
Summer school Hasselt University, Belgium
Adaptive methods and a posteriori error estimation June 24–27, 2024
Web page: link https://freefem.org/

Computer tutorial N◦3

Error certification and mesh adaptivity for nonconforming finite elements
Poisson equation, nonconforming finite element method, potential reconstruction
by averaging, equilibrated flux reconstruction by prescription, energy error, a

posteriori error estimate, effectivity index, mesh adaptivity, rate of convergence
with respect to the number of degrees of freedom, optimal (best-possible) error decay

Let Ω ⊂ R2 be a polygon with Lipschitz boundary ∂Ω. We consider the following model
problem: for a given source term f ∈ L2(Ω) and a given prescribed data gD on ∂Ω, find
u : Ω → R such that

−∆u = f in Ω, (1a)

u = gD on ∂Ω. (1b)

The weak solution of problem (1) is a function u ∈ H1(Ω) such that u|∂Ω = gD and

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (2)

Let Tℓ be a triangulation of Ω. The mesh index ℓ is not fixed here, as we will consider
sequences of refined/adapted meshes indexed by ℓ. Employing the polynomial degree
p = 1, the space of weakly continuous Crouzeix–Raviart 1st order polynomials is given by

V 1,nc
ℓ = {vℓ ∈ P1(Tℓ); ⟨[[vℓ]], 1⟩F = 0 ∀F ∈ F int

h }. (3)

Here, [[vℓ]] is the jump of the function vℓ over the mesh face F : if F ∈ F int
h is an interior

face shared by elements K1 and K2 (the orientation is not important here), then

[[vℓ]] = (vℓ|K1)|F − (vℓ|K2)|F .

The functions in V 1,nc
ℓ have their traces only weakly continuous over all mesh faces in the

sense that not the whole jumps but only their mean values vanish over all mesh interior
faces. Equivalently, functions from the space V 1,nc

ℓ are continuous in the midpoints xF

of all faces F ∈ F int
h . An illustration of a basis function is given in Figure 1. The

nonconforming finite element method approaches u of (2) by uℓ ∈ V 1,nc
ℓ such that uℓ(xF) =

uD(xF) for any face lying on the boundary ∂Ω, F ∈ F ext
h , and such that

(∇huℓ,∇hvℓ) = (Π0f, vℓ) ∀vℓ ∈ V 1,nc
ℓ such that vℓ(xF) = 0 ∀F ∈ F ext

h . (4)

Here, ∇h stands for the elementwise (also called broken) gradient, (∇huℓ)|K := ∇(uℓ|K)
for all mesh elements K ∈ Tℓ. Moreover, Π0 is the L2(Ω)-orthogonal projection onto
piecewise constants, i.e., Π0f is given by elementwise mean values of f ; employment of
Π0f and not directly of f gives (10b) below.

Exercice 1 below is designed for the case where Ω = (0, 1)2, gD = 0, and f =
−2(x2 + y2) + 2(x+ y). In this case,

u(x, y) = x(x− 1)y(y − 1), (5)

which is a smooth solution.

1

https://www.uhasselt.be/en/doctoral-schools/academic-research-competences-course-offer/summer-school-on-adaptive-methods-and-a-posteriori-error-estimation
https://freefem.org/

Figure 1: Basis function ψF of the space V 1,nc
ℓ

Exercices 2 and 3 present extensions to the L-shaped domain Ω = (−1, 1) × (−1, 1) \
[0, 1]× [−1, 0] with the exact solution written, in polar coordinates with θ ∈ (0, 3π/2), as

u(r, θ) = r
2
3 sin(2θ/3). (6)

We remark that the exact solution is singular here, u ∈ H
5
3
−ε(Ω) for arbitrarily small

ε > 0. The corresponding source term f = 0, and we take gD = u on ∂Ω.

Exercice 1. (Errors and estimators on uniformly refined meshes, the smooth example)

1. Set up the example with the following parameters:

int nds = 2; // number of mesh points on one unit boundary edge

int FinalLevel = 6; // maximal refinement level

macro Pcontp P2 // H1-conforming pw polynomials for plotting the exact solution:
“P2”

macro Pcont P1 //H1-conforming pw polynomials for the potential reconstruction:
“P1” or “P2”

macro RT RT0 // H(div)-conforming pw polynomials for the flux reconstruction:
“RT0”

macro Pdiscp P2dc // discontinuous pw polynomials for plotting the fluxes and
flux reconstruction: “P2dc”

int verb = 3; // verbosity for demonstrations and debugging

bool PlotMesh = 1, PlotSolAppr = 1, PlotSolApprFluxes = 1,

PlotPotRec = 1, PlotApprPot = 1, PlotFluxRec = 1,

PlotErr = 1, PlotEst = 1; // what to plot

bool RunSmooth = 1; // 1 means smooth example, 0 means singular example

bool RunAdaptive = 0; // 1 means adaptive mesh refinement, 0 means uniform
mesh refinement

bool ImposeBC0 = 1; // potential reconstruction: impose boundary values 0 where
a homogeneous Dirichlet BC is prescribed

Make sure that the data for the smooth example (5) are chosen:

// CASE 1 (smooth polynomial in a unit square)

...

2

2. Define the nonconforming finite element space V 1,nc
ℓ given by (3) in Freefem++:

this is simply done by the command:

fespace VhNC(Th,P1nc); // piecewise 1st order polynomials on the mesh Tℓ, con-
tinuous in midpoints of the edges

3. Compute the nonconforming finite element approximation of (4) on a sequence of
uniformly refined meshes for the smooth example (5). In Freefem++, this is realized
by the following commands:

VhNC uh,vh; // NCFE approximation and test function

varf a(uh,vh)=int2d(Th)(Grad(uh)’*Grad(vh))

+ int2d(Th)(Pif*vh) + on(1,2,3,4,uh=gd); // weak form

matrix A=a(VhNC,VhNC,solver=SolverGlob); // construction of the matrix and
choice of the linear algebraic solver

real[int] b=a(0,VhNC); // construction of the right-hand side

uh[]=A^-1*b; // algebraic solve

4. Plot the exact solution and the numerical approximation, the exact fluxes and the
approximate fluxes, and the exact fluxes and approximate fluxes magnitudes. As in
tutorial N◦1, Exercice 1, questions 8 and 9, please investigate whether uℓ ∈ H1

0 (Ω)
and −∇huℓ ∈ H(div,Ω), which is the case for the exact solution, where u ∈ H1

0 (Ω)
and −∇u ∈ H(div,Ω).

5. Implement a potential reconstruction sℓ by averaging. Recall the usual conforming
finite element space V p

ℓ of tutorials N◦1 and N◦2: for a fixed polynomial degree
p ≥ 1,

V p
ℓ := {vℓ ∈ H1(Ω), vℓ|K ∈ Pp(K) ∀K ∈ Tℓ} = Pp(Tℓ) ∩H1(Ω). (7)

The idea of the potential reconstruction by averaging is to start from uℓ, not con-
tained in H1(Ω), and to use a simple averaging of the values that uℓ takes in all the
Lagrangian degrees of freedom of the space V p

ℓ , plus to impose the homogeneous
boundary value on ∂Ω:

sℓ(x) :=
1

|Tx|
∑
K∈Tx

vℓ|K(x) x is a Lagrange point of V p
ℓ included in Ω, (8a)

sℓ(x) := 0 x is a Lagrange point of V p
ℓ included in ∂Ω. (8b)

In Freefem++, the space V p
ℓ is simply obtained by

fespace Vh(Th,Pcont); // H1-conforming pw polynomials of degree Pcont for the
potential reconstruction

and the potential reconstruction sℓ will be

Vh sh; // potential reconstruction

The exact averaging (8a) might take some coding in Freefem++, but a quick
workaround is readily available: the command

sh=uh; // automatic interpolation of all possibly different values of uℓ ∈ V 1,nc
ℓ to

prescribe sℓ in each Lagrange node of the space V p
ℓ

automatically and rapidly interpolates uℓ to sℓ. It does not impose (8b), but this
can be added by the script in the part if (ImposeBC0). Plot the potential recon-
struction sℓ as well as the difference uℓ − sℓ.

3

6. Implement the equilibrated flux reconstruction σℓ by prescription. In nonconforming
finite elements, prescribing

σℓ|K := −∇huℓ|K +
(Π0f)|K

2
(x− xK)|K ∀K ∈ Tℓ (9)

gives

σℓ ∈ H(div,Ω), (10a)

∇·σℓ = Π0f. (10b)

In comparison with Exercice 3 of tutorial N◦1, we call this a “prescription”, since no
local (quadratic minimization) problem needs to be solved. Congruently, formula (9)
is much cheaper in practice than formula (11) of tutorial N◦1. Plot this equilibrated
flux reconstruction σℓ and compare it with the exact flux −∇u. Plot also the
divergence misfit on each element K ∈ Tℓ,

∥Π0f −∇·σℓ∥K . (11)

7. Compute the actual error ∥∇h(u− uℓ)∥ as well as its elementwise contributions

∥∇(u− uℓ)∥K (12)

for each mesh element K ∈ Tℓ. Compute also the a posteriori error estimators

∥∇h(u−uℓ)∥2 ≤ η2ℓ :=
∑
K∈Tℓ

(
∥∇uℓ+σℓ∥K +

hK
π

∥f −∇·σℓ∥K
)2

+
∑
K∈Tℓ

∥∇(uℓ−sℓ)∥2K

(13)
together with the elementwise contributions defined by

ηK := ∥∇uℓ + σℓ∥K +
hK
π

∥f −∇·σℓ∥K + ∥∇(uℓ − sℓ)∥K . (14)

Plot the elementwise errors ∥∇(u − uℓ)∥K and the elementwise estimators ηK and
compare these (predicted) error distributions. What do you observe?

8. Compare the size of the a posteriori error estimator ηℓ to the size of the error
∥∇h(u− uℓ)∥, again using the effectivity index

Ieff,ℓ :=
ηℓ

∥∇h(u− uℓ)∥
. (15)

What do you observe?

9. Plot the convergence of the errors and estimators against the total number of degrees
of freedom (DoFs). Also check in the command window what is the convergence
rate on the sequence of uniformly refined meshes. Is this convergence rate optimal?

Answer 1. (Errors and estimators on uniformly refined meshes, the smooth example)

The answers to items 1–3 are contained in the script TP3.edp. We now illustrate answers
to questions 4–9. We plot most of the results on the first uniformly refined mesh T1 and
some on the sixth uniformly refined mesh T6.

4

Figure 2: Exact solution u (left) and approximate solution uℓ (right), mesh T1, smooth
solution (5)

Vec Value
0
0.0131613
0.0263227
0.039484
0.0526453
0.0658066
0.078968
0.0921293
0.105291
0.118452
0.131613
0.144775
0.157936
0.171097
0.184259
0.19742
0.210581
0.223743
0.236904
0.250065

exact flux
Vec Value
0
0.0106228
0.0212456
0.0318684
0.0424912
0.053114
0.0637368
0.0743596
0.0849823
0.0956051
0.106228
0.116851
0.127474
0.138096
0.148719
0.159342
0.169965
0.180587
0.19121
0.201833

finite element flux

Figure 3: Flux of the exact solution −∇u (left) and flux of the approximation −∇huℓ
(right), mesh T1, smooth solution (5)

4. The exact solution u is depicted in Figure 2, left. The nonconforming finite element
approximation is then illustrated in Figure 2, right; clearly, uℓ is not (trace) contin-
uous, uℓ ̸∈ H1

0 (Ω). Figure 3 then plots the exact and approximate fluxes; clearly,
−∇huℓ is not normal-trace continuous, −∇huℓ ̸∈ H(div,Ω). The magnitude of the
fluxes is then displayed in Figures 4 and 5. The approximate fluxes are elementwise
constant, with elementwise constant magnitudes, which makes the plots in Figure 4
rather different visually; the visual match is much better in Figure 5.

5. The potential reconstruction sℓ of the nonconforming finite element approximation
uℓ from Figure 2, right, is displayed in Figure 6, left. The difference uℓ − sℓ is then
plotted in Figure 6, right (note the different the colorbars of the two figures).

6. The equilibrated flux reconstruction σℓ by prescription of (9) is displayed in Fig-
ure 7, left. Just like −∇u, and unlike −∇huℓ, σℓ is normal-trace continuous,
σℓ ∈ H(div,Ω). From (10b), it is also equilibrated, which is confirmed in Fig-
ure 7, right.

7. The elementwise errors ∥∇(u− uℓ)∥K from (12) and the elementwise estimators ηK
from (14) are plotted side by side in Figure 8 on the mesh T1 and in Figure 9 on the
mesh T6. We can observe a reasonable match, though less precise than in tutorial
N◦1, Exercices 4–5. This is a consequence of two facts: 1) the averaging formula (8)
is less precise than the patchwise local (quadratic minimization) problems of tutorial
N◦1, Exercice 3; 2) Freefem++ does not really perform the averaging (8a) but rather
some (less precise) automatic interpolation; in particular, the boundary values are

5

IsoValue
0.000583361
0.0131581
0.0257329
0.0383076
0.0508824
0.0634571
0.0760319
0.0886066
0.101181
0.113756
0.126331
0.138906
0.15148
0.164055
0.17663
0.189205
0.201779
0.214354
0.226929
0.239504
0.252078

exact flux magnitude
IsoValue
0.0546903
0.0621478
0.0696053
0.0770628
0.0845204
0.0919779
0.0994354
0.106893
0.11435
0.121808
0.129265
0.136723
0.144181
0.151638
0.159096
0.166553
0.174011
0.181468
0.188926
0.196383
0.203841

finite element flux magnitude

Figure 4: Magnitude of the fluxes, exact solution |∇u| (left) and approximation |∇huℓ|
(right), mesh T1, smooth solution (5)

Figure 5: Magnitude of the fluxes, exact solution |∇u| (left) and approximation |∇huℓ|
(right), mesh T6, smooth solution (5)

affected. Also, upon inspection, it can be noticed that the prescription (9) leads to
smaller values of ∥∇uℓ+σℓ∥K and hK

π
∥f−Π0f∥K in comparison with ∥∇(uℓ−sℓ)∥K

(the contribution from the potential reconstruction dominates over that from the
flux reconstruction).

8. The effectivity indices take the values

Effectivity indices 7

1.810485672 1.733789766 1.647820726 1.58845309

1.551808561 1.531134438 1.520113529

These are slightly higher than in tutorial N◦1, Exercice 5, question 3, but stable,
still completely acceptable, and obtained for a (much) smaller computational effort
(more details on the computational cost are discussed in Answer 2, question 8).

9. The convergence of the errors and estimators against the total number of degrees
of freedom (DoFs) is plotted in Figure 10. The computed convergence rates on the
sequence of uniformly refined meshes are precisely

Rate of convergence 6

0.4712427639 0.5059034645 0.5088411608 0.5059648252

0.5033706952 0.5017821374

6

Figure 6: Potential reconstruction sℓ (left) and the difference uℓ − sℓ (right), mesh T1,
smooth solution (5)

Vec Value
0
0.0126164
0.0252327
0.0378491
0.0504654
0.0630818
0.0756981
0.0883145
0.100931
0.113547
0.126164
0.13878
0.151396
0.164013
0.176629
0.189245
0.201862
0.214478
0.227094
0.239711

equilibrated flux
IsoValue
0
2.94392e-17
5.88785e-17
8.83177e-17
1.17757e-16
1.47196e-16
1.76635e-16
2.06075e-16
2.35514e-16
2.64953e-16
2.94392e-16
3.23832e-16
3.53271e-16
3.8271e-16
4.12149e-16
4.41589e-16
4.71028e-16
5.00467e-16
5.29906e-16
5.59345e-16
5.88785e-16

divergence misfit of the equilibrated flux

Figure 7: Equilibrated flux σℓ (left) and its divergence misfit (right), mesh T1, smooth
solution (5)

which is approximately O(h) in the mesh size h and O(DoFs−
1
2) in terms of DoFs.

This is exactly the expected (and optimal) convergence rate for an approximation
of a smooth solution on a sequence of uniform meshes.

Exercice 2. (Errors and estimators on uniformly refined meshes, the singular example)

1. Set up the example with the following parameters (only changes with respect to
question 1 of Exercice 1 are listed):

bool RunSmooth = 0; // 1 means smooth example, 0 means singular example

Make sure that the data for the singular example (6) are chosen:

// CASE 2 (vertex singularity)

...

2. Define the nonconforming finite element space V 1,nc
ℓ given by (3), compute the non-

conforming finite element approximation of (4) on a sequence of uniformly refined
meshes for the singular example (6), and plot the obtained meshes, the exact solu-
tion and the numerical approximation, the exact fluxes and the approximate fluxes,
and the exact fluxes and approximate fluxes magnitudes.

3. Plot the potential reconstruction sℓ given by (8) as well as the difference uℓ − sℓ.

4. Plot the equilibrated flux reconstruction σℓ of (9) and as well as the divergence
misfit of (11).

7

IsoValue
0
0.000680766
0.00136153
0.0020423
0.00272306
0.00340383
0.00408459
0.00476536
0.00544613
0.00612689
0.00680766
0.00748842
0.00816919
0.00884995
0.00953072
0.0102115
0.0108923
0.011573
0.0122538
0.0129345
0.0136153

energy errors
IsoValue
0
0.00163872
0.00327744
0.00491615
0.00655487
0.00819359
0.00983231
0.011471
0.0131097
0.0147485
0.0163872
0.0180259
0.0196646
0.0213033
0.022942
0.0245808
0.0262195
0.0278582
0.0294969
0.0311356
0.0327744

flux and potential estimators

Figure 8: Elementwise errors ∥∇(u−uℓ)∥K (left) and estimators
[
∥∇uℓ+σℓ∥K + hK

π
∥f −

Π0f∥K + ∥∇(uℓ − sℓ)∥K
]
(right), mesh T1, smooth solution (5)

IsoValue
0
8.76182e-07
1.75236e-06
2.62855e-06
3.50473e-06
4.38091e-06
5.25709e-06
6.13327e-06
7.00946e-06
7.88564e-06
8.76182e-06
9.638e-06
1.05142e-05
1.13904e-05
1.22665e-05
1.31427e-05
1.40189e-05
1.48951e-05
1.57713e-05
1.66475e-05
1.75236e-05

energy errors
IsoValue
0
2.27158e-06
4.54316e-06
6.81473e-06
9.08631e-06
1.13579e-05
1.36295e-05
1.5901e-05
1.81726e-05
2.04442e-05
2.27158e-05
2.49874e-05
2.72589e-05
2.95305e-05
3.18021e-05
3.40737e-05
3.63452e-05
3.86168e-05
4.08884e-05
4.316e-05
4.54316e-05

flux and potential estimators

Figure 9: Elementwise errors ∥∇(u−uℓ)∥K (left) and estimators
[
∥∇uℓ+σℓ∥K + hK

π
∥f −

Π0f∥K + ∥∇(uℓ − sℓ)∥K
]
(right), mesh T6, smooth solution (5)

5. Plot the elementwise errors ∥∇(u − uℓ)∥K of (12) and the elementwise estimators
ηK of (14) and compare these (predicted) error distributions. Since f = 0 here, it
follows from (9) that here[

∥∇uℓ + σℓ∥K +
hK
π

∥f − Π0f∥K + ∥∇(uℓ − sℓ)∥K
]
= ∥∇(uℓ − sℓ)∥K . (16)

6. Compute and discuss the effectivity indices (15).

7. Plot the convergence of the errors and estimators against the total number of degrees
of freedom (DoFs). Also check in the command window what is the convergence
rate on the considered sequence of uniformly refined meshes. Is this convergence
rate optimal?

8. Modify the parameters to:

int FinalLevel = 8; // maximal refinement level

and

bool PlotMesh = 0, PlotSolAppr = 0, PlotSolApprFluxes = 0,

PlotPotRec = 0, PlotApprPot = 0, PlotFluxRec = 0,

PlotErr = 0, PlotEst = 0; // what to plot

8

Figure 10: Convergence of the energy errors and of a posteriori error estimators for the
smooth example (5) under uniformly refined meshes

Run the script and examine the CPU times of the different parts. What are the
most consuming parts and at which rate this changes with mesh refinement?

Answer 2. (Errors and estimators on uniformly refined meshes, the singular example)

The answer to items 1 is contained in the script TP3.edp. We now illustrate answers to
questions 2–8. We plot the results on the initial mesh T0 and some on the third uniformly
refined mesh T3.

2. The exact solution u and its nonconforming finite element approximation uℓ are
depicted in Figure 11. Figure 12 then plots the exact and approximate fluxes;
here, actually, clearly, −∇huℓ is normal-trace continuous, −∇huℓ ∈ H(div,Ω), since
−∇huℓ = σℓ in view of (9), since f = 0 here. The magnitude of the fluxes is then
displayed in Figures 13 and 14.

Figure 11: Exact solution u (left) and approximate solution uℓ (right), mesh T1, singular
solution (6)

3. The potential reconstruction sℓ of the nonconforming finite element approximation
uℓ from Figure 11, right, is displayed in Figure 15, left. The difference uℓ − sℓ is
then plotted in Figure 15, right.

9

Vec Value
0
0.267849
0.535698
0.803547
1.0714
1.33925
1.60709
1.87494
2.14279
2.41064
2.67849
2.94634
3.21419
3.48204
3.74989
4.01774
4.28559
4.55344
4.82128
5.08913

exact flux
Vec Value
0
0.0651569
0.130314
0.195471
0.260628
0.325785
0.390941
0.456098
0.521255
0.586412
0.651569
0.716726
0.781883
0.84704
0.912197
0.977354
1.04251
1.10767
1.17282
1.23798

finite element flux

Figure 12: Flux of the exact solution −∇u (left) and flux of the approximation −∇huℓ
(right), mesh T1, singular solution (6)

IsoValue
0.58832
0.81188
1.03544
1.259
1.48256
1.70612
1.92968
2.15324
2.3768
2.60036
2.82392
3.04748
3.27104
3.4946
3.71816
3.94172
4.16528
4.38884
4.6124
4.83596
5.05951

exact flux magnitude
IsoValue
0.606305
0.638505
0.670704
0.702904
0.735103
0.767303
0.799502
0.831702
0.863901
0.896101
0.9283
0.9605
0.992699
1.0249
1.0571
1.0893
1.1215
1.1537
1.1859
1.2181
1.2503

finite element flux magnitude

Figure 13: Magnitude of the fluxes, exact solution |∇u| (left) and approximation |∇huℓ|
(right), mesh T1, singular solution (6)

4. The equilibrated flux reconstruction σℓ by prescription of (9) is displayed in Fig-
ure 16. Recall that σℓ = −∇huℓ ∈ H(div,Ω) in view of (9), since f = 0 here.

5. The elementwise errors ∥∇(u− uℓ)∥K from (12) and the elementwise estimators ηK
from (14) are plotted side by side in Figure 17 on the mesh T1 and in Figure 18 on
the mesh T3. We can observe a very good match here, with the error concentrated
around the corner singularity.

6. The effectivity indices take the values

Effectivity indices 7

1.622031034 1.606218872 1.637342373 1.652335661

1.66018063 1.664770028 1.667545693

Again, these are slightly higher than in tutorial N◦1, Exercice 5, question 3, but
stable, still completely acceptable, and obtained for a (much) smaller computational
effort (see question 8 below).

7. The convergence of the errors and estimators against the total number of degrees
of freedom (DoFs) is plotted in Figure 19. The computed convergence rates on the
sequence of uniformly refined meshes are precisely

Rate of convergence 6

10

IsoValue
0.588034
1.06458
1.54113
2.01768
2.49423
2.97078
3.44733
3.92388
4.40043
4.87698
5.35353
5.83008
6.30663
6.78318
7.25973
7.73628
8.21283
8.68938
9.16593
9.64248
10.119

exact flux magnitude
IsoValue
0.591772
0.690387
0.789001
0.887616
0.986231
1.08485
1.18346
1.28207
1.38069
1.4793
1.57792
1.67653
1.77515
1.87376
1.97238
2.07099
2.16961
2.26822
2.36684
2.46545
2.56406

finite element flux magnitude

Figure 14: Magnitude of the fluxes, exact solution |∇u| (left) and approximation |∇huℓ|
(right), mesh T3, singular solution (6)

Figure 15: Potential reconstruction sℓ (left) and the difference uℓ − sℓ (right), mesh T1,
singular solution (6)

0.3159583098 0.3244941636 0.3276054793 0.3293865961

0.3306041534 0.3314685946

which is approximately O(h2/3) in the mesh size h and O(DoFs−
1
3) in terms of DoFs.

This rate is not optimal in terms of DoFs but we will see below in Exercice 3 that
optimal rates are obtained under adaptive mesh regeneration.

8. The results below (last two meshes) are obtained on a personal laptop with 6 Intel
i7-9850H CPUs at 2.60GHz and 32 GB RAM:

mesh level 7

number of degrees of freedom 590848

CPU time of matrix assembly and nonconforming FE solution = 4.488

CPU time of potential reconstruction = 0.153

CPU time of equilibrated flux reconstruction = 1.128

CPU time of error computing = 13.431

CPU time of a posteriori estimators computing = 3.959

CPU time of mesh regeneration = 1.346

and

mesh level 8

11

Vec Value
0
0.0651569
0.130314
0.195471
0.260628
0.325785
0.390941
0.456098
0.521255
0.586412
0.651569
0.716726
0.781883
0.84704
0.912197
0.977354
1.04251
1.10767
1.17282
1.23798

equilibrated flux
IsoValue
0
1.25607e-16
2.51215e-16
3.76822e-16
5.0243e-16
6.28037e-16
7.53644e-16
8.79252e-16
1.00486e-15
1.13047e-15
1.25607e-15
1.38168e-15
1.50729e-15
1.6329e-15
1.7585e-15
1.88411e-15
2.00972e-15
2.13533e-15
2.26093e-15
2.38654e-15
2.51215e-15

divergence misfit of the equilibrated flux

Figure 16: Equilibrated flux σℓ (left) and its divergence misfit (right), mesh T1, singular
solution (6)

IsoValue
0
0.00696194
0.0139239
0.0208858
0.0278478
0.0348097
0.0417717
0.0487336
0.0556955
0.0626575
0.0696194
0.0765814
0.0835433
0.0905053
0.0974672
0.104429
0.111391
0.118353
0.125315
0.132277
0.139239

energy errors
IsoValue
0
0.0149824
0.0299648
0.0449472
0.0599296
0.074912
0.0898944
0.104877
0.119859
0.134842
0.149824
0.164806
0.179789
0.194771
0.209754
0.224736
0.239718
0.254701
0.269683
0.284666
0.299648

flux and potential estimators

Figure 17: Elementwise errors ∥∇(u−uℓ)∥K (left) and estimators
[
∥∇uℓ+σℓ∥K+ hK

π
∥f−

Π0f∥K + ∥∇(uℓ − sℓ)∥K
]
= ∥∇(uℓ − sℓ)∥K (right), mesh T1, singular solution (6)

number of degrees of freedom 2.36134e+06

CPU time of matrix assembly and nonconforming FE solution = 43.155

CPU time of potential reconstruction = 0.619

CPU time of equilibrated flux reconstruction = 4.427

CPU time of error computing = 51.171

CPU time of a posteriori estimators computing = 15.672

Clearly, the CPU times of potential and equilibrated flux reconstructions as well
as error and a posteriori estimators computings grow linearly: four times more
elements leads to approximately four times longer CPU time. This is not the case
with the nonconforming FE solution using the sparse solver of UMFPACK (which is
behind macro SolverGlob sparsesolver): though it does not dominate on smaller
meshes, this changes importantly with mesh refinement. More severely, mesh level
9 seems to be out of reach with this direct solver because of insufficient memory.
Using instead the iterative conjugate gradients solver upon setting

macro SolverGlob CG

one can take

int FinalLevel = 9; // maximal refinement level

12

IsoValue
0
0.00179467
0.00358935
0.00538402
0.00717869
0.00897337
0.010768
0.0125627
0.0143574
0.0161521
0.0179467
0.0197414
0.0215361
0.0233308
0.0251254
0.0269201
0.0287148
0.0305094
0.0323041
0.0340988
0.0358935

energy errors
IsoValue
0
0.00287168
0.00574336
0.00861505
0.0114867
0.0143584
0.0172301
0.0201018
0.0229735
0.0258451
0.0287168
0.0315885
0.0344602
0.0373319
0.0402036
0.0430752
0.0459469
0.0488186
0.0516903
0.054562
0.0574336

flux and potential estimators

Figure 18: Elementwise errors ∥∇(u−uℓ)∥K (left) and estimators
[
∥∇uℓ+σℓ∥K+ hK

π
∥f−

Π0f∥K + ∥∇(uℓ − sℓ)∥K
]
= ∥∇(uℓ − sℓ)∥K (right), mesh T3, singular solution (6)

Figure 19: Convergence of the energy errors and of a posteriori error estimators for the
singular example (6) under uniformly refined meshes

and obtain for the two last mesh levels:

mesh level 8

number of degrees of freedom 2.36134e+06

CPU time of matrix assembly and nonconforming FE solution = 132.457

CPU time of potential reconstruction = 0.611

CPU time of equilibrated flux reconstruction = 3.552

CPU time of error computing = 50.656

CPU time of a posteriori estimators computing = 18.57

CPU time of mesh regeneration = 5.478

and

mesh level 9

number of degrees of freedom 9.44128e+06

CPU time of matrix assembly and nonconforming FE solution = 1051.25

13

CPU time of potential reconstruction = 2.434

CPU time of equilibrated flux reconstruction = 14.542

CPU time of error computing = 203.183

CPU time of a posteriori estimators computing = 74.438

Recalling that we compute the error only for illustration purposes (and with an
over-precise quadrature formula), the dominating part is now the numerical linear
algebra solver, whereas less than one tenth of the CPU time on the last mesh is spent
on a posteriori error estimates. Typically, only an appropriate multigrid would give
CPU time only linearly increasing with the number of DoFs, and then all the parts
of the script TP3.edp would be of the optimal, linear complexity in terms of the
mesh elements/DoFs. On the other hand, in the present case where f = 0, we
could actually avoid the equilibrated flux reconstruction and the computing of the
associated estimators ∥∇uℓ + σℓ∥K and hK

π
∥f − Π0f∥K since these are zero here

(recall (16)).

Finally, the update of Figure 19 is presented in Figure 20.

Figure 20: Convergence of the energy errors and of a posteriori error estimators for the
singular example (6) under uniformly refined meshes

Exercice 3. (Errors and estimators on adaptively generated meshes, the singular example)

1. Set up the example with the following parameters (only changes/additions with
respect to Exercice 2, question 1, are listed):

bool RunAdaptive = 1; // 1 means adaptive mesh refinement, 0 means uniform
mesh refinement

real Dtheta=sqrt(0.5); // Dörfler marking parameter

int RefFactor=4; // factor by which (approximately) the marked elements should
become smaller in the adapted mesh

Make sure that the data for the singular example (6) are chosen:

// CASE 2 (vertex singularity)

...

14

2. Taking advantage of the a posteriori error estimators ηK(uℓ) computed in each mesh
element K ∈ Tℓ, only “refine” those mesh elements with a high value ηK(uℓ) of the
estimated error. More precisely, for the parameter 0 < θ ≤ 1, identify a subset Mℓ

of all elements of the Tℓ mesh such that∑
K∈Mℓ

ηK(uℓ)
2 ≥ θ2

∑
K∈Tℓ

ηK(uℓ)
2

and then produce a new mesh with elements in the marked set Mℓ smaller by
the given factor RefFactor. Plot some meshes of the adaptively generated mesh
sequence.

3. Plot some of the elementwise distributions of the actual error (12) and of the a
posteriori error estimators (16).

4. Compute and discuss the effectivity indices (15).

5. Plot the convergence of the errors and estimators against the total number of degrees
of freedom (DoFs). Also check in the command window what is the convergence
rate on the considered sequence of adaptively generated meshes. Is this convergence
rate optimal? What gives a better error/cost ratio? Uniformly refined or adaptively
generated meshes?

Answer 3. (Errors and estimators on adaptively generated meshes, the singular example)

1. The answer to item 1 is contained in the script TP3.edp.

2. Examples of adaptively generated meshes are plotted in Figure 21. We can see a
strong refinement towards the re-entrant corner.

3. Examples of elementwise error and a posteriori estimators distributions are plotted
in Figure 22. We can see a decent match in all situations.

4. The effectivity indices take slightly increased but stable values:

Effectivity indices 21

1.622031034 2.128426619 1.880197025 1.767225341 1.761006952

1.830774921 1.833058087 1.848562032 1.870945921 1.841472316

1.865356314 1.873385183 1.853134558 1.856375346 1.868329053

1.864346345 1.871147061 1.869364431 1.870792602 1.870664755

1.872694527

5. The convergence of the errors and estimators against the total number of degrees of
freedom (DoFs) is displayed in Figure 23. In the command window, we find

Rate of convergence 20

0.8190981065 1.088483938 0.2784719482 58.9960561 0.3804000868

0.5565713152 0.4644765152 0.5060229063 0.5477635815 0.4823825402

0.5204493483 0.4896863111 0.4897148488 0.4969515192 0.5087273118

0.5037345784 0.4967512957 0.5050554199 0.4946700119 0.5045314553

15

The convergence rate is O(DoFs−
1
2), which is substantially better than O(DoFs−

1
3)

in Exercice 2 with uniform mesh refinement. It is actually optimal, the best possible.
From comparison of the results, cf. also Figures 23 and 20, we see that 9.44e + 06
DoFs are necessary to reach the error 0.00508628 on the finest (9th) mesh in the
uniform refinement case, whereas only 94020 DoFs are sufficient for the compara-
ble precision 0.005366323805 on the 15th adaptively generated meshes (this means
roughly 100 times fewer DoFs!). The last, 20th adaptively generated mesh, than
only has 1.04e+ 06 DoFs and yields to the error 0.001603426738, which is roughly
3 times smaller than the 9th uniformly refined mesh. Thus adaptively generated
meshes give a much better error/cost ratio.

adaptively refined mesh 2 adaptively refined mesh 4

adaptively refined mesh 6 adaptively refined mesh 8

Figure 21: Level 2 adaptively generated mesh (top left), level 4 adaptively generated
mesh (top right), level 6 adaptively generated mesh (bottom left), and level 8 adaptively
generated mesh (bottom right) for the singular example (6)

16

IsoValue
0
0.00193933
0.00387866
0.00581799
0.00775732
0.00969665
0.011636
0.0135753
0.0155146
0.017454
0.0193933
0.0213326
0.023272
0.0252113
0.0271506
0.0290899
0.0310293
0.0329686
0.0349079
0.0368473
0.0387866

energy errors
IsoValue
0
0.0043313
0.0086626
0.0129939
0.0173252
0.0216565
0.0259878
0.0303191
0.0346504
0.0389817
0.043313
0.0476443
0.0519756
0.0563069
0.0606382
0.0649695
0.0693008
0.0736321
0.0779634
0.0822947
0.086626

flux and potential estimators

IsoValue
0
0.000291021
0.000582043
0.000873064
0.00116409
0.00145511
0.00174613
0.00203715
0.00232817
0.00261919
0.00291021
0.00320123
0.00349226
0.00378328
0.0040743
0.00436532
0.00465634
0.00494736
0.00523838
0.0055294
0.00582043

energy errors
IsoValue
0
0.000679133
0.00135827
0.0020374
0.00271653
0.00339566
0.0040748
0.00475393
0.00543306
0.0061122
0.00679133
0.00747046
0.00814959
0.00882873
0.00950786
0.010187
0.0108661
0.0115453
0.0122244
0.0129035
0.0135827

flux and potential estimators

IsoValue
0
9.53426e-05
0.000190685
0.000286028
0.00038137
0.000476713
0.000572056
0.000667398
0.000762741
0.000858083
0.000953426
0.00104877
0.00114411
0.00123945
0.0013348
0.00143014
0.00152548
0.00162082
0.00171617
0.00181151
0.00190685

energy errors
IsoValue
0
0.000227904
0.000455808
0.000683712
0.000911616
0.00113952
0.00136742
0.00159533
0.00182323
0.00205114
0.00227904
0.00250695
0.00273485
0.00296275
0.00319066
0.00341856
0.00364647
0.00387437
0.00410227
0.00433018
0.00455808

flux and potential estimators

Figure 22: Elementwise errors ∥∇(u − uℓ)∥K (left) and elementwise estimators
[
∥∇uℓ +

σℓ∥K + hK

π
∥f − Π0f∥K + ∥∇(uℓ − sℓ)∥K

]
= ∥∇(uℓ − sℓ)∥K (right) on level 2 adaptively

generated mesh (top), level 6 adaptively generated mesh (middle), and level 8 adaptively
generated mesh (bottom) for the singular example (6)

17

Figure 23: Convergence of the energy errors and of a posteriori error estimators for the
singular example (6) on adaptively generated meshes

18

