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Abstract— This paper proposes simple feedback loops, in-
spired from extremum-seeking, that use the photon emission
times of a single quantum system following quantum Monte-
Carlo trajectories in order to lock in real time a probe
frequency to the system’s transition frequency. Two specific
settings are addressed: a 3-level system coupling one ground
to two excited states (one highly unstable and one metastable)
and a 3-level system coupling one excited to two ground states
(both metastable). Analytical proofs and simulations show the
accurate and robust convergence of probe frequency to system-
transition frequency in the two cases.

I. INTRODUCTION

The SI second is defined to be “the duration of 9 192 631
770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the
caesium 133 atom” [1]. A primary frequency standard is a
device that realizes this definition. For micro atomic-clocks
[8] perfect resonance between the probe laser frequency and
the atomic frequency is characterized by a maximum (or
minimum) output signal of a photo-detector. Therefore ex-
tremum seeking techniques (see e.g [3] for a recent exposure)
are usually used in high precision spectroscopy to achieve
frequency lock with an atomic transition frequency [14],
[12], [13].

State-of-the-art experiments appear in two strategies. Ina
first strategy A, a real-time synchronization feedback scheme
based on modulation of the probe frequency (see more
description in [9]) is applied to a large population of identical
quantum systems with few mutual interactions (the vapor
cell) having reached its asymptotic statistical regime; the
evolution of this population and the related output signal
follow the continuous density matrix dynamics of a static
Lindblad-Kossakovski master equation. In a second strategy
B (see e.g. [13], [11]), a single atom is probed for a long time
with different probe frequencies and locking with the atom
transition frequency is deduced from the resulting statistics;
this somehow reconstructs over time the continuous signal
corresponding to strategy A.

The present paper proposes a way to merge the two
strategies and adapt real-time synchronization feedback
to a single quantum system. Such a single system cannot
be described by a static non-linear input/output map but
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it obeys stochastic jump dynamics [5], [7], modeled by
“quantum Monte-Carlo” trajectories; with respect to strategy
A, the output signal is no more continuous but corresponds
to a counter giving the jump times. As shown in [4], all the
spectroscopic information and in particular the value of the
atomic transition frequency are contained in the statistics
of these jump-time series. The novelty of the present paper
is to avoid the use of quantum filters [6] and records of
jump-time sequences required by usual statistical treatments
as in strategy B. It proposes a real-time synchronization
feedback scheme that can be implemented on electronic
circuits of similarly low complexity as those used for
extremum-seeking loops in strategy A. The resulting real-
time synchronization scheme might also allow to track (e.g.
field-induced) variations in the atom’s transition frequency
with a reasonable bandwidth, depending on the particular
atomic clock system.

We consider two particular atomic systems in the present
paper.(1) The first one corresponds to aV -system, which
features the electron-shelving mechanism and is one of the
main candidates for atomic clocks [4]. The system has two
excited states — one unstable and one metastable — which
interact with the same ground state through two electro-
magnetic fields. The system mostly evolves through the
ground-to-unstable transition. However, accurate frequency
estimation is based on the ground-to-metastable transition.
(2) The second setting corresponds to aΛ-system, where
two electromagnetic fields are tuned to make two metastable
ground states both interact with the same unstable excited
state. This system typically appears in coherent population
trapping phenomena and optical pumping [2], but also in
micro atomic clocks. This second setting is studied in more
detail in [9].

For the two systems, we propose relevant forms of the
amplitude modulation of the probe electromagnetic fields and
the associated real-time updates for their frequency on the
basis of photon detection times. We establish the stochastic
convergence property of probe frequency towards atomic
transition frequencies.

Note that the “quantum Monte-Carlo” trajectories, used
throughout the paper, should be understood as the actual
model for a single quantum system’s behavior, and not as a
numerical method. We refer to [7] for more details on the
physical interpretation of these quantum dynamics.

The paper is organized as follows. Sections II and III
consider, respectively, theV -system and theΛ-system.
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Fig. 1. The V structure system: a ground state|g〉 is coupled by two
electromagnetic fields to a highly unstable state|e1〉 (“blue laser”) and a
metastable state|e2〉 (“red laser”).

Each section first describes main properties of the specific
stochastic dynamics, then proposes a synchronization
feedback with the main ideas of a convergence proof, and
finally presents simulation results along with comments on
the performance. For detailed proofs the reader is referred
a.o. to [9].

II. THE V -SYSTEM

A. System dynamics and reduction

The V -system evolves on the Hilbert space spanned by
a stable ground state|g〉, an unstable excited state|e1〉,
and a metastable excited state|e2〉 (see Fig. 1). Lifetimes
of the excited states w.r.t. decaying to|g〉 are 1/Γ1 and
1/Γ2, with Γ1 ≫ and Γ2 ≪ (see simulation section for
typical values). The system is submitted to two laser fields
with slowly varying amplitudes denoted byΩ1, Ω2, and
frequencies near-resonant respectively with the|g〉 ↔ |e1〉
(“blue laser”) and|g〉 ↔ |e2〉 (“red laser”) transitions; the
corresponding detunings are noted∆1 and∆2. The goal is
to reach∆2 = 0, i.e. to exactly synchronize the red laser
to the transition frequencyEe2−Eg

~
. Indeed, thanks to the

large lifetime of metastable state|e2〉, the uncertainty on this
energy difference is very narrow.

The classical rotating wave approximation, which as-
sumes frequencies associated to transition energiesEe1−Eg

~
,

Ee2−Eg

~
, Ee1−Ee2

~
to be much larger than all other charac-

teristic frequencies, yields the following quantum Markov
trajectory model for the density matrixρ characterizing a
single system (where{a, b} = ab + ba):

• continuous-time (1)

d
dt

ρ = −ı[H
~

, ρ] − 1
2

2∑

j=1

{
Q†

jQj , ρ
}

+
2∑

j=1

trace(Q†
jQjρ)ρ

with H
~

= ∆1|e1〉〈e1| + ∆2|e2〉〈e2| +
∑2

j=1

ΩjQ
†
j
+Ω∗

j Qj√
Γj

Q1 =
√

Γ1|g〉〈e1| and Q2 =
√

Γ2|g〉〈e2|

• jump to ρ = |g〉〈g| during dt with probability

Pjump(ρ → |g〉 〈g|) =
∑2

j=1 trace(Q†
jQjρ)dt

=
∑2

j=1 Γj〈ej |ρ|ej〉dt .

Assuming that decoherence rateΓ1 (typically 109 Hz) is
much larger than all other characteristic frequencies, singular
perturbation and center manifold theories are applied as
explained in [10] to separate slow and fast dynamics1.
The resulting dynamics describe a two-level “slow” system
essentially on the|g〉 ↔ |e2〉 transition. It can be written on
the Bloch sphere (see e.g. textbook [7]) as follows, with
Z = −1 and Z = +1 corresponding to|g〉 and |e2〉
respectively.

• d
dt

X = vZ + ∆2Y + σ
2 (−Z X)

d
dt

Y = −uZ − ∆2X + σ
2 (−Z Y )

d
dt

Z = −vX + uY + σ
2 (1 − Z)(1 + Z) (2)

• and jump toZ = −1 with probability

Pjump(Z → −1) =
(
Γ2 + σ

2 (1 − Z)
)
dt (3)

We denoteΩ2 = u + ı v andσ = (
Ω2

1

Γ1

− Γ2). SinceΓ2 ≪,

it is reasonable thatΩ
2

1

Γ1

≫ Γ2 such thatσ > 0.

Observations:
1. Fortunately∆1 does not appear in these dynamics.
2. In absence of photon emission jumps, the decoherence
term, proportional toσ, drives the system towardsexcited
state|e2〉, not towards|g〉 as is usually the case for a two-
level system. This reflects the effect of measurement with the
blue laser: if no photon is emitted despite a strong coupling
of |g〉 with |e1〉, then it is most probable that the system is
actually mainly “shelved” on state|e2〉. Of course the system
still jumps to |g〉 at photon emission.

B. Synchronization feedback

In the absence of jumps, (2) is strictly equivalent to the
two-level system of [9], after inversion of theZ-direction
(and controlsu, v) and scaling byσ

Γ1

. Therefore we take

Ω2 = ū(1 + ı cos(ωt)) (4)

as for this two-level system, with̄u = 2κσǫ w.r.t. the
proof in [9]. Jump dynamics (3) afterZ-inversion features a
significant difference w.r.t. the two-level system of [9]: the
system jumps to theopposite pointof the Bloch sphere at
photon emission. The jumpingprobability after Z-inversion
is however as in [9]. Therefore, the analogous update is:





∆2(N + 1) = ∆2(N) + δ ū sin(ω tN )

if |∆2(N) + δ ū sin(ω tN )| ≤ C,

∆2(N + 1) = C otherwise

(5)

where t0, t1,... tN ,... are the detection times of photons
that are preceded by a sufficiently long “dead-time” interval
[tN −T, tN ) during which no photon has been detected, for
someT > 0. Thus (5) is only applied for photons that follow
a sufficiently long evolution without jump. While a similar
condition is included in [9] as a technicality, hereT plays

1This is done by using the corresponding deterministicensembledynam-
ics, in Lindblad-Kossakovski master equation form, as an intermediate step.
See details for a similar case in Section III.
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a crucial role, explained in the following. We assume as in
[9] that initially |∆| does not exceed a fixed constantC and
explicitly maintain it within this bound.

The idea behind (4), similarly for the two-level system in
[9], is: under (4),(2) the system ultimately converges to and
evolves on a limit cycle in the neighborhood ofZ = 1. The
position of this limit cycle, and linked to this the phase of
the system on the limit cycle w.r.t. the phase in (4), depends
on ∆2. The jump probability will depend on the position on
the limit cycle, and thus jump times reflect∆2.

Under (4), the system in absence of jumps slowly drifts
from |g〉 towards|e2〉, around which it stabilizes on a limit
cycle; when jumping, the system goes to|g〉; the jump
probability decreaseswhen going from|g〉 to |e2〉. As a
consequence the system jumps to a point (i) that is opposite
to the limit cycle on which we want to use (5) and (ii)
in whose neighborhood jumping again is highly probable.
Therefore, a useful photon for (5), based on limit-cycle
evolution as explained in the previous paragraph, is gained
only rarely, when the system travels the whole way from one
pole of the sphere to the other without emitting a photon.
Physically, (5) is applied close to an electron-shelving state,
which is much less probable to reach than emitting many
photons on the|g〉 ↔ |e〉 transition.

Consequently, we must impose a “dead-time”T large
enough to ensure that the system has travelled the whole
way from |g〉 to the limit cycle around|e2〉; in contrast,
for the systems studied in [9] (see also Section III),T is
introduced essentially as a technicality. However, the longer
time invested is compensated by better accuracy: the scaling
w.r.t. two-level system of [9], due to the long lifetime of
|e2〉, implies that (2) is sensitive toΓ1

σ
times smaller∆2. It

also requiresΓ1

σ
times smallerω. Note that the dead-time

detection can be replaced by detection of a “red photon” if
a narrow-band detector is available in the experiment.

Theorem 1:Consider the Monte-Carlo trajectories de-
scribed by (2),(3) with controller (4),(5). Assumeσ = (

Ω2

1

Γ1

−
Γ2) > 0 and takeū ∼ σ ǫ, δ ∼ σ ǫ2 with ǫ ≪ 1. For initial
detuningC, assume4C2 + 1 < 4ω2. Then there exists a
dead-timeT large enough so that

lim sup
N→∞

E(∆2(N)2) ≤ O(ǫ2) .

Indeed, thanks to the analogy between our reduced system
and the two-level system of [9], conclusions of Theorem 2.1
and Corollary 2.2 in [9] can be transposed hereassuming
the system reduction to be exact. For the original system, we
needΓ1 so large that (1),(4) has a limit cycleǫ4-close to the
one estimated with the reduced system in the proof, see [9].

C. Simulation and discussion

The simulation is made on the full model (1). Parameters
are chosen asΓ1 = 5, Ω1 = 0.5, ∆1 = 0, Γ2 = 0.005,
ū = 0.04, ω = 0.08 ·2π, δ = 0.012 andT = 100. With these
values, about 1 out of 100 photons corresponds to a jump
after sufficient dead-time, thus an update. Figure 2 shows the

evolution of detuning for a single trajectory of the system.
During the overall time of24 · 105 the detuning decreases
from 0.25 to 0.03. As suspected given the significant dead-
time, convergence is much slower than for the systems
described in [9], see also Section III. For a typical system
with Γ1 in the nano-second range, the full simulation time
is of the order of1ms and the obtained accuracy is about
Γ1

100 ∼ 10MHz.
Figure 3 shows a typical section of quantum Monte-Carlo

trajectory for the same simulation. It represents〈e2|ρ|e2〉,
that is the probability of being “shelved” on metastable state
|e2〉. Each jump down to0 corresponds to the emission of
a photon. Each plateau close to1 corresponds to a “shelved
electron” situation. There is a significant probability to emit
no photon for a long time on this plateau, which has led
to its name “dark window” in the physics literature [4].
Oscillations on the plateau due to periodic excitation (4)
are clearly visible. Jumping from the plateau corresponds
to a “red” photon and triggers a detuning update. The idea
behind (5) is that jumps are more probable in the “valleys”
of the oscillations.

Simulations and approximate reasoning confirm that small
laser amplitudesΩ1, Ω2 improve the synchronization ac-
curacy. Note that in addition to Theorem 1, accuracy of
the singular perturbation approximation must be taken into
account. In practice, synchronization accuracy is limitedby
the following.

• For smallΩ1, Ω2, it takes much time to travel from|g〉
to the neighborhood of|e2〉 where useful information is
gained. Thus convergence becomes very slow.

• Requirementσ > 0 imposesΩ2
1 > Γ2 Γ1 where the

right side is a system property. This lower bound onΩ1

sets a limit for the accuracy of the singular perturbation
approximation. Thus unlike for the two-level system,
it is not possible here2 to reach arbitrary accuracy by
taking small controls.

• One advantage of theV -system for physical experi-
ments is that the blue laser is also used for cooling
atomic motion [15]. This Doppler cooling technique
requires significant amplitudeΩ1 and detuning∆1:
optimum cooling is achieved atΩ1 = Γ1 and ∆1 =
−Γ1

2 . With these choices the singular perturbation ap-
proximation clearly fails. A proper reduction of fast vs.
slow dynamics would then reduce the slow “system”
to the one-dimensional|e2〉-space: the system varies
in first approximation between two discrete situations,
either completely trapped on|e2〉, or constantly moving
between|g〉 and |e1〉 with rapid photon emission. Then
real-time synchronization feedback schemes analogous
to the ones in this paper cannot be proposed anymore.

Sensitivity of the system toΩ1 and∆1 is known by physi-
cists as “ground state broadening and shifting” through the
laser-induced interaction of|g〉 with |e1〉. This effect can

2That is, on theoriginal V -system (1), in contrast to singular perturbation
approximation (2).
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Fig. 2. Simulation of synchronization feedback on theV -system: evolution of detuning for a single Monte-Carlo trajectory.
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Fig. 3. Simulation of synchronization feedback on theV -system: quantum Monte-Carlo trajectory of〈e2|ρ|e2〉.

be avoided in high-precision frequency measurements by
turning on the blue and red lasersalternatively, as suggested
in [4]. However, the real-time synchronization feedback
proposed here does not work with dynamics modified in this
way.

In conclusion, the proposed real-time feedback
synchronization on theV -system seems not competitive
for ultra-high-precision atomic clock standards like [11].
However, the real-time operation obtained in return (e.g.
convergence in1ms in the above simulation) might allow
large-bandwidth tracking ofenergy level variationse.g. to
track a physical parameter (magnetic field) on which
Ee2−Eg

~
depends.

III. THE Λ-SYSTEM

A. System dynamics and reduction

In this section, we consider a 3-level system inΛ-
configuration, as another candidate for a frequency standard.
The system is composed of two metastable ground states|g1〉
and |g2〉, and an excited state|e〉 coupled to the lower ones.
The decay times for the|e〉 → |gj〉 transitions are assumed
to be much shorter than those corresponding to the transition
between ground states (here assumed so lowly probable that
it is neglected). Similarly to the previous section, we denote
the associated relaxing constants byΓ1 and Γ2. However,
we do not have anymoreΓ2 ≪ Γ1: our essential assumption
is that bothΓ1 andΓ2 are large w.r.t. other parameters. The
ground states can have their energy separation in microwave
regime, like in atomic microclocks, but also in the optical
regime which would allow a better precision of the clock.

Once again, we consider near-resonant laser fields with
slowly varying amplitudes that we note bỹΩ1 and Ω̃2 and
the associated detunings∆e and ∆e + ∆ (∆ is called the
Raman detuning). Here we explicitly detail the derivation

of the quantum Markov model describing single system
trajectories, from the Lindblad master equation governing
average dynamics of an ensemble of systems. The classical
rotating wave approximation yields the following master
equation of Lindblad type

d

dt
ρ = − ı

~
[H̃, ρ]+

1

2

2∑

j=1

(2QjρQ†
j−Q†

jQjρ−ρQ†
jQj), (6)

with

H̃
~

=∆
2 (|g2〉 〈g2| − |g1〉 〈g1|)
+

(
∆e + ∆

2

)
(|g1〉 〈g1| + |g2〉 〈g2|)

+ Ω̃1 |g1〉 〈e| + Ω̃∗
1 |e〉 〈g1| + Ω̃2 |g2〉 〈e| + Ω̃∗

2 |e〉 〈g2|

andQj =
√

Γj |gj〉 〈e|.

Fig. 4. TheΛ-system: two metastable ground states|g1〉 and |g2〉 are
coupled to an unstable excited state.

Assuming that the decoherence ratesΓ1 andΓ2 are much
larger than the Rabi frequencies|Ω̃1|, |Ω̃2| and the detuning
frequencies∆ and∆e, the system spends very little time on
the excited state|e〉 as it transits between|g1〉 and |g2〉. We



then may apply the singular perturbation theory to remove
the fast and stable dynamics of|e〉 in order to obtain a system
living on the 2-level subspace span{|g1〉 , |g2〉}.

The reduced Markovian master equation is still of Lind-
blad type and reads (see [10] for a detailed proof)

d

dt
ρ = − ı

~
[H, ρ] +

1

2

2∑

j=1

(2LjρL†
j −L†

jLjρ− ρL†
jLj), (7)

where the reduced slow-HamiltonianH is given, up to a
global phase change, by

H
~

= ∆
2 (|g2〉 〈g2| − |g1〉 〈g1|) = ∆

2 σz (8)

and

Lj =
√

γ̃j |gj〉
〈
beΩ

∣∣ with γ̃j = 4 |eΩ1|2+|eΩ2|2
(Γ1+Γ2)2

Γj .
(9)

State
∣∣beΩ

〉
=

eΩ1√
|eΩ1|2+|eΩ2|2

|g1〉 +
eΩ2√

|eΩ1|2+|eΩ2|2
|g2〉 .

is known as the “bright state” in the physics literature
(coherent population trapping). From now on, we deal with
the 2-level system (7) instead of (6).

Master equation (7) is identical to the ensemble dynam-
ics generated by the following single system Monte-Carlo
trajectories. In the absence of quantum jumps, the system
evolves through the dynamics (where{a, b} = ab + ba):

d
dt

ρ = −ı
∆

2
[σz, ρ]− 1

2

2∑

j=1

{
L†

jLj , ρ
}

+
2∑

j=1

trace(L†
jLjρ)ρ,

the Lindblad operatorsLj being given by (9). SinceL†
jLj =

γ̃j

∣∣beΩ

〉 〈
beΩ

∣∣, we have, withγ̃ = γ̃1 + γ̃2,

1
γ̃

d
dt

ρ = −ı ∆
2γ̃

[σz, ρ]

− 1
2

{∣∣beΩ

〉 〈
beΩ

∣∣ , ρ
}

+
〈
beΩ

∣∣ ρ
∣∣beΩ

〉
ρ. (10)

In addition, during each time stepdt the system may jump
towards the state|gj〉 〈gj | with a probability given by

Pjump(ρ → |gj〉 〈gj |) = trace(L†
jLjρ)dt

= γ̃j

〈
beΩ

∣∣ ρ
∣∣beΩ

〉
dt, j = 1, 2. (11)

This probability is proportional to the population of the bright
state

∣∣beΩ

〉
(which is actually the reason for its name).

B. Synchronization feedback

In this subsection, we consider the 2-level system obtained
as the slow subsystem of theΛ-system presented in subsec-
tion III-A. Similarly to subsection II-B, we apply varying
laser field amplitudes̃Ω1 and Ω̃2. Consider two positive
constantΩ1, Ω2 and take the following modulations

Ω̃1 = Ω1 + ıǫΩ2 cos(ωt), Ω̃2 = Ω2 − ıǫΩ1 cos(ωt) (12)

with ǫ ≪ 1 and, to satisfy the assumptions of the above
singular perturbations reduction,ω,Ω1,Ω2 ≪ Γ1,Γ2. By
analogy with subsection III-A, consider the orthogonal basis

|b〉 = Ω1|g1〉+Ω2|g2〉√
Ω2

1
+Ω2

2

, |d〉 = Ω2|g1〉−Ω1|g2〉√
Ω2

1
+Ω2

2

(13)

which are respectively the “bright” and “dark” states of the
nonoscillating system (i.e. withǫ = 0). Define

γj = 4
Ω2

1
+Ω2

2

(Γ1+Γ2)2
Γj for j = 1, 2 andγ = γ1 + γ2 .

Replacing∆/γ by ∆, ω/γ by ω, andγt by t in (10),(11),
we get quantum Monte-Carlo dynamics in the1/γ scale, the
optical-pumping scale. It reads as follows (with some abuse
of notation):

• continuous-time (14)

d
dt

ρ = −ı[
∆

2
σz, ρ] − 1

2 {|b + ıǫ cos(ωt)d〉 〈b + ıǫ cos(ωt)d| , ρ}
+ 〈b + ıǫ cos(ωt)d| ρ |b + ıǫ cos(ωt)d〉 ρ

with |b〉 = cos α |g1〉 + sin α |g2〉
|d〉 = − sin α |g1〉 + cos α |g2〉

α ∈
[
0,

π

2

]
the argument ofΩ1 + iΩ2

• jump to ρ = |gj〉〈gj | , j = 1, 2 during dt with probability

Pjump(ρ → |gj〉 〈gj |) =
γj

γ
〈b + ıǫ cos(ωt)d| ρ |b + ıǫ cos(ωt)d〉 dt .

Each quantum jump leads to the emission of a photon. The
total photon detection probability simply reads

palljumps = 〈b + ıǫ cos(ωt)d| ρ |b + ıǫ cos(ωt)d〉 dt . (15)

We assume a broadband detection process, where the only
information available is thetime of jump. Thetypeof jump
(to ρ = |g1〉 〈g1| or to ρ = |g2〉 〈g2|) is not available. This
means that, unlike in the two-level reduction of Section II,
we do not know in which state the system is after each jump.

Similarly to Section II, the goal is to synchronize the lasers
with the system’s transition frequencies. Since∆e drops out
of the reduced equations, we will make∆ converge to zero;
this means that we synchronize on the difference between
ground state frequenciesEg2−Eg1

~
.

We propose the following synchronization algorithm, as-
suming thatδ, ǫ ≪ 1 ≪ ω (≪ Γ1,Γ2):





∆(N + 1) = ∆(N) − δ sin(2α) cos(ωtN )

if |∆(N) − δ sin(2α) cos(ωtN )| ≤ C,

∆(N + 1) = C otherwise
(16)

at times tN of photon detection for which there has been
no photon emission during a preceding “dead-time” inter-
val [tN − T, tN ). As in Section II, we impose boundC
on detuning. Unlike for theV -system, but more like the
traditional 2-level system in [9], the “dead-time” constant
T is just a technical parameter necessary for the proof of the
theorem: numerical simulations illustrate that in practice one
can simply takeT = 0.

The formal convergence result is similar to Theorem 1
for the V -system: if weassume the system reduction to be
exact, then given any smallǫ (now appearing in the controller
as well), we can adjust the parametersω large andδ small



enough such that the detuning∆N converges on average to
an O(ǫ2)-neighborhood of 0 with a deviation of orderO(ǫ).

Theorem 2:Consider the Monte-Carlo trajectories de-
scribed by (14) with update (16). Assumeǫ ≪ 1, 1

ω
∼ ǫ2,

δ ∼ ǫ3 and initial detuningC < 1/2. Then there exists a
dead-timeT large enough so that

lim sup
N→∞

E(∆(N)2) ≤ O(ǫ2) .

C. Numerical simulations

Like in Section II, we simulate the above synchronization
strategy on the mainΛ-system, and not on the slow 2-level
subsystem resulting from approximate system reduction. We
take the parametersC = 0.5, Ω1 = Ω2 = 1 (i.e., α = π/4),
Γ1 = Γ2 = 3.0 (i.e., γ1 = γ2 = 0.6667), ǫ = 0.03, γ/ω =
0.05, andδ = 0.015. Dead-time is left atT = 0, very unlike
for the V -system. The simulations of Figure 5 illustrate 10
random Monte-Carlo trajectories of the system starting at
∆0 = 0.5 andρ0 = |d〉 〈d|, where|d〉 = 1√

2
(|g1〉−|g2〉). The

first plot provides the number of photon detections (quantum
jumps) while the second one gives the evolution of detuning
∆(N). As can be noted, the detuning converges to a small
neighborhood of zero within at most1000 detections.
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Fig. 5. Detuning evolution and number of quantum jumps (= photon
detections) as a function of time for the synchronization feedback on the
Λ-system.

IV. CONCLUSION

We have studied two atomic systems that are possible
candidates for frequency standards: the first one consists
of a so-called “V -configuration” with two excited states
(one highly unstable and one metastable) and one stable
ground state; the second one consists of a “Λ-configuration”
with one highly unstable excited state and two metastable
ground states. Both systems have been studied in the physics
literature, theV -system widely as a candidate for an ultimate
ultra-high-precision atomic clock and theΛ-system as a
candidate for atomic microclocks. However, in such physics
experiments, generally a cloud of atoms is considered as a
statistical ensemble and the measured photocurrent is used
to synchronize the laser fields.

In this paper, we propose areal-time output feedback
method to lock the probe frequencies to the atomic ones

in experiments where asingle atom is probed and evolves
according to inherently stochastic quantum dynamics. For
both theV and Λ settings, we obtain theoretical real-time
synchronization results after having reduced the system with
singular perturbation theory. The synchronization results
are further confirmed in full-model simulations. Precise
synchronization capabilities allow to consider the case ofa
single-atom frequency standard, where a laser is tuned to an
atom transition frequency that remains very accurately stable.
Alternatively, the real-time tracking capability might be
used to track variations of the energy levels in a single atom
under influence of physical parameters (e.g. magnetic fields).
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