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Abstract— We investigate the stabilization of the dynami-
cal state of a superconducting qubit. In a series of papers,
A. Korotkov and his co-workers suggested that continuous
weak measurement of the state of a qubit and applying an
appropriate feedback on the amplitude of a Rabi drive, should
maintain the coherence of the Rabi oscillations for arbitrary
time. Here, in the aim of addressing a metrological application
of these persistent Rabi oscillations, we explore a new variant
of such strategies. This variant is based on performing strong
measurements in a discrete manner and using the measurement
record to correct the phase of the Rabi oscillations. Noting that
such persistent Rabi oscillations can be viewed as an amplitude-
to-frequency convertor (converting the amplitude of the Rabi
microwave drive to a precise frequency), we propose another
feedback layer consisting of a simple analog phase locked loop
to compensate the low frequency deviations in the amplitude
of the Rabi drive.

I. INTRODUCTION

Recent advances on superconducting qubits have led to

lifetimes and coherence times of several microseconds [11],

[6]. In parallel, the advances on quantum-limited Josephson

parametric amplifiers [16], [1], [12] have made it possible to

measure continuously the state of a qubit without adding

mostly classical noise. Indeed, Quantum Non-Demolition

(QND) measurement of a superconducting qubit coupled

to a microwave resonator through a Josephson parametric

amplifier has been recently achieved in the experiment

of [17]. All these advances open the doors to investigate real-

time quantum feedback schemes for preparing and protecting

various quantum states of interest in quantum information or

metrology [14].

In a series of papers [13], [18], [9], A. Korotkov and co-

workers proposed feedback strategies to stabilize the coher-

ent oscillations in a qubit when driven by a resonant Rabi

drive. While an important difficulty in the initial scheme [13]

was the necessity to solve in real-time a Bayesian filter

equation, in a second scheme, Korotkov proposed a simple

analog scheme to stabilize the Rabi oscillations [9].
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This stabilization problem can have a very important

metrological application. Indeed, the Rabi oscillations of a

qubit can be seen as an amplitude-to-frequency convertor,

converting the amplitude of the resonant drive to the fre-

quency of the induced Rabi oscillations. Therefore, a high-

precision measurement of this frequency leads to a high-

precision measurement of the microwave drive’s amplitude

allowing the stabilization of the microwave generator’s out-

put power. However, due to the dephasing of the qubit, these

oscillations admit very short lifetimes and are rapidly invaded

by phase noise. This is why compensating this dephasing in

a feedback procedure is very important.

Here, in the aim of addressing this metrological applica-

tion, we propose a new closed-loop phase correction scheme

that maintains with an acceptable fidelity the phase of the

coherent oscillations and furthermore allows for a correction

of the low-frequency deviations in the Rabi drive amplitude.

The main idea consists in correcting the phase of the coherent

oscillations in a discrete-in-time manner and during the time

between two corrections to accumulate information on the

amplitude of the Rabi drive. Indeed, similarly to [5], we

propose to perform strong qubit measurements at every half

period of the desired Rabi oscillation. The phase error can

then be corrected by applying π-pulses each time we observe

the opposite phase to the one expected. A second feedback

layer, based on the output of a continuous weak measurement

of the qubit, allows for correcting the deviations in the

Rabi drive amplitude and stabilizing it around some nominal

value.

Throughout this paper, we will perform simulations by

considering the parameters that should be quite easily achiev-

able in experiments with charge qubits such as transmons.

Also, while the second feedback layer consists of a simple

analog phase locked loop, the first one can be implemented

in a real-time experiment using present digital electronics

like Field Programmable Gate Array boards.

In the next section, we will start with a brief introduction

to the circuit QED model and the dispersive measurement of

the qubit. Also, we will show how, through a quantum Zeno

effect, discrete-in-time strong measurements can enhance

the coherence of the Rabi oscillations. Finally, we will

show how a simple feedback scheme based on the output

of these measurements and corrective π-pulses can lead to

persistent Rabi oscillations. In Section III, we will add the

second feedback layer and we will show how a simple Phase

Locked Loop based on the output of a continuous weak

measurement, can stabilize the Rabi drive amplitude against

low frequency deviations.
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Fig. 1. Scheme of the transmon qubit coupled to a superconducting

resonator with strength g =
√
ωrωeg

Cc

2
√

Cr(Cc+Cq)
(see e.g. [3]). The

qubit state can be manipulated and read out dispersively using microwave
fields sent to the input port and measured at the output port of the amplifier.

II. DISCRETE-TIME STRONG MEASUREMENT AND

FEEDBACK

A. Circuit QED model

We consider here a quantum circuit consisting of a trans-

mon qubit [7] of transition frequency ωeg coupled to a

superconducting resonator of frequency ωr (see the scheme

of Fig. 1). We further assume this coupling to be in the

dispersive regime, meaning that the coupling strength is

smaller than the detuning between the resonator and qubit

frequencies. Driving the resonator at its resonance frequency

by microwave signals, the effective Hamiltonian after a

rotating wave approximation is given as follows:

Heff = ~
ωeg

2
σz + ~χa†aσz + ~[ǫd(t)a

† + ǫ∗d(t)a]. (1)

Here a is the field annihilation operator, and σz = |e〉〈e| −
|g〉〈g| is the Pauli operator in qubit space and ǫd is the

complex amplitude of the microwave drive at frequency

ωr. Finally, χ is the dispersive coupling strength given by

χ = αg2/∆(∆ + α) [7] where α is the anharmonicity of

the transmon qubit defined as α = ωfe − ωeg (ωfe being

the transition frequency between the first and second excited

states), g is the coupling strength between the qubit and

resonator (see Fig. 1) and ∆ = ωeg − ωr. Indeed, we are

in the regime where |∆| ≫ g (in fact, we even assume that

|∆| ≫ 2g
√
n̄ where n̄ is the average number of photons in

the resonator).

B. Dispersive measurement and reduced master equation

In the Born-Markov approximation, the Lindblad master

equation describing the evolution of the density matrix of

the coupled qubit-resonator is given by [2], [10]

d

dt
ρt = − i

~
[Heff, ρt]

+ κD[a]ρt + γ1D[σ−]ρt + γφD[σz]ρt/2, (2)

where κ is the resonator’s decay rate (through its coupling to

the transmission line), γ1 is the qubit decay rate, γφ the pure

dephasing rate, σ− = |g〉〈e| is the qubit lowering operator

and D[A] the damping superoperator

D[A]ρ = AρA† −A†Aρ/2− ρA†A/2.

Starting with a state of the form |g〉 ⊗ |0〉 (resp. |e〉 ⊗ |0〉)
where |0〉 is the vacuum state of the associated resonator’s

mode, and neglecting the energy loss due to γ1 (in practice

γ1 ≪ κ allows to decouple adiabatically the qubit dynamics

from the resonator), the state at time t is given by |g〉 ⊗
|αg(t)〉 (resp. |e〉 ⊗ |αe(t)〉 ) where

∣

∣αg(e)(t)
〉

are coherent

states of the resonator with complex amplitudes determined

by

d

dt
αg(t) = −iǫd(t)− (κ/2− iχ)αg(t)

d

dt
αe(t) = −iǫd(t)− (κ/2 + iχ)αe(t)

αg(0) = αe(0) = 0. (3)

In this work, we are interested in measurement scenarios

where the measurement drive is turned on with a constant

(rather strong) amplitude ǫd(t) ≡ ǫd ∈ R on a short time

interval (comparable to the resonators decay time κ−1). If

the drive is turned on during a time τ only, the coherent

states αg and αe are given by (see Fig. 2)

αg(t) = − 2iǫd
κ− 2iχ

(

1− e−
(κ−2iχ)

2 t
)

t ∈ [0, τ ],

αg(t) =
2iǫde

−
(κ−2iχ)

2 t

κ− 2iχ

(

1− e
(κ−2iχ)

2 τ
)

t > τ,

αe(t) = −α∗
g(t).

These coherent states act as pointer states for the qubit.

Detection of the in-phase quadrature amplitude I = 〈a +
a†〉/2 allows us to distinguish between these two coherent

states and thus readout the state of the qubit. Following the

derivation of Ref. [4], one finds the laboratory frame reduced

qubit master equation

d

dt
ρt = −i

ωac(t)

2
[σz, ρt]

+ γ1D[σ−]ρt + (γφ + γm(t))D[σz]ρt/2. (4)

Here,

γm(t) = 2χIm(αg(t)α
∗
e(t)) = −2χIm(αg(t)

2),

is an additional dephasing due to the coupling to the popu-

lated resonator and

ωac(t) = ωeg +B(t),

with B(t) = 2χRe(αg(t)α
∗
e(t)) = −2χRe(αg(t)

2) the ac-

stark shift experimentally measured in Ref. [15].

C. Measurement record and quantum Zeno effect

As discussed above, the average effect of the measurement

procedure can lead to additional dephasing. Furthermore, this

dephasing rate γm increases with ǫd in a quadratic way.

Therefore, stronger measurements should increase dramat-

ically the dephasing. However, we will see through this
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Fig. 2. Evolution of the field state in the resonator when the drive ǭd/2π =
22 MHz is turned on for 17 ns and is then turned off. The cavity pull is
chosen to be χ/2π = 5 MHz and the cavity decay rate κ/2π = 20 MHz.
The main plot represents the evolution of the two possible field states αg

and αe over 100 ns in the quadrature space, the time being color coded. The
corresponding photon number |α|2 and distance between possible fields β
are plotted on the top left inset. The additional dephasing γm(t) due to
the coupling to the resonator, and the ac-stark shift B(t) are shown in the
top right inset. It can be seen that the atom-resonator coupling is negligible
after 50 ns which is the measurement duration in the proposed experiment.

subsection that discrete strong measurements at half-periods

of Rabi oscillations sharpen the noise power peak at Rabi

frequency.

The measurement record observed in an experiment can

be expressed as

Jt =
√
κβ(t) 〈σz〉t +

1√
η
ξt (5)

where ξt is a Gaussian white noise which represents the

photon shot noise and the separation between field state is

β(t) = |αg(t)− αe(t)|. (6)

The weak measurement regime corresponds to the situation

where β(t) remains much smaller than 1 such that the two

pointer states |αg〉 and |αe〉 coincide almost completely. By

increasing the measurement strength, however, these two

states get more and more separated leading to an improved

signal to noise ratio.

Let us consider Rabi oscillations of frequency ΩR. Starting

from the excited state |e〉 (corresponding to Z = 1 for the

Bloch sphere coordinates) at time t = 0, we know that in

the absence of any dephasing and relaxation, the trajectories

should pass by Z = 1 at times 2kπ
ΩR

and by Z = −1 at times
(2k+1)π

ΩR
. Similarly to [5], we consider the situation where the

measurement is performed in a discrete manner and on short

time intervals centered around the times where the qubit is

supposed to pass by these two poles (Z = ±1).

Indeed, assuming a resonator’s bandwidth much larger

than the Rabi oscillations frequency (κ ≫ ΩR), we perform

the measurement by integrating the output amplitude (5) on

the time intervals Ik = [ kπΩR
− π

κ ,
kπ
ΩR

+ π
κ ], of length 2π/κ

and centered around the desired Rabi peaks kπ
ΩR

. The probe

drive is turned on during the first third of these interval Ik
only. The last two thirds of this interval are needed by the

resonator to relax to its vacuum state. The integrated output

over this interval is then given by

Jk =
√
κ

∫ 2π/κ

0

β(t) 〈σz〉(t+ kπ
ΩR

−π
κ

) dt+W (
2π

ηκ
), (7)

where η ≤ 1 is the efficiency of the measurement and

W (2π/ηκ) is a Gaussian random variable with zero mean

and standard deviation
√

2π/ηκ.

We consider this discrete output signal as a discretization

of a continuous signal with time steps of length π/ΩR.

Applying a Discrete Fourier Transform, we can therefore

compute the power spectral density corresponding to this

signal. Let us analyze the effect of the strength of the

measurement on this spectrum through some simulations.
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ǭd/2π ≡22MHz

Fig. 3. Power spectral density for the discrete measurement record; taking
respectively ǫd/2π = 5.5, 11, 22 MHz

Here we take the parameters ΩR/2π = 2 MHz, κ/2π =
20 MHz, χ/2π = 5 MHz, η = 1, γ1/2π = .05 MHz and

γφ/2π = .1 MHz, corresponding to T1 = 3.18 µs and

T2 = 1.27 µs (see Remarks 2.1 and 2.3 for some details

on the choice of parameters). The simulations of Figure 3

then illustrate the power spectral density of the recorded

discrete signal over 1 ms for ǫd/2π ranging from 5.5 to

22 MHz. We observe a net increase of the peak around 2
MHz (Rabi frequency) with the increase of the measurement

strength. Indeed, by quantum Zeno effect, simply reading out

the qubit state refocuses the qubit to the nearest pole of the

Bloch sphere with a good probability, hence overcoming the

dephasing of the qubit to some extent. However, relaxation

events can induce a phase inversion of the Rabi oscillations.

As it will be seen in the next subsection correcting these

phase inversions with a simple feedback based on the result

of this discrete measurement lead to a narrow peak in the

power spectral density at frequency ΩR.

Remark 2.1: The considered qubit relaxation and dephas-

ing times can easily be achieved for instance with transmons



in compact resonators. We choose each measurement dura-

tion to be 50 ns which is a small part of the 250 ns between

two measurements. Choosing a longer measurement duration

would disturb the Rabi oscillations of the qubit by freezing it

along the Z-axis. In order to ensure a measurement duration

as short as 50 ns, we need the resonator’s bandwidth to be

as large as 20 MHz. Indeed, we need such a decay rate

for the resonator to ensure that we are able to entangle the

resonator to the qubit, readout the resonator and let them

get un-entangled through the resonator’s decay to vacuum,

within these 50 ns. Moreover, the bandwidth κ does not need

to be larger than the one of the first amplifier. Here, we set

κ/2π = 20 MHz.

D. Bayesian filter and feedback

In this subsection, based on the above measurement

scheme, we propose a simple feedback strategy allowing to

compensate the dephasing of the qubit and to maintain the

coherence of the Rabi oscillations.

Let us start by providing a simple filter equation that

allows us to estimate the state of the qubit, based on the

integrated measurement outcomes Jk. Let us take the state

of the qubit (in the Bloch sphere coordinates) after the k’th

measurement to be (Xk, Yk, Zk). In order, to estimate the

state after the measurement k+1 we proceed as follows. The

state just before the measurement k+1 can be estimated by





X−
k+1

Y −
k+1

Z−
k+1



 = S(
π

ΩR
, 0)





Xk

Yk

Zk



− γ1





Cx

Cy

Cz



 , (8)

where S(t1, t2) is a 3 by 3 matrix, solution of the equation

∂

∂t1
S(t1, t2) =





−γ2(t) −ωac 0
ωac −γ2(t) ΩR

0 −ΩR −γ1



S(t1, t2),

∂

∂t2
S(t1, t2) = − ∂

∂t1
S(t1, t2),

S(t, t) = 11,

with γ2(t) = γm(t) + γφ + γ1

2 and





Cx

Cy

Cz



 =

∫ π
Ω

0

S(
π

ΩR
, t)





0
0
1



 dt.

Indeed, since between two measurements we do not include

any information update from the measurement outputs, the

dynamics of the qubit is simply given by the reduced master

equation (4) where the Rabi oscillations of frequency ΩR

around the X-axis are further added.

Following, a similar analysis to [8], the state of the qubit
after the measurement number k + 1 can be updated as

follows:

Xk+1 =
2e−

ηκJ2
k+1

4π e−
κ(2−η)J2

4π X−

k+1

(1 + Z−

k+1)e
−

ηκ(Jk+1−J )2

4π + (1− Z−

k+1)e
−

ηκ(Jk+1+J )2

4π

Yk+1 =
2e−

ηκJ2
k+1

4π e−
κ(2−η)J2

4π Y −

k+1

(1 + Z−

k+1)e
−

ηκ(Jk+1−J )2

4π + (1− Z−

k+1)e
−

ηκ(Jk+1+J )2

4π

Zk+1 =
(1 + Z−

k+1)e
−

ηκ(Jk+1−J )2

4π
− (1− Z−

k+1)e
−

ηκ(Jk+1+J )2

4π

(1 + Z−

k+1)e
−

ηκ(Jk+1−J )2

4π + (1− Z−

k+1)e
−

ηκ(Jk+1+J )2

4π

,

(9)

where

J =

∫ 2π/κ

0

√
κβ(t)dt.

Remark 2.2: In the strong measurement limit, we can

approximate the above conditional dynamics by Xk+1 =
Yk+1 = 0 and Zk+1 as provided. Indeed, in this limit, we

can approximate our measurement as an imperfect projective

measurement. Through the following simulations, we will

apply this simplified filter.

Now, based on the state of the quantum filter at step k, we

consider the simple feedback consisting in a π-pulse around

the X-axis as soon as we observe the opposite phase to the

one we were expecting. Indeed, having started from Z = 1
at t = 0, we expect to have Zk ≈ −1 (resp. Zk ≈ 1) for k
odd (resp. k even). Then, the feedback consists in applying a

π-pulse as soon as we observe Zk > 0 for k odd or Zk < 0
for k even.

Applying such a feedback algorithm to the discretely

measured qubit with the same parameters as in the previous

subsection, one finds the power spectral density of Figure 4.

The feedback leads to a δ-peak at the measurement frequency

(here the same as the Rabi frequency).

Remark 2.3: The considered qubit relaxation and dephas-

ing times are much longer than the typical delays achievable

using present digital electronics like Field Programmable

Gate Array boards. The proposed total feedback loop could

realistically take between 70 and 200ns using this technology.

In these simulations we have considered a feedback delay

of 100 ns (i.e. the possible corrective π-pulses are applied

100 ns after performing the strong measurement). Further-

more, we fix the desired Rabi frequency around ΩR/2π =
2 MHz. This would give us about 250 ns between two

measurements which seems to be enough to perform the

computations of the quantum filter (8)-(9) and therefore to

decide whether we need or not to apply a π-pulse. Note that,

trying to stabilize Rabi oscillations that are much slower than

this would decrease the final fidelity being defined as the

degree of coherence which will be conserved. Indeed, by

decreasing the Rabi frequency, or equivalently by increasing

the interval between two measurements, we loose the control

over the decoherence through this passive period.

We will see in Section III how such Rabi oscillations

whose frequency are fixed by the measurement frequency

can be used to correct the low frequency deviations in driving

RF power.
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Fig. 4. Power spectral density for the strong measurement record (ǫd/2π =
22 MHz); the blue curve corresponds to the open-loop case while the red
curve illustrates the effect of feedback.
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Fig. 5. Scheme of considered setup. The transmon qubit is coupled to two
superconducting resonators. The qubit state can be controlled using a strong
measurement feedback loop connected to the right resonator. The feedback
corrected Rabi oscillations can then be observed independently using the
left cavity, in the weak measurement regime.

III. TOWARDS A ROBUST SOURCE OF DRIVING POWER

In the aim of stabilizing a desired Rabi oscillation of

frequency ΩR, we perform the strong measurements with

a period of π/ΩR and we apply corrective π-pulses if

necessary. However, the drive amplitude at the input of

the resonator might deviate from the value corresponding

to the Rabi frequency ΩR on time scales that are much

larger than the qubit’s coherence time. Typically, temperature

variations lead to a few percent variations in the emit-

ted power of a commercial source generator. Furthermore,

microwave setups in cryogenic environment can also add

some power fluctuations. This deviation will imply a small

dephasing in the Rabi oscillation of the qubit between two

strong measurements. In order to measure this dephasing

and compensate it by stabilizing the microwave drive, we

consider a second measurement through a second resonator

which is also dispersively coupled to the qubit but is weakly

and constantly driven (Fig. 5).

The measurement record is given by

Jw
t =

√
κwβw〈σz〉t +

1√
ηw

ξ̃t, (10)

where κw is the bandwidth of the second resonator, βw is

defined as in (6) but for the coherent field of the second

resonator, ηw is the detection efficiency of the weak mea-

surement process and the Gaussian white noise ξ̃t is assumed

to be independent from ξt in (5). Moreover, as we assume

the resonator to be constantly driven in time, we can restrict

ourselves to the steady-state solution of (3) and therefore βw

is constant in time.

A. Phase-locked loop and Rabi frequency synchronization

Jw
t = |βw|〈σz〉t + 1√

ηwκw
ξ̃t

sin(ΩRt+ φ)

k ·
∫

Ω

Fig. 6. The basic phase-locked loop allowing to lock the phase of the
Rabi oscillations and therefore stabilizing the Rabi drive amplitude. The
weak measurement output signal is first band-pass filtered, then modulated
at the desired Rabi frequency ΩR with a possible added phase. The resulting
signal is low-pass filtered and integrated with a gain k before being sent to
the microwave source as a power setpoint.

Here, we propose a feedback scheme, based on the con-

tinuous weak measurement record, allowing to control the

drive amplitude and therefore, to lock the phase of the Rabi

oscillations. The Figure 6 illustrates the diagram of such

a phase locked loop. This loop consists in a multiplication

of the output record (after a bandpass filter centered at the

desired Rabi frequency) with a sinusoid of desired frequency

ΩR and a phase which is chosen to be the same as the one

applied for the strong measurement (in practice we need to

calibrate this phase to overcome the phase shift created by the

non-symmetricity of the strong measurement, see Figure 2,

and the delay in the feedback). The result passes then through

a low-pass filter (with a bandwidth much smaller than the

desired Rabi frequency) and finally is integrated to provide

the new drive amplitude to be applied.

The Figure 7 illustrates an overall diagram of the proposed

feedback scheme. A first feedback loop acting on the qubit

and correcting its dephasing by corrective π-pulses is incor-

porated within a second feedback loop correcting (on a much

longer time-scale) the Rabi drive amplitude.

B. Simulations

The simulations of Figure 8 illustrate 10 runs of the above

phase-locked loop to stabilize the Rabi drive amplitude (and

therefore its induced Rabi frequency Ω). Having fixed the

period of the strong measurements to 250 ns, we apply

to the weak measurement signal a third order Butterworth

bandpass filter centered at 2 MHz and with a bandwidth

of 1 MHz. The filtered signal is then multiplied by a local

oscillator of frequency 2 MHz with a calibrated phase and

the resulting signal is sent through a third order Butterworth

low-pass filter with a cut-off frequency of 100 kHz. Finally,

the result is integrated with an integration gain of k/2π =
10 Hz. We observe the stabilization of the induced Rabi

frequency Ω (with a precision of about 10 kHz) around 2
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Fig. 7. Discrete strong measurements Jk are applied to correct the
dephasing of the qubit with corrective π-pulses; a second loop acting at a
much longer time-scale uses a continuous weak measurement record Jw(t)
to correct the deviations in the Rabi drive amplitude.

MHz. This synchronization algorithm can even be used for

slowly varying power setpoints.
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Fig. 8. Stabilization of the Rabi drive amplitude (and therefore its induced
Rabi frequency Ω) around the frequency given by the strong measurement’s
period (here 250ns). Taking the qubit decay rates of γ1/2π = 50 kHz
and γφ/2π = 100 kHz, the parameters κ/2π = 20 MHz, χ/2π = 5
MHz, ǭd/2π = 22 MHz and η = 1 for the strong measurement, weak
measurement parameters given by κw/2π = 20MHz, |βw| = .2 and ηw =
1 and a feedback delay of 100 ns for corrective π-pulses, we ensure the
convergence of Ω towards 2000± 5kHz.

IV. CONCLUSION

We have proposed a simple feedback scheme allowing

to maintain coherent oscillations of a qubit. By applying

corrective π-pulses based on the outcome of discrete-in-time

strong measurements, we can correct the phase diffusion of

the Rabi oscillations. Then the output of a second continuous

weak measurement is applied in a second feedback layer

to compensate the deviations in the amplitude of the Rabi

microwave drive and to stabilize it around some nominal

value given by the frequency of the strong measurements.

While the second feedback layer is a simple analog phase

locked loop the first one can be implemented in a real-

time experiment using present digital electronics like Field

Programmable Gate Array boards. Simulations based on

realistic experimental parameters illustrate the performance

of the proposed method.
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