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Abstract— This paper proposes simple feedback loops, in- it obeys stochastic jump dynamics [5], [7], modeled by
spired from extremum-seeking, that use the photon emission “guantum Monte-Carlo” trajectories; with respect to st
times of a single quantum system following quantum Monte- A the output signal is no more continuous but corresponds

Carlo trajectories in order to lock in real time a probe ¢ t ving the i i As sh in 141, all th
frequency to the system’s transition frequency. Two specific [© & Counter giving the jump times. As shown in [4], all the

settings are addressed: a 3-level system coupling one ground SPectroscopic information and in particular the value & th
to two excited states (one highly unstable and one metastable) atomic transition frequency are contained in the stasistic
and a 3-level system coupling one excited to two ground states of these jump-time series. The novelty of the present paper
(both metastable). Analytical proofs and simulations show the is to avoid the use of quantum filters [6] and records of
accurate and robust convergence of probe frequency to syste . . - L
transition frequency in the two cases. Jump-tlme sequences required by usual_ statistical treamn_e
as in strategy B. It proposes a real-time synchronization
feedback scheme that can be implemented on electronic
I. INTRODUCTION circuits of similarly low complexity as those used for
The Sl second is defined to be “the duration of 9 192 63éxtremum-seeking loops in strategy A. The resulting real-
770 periods of the radiation corresponding to the transitiotime synchronization scheme might also allow to track (e.g.
between the two hyperfine levels of the ground state of thfield-induced) variations in the atom'’s transition freqegn
caesium 133 atom” [1]. A primary frequency standard is aith a reasonable bandwidth, depending on the particular
device that realizes this definition. For micro atomic-&®c atomic clock system.
[8] perfect resonance between the probe laser frequency and
the atomic frequency is characterized by a maximum (or We consider two particular atomic systems in the present
minimum) output signal of a photo-detector. Therefore expaper.(1) The first one corresponds to 1a-system, which
tremum seeking techniques (see e.g [3] for a recent exposufeatures the electron-shelving mechanism and is one of the
are usually used in high precision spectroscopy to achieveain candidates for atomic clocks [4]. The system has two
frequency lock with an atomic transition frequency [14]excited states — one unstable and one metastable — which
[12], [13]. interact with the same ground state through two electro-
State-of-the-art experiments appear in two strategies. Inmagnetic fields. The system mostly evolves through the
first strategy A, a real-time synchronization feedback sehe ground-to-unstable transition. However, accurate fraque
based on modulation of the probe frequency (see moesstimation is based on the ground-to-metastable transitio
description in [9]) is applied to a large population of ideat  (2) The second setting corresponds ta\esystem, where
quantum systems with few mutual interactions (the vapawo electromagnetic fields are tuned to make two metastable
cell) having reached its asymptotic statistical regimeg thground states both interact with the same unstable excited
evolution of this population and the related output signastate. This system typically appears in coherent populatio
follow the continuous density matrix dynamics of a statidrapping phenomena and optical pumping [2], but also in
Lindblad-Kossakovski master equation. In a second styategnicro atomic clocks. This second setting is studied in more
B (see e.g. [13], [11]), a single atom is probed for a long timeetail in [9].
with different probe frequencies and locking with the atom For the two systems, we propose relevant forms of the
transition frequency is deduced from the resulting siaist amplitude modulation of the probe electromagnetic fields an
this somehow reconstructs over time the continuous signide associated real-time updates for their frequency on the
corresponding to strategy A. basis of photon detection times. We establish the stochasti
The present paper proposes a way to merge the twnvergence property of probe frequency towards atomic
strategies and adapt real-time synchronization feedbagtansition frequencies.
to a single quantum system. Such a single system cannotNote that the “quantum Monte-Carlo” trajectories, used
be described by a static non-linear input/output map buhroughout the paper, should be understood as the actual
. . o , model for a single quantum system’s behavior, and not as a
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Assuming that decoherence rdte (typically 10° Hz) is
le2) much larger than all other characteristic frequenciegjsar
perturbation and center manifold theories are applied as
explained in [10] to separate slow and fast dynarics
The resulting dynamics describe a two-level “slow” system
essentially on thég) < |e2) transition. It can be written on
the Bloch sphere (see e.g. textbook [7]) as follows, with

Z = —1 and Z = +1 corresponding tolg) and |es)
respectively.
Fig. 1. The V structure system: a ground stigé is coupled by two d — o(_
electromagnetic fields to a highly unstable state) (“blue laser”) and a ¢ th vZ+ AV + 2( ZX)
metastable stati.) (“red laser”). %Y = —uZ—-MX+4(-2Y)
47 = —wX+uwY+%(1-2)(1+2) (2

Each section first describes main properties of the specific e and jump toZ = —1 with probability

stochastic dynamics, then proposes a synchronization

feedback with the main ideas of a convergence proof, and Pump(Z — =1) = (T2 + $ (1 — Z)) dt 3)
finally presents simulation results along with comments on Q2 i
the performance. For detailed proofs the reader is referrdfe denotells = u T ando = (g —I'z). Sincel’s <,
a.o. to [9]. it is reasonable tha% > I'y such thats > 0.

Observations:

II. THE V-SYSTEM 1. FortunatelyA; does not appear in these dynamics.

. . 2. In absence of photon emission jumps, the decoherence
A. System dynamics and reduction ) . :

) term, proportional tos, drives the system towardsxcited
The V-system evolves on the Hilbert space spanned bytate|e,), not towards|g) as is usually the case for a two-

a stable ground statfy), an unstable excited state:), |evel system. This reflects the effect of measurement with th
and a metastable excited stgte) (see Fig. 1). Lifetimes pjye |aser: if no photon is emitted despite a strong coupling
of the excited states w.r.t. d@mg tg) are 1/T'y and  of |y with |e;), then it is most probable that the system is

/Ty, with T'; > and I'y < simulation section for actyally mainly “shelved” on states). Of course the system
typical values). The system is submitted to two laser fieldsj|| jumps to|g) at photon emission.

with slowly varying amplitudes denoted b§,, -, and
frequencies near-resona pectively with flle<— |eq)
(“blue laser”) and|g) < ‘red laser”) transitions; the . . . .
corresponding detunings are not&d and A,. The goal is In the absence of jumps, (2) is st.rlctly equwa_lent.to the
to reachA, = 0, i.e. to exactly synchronize the red lasefWo-level system of [9], after inversion of th&-direction

to the transition frequency?2—2 " Indeed, thanks to the (&Nd controlsu, v) and scaling by Therefore we take

large Iifet.ime of mgtastable state,), the uncertainty on this Qs = u(1 +2cos(wt)) 4
energy difference is very narrow. _ _
The classical rotating wave approximation, which asas for this two-level system, witii = 2xoe w.rt. the

sumes frequencies associated to transition enefgigs”,  proof in [9]. Jump dynamics (3) aftef-inversion features a
Eezh—Eg Ea—Ee o be much larger than all other charac-significant difference w.r.t. the two-level system of [Sfet

teristic frequencies, yields the following quantum Marko8yStem jumps to thepposite pointof the Bloch sphere at

trajectory model for the density matrix characterizing a Photon emission. The jumpingrobability after Z-inversion
single system (wheréa, b} = ab + ba): is however as in [9]. Therefore, the analogous update is:

Ag(N +1)=Ay(N)+du sin(witn)
5 if  |Ay(N)+dusin(win)| <C, (5)
{Q}Qj,p} +3 trace(Q1Q;p)p As(N+1)=C  otherwise

7=1 where tg, ti,... ty,... are the detection times of photons

B. Synchronization feedback

e continuous-time 1)
2
aip ="l =3

J

with % = Aqler)(e1]| + Azlea)(ea| + 2521

1

%@+, that are preceded by a sulfficiently long “dead-time” intelrva
VT [ty — T, tx) during which no photon has been detected, for
Q1 = VT1|g) (e and Q2 = /Ta|g)(es] someT’ > 0. Thus (5) is only applied for photons that follow
a sufficiently long evolution without jump. While a similar
e jump to p = |g)(g| during dt with probability condition is included in [9] as a technicality, hefeplays

) — V2 0.
Pump(p — |9) (9]) = Ej:1 trace(Qijp)dt 1This is done by using the corresponding deterministisembledynam-
_ 22 T, (e;|ple;)dt ics, in Lindblad-Kossakovski master equation form, as arriméeliate step.
= 2uj=1 1 i\E51PIE; ’ See details for a similar case in Section lII.
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a crucial role, explained in the following. We assume as irvolution of detuning for a single trajectory of the system.
[9] that initially |A| does not exceed a fixed constdittand  During the overall time of4 - 10° the detuning decreases
explicitly maintain it within this bound. from 0.25 to 0.03. As suspected given the significant dead-
The idea behind (4), similarly for the two-level system intime, convergence is much slower than for the systems
[9], is: under (4),(2) the system ultimately converges td andescribed in [9], see also Section Ill. For a typical system
evolves on a limit cycle in the neighborhood Bf= 1. The with I'; in the nano-second range, the full simulation time
position of this limit cycle, and linked to this the phase ofis of the order oflms and the obtained accuracy is about
the system on the limit cycle w.r.t. the phase in (4), dependil%0 ~ 10 M Hz.
on A,. The jump probability will depend on the position on  Figure 3 shows a typical section of quantum Monte-Carlo
the limit cycle, and thus jump times refled;. trajectory for the same simulation. It represefis|ples),
Under (4), the system in absence of jumps slowly driftshat is the probability of being “shelved” on metastabldesta
from |g) towards|e2), around which it stabilizes on a limit |ez). Each jump down td corresponds to the emission of
cycle; when jumping, the system goes f@); the jump a photon. Each plateau close taorresponds to a “shelved
probability decreaseswvhen going from|g) to |es). As a electron” situation. There is a significant probability tmie
consequence the system jumps to a point (i) that is opposite photon for a long time on this plateau, which has led
to the limit cycle on which we want to use (5) and (ii)to its name “dark window” in the physics literature [4].
in whose neighborhood jumping again is highly probableOscillations on the plateau due to periodic excitation (4)
Therefore, a useful photon for (5), based on limit-cycleare clearly visible. Jumping from the plateau corresponds
evolution as explained in the previous paragraph, is gained a “red” photon and triggers a detuning update. The idea
only rarely, when the system travels the whole way from onbkehind (5) is that jumps are more probable in the “valleys”
pole of the sphere to the other without emitting a photorof the oscillations.
Physically, (5) is applied close to an electron-shelvirajest
which is much less probable to reach than emitting many Simulations and approximate reasoning confirm that small
photons on theg) < |e) transition. laser amplitudes?;, €2, improve the synchronization ac-
Consequently, we must impose a “dead-timE”large curacy. Note that in addition to Theorem 1, accuracy of
enough to ensure that the system has travelled the whdlee singular perturbation approximation must be taken into
way from |g) to the limit cycle aroundes); in contrast, account. In practice, synchronization accuracy is limibgd
for the systems studied in [9] (see also Section IM),is the following.
introduced essentially as a technicality. However, thgéon  , For smallQ,, Q,, it takes mu@e to travel frory)
time invested is compensated by better accuracy: the gcalin o the neighborhood dk,) where useful information is
w.r.t. two-level system of [9], due to the long lifetime of gained. Thus convergence becomes very slow.
le2), implies that (2) is sensitive t& times smallerA,. It « Requirements > 0 imposesQ? > I',T; where the

also requlre s—L times smallerw. Note that the dead-time r|ght side is a system property_ This lower bound(bln
detection can’be replaced by detection ofred"photon” if sets a limit for the accuracy of the singular perturbation
a narrow-band detector is available in the experiment. approximation. Thus unlike for the two-level system,
it is not possible herfeto reach arbitrary accuracy by
Theorem 1:Consider the Monte-Carlo tra]ectorles de- taking small controls.
scribed by (2),(3) with controller (4) (5). Assuw( « One advantage of th&-system for physical experi-
I') >0 and takeii ~ o, § ~ oe? with e < 1. For |n|t|al ments is that the blue laser is also used for cooling
detuning C, assumetC? + 1 < 4w?. Then there exists a atomic motion [15]. This Doppler cooling technique
dead-timeT" large enough so that requires significant amplitud€); and detuningAy:

optimum cooling is achieved d&2; = I'y and A; =
—%. With these choices the singular perturbation ap-
proximation clearly fails. A proper reduction of fast vs.
slow dynamics would then reduce the slow “system”
to the one-dimensionales)-space: the system varies
in first approximation between two discrete situations,
either completely trapped dn.), or constantly moving
between|g) and|e;) with rapid photon emission. Then
real-time synchronization feedback schemes analogous
to the ones in this paper cannot be proposed anymore.
Sensitivity of the system t6); and A; is known by physi-
'Sists as “ground state broadening and shifting” through the
laser-induced interaction dfy) with |e;). This effect can

limsup E(Az(N)?) < O(e?).
N —oc0

Indeed, thanks to the analogy between our reduced system
and the two-level system of [9], conclusions of Theorem 2.1
and Corollary 2.2 in [9] can be transposed hessuming
the system reduction to be exaEobr the original system, we
needl’; so large that (1),(4) has a limit cycté-close to the
one estimated with the reduced system in the proof, see [9].

C. Simulation and discussion

The simulation is made on the full model (1). Paramete
are chosen a$; = 5, Q; = 0.5, A; = 0, I'y = 0.005,
2 = 0.04, w = 0.08-27, 6 = 0.012 andT" = 100. With these

values, a_lb_OUt 1 out Qf 100 photons corres_ponds to a jumpZThat is, on theoriginal V'-system (1), in contrast to singular perturbation
after sufficient dead-time, thus an update. Figure 2 shoess thpproximation (2).


mazyar
Note
longer


0.4

Detuning
o
N
/
|

<e2|ple2>
o
6]
|

1.16 1.18 1.2 1.22 1.24 1.26 1.28 13
time X 104

Fig. 3. Simulation of synchronization feedback on #iesystem: quantum Monte-Carlo trajectory @h|p|e2).

be avoided in high-precision frequency measurements lof the quantum Markov model describing single system
turning on the blue and red laseabernatively as suggested trajectories, from the Lindblad master equation governing
in [4]. However, the real-time synchronization feedbaclaverage dynamics of an ensemble of systems. The classical
proposed here does not work with dynamics modified in thisotating wave approximation yields the following master

way. equation of Lindblad type

In  conclusion, the proposed real-time feedback J L2
synchronization on thé/-system seems not competitive - _Yg += 20:pQ1—01Q.p—pQtQ,), (6
for ultra-high-precision atomic clock standards like [11] at’ = h[ /) 2;( iP iQip—pQ;Q;), (6)

However, the real-time operation obtained in return (e.g.
convergence inl ms in the above simulation) might allow with
large-bandwidth tracking oénergy level variation®.g. to # =2(lg2) {g2] — lg1) (g1])
track a physical parameter (magnetic field) on which b2 A

Ee"Fy depends. +(Ac+ 2) (I91) (9] + |92) {921)

+ Q1 [g1) (e] + Q5 le) {g1] + Q2 [g2) (] + O |e) (go]

ll. THE A-SYSTEM and@; = /T'; lg;) (el
A. System dynamics and reduction

In this section, we consider a 3-level system M
configuration, as another candidate for a frequency standar
The system is composed of two metastable ground states
and|g>), and an excited state) coupled to the lower ones.
The decay times for thé) — |g;) transitions are assumed
to be much shorter than those corresponding to the transitio
between ground states (here assumed so lowly probable that
it is neglected). Similarly to the previous section, we deno
the associated relaxing constants By and I';. However,
we do not have anymore, < I';: our essential assumption e |1}
is that bothl'; andI'; are large w.r.t. other parameters. The
ground states can have their energy separation in microwak#g- 4. The A-system: two metastable ground statgs) and |g2) are
regime, like in atomic microclocks, but also in the opticaff°uPied to an unstable excited state.
regime which would allow a better precision of the clock.

Once again, we consider near-resonant laser fields with Assuming that the decoherence ralgsandI'; are much
slowly varying amplitudes that we note b}/l andQ, and larger than the Rabi frequen0|¢1§1| |QQ\ and the detuning
the associated detunings. and A, + A (A is called the frequenciesA andA., the system spends very little time on
Raman detuning). Here we explicitly detail the derivatiorthe excited statée) as it transits betweefy;) and|g>). We




then may apply the singular perturbation theory to remowerhich are respectively the “bright” and “dark” states of the
the fast and stable dynamics|ef in order to obtain a system nonoscillating system (i.e. with = 0). Define
living on the 2-level subspace sgawm ), g2)}- 02402 )

The reduced Markovian master equation is still of Lind- 7 = 45,52l forj=1,2 andy =7 +12.

blad type and reads (see [10] for a detailed proof) ReplacingA /y by A, w/~ by w, and~t by ¢ in (10),(11),

9 S
d 2 1 we get quantum Monte-Carlo dynamics in they scale, the
— T T T . . .
5P = "l A+ g > (LjpL} = LiLjp—pLiL;), (7)  optical-pumping scale. It reads as follows (with some abuse
i=1 of notation):
where the reduced slow-Hamiltonial is given, up to a
global phase change, by e continuous-time (14)
A
2 = 2(1g) (ool = lon) {on]) = 5o ®) o= —il5 0up] = F{Ib+rccos(wt)d) (b -+ ecos(wt)d], p}
and + (b + e cos(wt)d| p |b + 1€ cos(wt)d) p
L= /3 lg;) (bg|  with 5, =42 %lp
j 75 l9s) (bg| Vi T +12)2 7(9) with |b) = cosar|g1) + sina |ga)
State |d) = —sina|g1) + cosa|ga)
N Qe ™ .
!bQ> GAERGHE lg1) + GRERGAE |92) - o€ {0, 5} the argument of2; + i€,

is known as the “bright state” in the physics literature

(coherent population trapping). From now on, we deal with® JUMP 0 p = 1995

the 2-level system (7) instead of (6). Bump(p — 195) (95]) =
Master equation (7) is identical to the ensemble dynam- 2 (b 4 1€ cos(wt)d| p |b + 1€ cos(wt )d) dt .

ics generated by the following single system Monte-Carlo 7

trajectories. In the absence of quantum jumps, the systéR@Ch quantum jump leads to the emission of a photon. The

evolves through the dynamics (whefe, b} = ab + ba): total photon detection probability simply reads

Paljumps = (b + 1€ cos(wt)d| p|b + 1€ cos(wt)d) dt. (15)

, 7 = 1,2 during dt with probability

2 2
A
d, _ 1 T T
Lop=—1—[o,,p]—3 E {LzL-,p}—&— g trace(LLL;p)p,
a 2 g = 7 = 7 We assume a broadband detection process, where the only

_ . ) " information available is théime of jump. Thetype of jump

t~he Lindblad operators ; 'be~|ng 9|ven~by (9). Sincé; L; = (to p = |g1) (g1] OF t0 p = |g2) (go]) is not available. This

%5 |bg) (bg|. we have, withy = 31 + 72, means that, unlike in the two-level reduction of Section II,
we do not know in which state the system is after each jump.

Similarly to Section Il, the goal is to synchronize the laser

,p} + (bg| p|bg) p- (10)  with the system’s transition frequencies. Sinke drops out

of the reduced equations, we will make converge to zero;

this means that we synchronize on the difference between

ground state frequencie& - at.

PBump(p — 195) (94]) = trace(L;Ljp)dt We propose the following synchronization algorithm, as-

=5 <b§| o |b5> dt, j=1,2. (11) suming that), e < 1 K w (<« I'y, T'):

This probability is proportional to the population of théght A(N +1) = A(N) — dsin(2a) cos(wtn)

state|bg) (which is actually the reason for its name). if  JA(N) —dsin(2a) cos(wty)| < C,
AN+1)=C otherwise

B. Synchronization feedback (16)

In this subsection, we consider the 2-level system obtainéd timesty of photon detection for which there has been
as the slow subsystem of thesystem presented in subsec-N0 photon emission during a preceding “dead-time” inter-
tion IlI-A. Similarly to_subsection 1I-B, we apply varying Val [ty — T, ty). As in Section I, we impose bound
laser field amplitudes?; and Q. Consider two positive On detuning. Unlike for thel’-system, but more like the
constant(;, 2, and take the following modulations traditional 2-level system in [9], the “dead-time” condtan

- ~ T is just a technical parameter necessary for the proof of the

O =D +eedacos(wt), o = Q2 —1eShicos(wt) (12)  yheorem: numerical simulations illustrate that in prazine
with ¢ < 1 and, to satisfy the assumptions of the abové&an simply takel’ = 0.
singular perturbations reductions, 2,0, < I'1,I'5. By The formal convergence result is similar to Theorem 1
analogy with subsection IlI-A, consider the orthogonaligas for the V-system: if weassume the system reduction to be
exact then given any smad (now appearing in the controller
as well), we can adjust the parameterdarge ands small

Gp=—132[02p)

— 3 {lbg) (ba
In addition, during each time steft the system may jump
towards the statéy;) (g;| with a probability given by

2=

2 —C
Ib) = Qllglé%riélggﬁ’ \d) = 522\915%:5292) (13)



enough such that the detuniny,, converges on average to in experiments where aingle atom is probed and evolves
an O(e?)-neighborhood of 0 with a deviation of ordéx(¢). according to inherently stochastic quantum dynamics. For

Theorem 2:Consider the Monte-Carlo traiectories de_both theV and A settings, we obtain theoretical real-time
scribed by (1'4) with update (16). Assume< { 12 synchronization results after having reduced the systetim wi

§ ~ ¢ and initial detuningC’ < 1/2. Then there exists a singular perturbgtion theory. The syn_chroni_zation I’&.uh
dead-timeT large enough so that are further .conflrmed”|r.1 full-model S|mylat|ons. Precise
synchronization capabilities allow to consider the casea of
limsup E(A(N)?) < O(é?) . single-atom frequency standard, where a laser is tuned to an
N—oo atom transition frequency that remains very accuratelylsta
Alternatively, the real-time tracking capability might be
used to track variations of the energy levels in a single atom

Like in Section Il, we simulate the above synchronizationjer influence of physical parameters (e.g. magnetic jields
strategy on the maink-system, and not on the slow 2-level

subsystem resulting from approximate system reduction. We
take the parametei€ = 0.5, O = Qs =1 (i.e., o = 7/4), V. ACKNOWLEDGMENTS
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