
Summer school Hasselt University, Belgium
Adaptive methods and a posteriori error estimation June 24–27, 2024
Web page: link https://freefem.org/

Computer tutorial N◦1

Error certification
Poisson equation, conforming finite element method, flux reconstruction by
averaging, equilibrated flux reconstruction by local problems, energy error, a

posteriori error estimate, effectivity index

Let Ω ⊂ R2 be a polygon with Lipschitz boundary ∂Ω = ΓD ∪ ΓN. We consider the
following model problem: for a given source term f ∈ L2(Ω) and a given prescribed data
gD on the Dirichlet part of the boundary ΓD, find u : Ω → R such that

−∆u = f in Ω, (1a)

u = gD on ΓD, (1b)

−∇u·nΩ = 0 on ΓN. (1c)

The weak solution of problem (1) is a function u ∈ H1(Ω) such that u|ΓD
= gD and

(∇u,∇v) = (f, v) ∀v ∈ H1(Ω) such that u|ΓD
= 0. (2)

Let Tℓ be a triangulation of Ω. In this tutorial N◦1, the mesh index ℓ is fixed, but
in the forthcoming tutorials, we will consider sequence of meshes indexed by ℓ. For a
polynomial degree p ≥ 1, consider a finite-dimensional subspace of H1(Ω),

V p
ℓ := {vℓ ∈ H1(Ω), vℓ|K ∈ Pp(K) ∀K ∈ Tℓ} = Pp(Tℓ) ∩H1(Ω). (3)

Above, Pq(K) stands for the space of polynomials of total degree at most q ≥ 0 on
the mesh element K ∈ Tℓ and Pq(Tℓ) denotes piecewise (pw) q-degree polynomials with
respect to the mesh Tℓ. Note that by the inclusion in H1(Ω), the functions in V p

ℓ have their
traces continuous over all mesh faces (actually, in the discrete world, Pp(Tℓ) ∩ H1(Ω) =
Pp(Tℓ)∩C0(Ω), so that the functions from V p

ℓ are actually simply continuous and not just
trace continuous).

The finite element (FE) method seeks for an approximate solution uℓ to the exact
solution u of (2) in the finite-dimensional subspace V p

ℓ of H1(Ω) given by (3). It reads:
find uℓ ∈ V p

ℓ such that uℓ|ΓD
= gD and

(∇uℓ,∇vℓ) = (f, vℓ) ∀vℓ ∈ V p
ℓ such that vℓ|ΓD

= 0. (4)

Exercices 1–6 below are designed for the case where Ω is a unit square, ΓD = ∂Ω,
ΓN = ∅, gD = 0, and f = −2(x2 + y2) + 2(x+ y). In this case, the exact solution is

u(x, y) = x(x− 1)y(y − 1), (5)

which is smooth, u ∈ C∞(Ω). Exercice 7 then presents an extension to an L-shaped
domain with a singular solution.

Exercice 1. (The finite element method)

1

https://www.uhasselt.be/en/doctoral-schools/academic-research-competences-course-offer/summer-school-on-adaptive-methods-and-a-posteriori-error-estimation
https://freefem.org/

1. Specify the user input in the Freefem++ script TP1.edp:

int nds = 10; // number of mesh points on one unit boundary edge of the domain
Ω

macro Pcont P1 // Lagrange pw polynomial space (3) with the specified polynomial
degree: macro means that we choose it once and for all here and name it Pcont; we
can choose “P1” or “P2” or “P3” or “P4” to later define (3) with p = 1 or p = 2 or
p = 3 or p = 4

macro Pcontp P2 // Lagrange pw polynomial space (3) with the specified polyno-
mial degree later used for plotting the exact solution (ideally Pcontp = Pcont + 1):
“P2” or “P3” or “P4”

macro RTrec RT0 // Raviart–Thomas pw polynomial space for the averaged flux:
“RT0” or “RT1” or “RT2”

macro RT RT1 // Raviart–Thomas pw polynomial space for the equilibrated flux:
“RT0” or “RT1” or “RT2”

macro Pdisc P1dc // Lagrange multipliers of the Raviart–Thomas space: “P0” or
“P1dc” or “P2dc”

int verb = 0; // verbosity for demonstrations and debugging of this script

bool RecFluxAver = 1, RecFlux = 1, Err = 1, Est = 1; // what to compute

bool PlotSolAppr = 1, PlotSolApprFluxes = 1, PlotRecFluxAver = 1,

PlotRecFlux = 1, PlotDetails = 1, PlotErr = 1, PlotEst = 1; // what to
plot

2. Specify the exact solution u together with its derivatives, the right-hand side f , and
the Dirichlet boundary datum gD. This is done in the section exact solution and

its derivatives.

3. Generate a triangular mesh Tℓ of the unit square Ω. In Freefem++, this is achieved
via the command mesh Th = square(nds,nds);

4. Define some more useful macros

macro Div(u1,u2) (dx(u1)+dy(u2)) // divergence

macro Grad(u) [dx(u),dy(u)] // gradient

5. Prepare some more tools for nice plotting (standard colormaps, under- and over-
shoot factors for correct visualisation, . . .).

6. Define the space V p
ℓ from (3) in Freefem++: this is done via the command

fespace Vh(Th,Pcont);

which employs the macro Pcont defined above (“P1” or “P2” or “P3” or “P4”)

7. Compute the finite element approximation uℓ given by (4). This is achieved via the
commands

Vh uh,vh; // FE approximation and test functions uℓ and vℓ

varf a(uh,vh)=int2d(Th)(Grad(uh)’*Grad(vh))

+ int2d(Th)(f*vh) + on(1,2,3,4,uh=gd); // the FE bilinear form and right-
hand side and boundary data

2

matrix A=a(Vh,Vh,solver=SolverGlob); // construction of the stiffness matrix
and choice of the solver

real[int] b=a(0,Vh); // construction of the right-hand side vector

uh[]=A^-1*b; // linear algebra solve

8. Plot the exact solution u and its finite element approximation uℓ. This is described in
the Freefem++ script in the block if(PlotSolAppr). Polynomial degrees 1 ≤ p ≤ 4
in the definition of the finite element spaces (3) can be tested upon changing the
parameter Pcont from P1 to P4 and Pcontp from P2 to P4.

9. Plot the flux of the exact solution given by −∇u and the flux of the finite element
approximation given by −∇uℓ. This is described in the Freefem++ script in the
block if(PlotSolApprFluxes). (In the FreeFem++ graphics window, the size of
the arrows is modified by pressing “a” and “A”.) Choose some two neighboring
mesh elements and plot the details, as prepared in the script in the part with
if(PlotDetails). What do you observe? Does the exact flux −∇u seem to be
continuous across the mesh faces, or at least to have the normal component −∇u·nF

continuous across any mesh face F? (Here, nF is a unit normal vector of F .) Please
notice that the latter, weaker, property, means that, for a given mesh face F , what
“flows out” from one mesh element sharing F across F “flows in” the neighboring
mesh element sharing F . What about the flux approximation −∇uℓ? Please inspect
various polynomial degrees 1 ≤ p ≤ 4.

Answer 1. (The finite element method)

The answers to items 1–7 are contained in the script TP1.edp. We now illustrate answers
to questions 8–9. We take nds=10, so that there are 10× 10× 2 isosceles triangles in the
mesh Tℓ.

8. One should obtain the results as in Figures 1 and 2.

IsoValue
0
0.00315625
0.0063125
0.00946875
0.012625
0.0157813
0.0189375
0.0220938
0.02525
0.0284063
0.0315625
0.0347187
0.037875
0.0410313
0.0441875
0.0473438
0.0505
0.0536563
0.0568125
0.0599688
0.063125

exact solution
IsoValue
7.93443e-63
0.00313164
0.00626328
0.00939492
0.0125266
0.0156582
0.0187898
0.0219215
0.0250531
0.0281848
0.0313164
0.034448
0.0375797
0.0407113
0.043843
0.0469746
0.0501062
0.0532379
0.0563695
0.0595012
0.0626328

numerical approximation

Figure 1: Exact solution u (left) and approximate solution uℓ (right, p = 1)

9. One should obtain the results as in Figures 3 and 4. We plot the details of two mesh
elements sharing the center vertex (0.5, 0.5) in Figures 5 (exact flux −∇u) and 6
(approximate flux −∇uℓ, p = 1). One in particular observes that the flux of the
exact solution is a smooth, continuous vector-valued field, so that it is continuous
across the mesh faces. The flux of the finite element approximation, in turn, is
a smooth vector-valued field only inside each mesh element K ∈ Tℓ. It is not

3

IsoValue
-1.54841e-50
0.00315639
0.00631278
0.00946917
0.0126256
0.015782
0.0189383
0.0220947
0.0252511
0.0284075
0.0315639
0.0347203
0.0378767
0.0410331
0.0441895
0.0473459
0.0505023
0.0536587
0.056815
0.0599714
0.0631278

numerical approximation
IsoValue
2.66663e-34
0.00315621
0.00631242
0.00946863
0.0126248
0.015781
0.0189373
0.0220935
0.0252497
0.0284059
0.0315621
0.0347183
0.0378745
0.0410307
0.0441869
0.0473431
0.0504994
0.0536556
0.0568118
0.059968
0.0631242

numerical approximation

Figure 2: Approximate solution uℓ for p = 2 (left) and p = 3 (right)

continuous across the mesh faces, nor it has the normal component continuous
across the mesh faces. This is clearly seen near the center and corners in Figure 3,
right, and in Figure 6: −∇uℓ for p = 1 is a piecewise constant, discontinuous,
vector-valued field. This in particular means that, for a given mesh face F , it is
not true that “flows out” from one mesh element sharing F across F “flows in” the
neighboring mesh element sharing F ; the approximate flux −∇uℓ is unphysical, non-
conservative. The exception is only the case p = 4: since the exact solution is here
a polynomial of order 4 and since for p = 4, the finite element method reproduces it
exactly, uℓ = u, we actually in this case have uℓ(x, y) = u(x, y) = x(x− 1)y(y − 1),
which is a polynomial over the entire domain Ω (not just inside each mesh element)
and thus actually uℓ ∈ C∞(Ω) here.

Vec Value
0
0.0131588
0.0263175
0.0394763
0.0526351
0.0657938
0.0789526
0.0921113
0.10527
0.118429
0.131588
0.144746
0.157905
0.171064
0.184223
0.197381
0.21054
0.223699
0.236858
0.250016

exact flux
Vec Value
0
0.011751
0.023502
0.035253
0.047004
0.058755
0.070506
0.082257
0.0940081
0.105759
0.11751
0.129261
0.141012
0.152763
0.164514
0.176265
0.188016
0.199767
0.211518
0.223269

finite element flux

Figure 3: Flux of the exact solution −∇u (left) and flux of the approximation −∇uℓ
(right, p = 1)

Exercice 2. (Flux reconstruction by averaging)

Let

V p′

ℓ := {vℓ ∈ H(div,Ω),vℓ|K ∈ RTp′(K) ∀K ∈ Tℓ} = RTp′(Tℓ) ∩H(div,Ω) (6)

be the Raviart–Thomas space of degree p′ ≥ 0. Here, RTp′(K) = [Pp′(K)]d + xPp′(K) is
the Raviart–Thomas space on a single mesh element K ∈ Tℓ and RTp′(Tℓ) is the space of
all functions that belong to RTp′(K) on each mesh element, the so-called broken Raviart–
Thomas space. The inclusion into H(div,Ω) ensures that all functions from the space

4

Vec Value
0
0.0133753
0.0267505
0.0401258
0.0535011
0.0668764
0.0802516
0.0936269
0.107002
0.120377
0.133753
0.147128
0.160503
0.173879
0.187254
0.200629
0.214004
0.22738
0.240755
0.25413

finite element flux
Vec Value
0
0.0131691
0.0263382
0.0395073
0.0526765
0.0658456
0.0790147
0.0921838
0.105353
0.118522
0.131691
0.14486
0.158029
0.171198
0.184368
0.197537
0.210706
0.223875
0.237044
0.250213

finite element flux

Figure 4: Flux of the approximation −∇uℓ for p = 2 (left) and p = 3 (right)

Vec Value
0
0.00357319
0.00714637
0.0107196
0.0142927
0.0178659
0.0214391
0.0250123
0.0285855
0.0321587
0.0357319
0.039305
0.0428782
0.0464514
0.0500246
0.0535978
0.057171
0.0607442
0.0643173
0.0678905

exact flux detail
Vec Value
0
0.00263189
0.00526378
0.00789568
0.0105276
0.0131595
0.0157914
0.0184232
0.0210551
0.023687
0.0263189
0.0289508
0.0315827
0.0342146
0.0368465
0.0394784
0.0421103
0.0447422
0.0473741
0.0500059

exact flux detail

Figure 5: Flux of the exact solution −∇u, two neighboring elements sharing the center
vertex (0.5, 0.5)

V p′

ℓ have their normal trace continuous over all mesh faces. We usually set the degree p′

to p or to p− 1, i.e., equal to that of the finite element approximation uℓ ore one less.

1. Implement a flux reconstruction σℓ in the Raviart–Thomas space V p′

ℓ by averaging.
This idea is to start from −∇uℓ and to use a simple averaging of the values that
−∇uℓ takes in the degrees of freedom of Raviart–Thomas space V p′

ℓ , i.e.,

σℓ(DoF) := mean value of all −∇uℓ(DoF); (7)

In the lowest-order case p′ = 0 in (6) and for interior mesh faces F , this means that

σℓ·nF := 1
2
((−∇uℓ)|K+·nF)(xF) +

1
2
((−∇uℓ)|K−·nF)(xF), (8)

where K+ and K− are the two mesh elements sharing the face F .

This is achieved in FreeFem++ by the simple command mean in the script section
if(RecFluxAver):

[sigma1rec, sigma2rec]=[mean(-dx(uh)),mean(-dy(uh))]; //averaging of the
values in the degrees of freedom of the space RTRec

The degree p′ = p− 1 in (6) is in FreeFem++ script achieved by choosing the value
of RTrec respectively as “RT0”, “RT1”, and “RT2” when Pcont is given by “P1”,
“P2”, and “P3”.

5

Vec Value
0
0.00181192
0.00362385
0.00543577
0.00724769
0.00905962
0.0108715
0.0126835
0.0144954
0.0163073
0.0181192
0.0199312
0.0217431
0.023555
0.0253669
0.0271789
0.0289908
0.0308027
0.0326146
0.0344265

finite element flux detail
Vec Value
0
0.0018485
0.003697
0.0055455
0.007394
0.0092425
0.011091
0.0129395
0.014788
0.0166365
0.018485
0.0203335
0.022182
0.0240305
0.025879
0.0277275
0.029576
0.0314245
0.033273
0.0351215

finite element flux detail

Figure 6: Flux of the approximation −∇uℓ, p = 1, two neighboring elements sharing the
center vertex (0.5, 0.5)

2. Plot the reconstructed flux σℓ. What do you observe?

3. Plot the misfit of the optimal divergence of the reconstructed flux σℓ. More precisely,
the goal is to compute the following L2 norms on each mesh element K ∈ Tℓ:

∥Πp′f −∇·σℓ∥K , (9)

where Πp′ is the L
2(Ω)-orthogonal projection onto discontinus piecewise polynomials

of degree p′ of the space Pp′(Tℓ), i.e., Πp′f ∈ Pp′(Tℓ) is such that

(Πp′f, vℓ) = (f, vℓ) ∀vℓ ∈ Pp′(Tℓ),

or, still equivalently,

(Πp′f, vℓ)K = (f, vℓ)K ∀vℓ ∈ Pp′(K), ∀K ∈ Tℓ.

For an equilibrated flux, the quantities in (9) would be zero. What do you observe
here?

Answer 2. (Flux reconstruction by averaging)

The answer to item 1 is contained in the script in the section if(RecFluxAver). We now
illustrate answers to questions 2–3.

2. Figures 7 and 8 give the results. Details in the two mesh elements sharing the vertex
(0.5, 0.5) are depicted in Figure 9. It is now true that what “flows out” from one
mesh element sharing a face F across F “flows in” the neighboring mesh element
sharing F , i.e., the normal component σℓ·nF is continuous across any mesh face F
(though the tangential component of σℓ, and thus σℓ as a vector-valued function,
may be discontinuous). In that sense, and in contrast to −∇uℓ, the flux σℓ is now
physical, not loosing mass over mesh faces (but still not mass conservative, see the
next question!).

3. Figures 10 and 11 present the results. They unfortunately reveal that the fluxes
reconstructed by the simple (and fast for programming in FreeFem++ and com-
putation!) averaging (7) are still unphysical, non mass conservative, as they do
not satisfy the equilibrium with the source term f (or more precisely with Πp′f)
∇·σℓ = Πp′f , neither the weaker condition

(∇·σℓ, 1)K = (f, 1)K ∀K ∈ Tℓ. (10)

6

Vec Value
0
0.011751
0.023502
0.035253
0.047004
0.058755
0.070506
0.082257
0.0940081
0.105759
0.11751
0.129261
0.141012
0.152763
0.164514
0.176265
0.188016
0.199767
0.211518
0.223269

averaged flux

Figure 7: Averaged flux σℓ for p = 1 and p′ = 0

Vec Value
0
0.0133771
0.0267542
0.0401314
0.0535085
0.0668856
0.0802627
0.0936399
0.107017
0.120394
0.133771
0.147148
0.160525
0.173903
0.18728
0.200657
0.214034
0.227411
0.240788
0.254165

averaged flux
Vec Value
0
0.013169
0.0263381
0.0395071
0.0526762
0.0658452
0.0790143
0.0921833
0.105352
0.118521
0.13169
0.144859
0.158029
0.171198
0.184367
0.197536
0.210705
0.223874
0.237043
0.250212

averaged flux

Figure 8: Averaged flux σℓ for p = 2 and p′ = 1 (left) and p = 3 and p′ = 2 (right)

Vec Value
0
0.00358561
0.00717122
0.0107568
0.0143424
0.017928
0.0215137
0.0250993
0.0286849
0.0322705
0.0358561
0.0394417
0.0430273
0.0466129
0.0501985
0.0537841
0.0573698
0.0609554
0.064541
0.0681266

averaged flux detail
Vec Value
0
0.00253592
0.00507184
0.00760776
0.0101437
0.0126796
0.0152155
0.0177514
0.0202874
0.0228233
0.0253592
0.0278951
0.030431
0.0329669
0.0355029
0.0380388
0.0405747
0.0431106
0.0456465
0.0481825

averaged flux detail

Figure 9: Averaged flux σℓ, p = 1 and p′ = 0, two neighboring elements sharing the center
vertex (0.5, 0.5)

7

IsoValue
0
0.00611692
0.0122338
0.0183508
0.0244677
0.0305846
0.0367015
0.0428184
0.0489354
0.0550523
0.0611692
0.0672861
0.073403
0.07952
0.0856369
0.0917538
0.0978707
0.103988
0.110105
0.116221
0.122338

divergence misfit of the averaged flux

Figure 10: Divergence misfit of the averaged flux σℓ, p = 1 and p′ = 0

IsoValue
0
0.000672734
0.00134547
0.0020182
0.00269094
0.00336367
0.0040364
0.00470914
0.00538187
0.0060546
0.00672734
0.00740007
0.00807281
0.00874554
0.00941827
0.010091
0.0107637
0.0114365
0.0121092
0.0127819
0.0134547

divergence misfit of the averaged flux
IsoValue
0
1.85587e-05
3.71173e-05
5.5676e-05
7.42347e-05
9.27933e-05
0.000111352
0.000129911
0.000148469
0.000167028
0.000185587
0.000204145
0.000222704
0.000241263
0.000259821
0.00027838
0.000296939
0.000315497
0.000334056
0.000352615
0.000371173

divergence misfit of the averaged flux

Figure 11: Divergence misfit of the averaged flux σℓ, p = 2 and p′ = 1 (left) and p = 3
and p′ = 2 (right)

8

Exercice 3. (Flux reconstruction by equilibration)

Let the Raviart–Thomas space of degree p′ ≥ 0 be given by (6).

1. Implement the equilibrated flux reconstruction σℓ in the Raviart–Thomas space V p′

ℓ .
Let −∇uℓ be computed. For each fixed mesh vertex a ∈ Vℓ, let Ta be the patch of
all mesh elements from Tℓ that share the vertex a and ωa the corresponding patch
subdomain. Let ψa be the hat function, i.e., the unique continuous and piecewise
1-st order polynomial that takes the value 1 in the vertex a and the value 0 in all
other mesh vertices; note that the support of ψa is the patch subdomain ωa. For a
vertex a inside the computational domain Ω, let H0(div, ωa) be the subspace of all
functions from H(div, ωa) whose normal trace vanishes on ∂ωa. For a vertex a on
the boundary of Ω, we only request the normal trace to vanish on 1) the part of ∂ωa

where ψa is zero (typically the part of ∂ωa not contained in ∂Ω); and 2) ΓN ∩ ∂ωa.

The local equilibration has two stages: first we need to solve the local quadratic
minimization problem

σa
ℓ := arg min

vℓ∈RTp′ (Ta)∩H0(div,ωa)

∇·vℓ=Πp′ (fψ
a−∇uℓ·∇ψa)

∥ψa∇uℓ + vℓ∥2ωa
(11a)

for all mesh vertices a ∈ Vℓ. Then we run over all a ∈ Vℓ and sum the individual
contributions σa

ℓ as

σℓ :=
∑
a∈Vℓ

σa
ℓ . (11b)

Evoking the Euler–Lagrange optimality conditions of (11a), (11a) can be equiv-
alently written as: find σa

ℓ ∈ RTp′(Ta) ∩ H0(div, ωa) with ∇·σa
ℓ = Πp′(fψ

a −
∇uℓ·∇ψa) such that

(σa
ℓ ,vℓ)ωa = −(ψa∇uℓ,vℓ)ωa ∀vℓ ∈ RTp′(Ta) ∩H0(div, ωa) with ∇·vℓ = 0.

(12)
One could now implement (12), but one would need for this purpose to construct a
divergence-free basis of the Raviart–Thomas space of piecewise polynomial vector-
valued fields from RTp′(Ta) ∩ H0(div, ωa), i.e., a basis with the property ∇·vℓ =
0. To avoid this, we further rewrite equivalently (12) as: find σa

ℓ ∈ RTp′(Ta) ∩
H0(div, ωa) together with the additional scalar-valued piecewise polynomial γaℓ ∈
Pp′(Ta), such that

(σa
ℓ ,vℓ)ωa − (γaℓ ,∇·vℓ)ωa = −(ψa∇uℓ,vℓ)ωa ∀vℓ ∈ RTp′(Ta) ∩H0(div, ωa),

(13a)

(∇·σa
ℓ , qℓ)ωa = (fψa −∇uℓ·∇ψa, qℓ)ωa ∀qℓ ∈ Pp′(Ta). (13b)

2. Plot the finite element flux −∇uℓ, the hat-function-weighted finite element flux
−ψa∇uℓ, the equilibrated flux contribution σa

ℓ , and the hat-function-weighted exact
flux −ψa∇u on each patch subdomain ωa. Describe what you observe: differences
and similarities between the plots, sizes of these vector fields close to the vertex a
and close to the boundary of the patch subdomain ωa (not shared by the boundary
∂Ω), continuity across the mesh faces, and normal component continuity across the
mesh faces. (Attention, FreeFem++ mainly distinguishes the sizes of vector fields
by color and not by size.) (Recall that in the FreeFem++ graphics window, the size
of the arrows is modified by pressing “a” and “A”.)

9

3. Plot the reconstructed flux σℓ. What do you observe?

4. Plot the divergence misfit of the reconstructed flux σℓ. More precisely, the idea is
to compute the elementwise L2 norms (9). From definition (11), we obtain

∇·σℓ
(11b)
= ∇·

(∑
a∈Vℓ

σa
ℓ

)
=
∑
a∈Vℓ

∇·σa
ℓ

(11a)
=
∑
a∈Vℓ

Πp′(fψ
a −∇uℓ·∇ψa)

= Πp′

(∑
a∈Vℓ

(fψa −∇uℓ·∇ψa)

)
= Πp′f.

(14)

Thus, ∥Πp′f −∇·σℓ∥K should be zero on each mesh element. What do you observe
here?

Answer 3. (Flux reconstruction by equilibration)

The answer to item 1 is contained in the script TP1.edp in the function ComputEquilFlux().
We now illustrate the answers to questions 2–4.

2. Figure 12 collects the results. We have chosen there the middle patch around the
center vertex a = (0.5, 0.5). For p = 1, the finite element flux −∇uℓ is piecewise
constant and (normal-trace) discontinuous from one mesh element to the other.
The hat-function-weighted finite element flux −ψa∇uℓ scales the finite element flux
−∇uℓ such that its values close to the vertex a = (0.5, 0.5) approach those of −∇uℓ
but its values close to the patch subdomain boundary ∂ωa vanish; we call it a
“cut-off” by the hat function ψa. Remark that −ψa∇uℓ is still (normal-trace) dis-
continuous from one mesh element to the other. From the minimization form (11a),
the equilibrated flux contribution σa

ℓ tries to stay as close as possible to −ψa∇uℓ,
but as the same time has to ensure that its normal trace σa

ℓ ·nF is continuous across
all the faces F sharing the vertex a and vanishes at the patch subdomain boundary
∂ωa. Moreover, the divergence constraint ∇·σa

ℓ = Πp′(fψ
a − ∇uℓ·∇ψa) has to be

ensured.

There are two sets of arrows on the horizontal middle line y = 0.5, since one is
plotted from the triangles below the line y = 0.5, and the other from above y =
0.5. Interestingly enough, they do not always coincide, so that the flux σa

ℓ itself
is not continuous (a similar observation also holds for the vertical line x = 0.5).
Importantly, though, their y-components, representing σa

ℓ ·n across the line y = 0.5,
with n = (0, 1)t, are of the same sign and magnitude, so that the normal trace σa

ℓ ·n
of σa

ℓ is indeed continuous across all mesh faces sharing the vertex a. Ideally, σa
ℓ

should approach the hat-function-weighted exact flux −ψa∇u, which happens here
to be fully continuous and not just normal-trace continuous.

3. Figures 13 and 14 give the results. Details in the two mesh elements close to the
center vertex (0.5, 0.5) are depicted in Figure 15. As above for flux reconstruction by
averaging, it is also true here that what “flows out” from one mesh element sharing
F across F “flows in” the neighboring mesh element sharing F . Thus, in this sense,
in contrast to −∇uℓ, the flux σℓ is physical, not loosing mass over mesh faces (and
also mass conservative, as we will see in the next question!).

4. Figures 16 and 17 present the results. They confirm that the fluxes reconstructed
by the local equilibration (11) are now fully physical, mass conservative, as they
satisfy the equilibrium with the source term

∇·σℓ = Πp′f

10

Vec Value
0
0.0018485
0.003697
0.0055455
0.007394
0.0092425
0.011091
0.0129395
0.014788
0.0166365
0.018485
0.0203335
0.022182
0.0240305
0.025879
0.0277275
0.029576
0.0314245
0.033273
0.0351215

finite element flux on a patch
Vec Value
0
0.0018485
0.003697
0.0055455
0.007394
0.0092425
0.011091
0.0129395
0.014788
0.0166365
0.018485
0.0203335
0.022182
0.0240305
0.025879
0.0277275
0.029576
0.0314245
0.033273
0.0351215

hat-weighted finite element flux on a patch

Vec Value
0
0.000508123
0.00101625
0.00152437
0.00203249
0.00254061
0.00304874
0.00355686
0.00406498
0.00457311
0.00508123
0.00558935
0.00609747
0.0066056
0.00711372
0.00762184
0.00812996
0.00863809
0.00914621
0.00965433

equilibrated flux patch contribution
Vec Value
0
0.00081884
0.00163768
0.00245652
0.00327536
0.0040942
0.00491304
0.00573188
0.00655072
0.00736956
0.0081884
0.00900724
0.00982608
0.0106449
0.0114638
0.0122826
0.0131014
0.0139203
0.0147391
0.015558

hat-weighted exact flux on a patch

Figure 12: Finite element flux −∇uℓ (top left), the hat-function-weighted finite element
flux −ψa∇uℓ (top right), the equilibrated flux contribution σa

ℓ (bottom left), and the hat-
function-weighted exact flux −ψa∇u (bottom right) on a patch subdomain ωa around the
center vertex a = (0.5, 0.5), p = 1 and p′ = 1

(neglecting the difference f −Πp′f), as well as, of course, the weaker condition (10).
Please note that the fact that al the values in Figures 16 and 17 are not exactly
equal to 0 is only because of rounding errors.

11

Vec Value
0
0.0131431
0.0262862
0.0394293
0.0525724
0.0657155
0.0788586
0.0920016
0.105145
0.118288
0.131431
0.144574
0.157717
0.17086
0.184003
0.197146
0.210289
0.223433
0.236576
0.249719

equilibrated flux
Vec Value
0
0.0133221
0.0266442
0.0399663
0.0532883
0.0666104
0.0799325
0.0932546
0.106577
0.119899
0.133221
0.146543
0.159865
0.173187
0.186509
0.199831
0.213153
0.226475
0.239798
0.25312

equilibrated flux

Figure 13: Equilibrated flux σℓ, p = 1 and p′ = 0 (left) and p = 1 and p′ = 1 (right)

Vec Value
0
0.013266
0.026532
0.0397979
0.0530639
0.0663299
0.0795959
0.0928619
0.106128
0.119394
0.13266
0.145926
0.159192
0.172458
0.185724
0.19899
0.212256
0.225522
0.238788
0.252054

equilibrated flux
Vec Value
0
0.0131694
0.0263388
0.0395082
0.0526776
0.0658469
0.0790163
0.0921857
0.105355
0.118524
0.131694
0.144863
0.158033
0.171202
0.184371
0.197541
0.21071
0.22388
0.237049
0.250218

equilibrated flux

Figure 14: Equilibrated flux σℓ, p = 2 and p′ = 1 (left) and p = 3 and p′ = 2 (right)

Vec Value
0
0.00328609
0.00657218
0.00985827
0.0131444
0.0164305
0.0197165
0.0230026
0.0262887
0.0295748
0.0328609
0.036147
0.0394331
0.0427192
0.0460053
0.0492914
0.0525775
0.0558636
0.0591496
0.0624357

equilibrated flux detail
Vec Value
0
0.00237048
0.00474097
0.00711145
0.00948193
0.0118524
0.0142229
0.0165934
0.0189639
0.0213343
0.0237048
0.0260753
0.0284458
0.0308163
0.0331868
0.0355572
0.0379277
0.0402982
0.0426687
0.0450392

equilibrated flux detail

Figure 15: Equilibrated flux σℓ, p = 1 and p′ = 1, two neighboring elements sharing the
center vertex (0.5, 0.5)

12

IsoValue
0
1.45234e-17
2.90467e-17
4.35701e-17
5.80934e-17
7.26168e-17
8.71401e-17
1.01663e-16
1.16187e-16
1.3071e-16
1.45234e-16
1.59757e-16
1.7428e-16
1.88804e-16
2.03327e-16
2.1785e-16
2.32374e-16
2.46897e-16
2.6142e-16
2.75944e-16
2.90467e-16

divergence misfit of the equilibrated flux
IsoValue
0
1.65931e-17
3.31863e-17
4.97794e-17
6.63726e-17
8.29657e-17
9.95589e-17
1.16152e-16
1.32745e-16
1.49338e-16
1.65931e-16
1.82525e-16
1.99118e-16
2.15711e-16
2.32304e-16
2.48897e-16
2.6549e-16
2.82083e-16
2.98677e-16
3.1527e-16
3.31863e-16

divergence misfit of the equilibrated flux

Figure 16: Divergence misfit of the equilibrated flux σℓ, p = 1 and p′ = 0 (left) and p = 1
and p′ = 1 (right)

IsoValue
0
3.79571e-17
7.59142e-17
1.13871e-16
1.51828e-16
1.89786e-16
2.27743e-16
2.657e-16
3.03657e-16
3.41614e-16
3.79571e-16
4.17528e-16
4.55485e-16
4.93443e-16
5.314e-16
5.69357e-16
6.07314e-16
6.45271e-16
6.83228e-16
7.21185e-16
7.59142e-16

divergence misfit of the equilibrated flux
IsoValue
0
1.25566e-16
2.51133e-16
3.76699e-16
5.02266e-16
6.27832e-16
7.53399e-16
8.78965e-16
1.00453e-15
1.1301e-15
1.25566e-15
1.38123e-15
1.5068e-15
1.63236e-15
1.75793e-15
1.8835e-15
2.00906e-15
2.13463e-15
2.2602e-15
2.38576e-15
2.51133e-15

divergence misfit of the equilibrated flux

Figure 17: Divergence misfit of the equilibrated flux σℓ, p = 2 and p′ = 1 (left) and p = 3
and p′ = 2 (right)

13

Exercice 4. (Error)

We will compute here the errors between the exact solution u of (2) and its finite element
approximation uℓ of (4).

1. Compute the error ∥∇(u− uℓ)∥, as well as its elementwise contributions

∥∇(u− uℓ)∥K (15)

for each mesh element K ∈ Tℓ.

2. Plot the elementwise error contributions (15).

Answer 4. (Error)

The answers to this part are contained in the FreeFem++ function ErrDist().

1. This is achieved via the FreeFem++ function int2d(Th).

2. The error distributions are depicted in Figures 18–19 below, alongside with the
corresponding estimators by equilibrated fluxes.

Exercice 5. (A posteriori error estimators by equilibrated fluxes)

We will now compute the a posteriori error estimators on the error between the exact
solution u of (2) and its finite element approximation uℓ of (4). We start by the equili-
brated fluxes of Exercice 3, in the setting with p′ = p according to the theory developed
in the lectures. Recall that in this case, we have

∥∇(u− uℓ)∥ ≤ ηℓ :=

{ ∑
K∈Tℓ

[
∥∇uℓ + σℓ∥K +

hK
π

∥f − Πp′f∥K
]2} 1

2

. (16)

1. Plot the elementwise a posteriori error estimators
[
∥∇uℓ+σℓ∥K + hK

π
∥f −Πp′f∥K

]
.

Compare them to the plots of the elementwise errors from Exercice 4. What do you
observe?

2. Plot the “data oscillation” part of the estimators given by hK
π
∥f − Πp′f∥K .

3. Compare the size of the a posteriori error estimator ηℓ to the size of the error
∥∇(u− uℓ)∥. This is best done in terms of the so-called effectivity index

Ieff,ℓ :=
ηℓ

∥∇(u− uℓ)∥
. (17)

What do you observe?

Answer 5. (A posteriori error estimators by equilibrated fluxes)

1. The answer is given in Figures 18–19. We observe an almost perfect match between
the actual (only known here in this test case, not known in general) and the es-
timated (always computed by the a posteriori error estimators) elementwise error
distributions.

14

IsoValue
0
0.000184189
0.000368378
0.000552567
0.000736756
0.000920946
0.00110513
0.00128932
0.00147351
0.0016577
0.00184189
0.00202608
0.00221027
0.00239446
0.00257865
0.00276284
0.00294703
0.00313121
0.0033154
0.00349959
0.00368378

energy errors
IsoValue
0
0.000200482
0.000400965
0.000601447
0.00080193
0.00100241
0.00120289
0.00140338
0.00160386
0.00180434
0.00200482
0.00220531
0.00240579
0.00260627
0.00280675
0.00300724
0.00320772
0.0034082
0.00360868
0.00380917
0.00400965

equilibrated flux estimators

Figure 18: Elementwise errors ∥∇(u−uℓ)∥K (left) and estimators
[
∥∇uℓ+σℓ∥K+ hK

π
∥f−

Πp′f∥K
]
(right), equilibrated fluxes, p = 1 and p′ = 1

IsoValue
0
9.39114e-06
1.87823e-05
2.81734e-05
3.75645e-05
4.69557e-05
5.63468e-05
6.57379e-05
7.51291e-05
8.45202e-05
9.39114e-05
0.000103302
0.000112694
0.000122085
0.000131476
0.000140867
0.000150258
0.000159649
0.00016904
0.000178432
0.000187823

energy errors
IsoValue
0
9.59264e-06
1.91853e-05
2.87779e-05
3.83705e-05
4.79632e-05
5.75558e-05
6.71484e-05
7.67411e-05
8.63337e-05
9.59264e-05
0.000105519
0.000115112
0.000124704
0.000134297
0.00014389
0.000153482
0.000163075
0.000172667
0.00018226
0.000191853

equilibrated flux estimators

Figure 19: Elementwise errors ∥∇(u−uℓ)∥K (left) and estimators
[
∥∇uℓ+σℓ∥K+ hK

π
∥f−

Πp′f∥K
]
(right), equilibrated fluxes, p = 2 and p′ = 2

2. The answer is plotted in Figure 20. The elementwise data oscillations hK
π
∥f−Πp′f∥K

take much smaller values than the elementwise errors ∥∇(u− uℓ)∥K (they converge
two orders of magnitude faster than the error in the mesh-size h for elementwise
smooth f when p′ = p and one order of magnitude faster when p′ = p−1). Moreover,
for p′ = 2, where Πp′f = f , we only observe rounding errors.

3. The effectivity indices Ieff,ℓ given by (19) are greater or equal to one and tend to one
with both the mesh refinement and polynomial degree increase. For Figures 18–19,
they respectively take the values 1.04445 and 1.01167.

15

IsoValue
0
3.00105e-07
6.00211e-07
9.00316e-07
1.20042e-06
1.50053e-06
1.80063e-06
2.10074e-06
2.40084e-06
2.70095e-06
3.00105e-06
3.30116e-06
3.60127e-06
3.90137e-06
4.20148e-06
4.50158e-06
4.80169e-06
5.10179e-06
5.4019e-06
5.702e-06
6.00211e-06

data oscillations
IsoValue
0
7.43141e-20
1.48628e-19
2.22942e-19
2.97256e-19
3.7157e-19
4.45885e-19
5.20199e-19
5.94513e-19
6.68827e-19
7.43141e-19
8.17455e-19
8.91769e-19
9.66083e-19
1.0404e-18
1.11471e-18
1.18903e-18
1.26334e-18
1.33765e-18
1.41197e-18
1.48628e-18

data oscillations

Figure 20: Elementwise data oscillations hK
π
∥f − Πp′f∥K for p = 1 and p′ = 1 (left) and

p = 2 and p′ = 2 (right)

16

Exercice 6. (A posteriori error estimators by averaged fluxes)

We will now go back to the averaged fluxes of Exercice 2 and use them in a posteriori
error estimators. In this case, there is no guaranteed upper bound, though we may still
hope to obtain

∥∇(u− uℓ)∥ ≲ ∥∇uℓ + σℓ∥. (18)

1. Plot the elementwise a posteriori error estimators ∥∇uℓ + σℓ∥K . Compare them to
the plots of the elementwise errors from Exercice 4. What do you observe?

2. Compare the size of the a posteriori error estimator ∥∇uℓ + σℓ∥ to the size of the
error ∥∇(u− uℓ)∥. This is best done in terms of the so-called effectivity index

Ieff,ℓ :=
∥∇uℓ + σℓ∥
∥∇(u− uℓ)∥

. (19)

What do you observe?

Answer 6. (A posteriori error estimators by averaged fluxes)

1. The answer is given in Figures 21–22. We observe a reasonable match, though
weaker than in Figures 18–19.

IsoValue
0
0.000184189
0.000368378
0.000552567
0.000736756
0.000920946
0.00110513
0.00128932
0.00147351
0.0016577
0.00184189
0.00202608
0.00221027
0.00239446
0.00257865
0.00276284
0.00294703
0.00313121
0.0033154
0.00349959
0.00368378

energy errors

IsoValue
0
0.000155202
0.000310403
0.000465605
0.000620807
0.000776008
0.00093121
0.00108641
0.00124161
0.00139681
0.00155202
0.00170722
0.00186242
0.00201762
0.00217282
0.00232802
0.00248323
0.00263843
0.00279363
0.00294883
0.00310403

averaged flux estimators
IsoValue
0
0.000200364
0.000400729
0.000601093
0.000801458
0.00100182
0.00120219
0.00140255
0.00160292
0.00180328
0.00200364
0.00220401
0.00240437
0.00260474
0.0028051
0.00300547
0.00320583
0.0034062
0.00360656
0.00380693
0.00400729

averaged flux estimators

Figure 21: Elementwise errors ∥∇(u−uℓ)∥K (top) and estimators ∥∇uℓ+σℓ∥K (bottom),
averaged fluxes; p = 1 and p′ = 1 (left) and p = 1 and p′ = 0 (right)

17

IsoValue
0
9.39114e-06
1.87823e-05
2.81734e-05
3.75645e-05
4.69557e-05
5.63468e-05
6.57379e-05
7.51291e-05
8.45202e-05
9.39114e-05
0.000103302
0.000112694
0.000122085
0.000131476
0.000140867
0.000150258
0.000159649
0.00016904
0.000178432
0.000187823

energy errors

IsoValue
0
8.20563e-06
1.64113e-05
2.46169e-05
3.28225e-05
4.10281e-05
4.92338e-05
5.74394e-05
6.5645e-05
7.38506e-05
8.20563e-05
9.02619e-05
9.84675e-05
0.000106673
0.000114879
0.000123084
0.00013129
0.000139496
0.000147701
0.000155907
0.000164113

averaged flux estimators
IsoValue
0
9.96471e-06
1.99294e-05
2.98941e-05
3.98588e-05
4.98235e-05
5.97883e-05
6.9753e-05
7.97177e-05
8.96824e-05
9.96471e-05
0.000109612
0.000119577
0.000129541
0.000139506
0.000149471
0.000159435
0.0001694
0.000179365
0.000189329
0.000199294

averaged flux estimators

Figure 22: Elementwise errors ∥∇(u−uℓ)∥K (top) and estimators ∥∇uℓ+σℓ∥K (bottom),
averaged fluxes; p = 2 and p′ = 2 (left) and p = 2 and p′ = 1 (right)

2. The effectivity indices Ieff,ℓ given by (19) are not necessarily greater or equal to one
here, and they do not necessarily tend to one with mesh refinement or polynomial
degree increase. For Figures 21–22, they take the values 0.908161 (p′ = 1) and
1.12652 (p′ = 0), respectively 0.811856 (p′ = 2) and 1.01725 (p′ = 1).

18

Exercice 7. (L-shaped domain with a singular solution)

The goal here is to extend the previous exercices to the L-shaped domain Ω = (−1, 1)×
(−1, 1) \ [0, 1]× [−1, 0] together with the exact solution written, in polar coordinates, as

u(r, θ) = r
2
3 sin(2θ/3). (20)

We remark that we consider here θ ∈ (0, 3π/2). The corresponding source term f = 0,
and we take gD = u on ΓD = ∂Ω and ΓN = ∅. The point is that whereas u given by (5) is

smooth, u given by (20) is singular, u ∈ H1+ 2
3
−ε(Ω) for any ε > 0 only, with the gradient

exploding at the re-entrant corner (0, 0).

Answer 7. (L-shaped domain with a singular solution)

Figures 23–31 present the results (these results were obtained with FreeFem++ v.4.5;
other versions of FreeFem++ generate a slightly different mesh, whereby subtle differences
might be observed). As for the effectivity indices Ieff,ℓ given by (17), for the equilibrated
fluxes given by (11), they are greater or equal to one, rather close to one, but do not
tend here to one, neither with the mesh refinement, nor with the polynomial degree
increase. For Figure 30, where p = p′ = 1, Ieff,ℓ takes the value 1.15228 (1.13601 for the
mesh of FreeFem++ v.4.11), whereas for the same mesh with p = p′ = 2 of Figure 31,
Ieff,ℓ = 1.19244 (1.20664 for the mesh of FreeFem++ v.4.11).

L-shaped domain and mesh

Figure 23: Domain Ω and the computational mesh Tℓ for the L-shaped example

IsoValue
0
0.063626
0.127252
0.190878
0.254504
0.31813
0.381756
0.445382
0.509008
0.572634
0.63626
0.699886
0.763512
0.827138
0.890764
0.95439
1.01802
1.08164
1.14527
1.20889
1.27252

exact solution
IsoValue
3.29757e-32
0.063626
0.127252
0.190878
0.254504
0.31813
0.381756
0.445382
0.509008
0.572634
0.63626
0.699886
0.763512
0.827138
0.890764
0.95439
1.01802
1.08164
1.14527
1.20889
1.27252

numerical approximation

Figure 24: Exact solution u (left) and approximate solution uℓ (right, p = 1)

19

Vec Value
0
0.457257
0.914513
1.37177
1.82903
2.28628
2.74354
3.2008
3.65805
4.11531
4.57257
5.02982
5.48708
5.94434
6.40159
6.85885
7.31611
7.77336
8.23062
8.68788

exact flux
Vec Value
0
0.125381
0.250762
0.376144
0.501525
0.626906
0.752287
0.877669
1.00305
1.12843
1.25381
1.37919
1.50457
1.62996
1.75534
1.88072
2.0061
2.13148
2.25686
2.38224

finite element flux

Figure 25: Flux of the exact solution −∇u (left) and flux of the approximation −∇uℓ
(right, p = 1)

IsoValue
0.588059
0.990521
1.39298
1.79545
2.19791
2.60037
3.00283
3.4053
3.80776
4.21022
4.61269
5.01515
5.41761
5.82007
6.22254
6.625
7.02746
7.42992
7.83239
8.23485
8.63731

exact flux magnitude
IsoValue
0.587762
0.678671
0.76958
0.860489
0.951398
1.04231
1.13322
1.22412
1.31503
1.40594
1.49685
1.58776
1.67867
1.76958
1.86049
1.95139
2.0423
2.13321
2.22412
2.31503
2.40594

finite element flux magnitude

Figure 26: Magnitude of the fluxes, exact solution |∇u| (left) and approximation |∇uℓ|
(right, p = 1)

Vec Value
0
0.117409
0.234818
0.352227
0.469636
0.587045
0.704454
0.821863
0.939272
1.05668
1.17409
1.2915
1.40891
1.52632
1.64373
1.76114
1.87854
1.99595
2.11336
2.23077

averaged flux
Vec Value
0
0.18413
0.368259
0.552389
0.736518
0.920648
1.10478
1.28891
1.47304
1.65717
1.8413
2.02543
2.20956
2.39368
2.57781
2.76194
2.94607
3.1302
3.31433
3.49846

equilibrated flux

Figure 27: Averaged flux σℓ for p = 1 and p′ = 0 (left) and equilibrated flux σℓ for p = 1
and p′ = 1 (right)

20

IsoValue
0
0.0550399
0.11008
0.16512
0.22016
0.2752
0.33024
0.38528
0.440319
0.495359
0.550399
0.605439
0.660479
0.715519
0.770559
0.825599
0.880639
0.935679
0.990719
1.04576
1.1008

divergence misfit of the averaged flux
IsoValue
0
5.92753e-15
1.18551e-14
1.77826e-14
2.37101e-14
2.96376e-14
3.55652e-14
4.14927e-14
4.74202e-14
5.33477e-14
5.92753e-14
6.52028e-14
7.11303e-14
7.70578e-14
8.29854e-14
8.89129e-14
9.48404e-14
1.00768e-13
1.06695e-13
1.12623e-13
1.18551e-13

divergence misfit of the equilibrated flux

Figure 28: Divergence misfit of the averaged flux σℓ for p = 1 and p′ = 0 (left) and
divergence misfit of the equilibrated flux σℓ for p = 1 and p′ = 1 (right)

Vec Value
0
0.125381
0.250762
0.376144
0.501525
0.626906
0.752287
0.877669
1.00305
1.12843
1.25381
1.37919
1.50457
1.62996
1.75534
1.88072
2.0061
2.13148
2.25686
2.38224

finite element flux on a patch
Vec Value
0
0.125381
0.250762
0.376144
0.501525
0.626906
0.752287
0.877669
1.00305
1.12843
1.25381
1.37919
1.50457
1.62996
1.75534
1.88072
2.0061
2.13148
2.25686
2.38224

hat-weighted finite element flux on a patch

Vec Value
0
0.188669
0.377338
0.566007
0.754676
0.943345
1.13201
1.32068
1.50935
1.69802
1.88669
2.07536
2.26403
2.4527
2.64137
2.83003
3.0187
3.20737
3.39604
3.58471

equilibrated flux patch contribution
Vec Value
0
0.454949
0.909898
1.36485
1.8198
2.27474
2.72969
3.18464
3.63959
4.09454
4.54949
5.00444
5.45939
5.91434
6.36928
6.82423
7.27918
7.73413
8.18908
8.64403

hat-weighted exact flux on a patch

Figure 29: Finite element flux −∇uℓ (top left), the hat-function-weighted finite element
flux −ψa∇uℓ (top right), the equilibrated flux contribution σa

ℓ (bottom left), and the
hat-function-weighted exact flux −ψa∇u (bottom right; there is some problem with
FreeFem++ roundoff (the black arrows are (almost) zero) and rendering (−ψa∇u is indeed
continuous)) on a patch subdomain ωa around the re-entrant corner vertex a = (0, 0),
p = 1 and p′ = 1

21

IsoValue
0
0.00254688
0.00509377
0.00764065
0.0101875
0.0127344
0.0152813
0.0178282
0.0203751
0.022922
0.0254688
0.0280157
0.0305626
0.0331095
0.0356564
0.0382033
0.0407502
0.043297
0.0458439
0.0483908
0.0509377

energy errors
IsoValue
0
0.00337097
0.00674194
0.0101129
0.0134839
0.0168549
0.0202258
0.0235968
0.0269678
0.0303387
0.0337097
0.0370807
0.0404517
0.0438226
0.0471936
0.0505646
0.0539355
0.0573065
0.0606775
0.0640484
0.0674194

equilibrated flux estimators

Figure 30: Elementwise errors ∥∇(u−uℓ)∥K (left) and estimators
[
∥∇uℓ+σℓ∥K+ hK

π
∥f−

Πp′f∥K
]
(right), equilibrated fluxes, p = 1 and p′ = 1

IsoValue
0
0.00116292
0.00232584
0.00348876
0.00465168
0.0058146
0.00697751
0.00814043
0.00930335
0.0104663
0.0116292
0.0127921
0.013955
0.0151179
0.0162809
0.0174438
0.0186067
0.0197696
0.0209325
0.0220955
0.0232584

energy errors
IsoValue
0
0.00161094
0.00322188
0.00483283
0.00644377
0.00805471
0.00966565
0.0112766
0.0128875
0.0144985
0.0161094
0.0177204
0.0193313
0.0209422
0.0225532
0.0241641
0.0257751
0.027386
0.028997
0.0306079
0.0322188

equilibrated flux estimators

Figure 31: Elementwise errors ∥∇(u−uℓ)∥K (left) and estimators
[
∥∇uℓ+σℓ∥K+ hK

π
∥f−

Πp′f∥K
]
(right), equilibrated fluxes, p = 2 and p′ = 2

22

