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Introduction

Objective: to formulate numerical methods for flow and
transport in heterogeneous porous media

Examples of heterogeneous media:

porous media around underground nuclear waste deposit sites
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Introduction

Heterogeneities mean difficulties for simulation

Deep underground repository
(High-level waste)

A repository 2km × 2km

Different materials→ strong
heterogeneity, different time scales.

Large differences in spatial scales.

Long-term computations.
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Introduction

Objective: to formulate numerical methods for flow and
transport in heterogeneous porous media

Examples of heterogeneous media:

porous media around underground nuclear waste deposit sites
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Introduction

Difficulty for modeling flow in media with fractures

A problem requiring multi-scale modelling

Fractures represent heterogeneities in porous
media

Usually of much higher permeability than
surrounding medium
May be of much lower permeability so
that they act as a barrier

Fracture width much smaller than any
reasonable parameter of spatial discretization.

Different types of models for flow in fractures

double continuum models.

discrete fracture networks (DFN’s) (no exchange with surrounding matrix rock)

reduced fracture models (with exchange with matrix rock)
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Introduction

Objective here: to formulate methods for subdomain
time-stepping

More specifically:

develop and compare two different space-time (global in time) domain
decomposition methods for the linear transport problem in mixed
formulation.

extend these methods to the case of a domain with a discrete fracture

extend these method to two phase flow models, with discontinuous
capillary pressure (in progress)
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Introduction

Domain decomposition (DD) methods

Domain decomposition in space

x

y

t

Discretize in time and apply DD
algorithm at each time step:

I Solve stationary problems in the
subdomains

I Exchange information through
the interface

Use the same time step on the
whole domain.

Space-time domain decompositionSpace-time DD with Time windows

Solve time-dependent problems in
the subdomains

Exchange information through the
space-time interface

Enable local discretizations both
in space and in time

−→ local time stepping

Perform few iterations per window

Use different space-time grids in
each window

Use the solution in the previous
window to calculate a “good” initial
guess on the interface.
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Pure diffusion problems Multi-domain mixed formulations

Model problem
Transport of a contaminant in a porous medium under the effect of diffusion,

written in mixed form:

L(c, r) := φ∂t c + div r = f in Ω× (0,T ),

M(c, r) := D−1r +∇c = 0 in Ω× (0,T ),
c = 0 on ∂Ω× (0,T ),

c(·, 0) = c0 in Ω,

c concentration of a contaminant dissolved in a fluid, r diffusive flux.

φ porosity; D symmetric, positive definite, time-independent diffusion tensor.

Existence and uniqueness

If D ∈ L∞(Ω)L∞(Ω)L∞(Ω), f ∈ L2(0,T ; L2(Ω)) and c0 ∈ H1
0 (Ω) then problem above has a unique weak

solution
(c, r) ∈ H1(0,T ; L2(Ω))×

(
L2(0,T ; H(div ,Ω)) ∩ L∞(0,T ;L2(Ω)L2(Ω)L2(Ω))

)
.

Moreover, if D ∈W 1,∞(Ω)W 1,∞(Ω)W 1,∞(Ω), f ∈ H1(0,T ; L2(Ω)) and c0 ∈ H2(Ω) ∩ H1
0 (Ω), then

(c, r) ∈ W 1,∞(0,T ; L2(Ω))×
(

L∞(0,T ; H(div ,Ω)) ∩ H1(0,T ;L2(Ω)L2(Ω)L2(Ω))
)
.

Proof. Galerkin’s method and a priori estimates.
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Pure diffusion problems Multi-domain mixed formulations

Multi-domain problem

Ω1 Ω2

Γ

x

t

yT

0
Equivalent multi-domain problem:

L(c1, r1) = f , on Ω1 × (0,T ),
M(c1, r1) = 0, on Ω1 × (0,T ),

c1(·, 0) = c0, in Ω1,

L(c2, r2) = f , on Ω2 × (0,T ),
M(c2, r2) = 0, on Ω2 × (0,T ),

c2(·, 0) = c0, in Ω2,

together with the transmission conditions on the space-time interface

c1 = c2

r1 · n1 + r2 · n2 = 0 on Γ× (0,T ) .
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Pure diffusion problems Multi-domain mixed formulations

An overview
Different (equivalent) transmission conditions (TCs)

ww�
GTP Schur

Physical TCs
+ N-N preconditioner

GTO Schwarz

More general TCs with optimized parameters
→ accelerate the convergence rate.

Robin TCs Ventcell TCsww�
Substructuring technique: Space-time interface problemww�

Iterative solvers (GMRES, Richardson iteration)

T.T.P. Hoang, J. Jaffré, C. Japhet, M.K, and J. E. Roberts. Space-time domain
decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer.
Anal., 51(6):3532–3559, 2013.
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Pure diffusion problems Multi-domain mixed formulations

Time-dependent Steklov-Poincaré operator
Dirichlet-to-Neumann operators, for i = 1, 2:

SDtN
i : (λ, f , c0) 7−→ (ri · ni )|Γ ,

where (ci , ri ) , i = 1, 2, is the solution of

L(ci , ri ) = f , on Ωi × (0,T ),
M(ci , ri ) = 0, on Ωi × (0,T ),

ci = λ, on Γ× (0,T ),
ci (·, 0) = c0, in Ωi .

Space-time interface problem:

SDtN
1 (λ, f , c0) + SDtN

2 (λ, f , c0) = 0,
m

2∑
i=1

SDtN
i (λ, 0, 0) =

2∑
i=1

SDtN
i (0, f , c0),

m
Sλ = χ, on Γ× (0,T ).

Neumann-Neumann preconditioner with weights:(
σ1SNtD

1 + σ2SNtD
2

)
Sλ = χ̂, on Γ× (0,T ),

where σi : Γ× (0,T )→ [0, 1] such that σ1 + σ2 = 1.
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Pure diffusion problems Multi-domain mixed formulations

GTO Schwarz: Robin transmission conditions

Equivalent Robin TCs on Γ× (0,T ): for α1, α2 > 0

−r1 · n1 + α1c1 = −r2 · n1 + α1c2,
−r2 · n2 + α2c2 = −r1 · n2 + α2c1,

Robin-to-Robin operators, for i = 1, 2 and j = 3− i :

SRtR
i : (ξi , f , c0) 7−→

(
−ri · nj + αj ci

)
|Γ ,

where (ci , ri ) , i = 1, 2, is the solution of

L(ci , ri ) = f , on Ωi × (0,T ),
M(ci , ri ) = 0, on Ωi × (0,T ),

−ri · ni + αi ci = ξi , on Γ× (0,T ),
ci (·, 0) = c0, in Ωi .

Space-time interface problem with two Lagrange multipliers:

ξ1 = SRtR
2 (ξ2, f , c0),

ξ2 = SRtR
1 (ξ1, f , c0),

on Γ× (0,T ) ,

or equivalently,

SR

(
ξ1
ξ2

)
= χR , on Γ× (0,T ).
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Pure diffusion problems Multi-domain mixed formulations

OSWR algorithm with Robin TCs

OSWR iterative algorithm: at the k th iteration, for i = 1, 2 and j = (3− i)

φi∂t ck
i + div rk

i = f in Ωi × (0,T )

D−1
i rk

i +∇ck
i = 0 in Ωi × (0,T )

−rk
i · ni + αi ck

i = −rk−1
j · ni + αi c

k−1
j on Γ× (0,T ) ,

for given initial guess gi =
(
−r0

i · ni + αi c0
i

)
, i = 1, 2.

Theorem (Convergence of OSWR algorithm in mixed formulation)

If the algorithm above is initialized by (gi ) ∈ H1
(

0,T ; L2 (Γ)
)

for i = 1, 2, then

a sequence of iterates
(

ck
i , r

k
i

)
∈ H1

(
0,T ; L2 (Ωi )

)
× L2 (0,T ;H (div ,Ωi ))

is well-defined
2∑

i=1

(
‖ck

i − c|Ωi
‖H1(0,T ;L2(Ωi ))

+ ‖rk
i − r|Ωi

‖2
L2(0,T ;H(div ,Ωi ))

)
k→∞−→ 0.

where H (div ,Ωi ) :=
{

v ∈ H (div ,Ωi ) : (v · ni )|Γ ∈ L2 (Γ)
}

.

Remark. The proof is carried out for the multiple subdomain case.
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Theorem (Convergence of OSWR algorithm in mixed formulation)

If the algorithm above is initialized by (gi ) ∈ H1
(

0,T ; L2 (Γ)
)

for i = 1, 2, then

a sequence of iterates
(

ck
i , r

k
i

)
∈ H1

(
0,T ; L2 (Ωi )

)
× L2 (0,T ;H (div ,Ωi ))

is well-defined
2∑

i=1

(
‖ck

i − c|Ωi
‖H1(0,T ;L2(Ωi ))

+ ‖rk
i − r|Ωi

‖2
L2(0,T ;H(div ,Ωi ))

)
k→∞−→ 0.

where H (div ,Ωi ) :=
{

v ∈ H (div ,Ωi ) : (v · ni )|Γ ∈ L2 (Γ)
}

.

Remark. The proof is carried out for the multiple subdomain case.

16 / 49



Pure diffusion problems Multi-domain mixed formulations

GTO Schwarz: Ventcell transmission conditions

With sufficient regularity→ equivalent Ventcell transmission conditions

In primal form: on Γ× (0,T ):

−→ αi , βi : positive constants to be optimized to
accelerate convergence rate.

In mixed form: introduce Lagrange multipliers on the interface, ci,Γ and rΓ,i , for i = 1, 2,

−ri · ni + αi ci,Γ + βi
(
φj∂t ci,Γ + divτ rΓ,i

)
= −rj · ni + αi cj,Γ+

βi

(
φj∂t cj,Γ + divτ

(
Dj,ΓD−1

i,Γ rΓ,j

))
,

D−1
j,Γ rΓ,i +∇τci,Γ = 0.

ci,Γ: pressure trace on Γ.

rΓ,i := −Dj,Γ∇τci,Γ: NOT the tangential trace of ri on Γ× (0,T ).
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Pure diffusion problems Nonconforming discretizations in time

Nonconforming discretizations in time

0

T

Ω1 Ω2

∆t1
n

∆t2
m

x

t

Time discretization: non-conforming time grids T1, T2; discontinuous
Galerkin with piecewise polynomials of degree 0.
Projections: Πji is an L2 projection from piecewise constant functions on
Ti onto piecewise constant functions on Tj .
Ex:

(Π21 (λ1))m =
1
| J2

m |

M1∑

n=1

∫

J1
n∩J2

m

λ1, for m = 1, · · · ,M2.
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Pure diffusion problems Nonconforming discretizations in time

Semi-discrete transmission conditions with
nonconforming time grids

For GTP Schur method: take λ =
(
λ1, · · · , λM1

)
piecewise constant on

J1
n =

(
tn
1 , t

n+1
1

)
, for n = 0, · · · ,M1 − 1.

Continuity of concentration: c1 = Π11 (λ) and c2 = Π21 (λ).
Conservation of the flux over each time subinterval∫

J1
n

∫
Γ

(Π11 (r1 · n1) + Π12 (r2 · n2)) dt = 0, for n = 0, · · · ,M1 − 1.

For GTO Schwarz method: conservation of the two Robin (Ventcell) conditions
across the interface over each time subinterval∫

J1
n

∫
Γ

[(−r1 · n1 + α1c1)− Π12 (−r2 · n1 + α1c2)] dt = 0, ∀n = 0, · · · ,M1 − 1,∫
J2

m

∫
Γ

[(−r2 · n2 + α2c2)− Π21 (−r1 · n2 + α2c1)] dt = 0, ∀m = 0, · · · ,M2 − 1.

→ Convergence of semi-discrete, nonconforming in time, OSWR algorithm
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Advection-diffusion problems

Outline

1 Introduction

2 Pure diffusion problems
Multi-domain mixed formulations
Nonconforming discretizations in time

3 Advection-diffusion problems
Operator splitting

4 Extension to two-phase flow

5 Extension to reduced fracture models
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Advection-diffusion problems Operator splitting

Extension to advection-diffusion problems

Linear advection-diffusion equation:

φ∂tc + div (uc) + div r = f in Ω× (0,T ),

∇c + D−1r = 0 in Ω× (0,T ),
c = 0 on ∂Ω× (0,T ),

c(·, 0) = c0 in Ω.

Operator splitting

Advection eq.: explicit Euler + upwind, cell-centered finite volumes.

Diffusion eq.: implicit Euler + mixed finite elements.

⇒ CFL condition: sub-time steps for the advection.

0

T

Ω1 Ω2

L1∆t1,a = ∆t1 ∆t2 = L2∆t2,a

T = N1∆t1 = N2∆t2

x

t
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Advection-diffusion problems Operator splitting

Discrete interface problems

GTP Schur method:

S̃h

(
λa
λ

)
= χ̃h, on Γ× (0,T ).

=⇒ Generalized Neumann-Neumann preconditioner

GTO Schwarz method with Robin TCs:

S̃R,h




λa
ξ1
ξ2


 = χ̃R,h, on Γ× (0,T ).

=⇒ Optimized Robin parameters for the diffusion eq. only
6= fully implicit scheme.

Remark. λa ∈ ΛN×L
h while λ, ξ1, ξ2 ∈ ΛN

h .

T.T.P. Hoang, J. Jaffré, C. Japhet, M.K., and J. E. Roberts. Proc. Mamern 2015, in
preparation.
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Advection-diffusion problems Operator splitting

Test case 2: A near-field simulation (project PAMINA∗)
∗ Performance Assessment Methodologies IN Application to Guide the Development of the Safety Case

Parameters of the simulation

Material Permeability (m.s−1) Porosity Diffusion (m2. s−1)
Host rock 10−13 0.06 6 10−13

EDZ 5 10−11 0.2 2 10−11

Vitrified waste 10−8 0.1 10−11

0 10

10

20

30

40

50

60

70

80

90
100

100m

10m

0.6m1m
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Advection-diffusion problems Operator splitting

Advection field: Darcy flow

div u = 0 in Ω,
u = −K∇p in Ω.

BCs:
Homogeneous Neumann at x = 0 and x = 10,
Dirichlet conditions with p = 100 Pa at y = 0 and p = 0 at y = 100.

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
49

49.2

49.4

49.6

49.8

50

50.2

50.4

50.6

50.8

51
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Advection-diffusion problems Operator splitting

Transport problem: time windows and decomposition
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Figure 13: Errors in c (left) and r (right) in logarithmic scales between the reference and the
multidomain solutions versus the time step.
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Figure 14: The domain of calculation and its decomposition.

HOANG THI THAO PHUONG

Final time: Tf = 2 1011s (≈ 20000 years)
−→ 200 time windows with size T = 109s.

Decomposition into 9 subdomains.

Nonconforming time grids:

Diffusion step:

∆ti = T/500, i = 5,
∆ti = T/100, i 6= 5.

Diffusion-dominated: PeL ≤ 0.0513
−→ ∆ta,i = ∆ti .

Non-uniform mesh in space: uniform mesh in the repository (10 by 10),
then progressively coarser with a factor of 1.05.
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Advection-diffusion problems Operator splitting

Evolution of concentration field
100 years
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Advection-diffusion problems Operator splitting

Performance of one time window
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A subsurface waste storage simulation
Zone Hydraulic conductivity Porosity Molecular diffusion

K (m/year) φ dm (m2/year)
terrain 94608 0.30 1
dalleprotec/dalleobtur 3.1536 10−3 0.20 1.58 10−3

voile 3.1536 10−3 0.20 1.58 10−3

remplissage 5045.76 0.30 5.36 10−2

conteneur1/conteneur2 3.1536 10−4 0.12 4.47 10−4

dechet1/dechet2 3.1536 10−4 0.30 1.37 10−3

radier 3.1536 10−4 0.15 6.31 10−5

drainant 94608 0.30 5.36 10−2

12 m 

9
.6

 m
 

forme 

conteneur1 

dalleobtur 

dalleprotec 

dechet1 

drain 

drainant 

radier 

remplissage 

terrain voile 

dechet2 

conteneur2 

N.B. The underlying mesh appears in blue 



Advection-diffusion problems Operator splitting

Darcy flow

div u = 0 in Ω,
u = −K∇h in Ω.

BCs:
Homogeneous Neumann at x = 0 and x = 12m,
Dirichlet conditions with h = 9.998m at y = 0 and h = 10m at y = 9.6m.
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Advection-diffusion problems Operator splitting

Concentration field after 500 years
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Extension to two-phase flow

Outline
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2 Pure diffusion problems
Multi-domain mixed formulations
Nonconforming discretizations in time
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Extension to two-phase flow

Model problem: Two–phase immiscible flow

Mathematical model

∂t (ωραSα) + div (ραuα) = qα mass conservation

uα = −k rα

µα
K (∇pα − ρα∇g) Darcy’s law

Sn + Sw = 1
pn − pw = π(Sw ) capillary pressure

Phase α = w water, n gas or oil. π(Sw ) increasing function on [0,1] (extend
coninuously to R).

ω porosity

Sα phase saturation

uα phase velocity

k rα relative permeability

K permeability

pα: phase pressure

ρα phase density

µα viscosity
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Extension to two-phase flow

Simplified model
Enchery et al. (06), Cances (08), Brenner et al. (13), no gravity

1 Global pressure (Chavent) Pg(S) = pw +

∫ S

0

k rn(u)/µn
k rn(u)
µn

+ k rw (u)
µw

π′(u) du,

2 Kirchhoff transformation : φ(S) =

∫ S

0
K

k rn(u)k rw (u)

µnk rw (u) + µw k rn(u)
π′(u) du.

Transformed system : f (S) =
µw k rn(S)

µw k rn(s) + µnk rw (S)
, λ(S) =

k rn(S)

µn
+

k rw (S)

µw
.

{
ω∂tS + div (f (S)qT )−∆φ(S) = 0
div qT = 0, qT = −Kλ(S) grad Pg

in Ω× [0,T ]

Simplified system: neglect advection

ω∂tS −∆φ(S) = 0 in Ω× [0,T ]

Nonlinear (degenerate) diffusion equation
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Extension to two-phase flow

Discontinuous capillary pressure: transmission
conditions
Two subdomains Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = ∅. Γ = Ω̄1 ∩ Ω̄2

0 s_2 s_1 1

P_{c1}(0)

P_c2(0)

P_c

P_c1(1)

P_c2(1)

Saturation

C
a

p
ill

a
ry

 p
re

s
s
u

re

Transmission conditions on the interface

Continuity of capillary pressure π1(S1) = π2(S2) on Γ

Continuity of the flux ∇φ1(S1).n1 = ∇φ2(S2).n2 on Γ

Chavent – Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10),
Brenner et al. (13).
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Extension to two-phase flow

Non-linear Schwarz algorithm

Robin transmission conditions

∇φ1(S1).n1 + β1π1(S1) = −∇φ2(S2).n2 + β1π2(S2)

∇φ2(S2).n2 + β2π2(S2) = −∇φ1(S1).n1 + β2π1(S1)

Schwarz algorithm

Given S0
i , iterate for k = 0, . . .

Solve for Sk+1
i , i = 1,2, j = 3− i

ω∂tSk+1
i −∆φi (Sk+1

i ) = 0 in Ωi × [0,T ]

∇φi (Sk+1
i ).ni + βiπi (Sk+1

i ) = −∇φj (Sk
j ).nj + βiπj (Sk

j ) on Γ× [0,T ],

(β1, β2) are free parameters chosen to accelerate convergence

Basic ingredient: subdomain solver with Robin bc.
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Extension to two-phase flow

Finite volume scheme (1)

Extension to Robin bc of cell centered FV scheme by Enchéry et al. (06).
Triangulation T , cells K ∈ T , boundary faces σ ⊂ Γ.
Unknowns : cell values (SK )K∈T , boundary face values (Sσ)σ∈EΓ

Notations: K |L = edge between K and L, τK |L =
m(K |L)

K̄K |L
(eg harmonic

average).
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Extension to two-phase flow

Finite volume scheme (2)

Interior equation

m(K )
Sn+1

K − Sn
K

δt
+

∑

L∈N (K )

τK |L

(
φ(Sn+1

K )− φ(Sn+1
L )

)

+
∑

σ∈EΓ∩EK

τK ,σ

(
φ(Sn+1

K )− φ(Sn+1
σ )

)
= 0, K ∈ T .

Robin BC for boundary faces

−τK ,σ

(
φ(Sn+1

K )− φ(Sn+1
σ )

)
+ βm(σ)π(Sn+1

σ ) = gσ, σ ∈ EΓ

Implemented with Matlab Reservoir Simulation Toolbox (K. A. Lie et al. (14))
Solver with automatics differentiation : no explicit computation of Jacobian
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Extension to two-phase flow

Numerical example
Homogeneous medium, Ω1 = (0,100)3, Ω2 = (100,200)× (0,100)2.
Mobilities λ0(S) = S, S ∈ [0,1],
Capillary pressure π(S) = 5S2, S ∈ [0,1]
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Extension to two-phase flow

Evolution of the concentration
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Extension to reduced fracture models

Outline

1 Introduction

2 Pure diffusion problems
Multi-domain mixed formulations
Nonconforming discretizations in time
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Operator splitting
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Extension to reduced fracture models

A reduced model: interface-fracture

Alboin-Jaffré-Roberts-Serres (2002)
Martin-Jaffré-Roberts (2005)
Knabner-Roberts (2014) (Forchheimer flow)

In this work: assume that D/δ large
⇒ concentration continuity across the fracture

2 TITLE WILL BE SET BY THE PUBLISHER

Here p is the pressure, uuu the velocity, q the source term and KKK a symmetric time independent hydraulic
conductivity (or permeability) tensor. For the sake of simplicity, we have imposed the homogeneous Dirichlet
condition on the boundary, other types of boundary conditions can be treated similarly.

We suppose that the fracture Ωf , with thickness δ, is a subdomain of Ω and separates Ω into two connected
subdomains (see Figure 1),

Ω \ Ωf = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅.
Also for simplicity we assume that Ωf consists of the intersection with Ω of a line or plane γ (depending on

whether n = 2 or 3), together with the points xxx = xxxγ + snnnγ where xxxγ ∈ γ, s ∈
(
−δ(xxxγ)

2
,
δ(xxxγ)

2

)
and nnnγ is

a unit vector normal to γ. We denote by γi the part of the boundary of Ωi shared with the boundary of the
fracture Ωf

γi = ∂Ωi ∩ ∂Ωf ∩ Ω, i = 1, 2,

and we denote by nnni the outward unit normal vector field on ∂Ωi.
We use the convention that for any scalar, vector or tensor valued function φ defined on Ω, φi denotes the

Ω1 Ω2

nnn1

nnn2

γ1 γ2

Ωf

δ

Ω1 Ω2

nnn1

nnn2

γ

Figure 1. Left: The domain Ω with the fracture Ωf . Right: The domain Ω with the
interface-fracture γ.

restriction of φ to Ωi, i = 1, 2, f . We rewrite problem (1) as the following transmission problem:

∂tpi + div uuui = qi in Ωi × (0, T ), i = 1, 2, f,
uuui = −KKKi∇pi in Ωi × (0, T ), i = 1, 2, f,
pi = 0 on ∂Ωi ∩ ∂Ω× (0, T ), i = 1, 2, f,
pi = pf on γi × (0, T ), i = 1, 2,

uuui · nnni = uuuf · nnni on γi × (0, T ), i = 1, 2,
pi(·, 0) = p0,i in Ωi, i = 1, 2, f.

(2)

2. Reduced fracture model

In this section, the model where the fracture is treated as an interface γ between subdomains Ω1 and Ω2 [1,4]
is considered. We use the notation ∇τ and divτ for the tangential gradient and divergence, respectively. A
reduced model consists of the equations in the subdomains

∂tpi + div uuui = qi in Ωi × (0, T ),
uuui = −KKKi∇pi in Ωi × (0, T ),
pi = 0 on ∂Ωi ∩ ∂Ω× (0, T ),
pi = pγ on γ × (0, T ),

pi(·, 0) = p0,i in Ωi,

for i = 1, 2, (3)

In the subdomains

φi∂t ci + div ri = fi in Ωi × (0,T ),
ri = −Di∇ci in Ωi × (0,T ),
ci = 0 on ∂Ωi ∩ ∂Ω× (0,T ),
ci = cγ on γ × (0,T ),

ci (·, 0) = c0,i in Ωi ,

for i = 1, 2,

and in the fracture

φγ∂t cγ + divτ rγ = fγ +
(
r1 · n1|γ + r2 · n2|γ

)
in γ × (0,T ),

rγ = −Dγδ∇τcγ in γ × (0,T ),
cγ = 0 on ∂γ × (0,T ),

cγ(·, 0) = c0,γ in γ.

⇒ Communication between the fracture and the rock matrix.
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Extension to reduced fracture models

Formulation as an interface problem (GTP Schur)

The same (as with simple DD) Dirichlet-to-Neumann operators, for i = 1, 2:

SDtN
i : (λ, f , c0) 7−→ (ri · ni )|Γ ,

where (ci , ri ) , i = 1, 2, is the solution of

L(ci , ri ) = f , in Ωi × (0,T ),
M(ci , ri ) = 0, in Ωi × (0,T ),

ci = λ, on γ × (0,T ),
ci (·, 0) = c0, in Ωi .

Different space-time interface problem:

Two possible preconditionners:

a Neumann-Neumann preconditionner with weights
a local preconditioner (coming from the observation that the interface problem is
dominated by the 2nd order operator, Amir, MK, Martin, Robert, Arima 06)
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SDtN
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SDtN
i (0, f , c0),

m
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Extension to reduced fracture models

Transmission conditions for a GTO Schwarz method

Taking a linear combination of the transmission conditions for the GTP Schur method we obtain:

−r1 · n1 + α1c1,γ + φγ∂t ci,γ + divτ rγ,1 = −r2 · n1 + α1c2,γ + fγ
rγ,1 = −Dγδ∇τc1,γ

−r2 · n2 + α2c2,γ + φγ∂t c2,γ + divτ rγ,2 = −r1 · n2 + α2c1,γ + fγ
rγ,2 = −Dγδ∇τc2,γ
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Extension to reduced fracture models

Formulation as an interface problem (GTO Schwarz)

We use Ventcell to Robin operators, for i = 1, 2:

SVtR
i : (θi , f , c0, fγ , c0,γ) 7−→

(
−ri · nj + αci

)
|Γ ,

where
(
ci , ri , ci,γ , rγ,i

)
, i = 1, 2, is the solution of

L(ci , ri ) = f , in Ωi × (0,T ),

M(ci , ri ) = 0, in Ωi × (0,T ),

−ri · ni + αci,γ + φγ∂t ci,γ + divτ rγ,i = θi on γ × (0,T ),

rγ,i + Dγδ∇τci,γ = 0, on γ × (0,T ),

ci (·, 0) = c0, in Ωi

ci,γ(·, 0) = c0,γ , in γ.

Space-time interface problem:

θ1 = SVtR
2 (θ2, f , c0, fγ , c0,γ) + fγ , on γ × (0,T ),

θ2 = SVtR
1 (θ1, f , c0, fγ , c0,γ) + fγ , on γ × (0,T ).

44 / 49



Extension to reduced fracture models

Formulation as an interface problem (GTO Schwarz)

We use Ventcell to Robin operators, for i = 1, 2:

SVtR
i : (θi , f , c0, fγ , c0,γ) 7−→

(
−ri · nj + αci

)
|Γ ,

where
(
ci , ri , ci,γ , rγ,i

)
, i = 1, 2, is the solution of

L(ci , ri ) = f , in Ωi × (0,T ),

M(ci , ri ) = 0, in Ωi × (0,T ),

−ri · ni + αci,γ + φγ∂t ci,γ + divτ rγ,i = θi on γ × (0,T ),

rγ,i + Dγδ∇τci,γ = 0, on γ × (0,T ),

ci (·, 0) = c0, in Ωi

ci,γ(·, 0) = c0,γ , in γ.

Space-time interface problem:

θ1 = SVtR
2 (θ2, f , c0, fγ , c0,γ) + fγ , on γ × (0,T ),

θ2 = SVtR
1 (θ1, f , c0, fγ , c0,γ) + fγ , on γ × (0,T ).

44 / 49



Extension to reduced fracture models

Numerical results

c=1

c=0

c=1c=0

0

1

2

0.2

Geometry and boundary conditions.

Isotropic coefficients: Di = 1, i = 1, 2, and Dγ = 1/δ = 1000.

Zero source terms and initial condition.

Spatial discretization: uniform rectangular mesh h = 1/100
→ mixed FE with the lowest-order Raviart-Thomas spaces.

Time discretization (case 1): conforming grids ∆tm = ∆tγ = T/300 with T = 0.5.

45 / 49



Extension to reduced fracture models

Numerical results

c=1

c=0

c=1c=0

0

1

2

0.2

Geometry and boundary conditions.

Isotropic coefficients: Di = 1, i = 1, 2, and Dγ = 1/δ = 1000.

Zero source terms and initial condition.

Spatial discretization: uniform rectangular mesh h = 1/100
→ mixed FE with the lowest-order Raviart-Thomas spaces.

Time discretization (case 1): conforming grids ∆tm = ∆tγ = T/300 with T = 0.5.

45 / 49



Extension to reduced fracture models

Snapshots of solution - concentration field c

t=∆t t=T/4

t=T/2 t=T
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Extension to reduced fracture models

Snapshots of solution - diffusive flux r
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Extension to reduced fracture models
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Figure 4. Convergence curves for the compressible flow: errors in p (on the left) and in uuu
(on the right) - Method 1 with no preconditioner (blue), Method 1 with local preconditioner

(green), Method 1 with Neumann-Neumann preconditioner (cyan) and Method 2 (red).
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Figure 5. The errors (in logarithmic scale) after 10 Jacobi iterations for various values of
the Robin parameter. The red star shows the optimized parameters computed by numerically

minimizing the continuous convergence factor.

the number of iterations for different schemes are shown: errors in p (on the left) and in uuu (on the right). We
see that Method 2 is superior to the other schemes. For Method 1, the Neumann-Neumann preconditioner gives
a better acceleration than the local one, and both are better than without a preconditioner.

For Method 2, we vary Robin parameters and plot the logarithmic scale of the error in uuu after 10 Jacobi
iterations. In Figure 5, we see that the optimized Robin parameter (the red star), which is calculated by
numerically minimizing the convergence factor, are located close to those giving the smallest error after the
same number of iterations.
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L2 concentration errors (c) L2 flux errors (r) L2 error versus α

GT Schur with no preconditioner

GTP Schur with local preconditioner

GTP Schur with NN preconditioner

GTO Schwarz method

T.T.P. Hoang, J. Jaffré, C. Japhet, M.K., and J. E. Roberts. Space-time Domain
Decomposition and Mixed Formulation for reduced fracture models. SIAM J. Numer.
Anal., to appear, 2016.
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Extension to reduced fracture models

Conclusions – perspectives

Space–time DD method with Robi TC for diffusion and
advection–diffusion

Extension to fractured media

Convergence for GTP Schur (Gander et al. for homogeneous media)

Convergence for fractured media

Influence of Robin parameter β, find optimal parameter

Study interface problem for non-linear case, Jacobi (SWR) vs Newton

Extension to full two-phase model

Convergence of Schwarz alg. for nonlinear case

Large scale parallel solver (MdS)
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