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Simulation of the transport of radionuclides around a
repository

Far-field simulation
Vitrified waste

Calculation areaSymetry

Host rock Bentonite plug Backfill

Access DriftCell

Concrete

Near-field simulation

Challenges

Different materials→ strong heterogeneity,
different time scales.

Large differences in spatial scales.

Long-term computations.
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Model problem: Simplified model for two–phase immiscible
flow

Fractional flow (global pressure), with Kirchoff transformation

Neglect advection (focus on capillary trapping) : decouple pressure from
saturation, Enchery et al. (06), Cances (08)

Simplified system: Nonlinear (degenerate) diffusion equation

ω∂tS−∆φ(S) = 0 in Ω× [0,T ]

φ(S) =
∫ S

0
λ (u)π

′(u)du

ω porosity

λ mobility

Sα water saturation

π capillary pressure (increasing)
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Discontinuous capillary pressure: transmission conditions

Two subdomains Ω̄ = Ω̄1∪ Ω̄2, Ω1∩Ω2 = /0. Γ = Ω̄1∩ Ω̄2
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Transmission conditions on the interface
Continuity of capillary pressure π1(S1) = π2(S2) on Γ

Continuity of the flux ∇φ1(S1).n1 = ∇φ2(S2).n2 on Γ

Chavent – Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)
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Space–time domain decomposition

Domain decomposition in space

x

y

Discretize in time and apply DD
algorithm at each time step:

I Solve stationary problems in the
subdomains

I Exchange information through the
interface

Use the same time step on the whole
domain.

Space-time domain decomposition

Solve time-dependent problems in the
subdomains

Exchange information through the
space-time interface

Enable local discretizations both in
space and in time

Minimize number of communication
between subdoains

−→ local time stepping
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Linear diffusion problem

I Time-dependent diffusion equation + homogeneous Dirichlet BC & IC c(·,0) = c0.

ω∂t c + div(−D∇c) = f in Ω× (0,T ) ,

I Equivalent multi-domain formulation obtained by solving subproblems

ω∂t ci + div(−D∇ci ) = f in Ωi × (0,T )
ci = 0 on ∂ Ωi ∩∂ Ω× (0,T )

ci (·,0) = c0 in Ωi ,
for i = 1,2,

with transmission conditions on space–time interface

c1 = c2

∇c1 ·n1 + ∇c2 ·n2 = 0
on Γ× (0,T ) .

I Equivalent Robin TCs on Γ× [0,T ]. For β1,β2 > 0:

−∇c1 ·n1 + β1c1 =−∇c2 ·n1 + β1c2

−∇c2 ·n2 + β2c2 =−∇c1 ·n2 + β2c1

β1,β2 numerical parameters, can be optimized to improve convergence rate
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Schwarz waveform relation: Robin transmission conditions

I Robin to Robin operators, for i = 1,2, j = 3− i :

S RtR
i : (ξi , f ,c0)→ (∇ci ·nj + βjci )|Γ

where ci (i = 1,2) solution of

ω∂t ci + div(−D∇ci ) = f in Ωi × (0,T )

−∇ci ·ni + βici = ξi on Γ× (0,T )

Space – time interface problem with two Lagrange multipliers

ξ1 = SRtR
1 (ξ2, f ,c0)

ξ2 = SRtR
2 (ξ1, f ,c0)

on Γ× [0,T ] or SR

(
ξ1

ξ2

)
= κR

Solve with Richardson (original SWR) or GMRES

Need to solve subdomain problem with Robin BC

T. T. P. Hoang, J. Jaffré, C. Japhet, M. K., J.E. Roberts, Space-time domain decomposition
methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal.,
51(6):3532–3559, 2013.
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Nonconforming discretization in time

16

5. Nonconforming time discretizations and projections in time. We con-
sider semi-discrete problems in time with nonconforming time grids. Let T1 and T2
be two different partitions of the time interval (0, T ) into sub-intervals (see Figure
5.1). We denote by J i

m the time interval (tim−1, t
i
m] and by ∆tim := (tim − tim−1) for

m = 1, . . . ,Mi and i = 1, 2. We use the lowest order discontinuous Galerkin method
[3, 18, 35], which is a modified backward Euler method. The same idea can be gener-
alized to the higher order in time case. We denote by P0(Ti,W ) the space of piecewise

0

T

Ω1 Ω2

∆t1m
∆t2m

x

t

Figure 5.1: Nonconforming time grids in the subdomains.

constant functions in time on grid Ti with values in W , where W = H
1
2 (Γ) for Method

1 and W = L2(Γ) for Method 2:

P0(Ti,W ) =
{
φ : (0, T ) → W,φ|Ji

m
∈ W, for m = 1, . . . ,Mi

}
.

In order to exchange data on the space-time interface between different time grids, we
define the following L2 projection Πji from P0(Ti,W ) onto P0(Tj ,W ) (see [13, 18]) :
for φ ∈ P0(Ti,W ), Πjiφ|Jj

m
is the average value of φ on Jj

m, for m = 1, . . . ,Mj :

Πji (φ) |Jj
m
=

1

| Jj
m |

Mi∑

l=1

∫

Jj
m∩Ji

l

φ, for m = 1, · · · ,Mj .

We use the algorithm described in [14] for effectively performing this projection. With
these tools, we are now able to weakly enforce the transmission conditions over the
time intervals.
We still denote by (ci, ri), for i = 1, 2, the solution of the corresponding semi-discrete
(in time) problem of (4.1).

5.1. For Method 1. As there is only one unknown λ on the interface, we need
to choose λ piecewise constant in time on one grid, either T1 or T2. For instance, let
λ ∈ P0(T2, H

1
2 (Γ)) and take c2 = Π22(λ) = Id(λ). The equality of the concentration

in time across the interface is fulfilled by letting

c1 = Π12(λ) ∈ P0(T1, H
1
2 (Γ)).

The semi-discrete (nonconforming in time) counterpart of the flux continuity in equa-
tion (??) is weakly enforced by integrating it over each time interval J2

m of grid T2 :
∀m = 1, ...,M2,∫

Γ

∫

J2
m

(Π21 (r1(Π12(λ), f, c0) · n1) + Π22 (r2(Π22(λ), f, c0) · n2)) dt = 0. (5.1)

Remark. λ can be chosen to be constant in time on another grid (neither T1 nor T2)
in some applications (e.g. flow in porous media with fractures).

Information on one time grid at
the interface is passed to the
other time grid at the interface
using optimal L2-projections
(Gander-Japhet-Maday-Nataf
(2005))

Application (Andra)

10 m

2950 m

3950 m

140 m

Permeability d = 510−12 m2/s in the clay layer and d = 210−9 m2/s in the repository.

Non-conforming time grids: ∆t = 2000 (years) in the repository and ∆t = 10000 (years)
in the clay layer.
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Convergence History for Short/Long Time Interval

2 optimization techniques (discontinuous coefficients) for computing parameters αi,j :

Opt. 1: 2 half-space Fourier analysis.

Opt. 2: taking into account the length of the domains Halpern-Japhet-Omnes (DD20, 11)

T = 2105
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Non-linear Schwarz algorithm

Robin transmission conditions

∇φ1(S1).n1 + β1π1(S1) =−∇φ2(S2).n2 + β1π2(S2)

∇φ2(S2).n2 + β2π2(S2) =−∇φ1(S1).n1 + β2π1(S1)

Schwarz algorithm

Given S0
i , iterate for k = 0, . . .

Solve for Sk+1
i , i = 1,2, j = 3− i

ω∂tS
k+1
i −∆φi(Sk+1

i ) = 0 in Ωi × [0,T ]

∇φi(Sk+1
i ).ni + βiπ i(Sk+1

i ) =−∇φj(Sk
j ).nj + βiπ j(Sk

j ) on Γ× [0,T ],

(β1,β2) are free parameters chosen to accelerate convergence

Basic ingredient: subdomain solver with Robin bc.
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Finite volume scheme

Extension to Robin bc of cell centered FV scheme by Enchéry et al. (06).

Unknowns : cell values (SK ), boundary
face values (Sσ )
K |L = edge between K and L,

τK |L =
m(K |L)

K̄K |L
(eg harmonic average).

Interior equation

m(K )
Sn+1

K −Sn
K

δ t
+ ∑

L∈N (K )

τK |L
(
φ(Sn+1

K )−φ(Sn+1
L )

)

+ ∑
σ∈EΓ∩EK

τK ,σ

(
φ(Sn+1

K )−φ(Sn+1
σ )

)
= 0, K ∈T .

Robin BC for boundary faces

−τK ,σ

(
φ(Sn+1

K )−φ(Sn+1
σ )

)
+ βm(σ)π(Sn+1

σ ) = gσ , σ ∈ EΓ
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Numerical example

Implemented with Matlab Reservoir Simulation Toolbox (K. A. Lie et al. (14))
Solver with automatics differentiation : no explicit computation of Jacobian

Homogeneous medium, Ω1 = (0,100)3, Ω2 = (100,200)× (0,100)2.
Mobilities λ0(S) = S, S ∈ [0,1],
Capillary pressure π(S) = 5S2, S ∈ [0,1]
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Three rock types: evolution of the concentrations
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Towards two-level parallelism: hybrid solver

Dedales project (Serena (Inria), Hiepacs (Inria), Laga (Univ. Paris 13), Andra, MdlS)

Solve subdomain problem with a parallel
solver: Iterative solver (geometric DD,
MPI parallelism) for the interface problem
together with direct (algebraic, thread
parallelism) within subdomains

PaStiX direct linear solver (Inria Bordaux)

Heterogeneous nodes: use scheduler
(StarPU, Inria)

Good coarse space ?

Integration into Dune / DuMuX (with
Dune-multidomaingrid ?)
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Extensions – Coming attractions

Convergence for Schwarz algorithm

Advection–diffusion with splitting

Use DD for fractured media (Ventcell BC, cf Hoang, Japhet, K. Roberts,
to appear)

Study influence of parameter β

Find optimal parameter, compare

Interface formulation for non-linear case, Jacobi (SWR) vs Newton

Extension to full two-phase model

Convergence of Schwarz alg. for nonlinear case

Large scale parallel solver (MdS)
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