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Abstract We derive a posteriori error estimates for the discretization of the unsteady
linear convection–diffusion–reaction equation approximated with the cell-centered
finite volume method in space and the backward Euler scheme in time. The es-
timates are based on a locally postprocessed approximate solution preserving the
conservative fluxes and are established in the energy norm. We propose an adaptive
algorithm which ensures the control of the total error with respect to a user-defined
relative precision and refines the meshes adaptively while equilibrating the time and
space contributions to the error. Numerical experiments illustrate the theory.
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1 Introduction

We consider the time-dependent linear convection–diffusion–reaction equation

∂tu−∇⋅(S∇u)+∇⋅(βββu)+ ru = f a.e. in QT := Ω× (0,T ), (1a)
u(⋅,0) = u0 a.e. in Ω, (1b)

u = 0 a.e. on ∂Ω× (0,T ). (1c)
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Here S is the diffusion–dispersion tensor, βββ is the velocity field, r is the reaction
function, f is the source term, Ω⊂ IRd , d ≥ 2, is the space domain which we suppose
polyhedral, and (0,T ) is the time interval. We suppose that S = (Si, j) with Si, j ∈
L∞(QT ), 1≤ i, j ≤ d, is a symmetric, bounded, and uniformly positive definite tensor
(we suppose that Si, j are piecewise constant on space-time meshes defined below),
βββ ∈C0([0,T ]; [W 1,∞(Ω)]d), r ∈ L∞(QT ), f ∈ L2(QT ), and u0 ∈ L2(Ω).

Several works have studied a posteriori error estimates for the cell-centered finite
volume method. Ohlberger derives in [7] estimates in the L1-norm. Nicaise [6] es-
tablishes a posteriori energy-norm estimates using Morley-type interpolants of the
original piecewise constant finite volume approximation. Guaranteed flux-based es-
timates were established in [8] and extended in [3] to the parabolic case. Estimates
for vertex-centered unsteady convection–diffusion–reaction problems were derived
in [1] and [5].

The purpose of this work is to derive guaranteed a posteriori error estimates for
the discretization of (1a)–(1c) by the cell-centered finite volume method in space
and the backward Euler scheme in time. We allow for time-varying meshes.

2 Notation and Continuous Problem

2.1 Notation

We consider a strictly increasing sequence of discrete times {tn}0≤n≤N such that
t0 = 0 and tN = T . For all 1 ≤ n ≤ N, we define τn := tn − tn−1 and In := (tn−1, tn].
On each time interval In, we consider partition T n of Ω such that Ω=

∪
K∈T n K. For

simplicity, we assume that the meshes are simplicial and matching (in the sense that
they do not contain hanging nodes). For 1 ≤ n ≤ N, T n−1,n is a common refinement
of T n−1 and T n. For all 0 ≤ n ≤ N and all K ∈ T n, hK denotes the diameter of
K. We denote by cn

S,K the smallest eigenvalue of S on K and by cn
βββ ,r,K the essential

minimum of 1
2 ∇⋅βββ + r on K × In. We denote by EK the set of the sides of K ∈ T n,

and we fix nK,σ as the unit normal vector to a side σ outward to K.
We denote by (⋅, ⋅)S the L2(S) inner product, by ∥⋅∥S the associated norm

(when S = Ω, the index is dropped), and by ∣S∣ the Lebesgue measure of S.
Next, we set H(div,S) = {v ∈ L2(S);∇⋅v ∈ L2(S)}. Moreover, we use the “bro-
ken Sobolev space” H1(T n) := {φ ∈ L2(Ω);φ∣K ∈ H1(K) ∀K ∈ T n}. Finally,
we use the Raviart–Thomas–Nédélec space RTN0(T n) := {vh ∈ H(div,Ω);vh∣K ∈
RTN0(K)∀K ∈T n} where RTN0(K) := [IP0(K)]d +xIP0(K). For W , a vector space
of functions defined on Ω, we define P1

τ (W ) (respectively P0
τ (W )) as the vector

space of functions v defined on QT such that v(⋅, t) takes values in W and is contin-
uous and piecewise affine (respectively constant) in time.

Because of the nonconformity of the cell-centered finite volume method, we in-
troduce, for all 0 ≤ n ≤ N, the broken gradient operator ∇n such that for a function
v ∈ H1(T n), ∇nv ∈ [L2(Ω)]d is defined as (∇nv)∣K := ∇(v∣K) for all K ∈ T n. The
broken gradient operator ∇n−1,n on the mesh T n−1,n is defined similarly.
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2.2 Continuous Problem

Let X := L2(0,T ;H1
0 (Ω)), X ′ = L2(0,T ;H−1(Ω)), and Y := {v ∈ X ;∂tv ∈ X ′}. The

weak solution u of the problem (1a)–(1c) is such that u ∈ Y with u(⋅,0) = u0. For
a.e. t ∈ (0,T ) and for all φ ∈ H1

0 (Ω), there holds

⟨∂tu,φ⟩(t)+(S∇u,∇φ)(t)+(∇⋅(βββu),φ)(t)+(ru,φ)(t) = ( f ,φ)(t), (2)

where ⟨⋅, ⋅⟩ stands for the duality pairing between H−1(Ω) and H1
0 (Ω).

For y ∈ X , we introduce the space-time energy norm ∥y∥2
X :=

∫ T
0 ∣∣∣y∣∣∣2(t)dt,

where ∣∣∣y∣∣∣2 := ∥S 1
2 ∇y∥2 + ∥( 1

2 ∇⋅βββ + r)
1
2 y∥2. We extend the energy norm to dis-

crete functions using the broken gradient.

3 The Cell-centered Finite Volume Schemes and Postprocessing

A general cell-centered finite volume scheme for the problem (1a)–(1c) can be writ-
ten in the following form: for all 1 ≤ n ≤ N, find un

h := (un
K)K∈T n , such that

1
τn (u

n
h −un−1

h ,1)K + ∑
σ∈EK

Sn
K,σ + ∑

σ∈EK

W n
K,σ + rn

K(u
n
h,1)K = f n

K ∣K∣ ∀K ∈ T n,(3)

where f n
K = 1

τn
∫

In( f (⋅, t),1)K/∣K∣dt, rn
K = 1

τn
∫

In(r(⋅, t),1)K/∣K∣dt, Sn
K,σ and W n

K,σ
are, respectively, the diffusive and convective fluxes through a side σ of an element
K, and un−1

h is the postprocessed solution that we define below.
For 1≤ n≤N, we reconstruct a conforming convective flux ψψψn and a conforming

diffusive flux θθθ n such that ψψψn, θθθ n ∈ RTN0(T n) and verifying

⟨ψψψn⋅nK,σ ,1⟩σ = W n
K,σ ∀K ∈ T n, ∀σ ∈ EK , (4)

⟨θθθ n⋅nK,σ ,1⟩σ = Sn
K,σ ∀K ∈ T n, ∀σ ∈ EK . (5)

We refer to [4, 8] for more details on such construction. We define θθθ and ψψψ in
P0

τ (H(div,Ω)) by θθθ ∣In := θθθ n and ψψψ∣In := ψψψn.
Following [8], we introduce a piecewise quadratic approximation un

h for all 1 ≤
n ≤ N verifying for all K ∈ T n,

−S∇un
h∣K = θθθ n∣K , (6)

(un
h,1)K = ∣K∣un

K . (7)

When S = νId, un
h lies in the space IP1,2(T n) which is IP1(T n) enriched element-

wise with ∑d
i=1 x2

i . Finally, we set u0
h the L2-projection of u0 onto IP1,2(T n).

Because of the nonconformity of un
h, i.e., of the fact that un

h ∈ H1(T n), un
h ∕∈

H1
0 (Ω), we define an averaging interpolate sn = Iav(un

h) ∈ H1
0 (Ω) of un

h that verifies
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(sn,1)K = (un
h,1)K ∀K ∈ T n,n+1, ∀0 ≤ n ≤ N, (8)

with the convention T N,N+1 := T N . We refer to [3] for the details on such con-
struction. Finally, we consider uh,τ ∈ P1

τ (H
1(T n)) and s ∈ P1

τ (H
1
0 (Ω)). They are

defined by the values un
h and sn for all 0 ≤ n ≤ N. We set ∂ n

t v = ∂tv∣In . An important
consequence of this construction is the following, cf. [3],

(∂ n
t s,1)K = (∂ n

t uh,τ,1)K ∀K ∈ T n. (9)

4 A Posteriori Error Estimate

Our a posteriori estimate bounds the energy error between the weak solution u and
the approximate solution uh,τ. We use the postprocessed solution instead of the orig-
inal piecewise constant solution since the latter has a zero broken gradient and there-
fore is not suitable for energy norm estimates.

Let 1 ≤ n ≤ N and K ∈ T n. We define the residual estimator as

ηn
R,K := mn

K∥ f̃ n −∂ n
t s−∇⋅θθθ n −∇⋅ψψψn − rn

Ksn∥K . (10)

Here f̃ n = 1
τn

∫
In f (⋅, t)dt and mn

K := min{CP,KhK(cn
S,K)

− 1
2 ,(cn

βββ ,r,K)
− 1

2 } is the con-
stant from the inequality

∥φ −φK∥K ≤ mn
K ∣∣∣φ∣∣∣K ∀K ∈ T n, ∀φ ∈ H1(K), (11)

shown in [8]. Here, φK := (φ,1)K/∣K∣ and CP,K := 1/π is the constant from the
Poincaré inequality (recall that K are convex). We define the flux estimator as

ηn
F,K(t) := ∥S 1

2 ∇s+S−
1
2 θθθ n −S−

1
2 βββ s+S−

1
2 ψψψn∥K . (12)

Furthermore, we define the following nonconformity estimator

ηn
NC,K(t) := ∣∣∣uh,τ − s∣∣∣K . (13)

Let mn := min{CF,ΩhΩ(cn
S,Ω)

− 1
2 ,(cn

βββ ,r,Ω)
− 1

2 }, where CF,Ω is the Friedrichs inequal-
ity constant detailed in [5]. The quadrature estimator is given by

ηn
Q,K(t) := mn∥ f − f̃ n − rs+ rn

Ksn∥K . (14)

Finally, we define the initial condition estimator as

ηIC := 2−
1
2 ∥s0 −u0∥. (15)

We now state and prove our main result concerning the error upper bound.

Theorem 1 (Energy norm a posteriori estimate). Let ηn
R,K , ηn

F,K , ηn
NC,K , ηn

Q,K , and
ηIC be defined by (10) and (12)–(15). Then,
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∥u−uh,τ∥X ≤ η :=
{ N

∑
n=1

∫
In

∑
K∈T n

(
ηn

R,K +ηn
F,K(t)

)2dt
} 1

2
+ηIC

+

{ N

∑
n=1

∫
In

∑
K∈T n

(ηn
Q,K(t))

2dt
}1

2
+

{ N

∑
n=1

∫
In

∑
K∈T n

(ηn
NC,K(t))

2dt
}1

2
.

Proof. For s ∈ Y , we define R(s) in X ′ by ⟨R(s),φ⟩ :=
∫ T

0 {( f − ∂ts−∇⋅(βββ s)−
rs,φ)− (S∇s,∇φ)}(t)dt, for all φ ∈ X . We obtain

1
2
∥u− s∥2(T ) =

1
2
∥u0 − s0∥2 +

∫ T

0
⟨∂t(u− s),u− s⟩(t)dt,

which yields

∥u− s∥2
X ≤ 1

2
∥u0 − s0∥2 + ⟨R(s),u− s⟩.

Using the definition of the dual norm yields ∥u−s∥2
X ≤∥R(s)∥X ′∥u−s∥X + 1

2∥u0−
s0∥2. Since x2 ≤ ax+b2 implies x ≤ a+b, (a,b > 0), we infer

∥u− s∥X ≤ ∥R(s)∥X ′ +2−
1
2 ∥u0 − s0∥. (16)

For 1 ≤ n ≤ N, set ⟨Rn(s),φ⟩ := T n
R (φ)+T n

F (φ)+T n
Q(φ) with

T n
R (φ) := ∑

K∈T n
( f̃ n −∂ n

t s−∇⋅θθθ n −∇⋅ψψψn − rn
Ksn,φ)K ,

T n
F (φ) := −(S∇s+θθθ n +ψψψn −βββ s,∇φ),

T n
Q(φ) := ∑

K∈T n
( f − f̃ n − rs+ rn

Ksn,φ)K .

First, we have T n
R (φ) = T n

R (φ−Π0φ), where Π0φ∣K := φK for all K, using ( f̃ n −
∂ n

t s−∇⋅θθθ n −∇⋅ψψψn − rn
Ksn,1)K = 0 from (3), (4), (5), and (7)–(9). Hence, T n

R (φ)≤
∑K∈T n ηn

R,K ∣∣∣φ∣∣∣K using the Cauchy–Schwarz inequality and (11). Moreover, T n
F (φ)

is bounded by ∑K∈T n ηn
F,K ∣∣∣φ∣∣∣K using the Cauchy–Schwarz inequality, and T n

Q(φ)

is bounded by
{

∑K∈T n(ηn
Q,K)

2
}1/2 ∣∣∣φ ∣∣∣ as in [5]. Using (16), the definition of

R(s), and the Cauchy–Schwarz and triangle inequalities concludes the proof.

In order to make the calculation efficient, it is important to distinguish the space
and time errors. To this purpose, the flux estimator ηn

F,K(t) is split into two contri-
butions using the triangle inequality. We define, for all 1 ≤ n ≤ N,

(ηn
sp)

2 := 4 ∑
K∈T n

{
τn(ηn

R,K +ηn
F,1,K)

2 +
∫

In
(ηn

NC,K)
2(t)dt

}
,

(ηn
tm)

2 := 4 ∑
K∈T n

{∫
In
∥S 1

2 ∇(s− sn)−S−
1
2 (βββ s−βββ nsn)∥2

K(t)dt +
∫

In

(
ηn

Q,K(t)
)2dt

}
,
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where βββ n := 1
τn

∫
In βββ (⋅, t)dt and ηn

F,1,K := ∥S 1
2 ∇sn+S−

1
2 θθθ n−S−

1
2 βββ nsn+S−

1
2 ψψψn∥K .

Proceeding as in [3], we obtain

Theorem 2 (A posteriori estimate distinguishing the space and time errors).
There holds

∥u−uh,τ∥X ≤
{ N

∑
n=1

{
(ηn

sp)
2 +(ηn

tm)
2}}1/2

+ηIC.

5 A Space-time Adaptive Time-marching Algorithm

We present here an adaptive algorithm based on our a posteriori error estimates
which ensures that the relative energy error between the exact and the approximate
solutions is below a prescribed tolerance ε. At the same time, it intends to equilibrate
the space and time estimators ηn

sp and ηn
tm. Recalling Theorem 2 and neglecting ηIC

we aim at achieving
∑N

n=1{(ηn
sp)

2 +(ηn
tm)

2}
∑N

n=1 ∥uh,τ∥2
X(tn−1,tn)

≤ ε2. (17)

On a given time level tn−1, we set Crit := ε
∥uh,τ∥X(tn−1 ,tn)√

2
and we choose the space

mesh T n and the time step τn such that ηn
sp ≤Crit and ηn

tm ≤Crit. For practical im-
plementation purposes and because of computer limitations, we introduce maximal
refinement level parameters Nsp and Ntm. The actual algorithm is as follows:

Choose an initial mesh T 0, an initial time step τ0, and set t0 = 0
Set n = 1 and t1 = t0 + τ0

Loop in time: While tn≤T
Set T n★ := T n−1

Do
Solve un★

h = Sol(un−1
h ,τn−1,T n★)

Estimate ηn
sp and ηn

tm
Refine the elements K ∈ T n★ where ηn

sp,K ≥ Ref ηn
sp and such

that their level of refinement is less than Nsp
While {ηn

sp ≥ Crit or ηn
sp is much larger than ηn

tm}
If {ηn

tm ≥ Crit or ηn
tm is much larger than ηn

sp and when
the level of time refinement is less than Ntm}
Set tn = tn − τn−1 and τn−1 = τn−1/2

Else
Save the approximate solution un

h := un★
h , the mesh T n := T n★,

and the time step τn, and set n = n+1

In this version we are only refining the elements and time steps where the estimated
error is large. In a later version, we will also coarsen elements and time steps where
the estimated error is small.
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6 Numerical Experiments

We consider (1a)–(1c) on Ω = (0,3)× (0,3) with S= νId, βββ = (β1,β2), r = 0, and
f = 0, where ν > 0 determines the amount of diffusion. The initial condition u0, as
well as the Dirichlet boundary condition, are given by the exact solution

u(x,y, t) =
1

200νt +1
e−50 (x−x0−β1t)2+(y−y0−β2t)2

200νt+1 .

Here x0 = 0.33, y0 = 1.125, β1 = 0.8, and β2 = 0.4. We set T = 0.6. We use
the DDFV method detailed in [2]. We neglect the additional error from the in-
homogeneous Dirichlet boundary condition. We consider two cases ν = 0.1 and
ν = 0.001. We start from an initial time step τ = 0.05 and an initial mesh of
336 triangles and we refine uniformly by dividing the time step by 2 and each
triangle into 4 subelements. Tables 1 and 2 show the actual and estimated en-
ergy error where η is the upper bound from Theorem 1, as well as the contribu-
tion of each estimator to the upper bound. Specifically, we define the global-in-
time and global-in-space version of the estimators, (ηR)

2 :=∑N
n=1 τn ∑K∈T n(ηn

R,K)
2,

(ηNC)
2 := ∑N

n=1
∫

In ∑K∈T n(ηn
NC,K(t))

2dt and (ηF)
2 := ∑N

n=1
∫

In ∑K∈T n(ηn
F,K(t))

2dt.

Table 1 Convergence results with uniform refinement in the case ν = 0.1

∥u−uh,τ∥X η ηR ηF ηNC
η

∥u−uh,τ∥X

0.0625 0.2070 0.0420 0.0910 0.0600 3.3102
0.0366 0.1299 0.0242 0.0613 0.0327 3.5464
0.0199 0.0662 0.0065 0.0328 0.0179 3.3182
0.0104 0.0335 0.0017 0.0167 0.0095 3.2104

Table 2 Convergence results with uniform refinement in the case ν = 0.001

∥u−uh,τ∥X η ηR ηF ηNC
η

∥u−uh,τ∥X

0.0342 1.6490 0.3894 1.0875 0.0101 48.2496
0.0286 1.2341 0.2175 0.8354 0.0091 43.2175
0.0221 0.7992 0.0701 0.5541 0.0083 36.1332
0.0158 0.4773 0.0226 0.3312 0.0076 30.2736

We next compare the uniform and adaptive refinement strategies. We note that
the refinement maintains the conformity of the mesh. Figure 1 shows that we obtain
a better precision in the adaptive strategy for much fewer space–time unknowns.
Figure 2 depicts the approximate solution at the final time for ν = 0.001 obtained
with adaptive refinement for Nsp = Ntm = 2, and Nsp = Ntm = 4. We can see that in
the second case the approximate solution better approximates the exact solution.
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Fig. 1 Energy error in adaptive and uniform refinement for ν = 0.1 (left) and ν = 0.001 (right)
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Fig. 2 Approximate solution with adaptive refinement: Nsp = Ntm = 2 (left), Nsp = Ntm = 4 (right)
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4. Eymard, R. and Gallouët, T. and Herbin, R.: Finite volume approximation of elliptic problems
and convergence of an approximate gradient. Appl. Numer. Math. 37, 31–53 (2001)

5. Hilhorst, D. and Vohralı́k, M.: A posteriori error estimates for combined finite volume–finite
element discretizations of reactive transport equations on nonmatching grids. Comput. Meth-
ods Appl. Mech. Engrg. 200, 597–613 (2011)

6. Nicaise, S.: A posteriori error estimations of some cell centered finite volume methods for
diffusion-convection-reaction problems. SIAM J. Numer. Anal. 44, 949–978 (2006)

7. Ohlberger, M.: A posteriori error estimate for finite volume approximations to singularly
perturbed nonlinear convection–diffusion equations. Numer. Math. 87, 737–761 (2001)

8. Vohralı́k, M.: Residual flux-based a posteriori error estimates for finite volume and related
locally conservative methods. Numer. Math. 11, 121–158 (2008)

The paper is in final form and no similar paper has been or is being submitted elsewhere.


