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Computer tutorial N◦2

Mesh adaptivity
Poisson equation, conforming finite element method, mesh adaptivity, rate of

convergence with respect to the number of degrees of freedom, optimal
(best-possible) error decay

Let Ω ⊂ R2 be a polygon with Lipschitz boundary ∂Ω. We consider the following model
problem: for a given source term f ∈ L2(Ω) and a given prescribed data gD on ∂Ω, find
u : Ω → R such that

−∆u = f in Ω, (1a)

u = gD on ∂Ω. (1b)

The weak solution of problem (1) is a function u ∈ H1(Ω) such that u|∂Ω = gD and

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (2)

Exercice 1 below is designed for the case where Ω = (0, 1)2, gD = 0, and f = −2(x2 +
y2) + 2(x+ y). In this case,

u(x, y) = x(x− 1)y(y − 1), (3)

which is a smooth solution.
Exercices 2 and 3 present extensions to the L-shaped domain Ω = (−1, 1) × (−1, 1) \
[0, 1]× [−1, 0] with the exact solution written, in polar coordinates with θ ∈ (0, 3π/2), as

u(r, θ) = r
2
3 sin(2θ/3). (4)

We remark that the exact solution is singular here, u ∈ H
5
3
−ε(Ω) for arbitrarily small

ε > 0. The corresponding source term f = 0, and we take gD = u on ∂Ω.

Exercice 1. (Errors and estimators on uniformly refined meshes, the smooth example)

1. Compute the “P1” FE approximation and the “RT1” and “P1dc” equilibrated flux
on a sequence of uniformly refined meshes for the smooth example (3). Plot the
obtained meshes and the elementwise distributions of the actual error and of the a
posteriori error estimators. Please use the following parameters:

int nds = 4; // number of mesh points on one unit boundary edge

FinalLevel = 3; // maximal refinement level

bool RunSmooth = 1; // 1 means smooth example, 0 means singular example

bool RunAdaptive = 0; // 1 means adaptive mesh refinement, 0 means uniform
mesh refinement

Remove the comment /* and define the data for the smooth example:

///*

// CASE 1 (smooth polynomial in a unit square)
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func uEx = x*(x-1)*y*(y-1);

func dxuEx = (2*x-1)*y*(y-1);

...

// define the computational mesh

mesh Th = square(nds,nds); // generate a triangular mesh of a square domain

with nds+1 points per edge

//*/

2. Plot the convergence of the errors and estimators against the total number of degrees
of freedom (DoFs).

3. Check in the command window what is the convergence rate on the sequence of
uniformly refined meshes. Is this convergence rate optimal? Please also comment
on the obtained effectivity indices.

4. Compute the “P2” FE approximation and the “RT2” and “P2dc” equilibrated flux.
Check the convergence rate on the sequence of uniformly refined meshes.

Answer 1. (Errors and estimators on uniformly refined meshes, the smooth example)

1. One should obtain results as in Figures 1 and 2. The FEM solution is more and
more accurate upon refining the meshes.

initial mesh uniformly refined mesh 4

Figure 1: The initial mesh (left) and the finest refined mesh (right) for the smooth exam-
ple (3)

2. Please go into the directory containing the data generated by the code TP2.edp and
run the following command:

gnuplot ConvergenceRate.plt; // plot the datum

(Or just double click on ConvergenceRate.plt in Windows after having installed
Gnuplot from http://www.gnuplot.info/).

Then, you should see the a convergence result as in Figure 3, with on the x-axis
the total number of degrees of freedom (DoFs) and on the y-axis the energy error
and estimator. It is advantageous to use the log-log scale, since then one obtains a
straight line.
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IsoValue
0
0.000975563
0.00195113
0.00292669
0.00390225
0.00487782
0.00585338
0.00682894
0.0078045
0.00878007
0.00975563
0.0107312
0.0117068
0.0126823
0.0136579
0.0146334
0.015609
0.0165846
0.0175601
0.0185357
0.0195113

energy errors
IsoValue
0
0.00107623
0.00215246
0.0032287
0.00430493
0.00538116
0.00645739
0.00753362
0.00860986
0.00968609
0.0107623
0.0118386
0.0129148
0.013991
0.0150672
0.0161435
0.0172197
0.0182959
0.0193722
0.0204484
0.0215246

equilibrated flux estimators

IsoValue
0
1.93156e-05
3.86312e-05
5.79468e-05
7.72624e-05
9.6578e-05
0.000115894
0.000135209
0.000154525
0.00017384
0.000193156
0.000212472
0.000231787
0.000251103
0.000270418
0.000289734
0.00030905
0.000328365
0.000347681
0.000366997
0.000386312

energy errors
IsoValue
0
2.09074e-05
4.18149e-05
6.27223e-05
8.36298e-05
0.000104537
0.000125445
0.000146352
0.00016726
0.000188167
0.000209074
0.000229982
0.000250889
0.000271797
0.000292704
0.000313612
0.000334519
0.000355427
0.000376334
0.000397242
0.000418149

equilibrated flux estimators

Figure 2: Elementwise errors ∥∇(u − uℓ)∥K (left) and elementwise estimators
[
∥∇uℓ +

σℓ∥K + hK

π
∥f − Πp′f∥K

]
(right) on the initial mesh (top) and on the finest-refined mesh

(bottom) for the smooth example (3) and p = 1

3. Going back to the command window, one should find the convergence rates and
effectivity indices of the numerical solution computed on the sequence of uniformly
refined meshes. You should see the following data:

Rate of convergence 3

0.5675315829 0.5397301454 0.5212486906

Effectivity indices 4

1.044909373 1.043766139 1.045481868 1.046058539

In this case of a smooth solution, the convergence rate is O(hp) which becomes
O(DoFs−

p
2 ) in terms of DoFs. So, in the present case with p = 1, we need to find

O(DoFs−
1
2 ), which is what we (approximately) observe. In addition, the effectivity

index takes very small values close to 1.04.

4. One should set up “P2” FE approximation and the “RT2” and “P2dc” equilibrated
flux, and then run the code again. You should see the following data in the command
window:

Rate of convergence 3

1.073175248 1.040710629 1.021428279

Effectivity indices 4

1.019698545 1.013056183 1.009550153 1.007757069
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Figure 3: Convergence of the energy errors and of a posteriori error estimators for the
smooth example (3) under uniformly refined meshes with p = 1

The above data give the convergence rate O(DoFs−1) of the finite element method
with p = 2 under the uniform mesh refinement. This is expected from the theoretical
result O(DoFs−

p
2 ). In addition, the effectivity indices take rather stable values close

to 1.01. The convergence plot is given in Figure 4.

Figure 4: Convergence of the energy errors and of a posteriori error estimators for the
smooth example (3) under uniformly refined meshes with p = 2

Exercice 2. (Errors and estimators on uniformly refined meshes, the singular example)

1. Compute the “P1” FE approximation and the “RT1” and “P1dc” equilibrated flux
on a sequence of uniformly refined meshes for the singular example (4). Plot the
obtained meshes and the elementwise distributions of the actual error and of the a
posteriori error estimators. Please use the following parameters:

int nds = 4; // number of mesh points on one unit boundary edge

FinalLevel = 3; // maximal refinement level
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bool RunSmooth = 0; // 1 means smooth example, 0 means singular example

bool RunAdaptive = 0; // 1 means adaptive mesh refinement, 0 means uniform
mesh refinement

Remove the comment /* and define the data for the singular example:

///*

// CASE 2 (vertex singularity)

func theta=atan2(y, x)-2*pi*fmin(sign(y),0);

func r=(x^2+y^2)^(1/2.0);

......

mesh Th = buildmesh(b1(nds) + b2(nds) + b3(2*nds) + b4(2*nds)

+ b5(nds) + b6(nds));

//*/

2. Plot the convergence of the errors and estimators against the total number of degrees
of freedom (DoFs).

3. Check in the command window what is the convergence rate on the sequence of
uniformly refined meshes. Is this convergence rate optimal? Please also comment
on the obtained effectivity indices.

4. Compute the “P2” FE approximation and the “RT2” and “P2dc” equilibrated flux.
Check the convergence rate on the sequence of uniformly refined meshes.

Answer 2. (Errors and estimators on uniformly refined meshes, the singular example)

1. One should obtain results as in Figures 5 and 6. The FEM solution is still more
and more accurate on uniformly refined meshes. The error and estimator both take
large values close to the origin.

initial mesh uniformly refined mesh 3

Figure 5: The initial mesh (left) and the finest refined mesh (right) for the singular
example (4)

2. One should get into the directory containing the data generated by the code TP2.edp
and again run the following command:

gnuplot ConvergenceRate.plt; // plot the datum

Then, you should see the a convergence result as in Figure 7.
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IsoValue
0
0.0038046
0.0076092
0.0114138
0.0152184
0.019023
0.0228276
0.0266322
0.0304368
0.0342414
0.038046
0.0418506
0.0456552
0.0494598
0.0532644
0.057069
0.0608736
0.0646782
0.0684828
0.0722874
0.076092

energy errors
IsoValue
0
0.00584592
0.0116918
0.0175378
0.0233837
0.0292296
0.0350755
0.0409215
0.0467674
0.0526133
0.0584592
0.0643052
0.0701511
0.075997
0.0818429
0.0876889
0.0935348
0.0993807
0.105227
0.111073
0.116918

equilibrated flux estimators

IsoValue
0
0.000960805
0.00192161
0.00288241
0.00384322
0.00480402
0.00576483
0.00672563
0.00768644
0.00864724
0.00960805
0.0105689
0.0115297
0.0124905
0.0134513
0.0144121
0.0153729
0.0163337
0.0172945
0.0182553
0.0192161

energy errors
IsoValue
0
0.00145119
0.00290238
0.00435358
0.00580477
0.00725596
0.00870715
0.0101583
0.0116095
0.0130607
0.0145119
0.0159631
0.0174143
0.0188655
0.0203167
0.0217679
0.0232191
0.0246703
0.0261215
0.0275726
0.0290238

equilibrated flux estimators

Figure 6: Elementwise errors ∥∇(u − uℓ)∥K (left) and elementwise estimators
[
∥∇uℓ +

σℓ∥K + hK

π
∥f − Πp′f∥K

]
(right) on the initial mesh (top) and on the finest-refined mesh

(bottom) for the singular example (4) and p = 1

3. Going back to the command window, one should find the convergence rates and
effectivity indices of the numerical solution computed on the sequence of uniformly
refined meshes. You should see the following data:

Rate of convergence 3

0.3526639324 0.3412467251 0.3360477061

Effectivity indices 4

1.241172733 1.226841282 1.219652978 1.216007697

The above data give the convergence rate O(DoFs−
1
3 ) for FEM with p = 1 under

the uniform mesh refinement. This is expected from the theory since, recall, u ∈
H

5
3
−ε(Ω) only; O(DoFs−

1
3 ) is equivalent to O(h2/3) in terms of the mesh size h. This

rate is, however, not optimal in terms of DoFs, as we will see in Exercice 3 below.
The effectivity index is still stable but takes slightly increased values of around 1.23.

4. One should set up the “P2” FE approximation and the “RT2” and “P2dc” equili-
brated flux and then run the code again. You should see the following data in the
command window:

Rate of convergence 3

0.3534450138 0.342831769 0.3380040416

Effectivity indices 4

1.433017597 1.43406561 1.434120074 1.434114739
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Figure 7: Convergence of the energy errors and of a posteriori error estimators for the
singular example (4) under uniformly refined meshes with p = 1

The above data show that the convergence rate for FEM with p = 2 under the

uniform mesh refinement is still O(DoFs−
1
3 ) (i.e., O(h2/3) in terms of h), which

is the same value as for p = 1; no improvement of the convergence rate appears
here, in contrast to Exercice 1. This convergence rate is illustrated in Figure 8
(note that the values are slightly smaller than in Figure 7). This rate is again not
optimal in terms of DoFs but we will see below in Exercice 3 that optimal rates are
obtained under adaptive mesh regeneration. The effectivity indices are again stable
but slightly increased, with values of around 1.43.

Figure 8: Convergence of the energy errors and of a posteriori error estimators for the
singular example (4) under uniformly refined meshes with p = 2

The above numerical results confirm the theoretical expectation that the conver-
gence rate of FEM for a singular solution is suboptimal for any order p ≥ 1 in terms
of DoFs under uniform mesh refinement: for uniform mesh refinement, we will al-

ways obtain O(DoFs−
1
3 ) or O(h2/3), independently of the polynomial degree p. We

will see that this will crucially change with proper mesh adaptation in Exercice 3.
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Exercice 3. (Errors and estimators on adaptively generated meshes, the singular example)

Try to take advantage of the a posteriori error estimators ηK(uℓ) computed in each mesh
element K ∈ Tℓ. The aim is not to refine all mesh elements K ∈ Tℓ as previously, but
instead only those with a high value ηK(uℓ) of the estimated error. We will more precisely
choose a parameter 0 < θ ≤ 1 and identify a subset Mℓ of all elements of the Tℓ mesh
such that ∑

K∈Mℓ

ηK(uℓ)
2 ≥ θ2

∑
K∈Tℓ

ηK(uℓ)
2

and then only try to refine the elements in the marked setMℓ by a given factor RefFactor.
The procedure is described in the FreeFem++ script block if (RunAdaptive) and is
based on the FreeFem++ command

Th = adaptmesh(Th, ElSizes, IsMetric=1, keepbackvertices=0, nbvx=1000000);

This actually generates a new mesh with the marked elements approximately RefFactor

smaller than the previous ones.

1. Compute the “P1” FE approximation and the “RT1” and “P1dc” equilibrated flux
on a sequence of adaptively generated meshes for the singular example (4). Plot the
obtained meshes and the elementwise distributions of the actual error and of the a
posteriori error estimators. Please use the following parameters:

int nds = 4; // number of mesh points on one unit boundary edge

FinalLevel = 9; // maximal refinement level

bool RunSmooth = 0; // 1 means smooth example, 0 means singular example

bool RunAdaptive = 1; // 1 means adaptive mesh refinement, 0 means uniform
mesh refinement

real Dtheta=sqrt(0.5); // Dörfler marking parameter

int RefFactor=4; // factor by which (approximately) the marked elements should
become smaller in the adapted mesh

2. Plot the convergence of the errors and estimators against the total number of degrees
of freedom (DoFs).

3. Check in the command window what is the convergence rate on the sequence of
adaptively generated meshes. Is this convergence rate optimal? Please also comment
on the obtained effectivity indices.

4. Compute the “P2” FE approximation and the “RT2” and “P2dc” equilibrated flux.
Check the convergence rate on the sequence of adaptively generated meshes.

Answer 3. (Errors and estimators on adaptively generated meshes, the singular example)

1. One should obtain a sequence of adaptively generated meshes, actual errors, and a
posteriori error estimators as in Figures 9 and 10. The errors and estimators both
take large values close to the origin, which causes an important grading of the later
meshes towards the origin. But even on meshes very fine towards the origin, the
elements touching the origin still contain large errors.
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adaptively refined mesh 2 adaptively refined mesh 4

adaptively refined mesh 6 adaptively refined mesh 8

Figure 9: Level 2 adaptively generated mesh (top left), level 4 adaptively generated
mesh (top right), level 6 adaptively generated mesh (bottom left), and level 8 adaptively
generated mesh (bottom right) for the singular example (4) and p = 1

2. One should get into the directory containing the data generated by the code TP2.edp
and run the following command:

gnuplot ConvergenceRate.plt; // plot the datum

Then a convergence result as in Figure 11 appears. Actually, FreeFem++ does not
refine meshes but rather always generates a new mesh; for this reason, the number
of DoFs can decrease at the same time with the error (and estimators). This would
not be the case for nested finite element spaces issued from refined meshes.

3. Going back to the command window, one should find the convergence rates and
effectivity indices of the numerical solution computed on the sequence of uniformly
refined meshes. You should see the following data:

Rate of convergence 9

-0.7669871694 2.939635834 0.3425314836 0.8330618394 0.4913908552

0.4115164255 0.5529103233 0.5082601328 0.5569987876

Effectivity indices 10

1.241172733 1.215444619 1.14398896 1.108194504 1.088578605

1.073269585 1.066122737 1.063237346 1.062129856 1.062966932

The above data show that the convergence rate for FEM with p = 1 under the

adaptive mesh generation becomes O(DoFs−
1
2 ) which is substantially better than

O(DoFs−
1
3 ) in Exercice 2 with uniform mesh refinement. Please note that a rate of
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IsoValue
0
0.00209194
0.00418388
0.00627581
0.00836775
0.0104597
0.0125516
0.0146436
0.0167355
0.0188274
0.0209194
0.0230113
0.0251033
0.0271952
0.0292871
0.0313791
0.033471
0.0355629
0.0376549
0.0397468
0.0418388

energy errors
IsoValue
0
0.00281482
0.00562964
0.00844446
0.0112593
0.0140741
0.0168889
0.0197037
0.0225186
0.0253334
0.0281482
0.030963
0.0337778
0.0365927
0.0394075
0.0422223
0.0450371
0.0478519
0.0506668
0.0534816
0.0562964

equilibrated flux estimators

IsoValue
0
0.000189749
0.000379497
0.000569246
0.000758994
0.000948743
0.00113849
0.00132824
0.00151799
0.00170774
0.00189749
0.00208723
0.00227698
0.00246673
0.00265648
0.00284623
0.00303598
0.00322573
0.00341547
0.00360522
0.00379497

energy errors
IsoValue
0
0.000221746
0.000443492
0.000665238
0.000886985
0.00110873
0.00133048
0.00155222
0.00177397
0.00199572
0.00221746
0.00243921
0.00266095
0.0028827
0.00310445
0.00332619
0.00354794
0.00376968
0.00399143
0.00421318
0.00443492

equilibrated flux estimators

IsoValue
0
7.44512e-05
0.000148902
0.000223354
0.000297805
0.000372256
0.000446707
0.000521159
0.00059561
0.000670061
0.000744512
0.000818964
0.000893415
0.000967866
0.00104232
0.00111677
0.00119122
0.00126567
0.00134012
0.00141457
0.00148902

energy errors
IsoValue
0
7.77672e-05
0.000155534
0.000233302
0.000311069
0.000388836
0.000466603
0.00054437
0.000622138
0.000699905
0.000777672
0.000855439
0.000933206
0.00101097
0.00108874
0.00116651
0.00124428
0.00132204
0.00139981
0.00147758
0.00155534

equilibrated flux estimators

Figure 10: Elementwise errors ∥∇(u − uℓ)∥K (left) and elementwise estimators
[
∥∇uℓ +

σℓ∥K + hK

π
∥f −Πp′f∥K

]
(right) on level 2 mesh (top), level 6 mesh (middle), and level 8

mesh (bottom) for the singular example (4) and p = 1

convergence in terms of the mesh size h, of the form O(hα), no more has any good
meaning. Indeed, the mesh element diameters are nonuniform here and, moreover,
the maximal mesh size may not even tend to zero. In conclusion, adaptive mesh
generation/refinement improves the convergence rate with respect to uniform mesh
refinement and gives a rate that is actually optimal in terms of DoFs: no better rate
is possible, neither theoretically, nor practically. The obtained effectivity indices still
stay very close to the optimal value of one, though the meshes are highly nontrivial
here; they actually improve with respect to Exercice 2, attaining roughly 1.06 for
the finest meshes.

4. One should set up the “P2” FE approximation and the “RT2” and “P2dc” equili-
brated flux and then run the code again. You should see the following data in the
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Figure 11: Convergence of the energy errors and of a posteriori error estimators for the
singular example (4) under adaptively generated meshes with p = 1

command window:

Rate of convergence 9

-1.360154142 -6.205630657 15.50040121 2.165995176 1.075495519

0.7647940308 0.973671427 0.8776198796 0.9509795819

Effectivity indices 10

1.433017597 1.308391581 1.280721626 1.250852832 1.219638215

1.060747483 1.038959759 1.034408075 1.023007578 1.022596182

The above data show that the convergence rate for FEM with p = 2 under the
adaptive mesh generation becomes O(DoFs−1), which is substantially better than

O(DoFs−
1
3 ) in Exercice 2 with uniform mesh refinement, cf. also Figure 14. Even

if the solution is singular, one gains from higher-order! But one needs to employ
adaptive mesh refinement for this. Again, adaptive mesh generation/refinement
improves the convergence rate with respect to uniform mesh refinement and gives a
rate that is optimal in terms of DoFs: no better rate is possible, neither theoretically,
nor practically. As above for p = 1, the obtained effectivity indices stay very close to
the optimal value of one and actually improve with respect to Exercice 2, attaining
roughly 1.02 for the finest meshes. Figures 12 and 13 then present the sequences of
adaptively generated meshes and the actual and predicted error distributions, which
are again excellent.

In conclusion, the numerical experiments confirm that the convergence rate of FEM
for a singular solution is optimal in terms of DoFs, with the rate O(DoFs−

p
2 ) with

any order p, under the adaptive mesh generation.
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adaptively refined mesh 2 adaptively refined mesh 4

adaptively refined mesh 6 adaptively refined mesh 8

Figure 12: Level 2 adaptively generated mesh (top left), level 4 adaptively generated
mesh (top right), level 6 adaptively generated mesh (bottom left), and level 8 adaptively
generated mesh (bottom right) for the singular example (4) and p = 2

12



IsoValue
0
0.00123299
0.00246597
0.00369896
0.00493194
0.00616493
0.00739791
0.0086309
0.00986388
0.0110969
0.0123299
0.0135628
0.0147958
0.0160288
0.0172618
0.0184948
0.0197278
0.0209608
0.0221937
0.0234267
0.0246597

energy errors
IsoValue
0
0.00160279
0.00320558
0.00480836
0.00641115
0.00801394
0.00961673
0.0112195
0.0128223
0.0144251
0.0160279
0.0176307
0.0192335
0.0208362
0.022439
0.0240418
0.0256446
0.0272474
0.0288502
0.030453
0.0320558

equilibrated flux estimators

IsoValue
0
9.89262e-05
0.000197852
0.000296779
0.000395705
0.000494631
0.000593557
0.000692484
0.00079141
0.000890336
0.000989262
0.00108819
0.00118711
0.00128604
0.00138497
0.00148389
0.00158282
0.00168175
0.00178067
0.0018796
0.00197852

energy errors
IsoValue
0
0.000143693
0.000287387
0.00043108
0.000574774
0.000718467
0.00086216
0.00100585
0.00114955
0.00129324
0.00143693
0.00158063
0.00172432
0.00186801
0.00201171
0.0021554
0.00229909
0.00244279
0.00258648
0.00273017
0.00287387

equilibrated flux estimators

IsoValue
0
3.17867e-05
6.35734e-05
9.53601e-05
0.000127147
0.000158933
0.00019072
0.000222507
0.000254294
0.00028608
0.000317867
0.000349654
0.00038144
0.000413227
0.000445014
0.0004768
0.000508587
0.000540374
0.000572161
0.000603947
0.000635734

energy errors
IsoValue
0
3.31533e-05
6.63065e-05
9.94598e-05
0.000132613
0.000165766
0.00019892
0.000232073
0.000265226
0.000298379
0.000331533
0.000364686
0.000397839
0.000430992
0.000464146
0.000497299
0.000530452
0.000563606
0.000596759
0.000629912
0.000663065

equilibrated flux estimators

Figure 13: Elementwise errors ∥∇(u − uℓ)∥K (left) and elementwise estimators
[
∥∇uℓ +

σℓ∥K + hK

π
∥f −Πp′f∥K

]
(right) on level 2 mesh (top), level 6 mesh (middle), and level 8

mesh (bottom) for the singular example (4) and p = 2
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Figure 14: Convergence of the energy errors and of a posteriori error estimators for the
singular example (4) under adaptively generated meshes with p = 2
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