOLVE

Laplace model problem

For $f \in L^2(\Omega)$, find $u \in H^1_0(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

Let $\{\mathcal{T}_{\ell}\}_{\ell \geq 0}$ be a sequence of matching simplicial meshes

Each element $K \in \mathcal{T}_{\ell}$ is assigned with a polynomial degree via vector $\mathbf{p}_{\ell} := \{p_K \ge 1, K \in \mathcal{T}_{\ell}\}, \mathbb{P}_{p_K}(K)$

Laplace model problem – FEM Define the test space $V_{\ell} := \mathbb{P}_{\mathbf{p}_{\ell}}(\mathcal{T}_{\ell}) \cap H_0^1(\Omega)$. Find $u_{\ell} \in V_{\ell}$ s.t. $(\nabla u_{\ell}, \nabla v_{\ell}) = (f, v_{\ell}) \quad \forall v_{\ell} \in V_{\ell}$

Due to the nestedness of the spaces $V_{\ell} \subset V_{\ell+1}, \ell \geq 0$:

Galerkin orthogonality

$$\|\nabla(u - u_{\ell+1})\|^2 = \|\nabla(u - u_{\ell})\|^2 - \|\nabla(u_{\ell+1} - u_{\ell})\|^2$$

Laplace model problem – FEM Define the test space $V_{\ell} := \mathbb{P}_{\mathbf{p}_{\ell}}(\mathcal{T}_{\ell}) \cap H_0^1(\Omega)$. Find $u_{\ell} \in V_{\ell}$ s.t. $(\nabla u_{\ell}, \nabla v_{\ell}) = (f, v_{\ell}) \quad \forall v_{\ell} \in V_{\ell}$

Due to the nestedness of the spaces $V_{\ell} \subset V_{\ell+1}, \ell \geq 0$:

Galerkin orthogonality

$$\|\nabla(u - u_{\ell+1})\|^2 = \|\nabla(u - u_{\ell})\|^2 - \|\nabla(u_{\ell+1} - u_{\ell})\|^2$$

A posteriori error **ESTIMATE**

Guaranteed upper bound on the energy error $\| \nabla \left(u - u_{\ell} \right) \|$

• for each $\ell \geq 0$ and for each patch $\mathcal{T}_{\mathbf{a}}, \mathbf{a} \in \mathcal{T}_{\ell}$, select

 $p_{\mathbf{a}} := \max_{K \in \mathcal{T}_{\mathbf{a}}} p_K$

Equilibrated flux reconstruction $\sigma_\ell := \sum_{\mathbf{a} \in \mathcal{V}_\ell} \sigma^{\mathbf{a}}_\ell$

For each vertex $\mathbf{a} \in \mathcal{V}_\ell,$ we solve a small minimization problem

$$\boldsymbol{\sigma}^{\mathbf{a}}_{\ell} := \arg \min_{\mathbf{v}_{\ell} \in \mathbf{V}^{\mathbf{a}}_{\ell}, \, \nabla \cdot \mathbf{v}_{\ell} = \Pi_{Q^{\mathbf{a}}_{\ell}}(f\psi_{\mathbf{a}} - \nabla u_{\ell} \cdot \nabla \psi_{\mathbf{a}})} \|\psi_{\mathbf{a}} \nabla u_{\ell} + \mathbf{v}_{\ell}\|_{\omega_{\mathbf{a}}}$$

with properly chosen local *Raviart–Thomas–Nédélec* mixed finite element spaces $\mathbf{V}^{\mathbf{a}}_{\ell} \times Q^{\mathbf{a}}_{\ell}$ of order $p_{\mathbf{a}}$.

ESTIMATE

Guaranteed upper bound on the error

$$\nabla(u - u_{\ell}) \| \leq \eta(\mathcal{T}_{\ell}) := \left\{ \sum_{K \in \mathcal{T}_{\ell}} \eta_{K}^{2} \right\}^{\frac{1}{2}}$$
$$\eta_{K} := \|\nabla u_{\ell} + \boldsymbol{\sigma}_{\ell}\|_{K} + \frac{h_{K}}{\pi} \|f - \nabla \cdot \boldsymbol{\sigma}_{\ell}\|_{K}.$$

References:

- D. BRAESS, J. SCHÖBERL, Equilibrated residual error estimator for edge elements, Math. Comp. (2008)
- P. DESTUYNDER, B. MÉTIVET, *Explicit error bounds in a conforming finite element method*, Math. Comp. (1999)
- V. DOLEJŠÍ, A. ERN, AND M. VOHRALÍK, hp-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems, SIAM J. Sci. Comput. (2016)

The goal is to mark a set of elements $\mathcal{M}_\ell \subset \mathcal{T}_\ell$ to be refined

Classical bulk chasing (Dörfler's marking strategy)

For a *fixed* parameter $\theta \in (0, 1]$ choose (the smallest) set of elements \mathcal{M}_{ℓ} s.t.:

 $\eta(\mathcal{M}_{\ell}) \ge \theta \, \eta(\mathcal{T}_{\ell})$

• Notation:
$$\eta(\mathcal{M}_{\ell}) := \left\{ \sum_{K \in \mathcal{M}_{\ell}} \eta_K^2 \right\}^{\frac{1}{2}}$$

Remark: we select the elements patch-wise, hence we define the set of marked vertices *V*_ℓ (•), and ω_ℓ (▲) – the domain of the marked elements *M*_ℓ

Outline

Motivation

Setting

Reduction factors

hp-strategy

Conclusion

Residual liftings I

Assumption: the next-level $\mathcal{T}_{\ell+1}$ and \mathbf{p}_{ℓ} have been determined

Notation: for each marked vertex $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ (•) and the associated patch $\omega_{\mathbf{a}}$ we define

- the local submesh refinement $\mathcal{T}^{hp}_{\mathbf{a}} = \mathcal{T}_{\ell+1}|_{\omega_{\mathbf{a}}}$
- the local polynomial degrees $\mathbf{p}^{hp}_{\mathbf{a}} = \mathbf{p}_{\ell+1}|_{\mathcal{T}_{\ell+1}}$

Residual liftings II

Residual liftings' local problems ($\ell \ge 0$)

For each marked vertex $\mathbf{a}\in\widetilde{\mathcal{V}}_\ell,$ we define the local patch-based space

$$V_{\mathbf{a}}^{hp} := \mathbb{P}_{\mathbf{p}_{\mathbf{a}}^{hp}}(\mathcal{T}_{\mathbf{a}}^{hp}) \cap H_0^1(\omega_{\mathbf{a}}) .$$

We define the local residual lifting $r_{\mathbf{a}}^{hp}$ as the solution of

$$(\nabla r_{\mathbf{a}}^{hp}, \nabla v_{\mathbf{a}}^{hp})_{\omega_{\mathbf{a}}} = (f, v_{\mathbf{a}}^{hp})_{\omega_{\mathbf{a}}} - (\nabla u_{\ell}, \nabla v_{\mathbf{a}}^{hp})_{\omega_{\mathbf{a}}} \quad \forall v_{\mathbf{a}}^{hp} \in V_{\mathbf{a}}^{hp}.$$

A. ERN AND M. VOHRALÍK

Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM (2015)

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\nabla(u_{\ell+1} - u_{\ell}) \| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

Proof:

$$\|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} = \sup_{v_{\ell+1} \in V_{\ell+1}(\omega_{\ell})} \frac{(\nabla(u_{\ell+1} - u_{\ell}), \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}}$$

To finish take $\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{t}}r_{\mathbf{a}}^{hp}
ight)$ as test function v_{ℓ}

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\|\nabla(u_{\ell+1} - u_{\ell})\| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

Proof:

$$\|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} = \sup_{v_{\ell+1} \in V_{\ell+1}(\omega_{\ell})} \frac{(\nabla(u_{\ell+1} - u_{\ell}), \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}}$$

To finish take $\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{t}}r_{\mathbf{a}}^{hp}
ight)$ as test function v_{ℓ}

P. Daniel, A. Ern, I. Smears, M. Vohralík

hp-strategy with guaranteed error reduction factors 10 / 17

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\|\nabla(u_{\ell+1} - u_{\ell})\| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

Proof:

$$\|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} = \sup_{v_{\ell+1} \in V_{\ell+1}(\omega_{\ell})} \frac{(\nabla(u_{\ell+1} - u_{\ell}), \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}}$$

To finish take $\left(\sum_{\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)$ as test function $v_{\ell+1}$

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\|\nabla(u_{\ell+1} - u_{\ell})\| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

Proof:

$$\|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \sup_{v_{\ell+1} \in V_{\ell+1}^{0}(\omega_{\ell})} \frac{(\nabla(u_{\ell+1} - u_{\ell}), \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}}$$

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\|\nabla(u_{\ell+1} - u_{\ell})\| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

Proof:

$$\|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \geq \sup_{v_{\ell+1} \in V_{\ell+1}^{0}(\omega_{\ell})} \frac{(f, v_{\ell+1})_{\omega_{\ell}} - (\nabla u_{\ell}, \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}}$$
To finish take $\left(\sum_{\mathbf{a} \in \widetilde{V}_{\ell}} r_{\mathbf{a}}^{hp}\right)$ as test function $v_{\ell+1}$

Discrete lower bound $\underline{\eta}_{\mathcal{M}_{\ell}}$

Let the meshes \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$ and the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ be given. Then we have

$$\|\nabla(u_{\ell+1} - u_{\ell})\| \ge \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} \ge \frac{\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} \|\nabla r_{\mathbf{a}}^{hp}\|_{\omega_{\mathbf{a}}}^{2}}{\|\nabla\left(\sum_{\mathbf{a}\in\widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)\|_{\omega_{\ell}}} =: \underline{\eta}_{\mathcal{M}_{\ell}}$$

Proof:

$$\begin{aligned} \|\nabla(u_{\ell+1} - u_{\ell})\|_{\omega_{\ell}} &\geq \sup_{v_{\ell+1} \in V_{\ell+1}^{0}(\omega_{\ell})} \frac{(f, v_{\ell+1})_{\omega_{\ell}} - (\nabla u_{\ell}, \nabla v_{\ell+1})_{\omega_{\ell}}}{\|\nabla v_{\ell+1}\|_{\omega_{\ell}}} \end{aligned}$$
To finish take $\left(\sum_{\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}} r_{\mathbf{a}}^{hp}\right)$ as test function $v_{\ell+1}$

Error reduction factor $C_{\text{red}} \in [0, 1)$

Guaranteed contraction property

For given:

•
$$\mathcal{T}_{\ell}, \mathcal{T}_{\ell+1}$$
 (s.t. $\mathcal{T}_{\ell} \subset \mathcal{T}_{\ell+1}$)

- the associated residual liftings $r_{\mathbf{a}}^{hp}$ for each $\mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$
- $u_{\ell} \in \mathcal{V}_{\ell}$ be the FEM solution and $\{\eta_K\}_{K \in \mathcal{T}_{\ell}}$

The new (*unknown*) numerical solution $u_{\ell+1} \in V_{\ell+1}$ satisfies:

$$\|\nabla(u - u_{\ell+1})\| \leq \frac{C_{\text{red}}}{||\nabla(u - u_{\ell})||} \text{ with } \frac{C_{\text{red}}}{||\nabla(u - u_{\ell})||} \leq \frac{\eta_{\mathcal{M}_{\ell}}^2}{\eta^2(\mathcal{M}_{\ell})}$$

Guaranteed error reduction factor - proof sketch

Contraction property

$$\|\nabla(u-u_{\ell+1})\| \leq \frac{C_{\text{red}}}{C_{\text{red}}} \|\nabla(u-u_{\ell})\| \text{ with } \frac{C_{\text{red}}}{C_{\text{red}}} := \sqrt{1-\theta^2 \frac{\eta_{\mathcal{M}_{\ell}}^2}{\eta^2(\mathcal{M}_{\ell})}}$$

Proof

Galerkin orthogonality
$$\|\nabla(u-u_{\ell+1})\|^{2} = \underbrace{\|\nabla(u-u_{\ell})\|^{2}}_{\leq \eta^{2}(\mathcal{T}_{\ell})} - \underbrace{\|\nabla(u_{\ell+1}-u_{\ell})\|^{2}}_{\geq \underline{\eta}^{2}_{\mathcal{M}_{\ell}} = \frac{\underline{\eta}^{2}_{\mathcal{M}_{\ell}}}{\eta^{2}(\mathcal{M}_{\ell})} \eta^{2}(\mathcal{M}_{\ell})}$$

- 2 Employ the discrete lower bound $\underline{\eta}_{\mathcal{M}_{e}}$
- **③** Employ the error estimate $\eta(\mathcal{T}_{\ell})$
- Use the Dörfler marking property $\eta(\mathcal{M}_{\ell}) \geq \theta \eta(\mathcal{T}_{\ell})$
- Factorize & take square root

Numerics: L-shape problem - solution with corner singularity

$$u(r,\varphi) = r^{\frac{2}{3}} \sin\left(\frac{2\varphi}{3}\right)$$

erc

Outline

Motivation

Setting

Reduction factors

hp-strategy

Conclusion

Motivation Setting Reduction factors hp-strategy Conclusion

hp-strategy - the 1st attempt

Goal: to determine the next-level mesh $\mathcal{T}_{\ell+1}$ and degrees $\mathbf{p}_{\ell+1}$

• On each marked patch $\omega_{\mathbf{a}}, \mathbf{a} \in \mathcal{V}_{\ell}$ calculate the **2 residual** liftings $r_{\mathbf{a}}^{h} \in V_{\mathbf{a}}^{h}$ and $r_{\mathbf{a}}^{p} \in V_{\mathbf{a}}^{p}$: (ref $\in \{h, p\}$)

Idea: max ||∇r^{ref}_a||_{ω_a} max <u>η</u>_{M_ℓ} min ||∇(u - u_{ℓ+1})||
 If ||∇r^h_a||_{ω_a} ≥ ||∇r^p_a||_{ω_a}, then a flagged for *h*-refinement
 If ||∇r^h_a||_{ω_a} < ||∇r^p_a||_{ω_a}, then a flagged for r₂-refinement

Motivation Setting Reduction factors hp-strategy Conclusion

hp-strategy - the 1st attempt

Goal: to determine the next-level mesh $\mathcal{T}_{\ell+1}$ and degrees $\mathbf{p}_{\ell+1}$

• On each marked patch $\omega_{\mathbf{a}}, \mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ calculate the **2 residual** liftings $r_{\mathbf{a}}^{h} \in V_{\mathbf{a}}^{h}$ and $r_{\mathbf{a}}^{p} \in V_{\mathbf{a}}^{p}$: (ref $\in \{h, p\}$) $(\nabla r_{\mathbf{a}}^{\text{ref}}, \nabla v_{\mathbf{a}}^{\text{ref}})_{\omega_{\mathbf{a}}} = (f, v_{\mathbf{a}}^{\text{ref}})_{\omega_{\mathbf{a}}} - (\nabla u_{\ell}, \nabla v_{\mathbf{a}}^{\text{ref}})_{\omega_{\mathbf{a}}} \quad \forall v_{\mathbf{a}}^{\text{ref}} \in V_{\mathbf{a}}^{\text{ref}}.$

• Idea: max $\|\nabla r_{\mathbf{a}}^{\text{ref}}\|_{\omega_{\mathbf{a}}} \rightarrow \max \underline{\eta}_{\mathcal{M}_{\ell}} \rightarrow \min \|\nabla (u - u_{\ell+1})\|$ • If $\|\nabla r_{\mathbf{a}}^{h}\|_{\omega_{\mathbf{a}}} \ge \|\nabla r_{\mathbf{a}}^{p}\|_{\omega_{\mathbf{a}}}$, then a flagged for *h*-refinement • If $\|\nabla r_{\mathbf{a}}^{h}\|_{\omega_{\mathbf{a}}} < \|\nabla r_{\mathbf{a}}^{p}\|_{\omega_{\mathbf{a}}}$, then a flagged for *p*-refinement Motivation Setting Reduction factors hp-strategy Conclusion

hp-strategy - the 1st attempt

Goal: to determine the next-level mesh $\mathcal{T}_{\ell+1}$ and degrees $\mathbf{p}_{\ell+1}$

• On each marked patch $\omega_{\mathbf{a}}, \mathbf{a} \in \widetilde{\mathcal{V}}_{\ell}$ calculate the **2 residual** liftings $r_{\mathbf{a}}^{h} \in V_{\mathbf{a}}^{h}$ and $r_{\mathbf{a}}^{p} \in V_{\mathbf{a}}^{p}$: (ref $\in \{h, p\}$) $(\nabla r_{\mathbf{a}}^{\text{ref}}, \nabla v_{\mathbf{a}}^{\text{ref}})_{\omega_{\mathbf{a}}} = (f, v_{\mathbf{a}}^{\text{ref}})_{\omega_{\mathbf{a}}} - (\nabla u_{\ell}, \nabla v_{\mathbf{a}}^{\text{ref}})_{\omega_{\mathbf{a}}} \quad \forall v_{\mathbf{a}}^{\text{ref}} \in V_{\mathbf{a}}^{\text{ref}}.$

• Idea: max $\|\nabla r_{\mathbf{a}}^{\text{ref}}\|_{\omega_{\mathbf{a}}} \rightarrow \max \underline{\eta}_{\mathcal{M}_{\ell}} \rightarrow \min \|\nabla (u - u_{\ell+1})\|$ • If $\|\nabla r_{\mathbf{a}}^{h}\|_{\omega_{\mathbf{a}}} \ge \|\nabla r_{\mathbf{a}}^{p}\|_{\omega_{\mathbf{a}}}$, then a flagged for *h*-refinement • If $\|\nabla r_{\mathbf{a}}^{h}\|_{\omega_{\mathbf{a}}} < \|\nabla r_{\mathbf{a}}^{p}\|_{\omega_{\mathbf{a}}}$, then a flagged for *p*-refinement

Numerics -hp-strategy

 \bullet The initial mesh and the final polynomial degree distribution after 65 iterations of the proposed hp-strategy

Numerics -hp-strategy

• The final polynomial degree distribution after 65 iterations of the proposed *hp*-strategy and its detail near the corner (*left*).

Exponential convergence & Assessment of the strategy

W. F. MITCHELL AND M. A. MCCLAIN

A comparison of hp-adaptive strategies for elliptic partial differential equations (2014).

Outline

Motivation

Setting

Reduction factors

hp-strategy

Conclusion

Conclusion

- Cred and $\underline{\eta}_{M_e}$ very close to ideal value of 1
- the first attempt hp-strategy with exponential order of convergence observed

Future work:

- try to exploit the estimates of C_{red} inside the *hp*-strategy
- try to prove the convergence of the *hp*-strategy
- exploiting the multilevel structure in an inexact algebraic solver (multigrid, ...)

Thank you for your attention!

